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Abstract

In this book, we shall prove a general comparison lemma for iteration strate-
gies. The comparison method involves iterating into a level of a background
construction, one that has been done in a universe that is uniquely iterable in
the appropriate sense. The proof that it succeeds relies heavily on an analysis
the normalization of a stack of normal iteration trees.

We then use this comparison method to develop the basic theory of hod
mice in the least branch hierarchy. Modulo the existence of iteration strategies,
our results yield a fine structural analysis of (HOD|0)Y, whenever M is a
model of ADg +V = L(P(R)) that has no iteration strategies for mice with
long extenders. In particular, HODM = GCH, for such M.
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1 Introduction

In this book we shall develop a general comparison process for iteration strategies,
and show how the process can be used to analyze ordinal definability in models of the
Axiom of Determinacy. In this introduction, we look at the context and motivation
for the technical results to come.

We begin with a broad overview of inner model theory, the subject to which this
book belongs. Eventually we reach an outline of the ideas and results that are new
here. The journey is organized so that the technical background needed to follow
along increases as we proceed.

1.1 Large cardinals and the consistency strength hierarchy

Strong axioms of infinity, or as they are more often called, large cardinal hypotheses,
play a central role in set theory. There are at least two reasons.

First, large cardinal hypotheses can be used to decide in a natural way many
questions which cannot be decided on the basis of ZFC (the commonly accepted
system of axioms for set theory, and hence all of mathematics). Many such questions
come from descriptive set theory, the theory of simply definable sets of real numbers.
For example, the hypothesis that there are infinitely many Woodin cardinals yields a
systematic and detailed theory of the projective sets of reals, those that are definable
in the language of second order arithmetic from real parameters. ZFC by itself yields
such a theory at only the simplest levels of second order definability.

Second, large cardinal hypotheses provide a way of organizing and surveying all
possible natural extensions of ZFC. This is due to the following remarkable phe-
nomenon: for any natural extension T" of ZFC which set theorists have studied, there
seems to be an extension S of ZFC axiomatized by large cardinal hypotheses such
that the consistency of T" is provably (in ZFC) equivalent to that of S. The consis-
tency strengths of the large cardinal hypotheses are linearly ordered, and usually easy
to compare. Thus all natural extensions of ZFC seem to fall in a hierarchy linearly
ordered by consistency strength, and calibrated by the large cardinal hypotheses.!

These two aspects of large cardinal hypotheses are connected, in that the consis-
tency strength order on natural theories corresponds to the inclusion order on the
set of their “sufficiently absolute” consequences. For example, if S and T" are natural
theories extending ZFC, and S has consistency strength less than or equal to that of
T, then the arithmetic consequences of S are included in those of T'. If in addition, .S

'Let con(T') be some natural formalization of the assertion that T is consistent. The consistency
strength order is given by: S <con T iff ZFC proves con(T") — con(S).



and T have consistency strength at least that of “there are infinitely many Woodin
cardinals”, then the consequences of S in the language of second order arithmetic
are included in those of T'. This pattern persists at still higher consistency strengths,
with still more logically complicated consequences about reals and sets of reals being
brought into a uniform order. This beautiful and suggestive phenomenon has a prac-
tical dimension as well: one way to develop the absolute consequences of a strong
theory T' is to compute a consistency strength lower bound S for 7" in terms of large
cardinal hypotheses, and then work in the theory S. For one of many examples,
the Proper Forcing Axiom (PFA) yields a canonical inner model with infinitely many
Woodin cardinals that is correct for statements in the language of second order arith-
metic, and therefore PFA implies all consequences of the existence of infinitely many
Woodin cardinals that can be stated in the language of second order arithmetic.

One can think of the consistency strength of a theory as the degree to which it
is committed to the existence of the higher infinite. Large cardinal hypotheses make
their commitments explicitly: they simply say outright that the infinities in question
exist. It is therefore usually easy to compare their consistency strengths. Other
natural theories often have their commitments to the existence of the infinite well
hidden. Nevertheless, set theorists have developed methods whereby these commit-
ments can be brought to the surface, and compared. These methods have revealed
the remarkable phenomenon described in the last paragraph, that natural theories
appear to be wellordered by the degrees to which they are committed to the infinite,
and that this degree of commitment corresponds exactly to the power of the theory
to decide questions about concrete objects, like natural numbers, real numbers, or
sets of real numbers.

We should emphasize that the paragraphs above describe a general pattern of
existing theorems. There are many examples of natural theories whose consistency
strengths have not yet been computed, and perhaps they, or some natural theory
yet to be found, will provide counterexamples to the pattern described above. The
pervasiveness of the pattern where we know how to compare consistency strengths
is evidence that this will not happen.? The two methods whereby set theorists com-
pare consistency strengths, forcing and inner model theory, seem to lead inevitably
to the pattern. In particular, the wellorder of natural consistency strengths seems
to correspond to the inclusion order on canonical minimal inner models for large
cardinal hypotheses. Forcing and inner model theory seem sufficiently general to
compare all natural consistency strengths, but at the moment, this is just informed

2The pattern extends to weak subtheories of ZFC as well. This book is concerned only with
theories having very strong commitments to infinity, and so we shall ignore subtheories of ZFC, but
the linearity of the consistency strengths below that of ZFC is evidence of linearity higher up.



speculation. So one reasonable approach to understanding the general pattern of con-
sistency strengths is to develop our comparison methods further. In particular, inner
model theory is in great need of further development, as there are quite important
consistency strengths that it does not yet reach.

1.2 Inner model theory

The inner model program attempts to associate to each large cardinal hypothesis H
a canonical minimal universe of sets My (an inner model) in which H is true. The
stronger H is, the larger My will be; that is, G <con H if and only if Mg C My.
Some of our deepest understanding of large cardinal hypotheses comes from the inner
model program.

The inner models we have so far constructed have an internal structure which
admits a systematic, detailed analysis, a fine structure theory of the sort pioneered by
Ronald Jensen around 1970 ([11]). Thus being able to construct My gives us a very
good idea as to what a universe satisfying H might look like. Inner model theory
thereby provides evidence of the consistency of the large cardinal hypotheses to which
it applies. (The author believes that this will some day include all the large cardinal
hypotheses currently studied.) Since forcing seems to reduce any consistency question
to the consistency question for some large cardinal hypothesis, it is important to have
evidence that the large cardinal hypotheses themselves are consistent! No evidence
is more convincing than an inner model theory for the hypothesis in question.

The smallest of the canonical inner models is the universe L of constructible
sets, isolated by Kurt Gédel ([7]) in his 1937 proof that CH is consistent with ZFC.
It was not until the mid 1960’s that J. Silver and K. Kunen ([17],[10]) developed
the theory of a canonical inner model going properly beyond L, by constructing
My for H = “there is a measurable cardinal”. Since then, progressively larger My
for progressively stronger H have been constructed and studied in detail. (See for
example [5],[20], and [21].) At the moment, we have a good theory of canonical
inner models satisfying “there is a Woodin cardinal”, and even slightly stronger
hypotheses. (See [19],[23], and [19], for example.) One of the most important open
problems in set theory is to extend this theory significantly further, with perhaps the
most well-known target being models satisfying “there is a supercompact cardinal”.

Inner model theory is a crucial tool in calibrating consistency strengths: in order
to prove that H <con 7', where H is a large cardinal hypothesis, one generally
constructs a canonical inner model of H inside an arbitrary model of T. Because
we do not have a full inner model theory very far past Woodin cardinals, we lack
the means to prove many well-known conjectures of the form H <con 7', where H



is significantly stronger than “there is a Woodin cardinal”. Broadly speaking, there
are great defects in our understanding of the consistency strength hierarchy beyond
Woodin cardinals.

Inner model theory is also a crucial tool in developing the consequences for real
numbers of large cardinal hypotheses. Indeed, the basics of inner model theory for
Woodin cardinals were discovered in 1985-86 by D. A. Martin and the author, at
roughly the same time they discovered their proof of Projective Determinacy, or PD.
(Martin, Moschovakis, and others had shown in the 1960’s and 70’s that PD decides
in a natural way all the classical questions about projective sets left undecided by
ZFC alone.) This simultaneous discovery was not an accident, as the fundamental
new tool in both contexts was the same: iteration trees, and the iteration strategies
which produce them. Since then, progress in inner model theory has given us a
deeper understanding of pure descriptive set theory, and the means to solve some
old problems in that field.

The fundamental open problem of inner model theory is to extend the theory
to models satisfying “There is a supercompact cardinal”. One very well known test
question here is whether (ZFC+ “there is a supercompact cardinal”) <con ZFC+ PFA.
The answer is almost certainly yes, and the proof almost certainly involves an inner
model theory that is firing on all cylinders. That kind of inner model theory we have
now only at the level of many Woodin cardinals, but significant parts of the theory
do exist already at much higher levels.

1.3 Mice and iteration strategies

The canonical inner models we seek are often called mice. There are two principal
varieties, the pure extender mice and the strategy mice.?

A pure extender premouse is a model of the form L, [E] where E is a coherent
sequence of extenders. Here an extender is a system of ultrafilters coding an elemen-
tary embedding, and coherence means roughly that the extenders appear in order
of strength, without leaving gaps. These notions were introduced by Mitchell in the
1970s*, and they have been a foundation for work in inner model theory since then.

In this book, we shall assume that our premice have no long extenders on their
coherent sequences.” Such premice can model superstrong, and even subcompact,

3Strategy mice are sometimes called hod mice, because of their role in analyzing the hereditarily
ordinal definable sets in models of the Axiom of Determinacy.

4See [20] and [21].

5 An extender is short if all its component ultrafilters concentrate on the critical point. Otherwise,
it is long.



cardinals. They cannot model s'-supercompactness. Long extenders lead to an
additional set of difficulties.

An iteration strategy is a winning strategy for player II in the iteration game. For
any premouse M, the iteration game on M is a two player game of length w; +1.% In
this game, the players construct a tree of models such that each successive node on
the tree is obtained by an ultrapower of a model that already exists in the tree. I is
the player that describes how to construct this ultrapower. He takes the last model
that appeared in the tree and chooses an extender E from the extender sequence of
that model. He then chooses another model in the tree and takes the ultrapower by
E of this model. If the ultrapower is ill-founded then player I wins; otherwise the
resulting ultrapower is the next node on the tree. Player II moves at limit stages A
by choosing a branch of the tree that has been visited cofinally often below A, and is
such that the direct limit of the embeddings along the branch is well-founded. If he
fails to do so, he loses. If IT manages to stay in the category of wellfounded models
through all w; + 1 moves, then he wins. A winning strategy for II in this game is
called an iteration strategy for M, and M is said to be iterable just in case there is
an iteration strategy for it. Iterable pure extender premice are called pure extender
mice.

Pure extender mice are canonical objects; for example, any real number belonging
to such a mouse is ordinal definable. Let us say that a premouse M is pointwise
definable if every element of M is definable over M. For any axiomatizable theory
T, the minimal mouse satisfying 7" is pointwise definable. The canonicity of pure
extender mice is due to their iterability, which, via the fundamental Comparison
Lemma, implies that the pointwise definable pure extender mice are wellordered
by inclusion. This is the mouse order on pointwise definable pure extender mice.
The consistency strength of T is determined by the minimal mouse M having a
generic extension satisfying 7', and thus the consistency strength order on natural T’
is mirrored in the mouse order. However, in the case of the mouse order, we have
proved that we have a wellorder; what we cannot yet do is tie natural 7" at high
consistency strengths to it. As we climb the mouse order, the mice become correct
(reflect what is true in the full universe of sets) at higher and higher levels of logical
complexity.

[teration strategies for pointwise definable pure extender mice are also canonical
objects; for example, a pointwise definable mouse has exactly one iteration strategy.”

6Tteration games of other lengths are also important, but this length is crucial, so we shall focus
on it.

"This follows from Theorem 4.11 of [53], and the fact that any iteration strategy for a pointwise
definable M has the weak Dodd-Jensen property with respect to all enumerations of M.



The existence of iteration strategies is at the heart of the fundamental problem of
inner model theory, and for a pointwise definable M, to prove the existence of an
iteration strategy is to define it. In practice, it seems necessary to give a definition
in the simplest possible logical form. As we go higher in the mouse order, the logical
complexity of iteration strategies must increase, in a way that keeps pace with the
correctness of the mice they identify.

Our most powerful, all-purpose method for constructing iteration strategies is the
core model induction method. Because iteration strategies must act on trees of length
w1, they are not coded by sets of reals. Nevertheless, the fragment of the iteration
strategy for a countable mouse that acts on countable iteration trees is coded by
a set of reals. If this set happens to be absolutely definable (that is, Universally
Baire) then the strategy can be extended to act on uncountable iteration trees in a
unique way. There is no other way known to construct iteration strategies acting on
uncountable trees. Thus, having an absolutely definable iteration strategy for count-
able trees is tantamount to having a full iteration strategy. The key idea in the core
model induction is to use the concepts of descriptive set theory, under determinacy
hypotheses, to identify a next relevant level of correctness and definability for sets
of reals, a target level at which the next iteration strategy should be definable.

Absolute definability leads to determinacy. Thus at reasonably closed limit steps
in a core model induction, one has a model M of AD +V = L(P(R)) that contains
the restrictions to countable trees of the iteration strategies already constructed.
Understanding the structure of HOD is important for going further.

1.4 HOD in models of determinacy

HOD is the class of all hereditarily ordinal definable sets. It is a model of ZFC?,
but beyond that, ZFC does not decide its basic theory, and the same is true of ZFC
augmented by any of the known large cardinal hypotheses. The problem is that
the definitions one has allowed are not sufficiently absolute. In contrast, the theory
of HOD in determinacy models is well-determined, not subject to the vagaries of
forcing.”

The study of HOD in models of AD has a long history. The reader should see
[59] for a survey of this history. HOD was studied by purely descriptive set theoretic

8See [24].

9We mean here determinacy models of the form M = L(I",R), where I is a proper initial segment

of the universally Baire sets. If there are arbitrarily large Woodin cardinals, then for any sentence

¢, whether ¢ is true in all such HOD™ is absolute under set forcing. This follows easily from

B
(=Y

Woodin’s theorem on the generic absoluteness of statements. See [52, Theorem 5.1].



methods in the late 70s and 80s, and partial results on basic questions such as whether
HOD [ GCH were obtained then. It was known then that inner model theory, if
only one could develop it in sufficient generality, would be relevant to characterizing
the reals in HOD. It was known that HODM is close to M in various ways; for
example, if M = AD" +V = L(P(R))'%, then M can be realized as a symmetric
forcing extension of HOD | so that the first order theory of M is part of the first
order theory of its HOD. !

Just how relevant inner model theory is to the study of HOD in models of AD
became clear in 1994, when the author showed that if there are w Woodin cardinals
with a measurable above them all, then HOD*® up to 6X® is a pure extender
mouse.'?(See [50].) Shortly afterward, this result was improved by Hugh Woodin,
who reduced its hypothesis to AD*®  and identified the full HOD*® as a model of
the form L[M, ], where M is a pure extender premouse, and ¥ is a partial iteration
strategy for M. HOD*®) i thus a new type of mouse, sometimes called a strategy
mouse, sometimes called a hod mouse. See [60] for an account of this work.

Since the mid-1990s, there has been a great deal of work devoted to extending
these results to models of determinacy beyond L(R). Woodin analyzed HOD in
models of ADT below the minimal model of ADg fine structurally, and Sargsyan
pushed the analysis further, first to determinacy models below ADg + “# is regular”
(see [30] and [31]), and more recently, to models of still stronger forms of determinacy.
3 Part of the motivation for this work is that it seems to be essential in the core
model induction: in general, the next iteration strategy seems to be a strategy for a
hod mouse, not for a pure extender mouse. This idea comes from work of Woodin
and Ketchersid around 2000. (See [11] and [10].)

1.5 Least branch hod pairs

The strategy mice used in the work just described have the form M = L[E , 2], where
E is a coherent sequence of extenders, and Y is an iteration strategy for M. The
strategy information is fed into the model M slowly, in a way that is dictated in
part by the determinacy model whose HOD is being analyzed. One says that the

OAD™ is a technical strengthening of AD. It is not known whether AD = AD™, but in every
model of AD constructed so far, ADT also holds. In particular, the models of AD that are relevant
in the core model induction satisfy AD™.

"This is a theorem of Woodin from the early 1980s. Cf. [59].

2In a determinacy context,  denotes the least ordinal that is not the surjective image of the
reals.

13See [32]. Part of this work was done in collaboration with the author; see [55],[56], and [57].
The determinacy principles dealt with here are all weaker than a Woodin limit of Woodin cardinals.
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hierarchy of M is rigidly layered, or extender-biased. The object (M, ) is called a
rigidly layered (extender biased) hod pair.

Perhaps the main motivation for the extender-biased hierarchy is that it makes
it possible to prove a comparison theorem. There is no inner model theory without
such a theorem. Comparing strategy mice necessarily involves comparing iteration
strategies, and comparing iteration strategies is significantly more difficult than com-
paring extender sequences. Rigid layering lets one avoid the difficulties inherent in
the general strategy comparison problem, while proving comparison for a class of
strategy mice adequate to analyze HOD in the minimal model of ADg + “0 is reg-
ular”, and somewhat beyond. The key is that in this region, HOD does not have
cardinals that are strong past a Woodin cardinal.

Unfortunately, rigid layering does not seem to help in comparing strategy mice
that have cardinals that are strong past a Woodin. Moreover, it has serious costs.
The definition of “hod premouse” becomes very complicated, and indeed it is not
clear how to extend the definition of rigidly layered hod pairs much past that given
in [32]. The definition of “rigidly layered hod premouse” is not uniform, in that
the extent of extender bias depends on the determinacy model whose HOD is being
analyzed. Fine structure, and in particular condensation, become more awkward.
For example, it is not true in general that the pointwise definable hull of a level of
M is a level of M. (The problem is that the hull will not generally be sufficiently
extender biased.)

The more naive notion of hod premouse would abandon extender bias, and simply
add the least missing piece of strategy information at essentially every stage. This
was originally suggested by Woodin.!* The focus of this book is a general comparison
theorem for iteration strategies that makes it possible to use this approach, at least
in the realm of short extenders. The resulting premice are called least branch pre-
mice (Ipm’s), and the pairs (M, X)) are called least branch hod pairs (Ibr hod pairs).
Combining results of this book and [03], one has

Theorem 1.1 ([63]) Assume AD"+ “there is an (wy,w;) iteration strategy for a
pure extender premouse with a long extender on its sequence”; then

(1) for any I' C P(R) such that L(I',;R) = ADgr+ “there is no (wi,w;) iteration
strategy for a pure extender premouse with a long extender on its sequence”,
HOD"T®) s g least branch premouse, and

4 There are some fine-structural problems with the precise method for inserting strategy infor-
mation originally suggested by Woodin. The method for strategy insertion that is correct in detail
is due to Schlutzenberg and Trang. Cf. [10].
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(2) there is a I' C P(R) such that L(I',R) = ADr+ “there is no (wy,ws) iteration
strategy for a pure extender premouse with a long extender on its sequence”,
and HODMTR®) = ‘“there is a subcompact cardinal”.

Of course, one would like to remove the mouse existence hypothesis of 1.1, and
prove its conclusion under AD™ alone. Finding a way to do this is one manifestation
of the long standing iterability problem we have discussed above. Although we do
not yet know how to do this, the theorem does make it highly likely that in models
of ADr that have not reached an iteration strategy for a pure extender premouse
with a long extender, HOD is a least branch premouse. It also makes it very likely
that there are such HOD’s with subcompact cardinals. Subcompactness is one of the
strongest large cardinal properties that can be represented with short extenders.!”

Although we shall not prove Theorem 1.1 here, we shall prove an approximation
to it that makes the same points. That approximation is Theorem 8.11 below.

Least branch premice have a fine structure much closer to that of pure extender
models than that of rigidly layered hod premice. In this book we develop the basics,
including the solidity and universality of standard parameters, and a form of conden-
sation. In [65], the author and N. Trang have proved a sharper condensation theorem,
whose pure extender version was used heavily in the Schimmerling-Zeman work ([37])
on [J in pure extender mice. It seems likely that the rest of the Schimmerling-Zeman
work extends as well.

Thus least branch hod pairs give us a good theory of HOD in the short extender
realm, provided there are enough such pairs. Below, we formulate a conjecture that
we call Hod Pair Capturing, or HPC, that makes precise the statement that there
are enough least branch hod pairs. HPC is the main open problem in the theory to
which this book contributes.

1.6 Comparison and the mouse pair order

Let us first say more about the nature of least branch hod pairs (M, ). There are
some important requirements on ¥ in the definition.

Recall that an iteration tree on a premouse M is normal iff the extenders EY
used in W have lengths increasing with o, and each EY is applied to the longest
possible initial segment of the earliest possible model in W. Suppose now T is a
finite stack of iteration trees, with 7y being a normal tree on M, and 7;;; being a
normal tree on the last model of 7;. Let N be the last model of the last tree. There

15Until now, there was no very strong evidence that the HOD of a determinacy model could
satisfy that there are cardinals that are strong past a Woodin cardinal.

12



is a natural attempt to construct a “minimal” normal iteration tree V¥ on M having
last model N. This attempt may break down by reaching an illfounded model. If
it does not break down, it will in the end produce a model R and an elementary
m: N — R. We call W the embedding normalization of T.

The strategies in least branch hod pairs are defined on finite stacks of normal
trees.

Definition 1.2 Suppose ¥ is an iteration strateqy for a premouse P.

(1) (Tail strategy) If s is a stack by ¥ with last model Q, then X4 is the strategy
for Q given by: 3(t) = X(st).

(2) (Pullback strategy) If m: N — P is elementary, then X7 is the strategy for N
given by: X7(s) = X(nws), where 7s is the lift of s by 7 to a stack on P.

(3) (Normalizes well) ¥ normalizes well iff whenever s is a stack by ¥ with last
model Q), and W 1is the embedding normalization of s, with associated map

7 QQ — R, then
(1) Wis by ¥, and
(ii) X5 = (Bom)".

(4) (Strong hull condensation) 3 has strong hull condensation iff whenever T is a
normal tree by X, and U is a psuedo-hull of T, then U is by X.

Here elementarity must be understood fine structurally; our convention is that ev-
ery premouse P has a degree of soundness attached to it, and elementarity means el-
ementarity at that quantifier level. The notion of psuedo-hull is defined in Definition
3.29 below. Strong hull condensation is a stronger version of the hull condensation
property isolated by Sargsyan in [30].

If M is a pure extender premouse, and ¥ is a strategy for M that normalizes well
and has strong hull condensation, then we call (M, ) a pure extender pair. If M is
a least branch premouse, and X is a strategy for M that normalizes well, has strong
hull condensation, and whose internal strategy predicate is consistent with Y, then
we call (M,X) a least branch hod pair. A pair of one of the two types is a mouse
paar.

If (M,Y) is a mouse pair, and s is a stack by ¥ with last model N, then we call
(N, Xy) an iterate of (M,Y). If the branch M-to-N of s does not drop, we call it a
non-dropping iterate. In that case, we have an iteration map i,: M — N.

13



We have no hope of showing anything about mouse pairs (M, ) unless we assume
absolute definabilty for the iteration strategy. Here we assume 3 has scope HC, i.e.
that M is countable and ¥ is defined on countable stacks of countable trees, and we
assume that we are in a model of AD". The following is the main new result of the
book.

Theorem 1.3 (Comparison theorem, 6.21) Assume AD", and let (P,X) and
(Q, V) be mouse pairs with scope HC that are of the same type; then they have a
common iterate (R, ) such that on at least one of the two sides, the iteration does
not drop.

Even for pure extender pairs, this theorem is new, because of the agreement
between tail strategies it requires. In fact, it is no easier to prove the theorem for
pure extender pairs than it is to prove it for least branch hod pairs. The proof in
both cases is the same, and it makes use of the properties of the iteration strategies
we have isolated in the definition of mouse pair.

Working in the category of mouse pairs enables us to state a general Dodd-Jensen
lemma. Let us say m: (P,X) — (Q, V) is elementary iff 7 is elementary from P to @,
and X = W™, The iteration maps associated to non-dropping iterations of a mouse
pair are elementary.'¢

Theorem 1.4 (Dodd-Jensen lemma) Let (P,X) be a mouse pair, and (Q, V) be
an iterate of (P,X) via the stack s. Suppose w: (P,X) — (Q, V) is elementary; then
s does not drop, and for all ordinals n € P, is(n) < w(n).

The proof is just the usual Dodd-Jensen proof; the point is just that the language
of mouse pairs enables us to formulate the theorem in its proper generality. There
is no need to restrict to mice with unique iteration strategies, as is usually done.

Similarly, we can define the mouse order in its proper generality, without restrict-
ing to mice with unique iteration strategies. If (P,X) and (@, V) are pairs of the
same type, then (P,Y) <* (Q, V) iff (P,X) can be elementarily embedded into an
iterate of (@, ¥). The Comparison and Dodd-Jensen theorems imply that <* is a
prewellorder on each type.

1.7 Hod pair capturing

Least branch hod pairs can be used to analyze HOD in models of AD", provided
that there are enough such pairs.

16This is actually not obvious; it is a property of the iteration strategy known as pullback con-
sistency. It follows from strong hull condensation.
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Definition 1.5 (AD")

(a) Hod Pair Capturing (HPC) is the assertion: for every Suslin-co-Suslin set A,
there is a least branch hod pair (P,Y) such that A is definable from parameters
over (HC, €,Y).

(b) L[E] capturing (LEC) is the assertion: for every Suslin-co-Suslin set A, there
is a pure extender pair (P,X) such that A is definable from parameters over
(HC,€,%).

An equivalent (under AD) formulation would be that the sets of reals coding strate-
gies of the type in question, under some natural map of the reals onto HC, are Wadge
cofinal in the Suslin-co-Suslin sets of reals. The restriction to Suslin-co-Suslin sets A
is necessary, for AD" implies that if (P, ) is a pair of one of the two types, then the
codeset of ¥ is Suslin and co-Suslin. This is the main result of [03], where it is also
shown that the Suslin representation constructed is of optimal logical complexity.

Remark 1.6 HPC is a cousin of Sargsyan’s Generation of Full Pointclasses. See
[30] and [31], §6.1.

Assuming AD™, LEC is equivalent to the well known Mouse Capturing: for reals
x and y, x is ordinal definable from y iff x is in a pure extender mouse over y. This
equivalence is shown in [51]. (See especially Theorem 16.6.) We show in Theorem
6.71 below that under AD", LEC implies HPC. We do not know whether HPC implies
LEC.

Granted ADgr and HPC, we have enough hod pairs to analyze HOD.

Theorem 1.7 ([63]) Assume ADg and HPC; then Vo N HOD is the universe of a
least branch premouse.

Some techniques developed in [18] and [03] are needed to prove the theorem, so we
shall not prove it here.

The natural conjecture is that LEC and HPC hold in all models of AD™ that have
not reached an iteration strategy for a premouse with a long extender. Because our
capturing mice have only short extenders on their sequences, LEC and HPC cannot
hold in larger models of AD™.

Definition 1.8 NLE (“No long extenders”) is the assertion: there is no countable,
wy + 1-iterable pure extender premouse M such that there is a long extender on the
M -sequence.
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Conjecture 1.9 Assume ADT and NLE; then LEC.
Conjecture 1.10 Assume AD" and NLE; then HPC.

As we remarked above, 1.9 implies 1.10. Conjecture 1.9 is equivalent to a slight
strengthening of the usual Mouse Set Conjecture MSC. (The hypothesis of MSC is
that there is no iteration strategy for a pure extender premouse with a superstrong,
which is slightly stronger than NLE.) MSC has been a central target for inner model
theorists for a long time.

1.8 Constructing mouse pairs

The basic source for mouse pairs is a background construction. In the simplest case,
such a construction C builds pairs (M, x, §2,x) inductively, putting extenders on the
M, i-sequence that are restrictions of nice extenders in V. The iteration strategy
(2, is induced by an iteration strategy for V, and if we are constructing strategy
premice, the relevant information about €2, j, is inserted into M, at the appropriate
points. M, ;41 is the core of M, . The construction breaks down if the standard
parameter of M, ; behaves poorly, so that there is no core.

There is of course more to say here, and we shall do so later in the book. For
now, let us note that the background universe for such a construction should be a
model of ZFC that has lots of extenders, and yet knows how to iterate itself. In the
AD™ context, the following theorem of Woodin applies.'”

Theorem 1.11 (Woodin) Assume AD", and let T be a good pointclass such that
all sets in I are Suslin and co-Suslin; then for any real x there is a coarse I'-Woodin
pair (N, X) such that x € N.

Here, roughly speaking, N is a countable transitive model of ZFC with a Woodin
cardinal and a term for a universal I' set, and ¥ is an iteration strategy for N that
moves this term correctly, and is such that XN N is definable over N. See Definition
4.14.

The following is essentially Theorem 6.70 to follow. It too is one of the main new
results of the book.

Theorem 1.12 Assume AD™, and let (N,X) be a coarse T'-Woodin pair. Let C be
a least branch construction in N; then C does not break down. Moreover, each of its
levels (Ml(fk, ka) 15 a least branch hod pair in N, and extends canonically to a least
branch hod pair in V.

17See [15], and [58, Lemma 3.13).

16



Background constructions of the sort described in this theorem have an important
role to play in our comparison process. Assume AD", and let (M, Q) and (N, ) be
mouse pairs of the same type. We compare (M, ) with (V, X) by putting M and N
into a common I'~-Woodin universe N*, where ¥ and € are in ' NT. We then iterate
(M,¥%) and (N, ) into levels of a full background construction (of the appropriate
type) of N*. Here are some definitions encapsulating the method.

Definition 1.13 Let (M,Y) and (N,Q) be mouse pairs of the same type; then

(a) (M,X) iterates past (N, Q) iff there is a normal iteration tree T by ¥ on M
whose last pair is (N, Q).

(b) (M, %) iterates to (N, Q) iff there is a normal T as in (a) such that the branch
M-to-N of T does not drop.

(c) (M,X) iterates strictly past (N, Q) iff it iterates past (N, ), but not to (N, ).

Definition 1.14 (AD") Let (P, X)) be a mouse pair; then (*)(P,X) is the following
assertion: Let (N, W) be any coarse I'-Woodin pair such that P € HCY, and ¥ €
I'NT. Let C be a background construction done in N* of the appropriate type, and
let (R, ®) be a level of C. Suppose that (P,Y) iterates strictly past all levels of C that
are strictly earlier than (R, ®); then (P,X) iterates past (R, ®).

If (M,Q) is a mouse pair, and N is an initial segment of M, then we write Qy
for the iteration strategy for trees on N that is induced by 2. We can unpack the
conclusion of 1.14 as follows: suppose the comparison of P with R has produced a
normal tree 7 on P with last model @), with 7 by ¥, and S is an initial segment
of bot @ and R; then (Xy)s = ®g. Thus the least disagreement between ) and
R is an extender disagreement. Moreover, if E on () and F' on R are the extenders
involved in it, then F = &.

We shall show (cf. Theorem 5.11 below)

Theorem 1.15 Assume AD™; then (*)(P,X) holds, for all mouse pairs (P,Y).

This theorem lets us compare two (or more) mouse pairs of the same type in-
directly, by comparing them to the levels of an appropriate construction, done in
a T-Woodin model, where both strategies are in I' N T'. One can show using the
Woodinness that C reaches non-dropping iterates of both pairs'®. This gives us a
stage (M, ) of C such that one of the pairs iterates to it, while the other iterates
past it.

18See 2.53.
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1.9 The comparison argument

In what follows, we shall give fairly complete proofs of the theorems above. The
book is long, partly because we wanted to make it as accessible as possible, and
partly because we are looking more closely at the construction of iteration strategies
in [23], and there are many details there. However, the main new idea behind our
strategy-comparison theorem is quite simple. We describe it now.

The first step is to focus on proving (*)(P, ). That is, rather than directly com-
paring two strategies, we iterate them both into a common background construction
and its strategy. In the comparison-of-mice context, this method goes back to Kunen
([16]), and was further developed by Mitchell and Baldwin ([2]). The first proof of
comparison for pure extender mice with Woodin cardinals had this form, and Woodin
and Sargsyan had used the method for strategy comparison in the hod mouse con-
text. All these comparisons could be replaced by direct comparisons of the two mice
or strategies involved, but in the general case of comparison of strategies, there are
serious advantages to the indirect approach. There is no need to decide what to do
if one encounters a strategy disagreement, because one is proving that that never
happens. The comparison process is just the usual one of comparing least extender
disagreements. Instead of the dual problems of designing a process and proving it
terminates, one has a given process, and knows why it should terminate: no strategy
disagreements show up. The problem is just to show this. These advantages led the
author to focus, since 2009, on trying to prove (*)(P, ).

The main new idea that makes this possible is motivated by Sargsyan’s proof in
[30] that if ¥ has branch condensation, then (*)(P,X) holds. Branch condensation
is too strong to hold once P has extenders overlapping Woodin cardinals; we cannot
conclude that X(7) = b from having merely realized M] into a ¥-iterate of P. We
need some kind of realization of the entire phalanx ®(77b) in order to conclude that
Y(T) = b. This leads to a weakening of branch condensation that one might call
“phalanx condensation”, in which one asks for a family of branch-condensation-like
realizations having some natural agreement with one another. Phalanx condensa-
tion is still strong enough to imply (*)(P, ), and might well be true in general for
background-induced strategies. Unfortunately, Sargsyan’s construction of strategies
with branch condensation does not seem to yield phalanx condensation in the more
general case. For one thing, it involves comparison arguments, and in the general
case, this looks like a vicious circle. It was during one of the author’s many attempts
to break into this circle that he realized that certain properties related to phalanx
condensation, namely normalizing well and strong hull condensation, could be ob-
tained directly for background-induced strategies, and that these properties suffice

for (*)(P,%).

18



Let us explain this last part briefly. Suppose that we are in the context of
Theorem 1.15. We have a premouse P with iteration strategy ¥ that normalizes
well and has strong hull condensation. We have N a premouse occuring in the fully
backgrounded construction of N*, where P € HCY™ and N* captures . We compare
P with N by iterating away the least extender disagreement. It has been known since
1985 that only P will move. We must prove that no strategy disagreement shows
up.

Suppose we have produced an iteration tree 7 on P with last model (), and
that Qo = NJa, and that U is a tree on R = Q|a = N|a played by both ¥7 s
(the tail of ¥) and €2, the N*-induced strategy for N. Let U/ have limit length, and
let b = QU). We must see b = X((T,U)). For this, we look at the embedding
normalization W (T ,U) of (T,U), which also has limit length. We shall see:

(1) b generates (modulo 7)) a unique cofinal branch a of W(T,U) (see §3.7).

(2) Letting i} : N* — Ny come from lifting &%/ to N* via the iteration-strategy
construction of [23], we have that W (7 ,U) (a) is a pseudo-hull of 4;(7). This
is the key step in the proof. It is carried out in section 4.3.

(3) i;(X) C X because X was Suslin-co-Suslin captured by N*, so i;(7T) is by X.
(4) Thus W(T,U) (a) is by 3, because ¥ has strong hull condensation.

(5) Since a determines b (see §3.7), and ¥ normalizes well, we must then have
Y((T,U)) = b, as desired.

Here is a diagram of the situation:
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Figure 1.1:  Proof of (*)(P,X). W, is a psuedo-hull of i} (7).

Historical note. The author proved the main comparison theorem of this book in
Spring 2015. Its proof was circulated as a handwritten manuscript in July 2015. A
preliminary form of the present book was circulated in April 2016, and has been
revised and expanded since then, with the last major expansion taking place in
March-October 2019. The papers [60], [61],[62], [65],[48], [63], and [64], written in
2016-2018, have extended the work reported here in various directions.
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2 Preliminaries

Inner model theory deals with canonical objects, but inner model theorists have
presented them in various ways. The conventions we use here are all fairly common.
For basic fine structural notions such as projecta, cores, standard parameters, fine
ultrapowers, and degrees of elementarity, we shall follow the paper [41] by Schindler
and Zeman. We shall use Jensen indexing for the sequences of extenders from which
premice are constructed; see for example Zeman’s book [69]. The construction of
premice using background extenders comes ultimately from Mitchell-Steel [23], but
the precise definitions and notation we use come from Neeman-Steel [29]. Here is
some further detail.

2.1 Extenders and ultrapowers

Our notation for extenders is standard.

Definition 2.1 Let M be transitive and rudimentarily closed; then E = (E, | a €
[0]<) is a (k,0)-extender over M with spaces (i, | a € [0]<) if and only if

(1) Each E, is an (M, k)-complete ultrafilter over P([ua]'") N M, with p, being the
least ju such that [p]l® € E,.

(2) (Compatibility) Fora Cb and X € M, X € E, & X% € E,.

(3) (Uniformity) pig. = K.

(4) (Normality) If f € M and f(u) < max(u) for E, a.e. wu, then there is a
f < max(u) such that for E, sy a.e. u, foaBY () = @i},

The unexplained notation here can be found in [11, §8]. We shall often identify
E with the binary relation (a, X) € E iff X € E,. One can also identify it with
the other section-function of this binary relation, which is essentially the function
X — M (X)N 6. We call  the length of E, and write § = Ih(E). The space of E is

sp(E) = sup{pq | a € [Ih(E)]=}.

The domain of E is the family of sets it measures, that is, dom(F) = {Y | 3(a, X) €
EYY = X VY = [u" — X)}. If M is a premouse of some kind, we also write
M|n = dom(FE), where 7 is least such that ¥(a, X) € E(X € M|n). By acceptability,
n = sup({uM | a € [A]*}). The critical point of a (k,#) extender is x, and we
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use either crit(E) or kg to denote it. Given an extender E over M, we form the X
ultrapower
Ulto(M, E) = {[a, ] | a € [In(E)]* and f € M},

as in [11, 8.4]. Our M will always be rudimentarily closed and satisfy the Axiom of
Choice, so we have Los’ theorem for 3y formulae, and the canonical embedding

iy . M — Ultg(M, E)

is cofinal and Yg-elementary, and hence ¥;-elementary. By normality, a = [a, id]¥,

so lh(F) is included in the (always transitivized) wellfounded part of Ulty(M, E).
More generally,

la, fl =iz (f)(a).
If X CIh(E), then £ | X ={(a,Y) € E|aC X}. E| X has the properties of
an extender, except possibly normality, so we can form Ulty(M, E[X), and there is
a natural factor embedding 7: Ultg(M, E [ X) — Ulty(M, E) given by

7(la, flgix) = la. f1z -

In the case that X = v > kg is an ordinal, £ [ v is an extender, and 7 | v is
the identity. We say v is a generator of E iff v is the critical point of 7, that is,
v # la, fI¥ whenever f € M and a C v. Let

v(E) =sup({v + 1| v is a generator of E }).

So v(E) <1h(F), and E is equivalent to E[v(E), in that the two produce the same
ultrapower.

We write A(E) or Ag for i¥ (k). Note that although E may be an extender over
more than one M, sp(E), kg, 1h(F),dom(F),v(E), and A(E) depend only on F itself.
If N is another transitive, rudimentarily closed set, and P(u,) "N = P(u,) N M for
all @ € [Ih(E)]<, then E is also an extender over N; moreover i¥ agrees with i
on dom(E). However, i¥/ and i¥ may disagree beyond that. We say E is short iff
v(E) < A(E). Tt is easy to see that F is short iff Ih(E) < sup(i¥ “((k5)M)). If E is
short, then all its interesting measures concentrate on the critical point. When F is
short, i is continuous at k™ and if M is a premouse, then dom(E) = M|/<;E’M.
In this paper, we shall deal almost exclusively with short extenders. If we start
with j: M — N with critical point s, and an ordinal v such that k < v < o(N),
then for a € []<% we let p, be the least u such that a C j(u), and for X C [1,]!?! in
M, we put

(a,X) € E; < ac jX).
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E; is an extender over M, called the (k,v) extender derived from j. We have the
diagram

where { = z]‘E{ , and
k(@i(f)(a)) = j(f)(a).
klv is the identity. If E is an extender over M, then E is derived from i}/.

The Jensen completion of a short extender E over some M is the (kg, ¥ ((k5)™))
extender derived from ). E and its Jensen completion E* are equivalent, in that

v(E) =v(E*), and E = E*[1h(FE).

2.2 Pure extender premice

Our main results apply to premice of various kinds, both strategy premice and pure
extender premice, with A-indexing or ms-indexing for their extender sequences. The
comparison theorem for iteration strategies that is our first main goal holds in all
these contexts. Although the proof of this theorem requires a detailed fine-structural
analysis, the particulars of the fine structure don’t affect anything important. We
shall prove it first in the case of iteration strategies for pure extender premice with \-
indexing. The essential equivalence of A-indexing with ms-indexing has been carefully
demonstrated by Fuchs in [1] and [5].

The reader should see [1, Def. 2.4] for further details on the following definition.
A Jensen premouse is a pair

M = (M, k),

where ) B .
M= {(JE € E ~F)

is an acceptable structure with various properties, and k < w. The language Ly of
M has €, predicate symbols E and F, and a constant symbol 4. We call £, the
language of (pure extender) premice. We write k = k(M ); it marks the level of the
Levy hierarchy over M at which we are considering this structure, and we demand
that M be k(M )-sound. So what we are calling a premouse is just a premouse in
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the usual sense, paired with a degree of soundness that it has. We usually abuse
notation by identifying M with M.

Abusing notation this way, we set o(M) = ORD N M, so that o(M) = wa for M
as displayed. (The [11] convention differs slightly here.) We write 6(M) for « itself.
The index of M is

(M) = (o(M), k(M)).

If (v,1) <iex [(M), then M|(v,l) is the initial segment N of M with index [(N) =
(,1). (So EN = EM AN, and FN = EM ) If v < 6(M), then we write M|v for
M|{v,0). We write M||v, or sometimes M|(v, —1), for the structure that agrees
with M|v except possibly on the interpretation of F, and satisfies FMIlV = (. By
convention, k(M||v) = 0.

Remark 2.2 We may occasionally consider pairs of the form M = (M ,w), call them
premice if for all £ < w, (M, k) is a premouse, and write k(M) = w. But in most
contexts, we are considering premice M such that k(M) < w.

Definition 2.3 If P and Q) are Jensen premice, then P < Q iff there are p and |
such that P = Q[{u,1). Also, P<1Q iff P<Q and P # Q.

Thus if P and @ have the same universe, but k(P) < k(Q), then P < Q. Also,
if P is passive and @ is active at o(P), then it is not the case that P < Q. So for
example, if @) is active, iit is not the case that Q||o(Q) < Q, where Q||o(Q) is Q with
its last extender predicate removed. Other conventions would be possible, but this
one works best here.

If M is a Jensen premouse, then EM is a sequence of extenders, and F'™M is
either empty, or codes a new extender being added to our model by M. The main
requirements are

(1) (Mindexing) If F = F'M is nonempty (i.e., M is active), then M = crit(F)*
exists, and for p = crit(F)™  o(M) = i (1) = Ih(F). F'™ is just the graph
of i3 (M)

(2) (Coherence) iM (EM)o(M) 4+ 1 = EM~(().

(3) (Initial segment condition, J-ISC) If G is a whole proper initial segment of F
then the Jensen completion of G must appear in EM. If there is a largest whole
proper initial segment, then 4™ is the index of its Jensen completion in EM.
Otherwise, 4™ = 0.

(4) If N is an initial segment of M, then N is k(/N) sound.
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Here an initial segment G = F'[n of F' is whole iff n = Ag. Since Jensen premice are
acceptable J-structures, the basic fine structural notions apply to them, so clause
(4) above makes sense.

Figure 2.1 illustrates a common situation, one that occurs at successor steps in
an iteration tree, for example.

Ult(M, E)
Ult(NV
Z]EV /////,>I \\\
]\\[/// \il>\+
K,+\\ /
K 22

Figure 2.1: FE is on the coherent sequence of M, k = crit(E), and A = A(E).
P(k)M = P(k)N = dom(FE), so Ult(M, E) and Ult(N, E) make sense. The ultrapow-
ers agree with M below 1h(F£), and with each other below 1h(E) + 1.

There is a significant strengthening of the Jensen initial segment condition (3)
above. If M is an active premouse, then we set

v(M) = max(v(FM), crit(FM)©M),
FMy(M) is equivalent to F™ | and so it is not in M. But

Definition 2.4 Let M be an active premouse with last extender F; then M satisfies
the ms-ISC (or is ms-solid ) iff for any n < v(M), Fin € M.
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Clearly the ms-ISC implies the weakening of J-ISC in which we only demand that
the whole proper initial segments of F' belong to M. But for iterable M, this then
implies the full J-ISC. ( See [12].)

Theorem 2.5 (ms-ISC) Let M be an active premouse with last extender F, and
suppose M is 1-sound and (1,w,w; + 1)-iterable; then M is ms-solid.

This is essentially the initial segment condition of [23], but stated for Jensen
premice. [23] goes on to say that the trivial completion of F'[n is either on the
M-sequence, or an ultrapower away. This is correct unless F'[n is type Z. If F'[n is
type Z, then it is the extender of F'[{-then-U, where £ is its largest generator, and
U is an ultrafilter on &, and we still get F'[n € M. (See [12]. Theorem 2.7 of [12] is
essentially 2.5 above.)

If M is active, we let its initial segment ordinal be

u(M) =sup({n+1]|F"meM}).

So M is ms-solid iff ¢«(M) = v(M). Theorem 2.5 becomes false when its soundness
hypothesis is removed, since if N = Ulty(M, E) where v(M) < crit(E) < Ap, then
L(N) = (M) =v(M), but crit(£) < v(N).

We shall not use ms-premice, so henceforth we shall refer to Jensen premice as
premice, or later, when we need to distinguish them from hod premice, as pure
extender premice.

2.3 Projecta and cores

If M = (N,k) is a premouse, then N is a k-sound acceptable J-structure. Thus
the projecta p;(N) and standard parameters p;(N) exist for all i < k+ 1, as do the
reducts ( “Y; mastercodes”) N* = N*P«N)  Agin [11], if i <k, then

pis1(N) = p1(NY),

and
piri(N) = pi(N)™(r),
where r is the lexicographically least descending sequence of ordinals from which a

new subset of p;(N?) can be % defined over N'. Clearly, ORD N N* = p;(N), and
r C [pir1(N), pi(N)). If i < k, then r is solid, so each « € r has a standard solidity

witness W7 ‘™) that belongs to N°.
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Definition 2.6 (a) If Q is an amenable J-structure, then hég is 1ts canonical Xy
Skolem function.

(b) If M is a premouse and n < k(M), then Ryf* is the r,,1 Skolem function
obtained by iteratively composing Y1 Skolem functions of reducts. (Cf. [/1],

5.4.)
(¢c) Let M = (N, k) be a premouse and o < pr,(N) and r € [pr,(M)]<¥; then

W = transitive collapse of 5™ “(aUr U pp(M)).

When o € ppy1(M) and v = ppy (M) — (o + 1), we call W3;" the standard
solidity witness for «.

Abusing notation, we speak of p;(M), M*, etc., instead of p;(N), N, etc. Finally,
if £ < w, we set

P(M) = Pk+1(M), p(M) = pk+1(M)a and hyy = hlﬂl,

where k = k(M), and call them the projectum, parameter, and Skolem function of
M. Let

C(M) = Cray+1(M) = transitive collapse of hy“(p(M) U p(M)),

considered as an Ly-structure. Let m: C(M) — M be the anticollapse, and ¢t =
7Y (p(M)). We say that M is k + 1 solid, or M has a core, iff pp1(M) is k + 1
universal over M, and t is k+1 solid over C(M). This implies that ¢ is k4 1 universal
over C(M), that pg1(M) is k + 1-solid over M, and that ¢ = pg1(C(M)). If M is
k(M) + 1 solid, then C(M) is the core of M. We say that M is sound iff M = C(M).
When we wish to consider C(M) as a premouse with degree of soundness attached,
we set

K(C(M)) = k(M) + 1.

We may occasionally say that M is k + 1 solid for some k > k(M). This just
means that M**! exists, that is, that the process of starting with M and iteratively
taking cores, setting Cpn) (M) = M and C;y1 (M) = C(C;(M)), does not break down
by reaching some non-solid C;(M) with i < k. M**! is the reduct which codes
Cr+1(M). We say that M is k + 1 sound if M is k + 1 solid, and M = Cp1(M). (If
we ignore the distinguished soundness degrees, that is.)

For the notion of generalized solidity witness, see [11]. Roughly speaking, a gener-
alized solidity witness for a € p;(M) is a transitive structure whose theory includes
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ThM (U p (M) — (a + 1)). Being a generalized witness for an o € py(M) is a rII;,
condition, hence preserved by rY;, embeddings. Such embeddings may not preserve
being a standard witness.

The extension-of-embeddings lemmas relate reducts to the structures they code.
The downward extension of embeddings lemma tells us that if S is amenable and
m: S — N™is Xy, then there is a (unique) M such that S = M™. The upward
extension lemma tells us that if 7: M™ — S is ¥; and preserves the wellfoundedness
of certain relations (the important one being € as it is described in the predicate
of M™), then there is a unique N such that S = N". See 5.10 and 5.11 of [11].

Remark 2.7 We have defined cores here as they are defined in [11]. In [23] they
are defined in slightly different fashion. First, [23] works directly with the Cy1 (M),
rather than with the reducts which code them. The translations indicated above
show that is not a real difference; see [23], page 40. Second, if k£ > 1, then [23] puts
the standard solidity witnesses for p (M) into the hull collapsing to Cy1 (M), and if
k > 2, it also puts p_1 (M) into this hull if p_1(M) < o(M). The definition from
[11] used above does not do this directly. We are grateful to Schindler and Zeman for
pointing out that nevertheless these objects do get into the cores as defined in [41],
and therefore the two definitions of Cy1 (M) are equivalent. | For example, let k = 2
and let M be 1-sound, with o € p;(M). Let r = py(M)\ (a+1). Let m: Co(M) — M
be the anticore map, and 7(f8) = « and 7(s) = r. The relation “W is a generalized
solidity witness for «,r” is II; over M. (It is important to add generalized here.
Being a standard witness is only Il,.) Since 7 is 3, elementary, there is a generalized
solidity witness for 3, s over Co(M) in Co(M). But any generalized witness generates
the standard one ([11], 7.4), so the standard solidity witness U for 5, s is in Co(M).
Being the standard witness is Iy, so m(U) is the standard witness for «,r, and this
witness is in ran(7), as desired.]

2.4 Elementarity of maps

Given n-sound acceptable J-structures M and N, and 7: M"™ — N™ a ¥, elementary
embedding on their n-th reducts, then by decoding the reducts we get a unique
: M — N that is ¥, elementary and is such that 7 C 7. If 7 is ¥; elementary, then
is ¥,11 elementary. The decoding is done iteratively, and yields that for k£ < n,
: M¥ — N¥is ¥, or ¥,_j41, respectively. 7 is called the n-completion of w. See
lemmas 5.8 and 5.9 of [11]. These lemmas record additional elementarity properties
of 7, codified in definition 5.12 as rX,.1-elementarity if 7 is 3y, and weak 73,1 1-
elementarity if w is only Xg. Such maps are cardinal preserving , in that M = “y is
a cardinal” iff N |= “m(v) is a cardinal”, except possibly the weakly ¥y maps. In

N N
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this case, we shall always just add cardinal preservation as an additional hypothesis.
This leads us to:

Definition 2.8 Let M and N be Jensen premice with n = k(M) = k(N), and
w: M — N; then

(a) 7 is weakly elementary iff 7 is the n-completion of # [ M™, and 7 [ M"™: M"™ —
N™ 1s Yo and cardinal preserving.

(b) 7 is elementary iff w is the n-completion of m | M™, and = [ M™: M™ — N"
18 21.

(c) 7 is cofinal iff supm“p, (M) = p,(N).
(d) 7 is an n-embedding iff 7 is cofinal and elementary.

The elementary maps correspond to those which are near n-embeddings in the

sense of [36]. The cofinal elementary maps correspond to the n-embeddings of [23].
When n > 1, the weakly elementary embeddings correspond to those that are n-apt
in the sense of [36], 5" in the sense of [69], or n-lifting in the sense of [13]. There are

many other levels of elementarity isolated in these references, but for our purposes
this is enough.

In particular, we shall not use the notion of weak n-embedding defined in [23]. In
the end, that notion is not very natural, and in a number of places it does not do the
work that the authors of [23] thought that it did. In particular, there are problems
with how it was used in the Shift Lemma, the copying construction, and the Weak
Dodd-Jensen Lemma. These problems are discussed in [13], and a variety of ways to
repair the earlier proofs are given. The simplest of these is to use weakly elementary
maps instead of of weak n-embeddings at the appropriate places.

The following is clear from the definition:

Proposition 2.9 Let M and N be Jensen premice with n = k(M) = k(N), and
m: M — N be weakly elementary; then

(1) 7 is ¥, elementary,
(2) w(pe(M)) = pr(N) for all k < n, and
(3) 7(pr(M)) = px(N) for k <n —1, and sup7“p,(M) < p,(N), and

(4) for any a < po(M), m(Thy! (e U p,(M))) = Thy (m(c) U pa(N)).
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Note that we do not necessarily have that p,(N) < w(p,(M)), or that 7 is X, 41-
elementary on a set cofinal in p, (M), which are the additional requirements from
[23] on weak n-embeddings.

It is easy to see that if 7 is (weakly) elementary as a map from (M, n) to (N,n),
and k < n, then 7 is (weakly) elementary as a map from (M, k) — (N, k). Indeed,
7 | M*is a stage in the decoding of w | M™. If k(M) # k(N), then wesay 7: M — N
is (weakly) elementary iff it is (weakly) elementary as a map from (M, n) to (N, n),
where n = inf(k(M), k(N)).

Note that if 7: M — N is weakly elementary, and k = inf k(M ), k(N), then 7
moves generalized solidity witnesses for p,(M) to generalized solidity witnesses for
pr(N). For example, being a generalized witness for p; (M) is a II; fact, so preserved
by ¥; embeddings. Even cofinal elementary maps may fail to move standard solidity
witnesses to standard solidity witnesses.

Here are some natural contexts in which the levels of elementarity play a role.

(i) The natural map from the core of M to M is elementary and cofinal, that is,
a full n-embedding for n = k(M).

(ii) The maps %Z 5 along branches of iteration trees are elementary and cofinal (see
below).

(iii) If 7: M — N is weakly elementary, and 7T is a weakly normal tree on M,
then 77 is weakly normal, and the copy maps 7,: M7 — MZ7 are weakly
elementary. The Dodd-Jensen and weak Dodd-Jensen lemmas hold in the
category of weakly elementary maps.

(iv) If 7, M, N, and T are as in (iii), and in addition, px(N) < 7(pr(M)) for k =
k(M), then all the 7, satisfy the corresponding condition, and if 7 is normal,
then so is 77. (See Remark 2.26 below.)

(v) By Lemma 1.3 of [36]), if 7: M — N is elementary, and 7 is a weakly normal
tree on M, then the copy maps m,: M — MZ7 are elementary. (They are
not necessarily cofinal.)

(vi) The maps 727 occuring in an embedding normalization are elementary. The
maps o, are weakly elementary, but may not be elementary, so far as we can
see. See Chapter 3.

(vii) The lifting maps that occur in the proof of iterability are only weakly elemen-
tary. They are not in general elementary. (See below.)
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2.5 Iteration trees

If M is a premouse with n = k(M ), and E is a short extender over M with kg <
pn(M) and P(rkg)M C dom(E), then we set

Ult(M, E) = Ult,, (M, E)
= decoding of Ulty(M", E).

The canonical embedding of M™ into Ult(M™, E) is ¥; and cofinal. Its n-completion
i¥: M — Ult, (M, E) is therefore an n-embedding. (We assume here that Ult,, (M, E)
is wellfounded, though one could make sense of these statements even if it is not.)
By convention,

k(M) = k(Ult(M, E)).
Rather than coding and decoding, one can define Ult(M, E) directly, as in [23]:

Ult(M,E) = {[a, frJ¥ |a € [N Aqge M AT e SK,},

where n = k(M) and SK,, is the set of 7%, Skolem terms.

If in addition p(M) < kg, p(M) is solid, and E is close to M, then p(M) =
p(Ult(M, E)), and i¥ (p(M)) = p(Ult(M, E)), and p(Ult(M, E)) is also solid.

Our notation and terminology regarding iteration trees is essentially that of [53].
If 7 is a tree on M, then M7 is its a-th model, and E7 is the ezit extender taken
from the sequence of M7 and used to form

M, = UM ED).
where
MLy = MEI(ER)
for some § = T-pred(a + 1), and some (£, k) < I[(M]) such that crit(E]) <
pe(MT[€). We put a4+ 1 € D7 iff MZL M} iff Z(MZII) < I(MT), and we
say T drops at « + 1 in this case. So unlike [53], drops in degree yield elements of
D7 too. If a <7 B and (a, ]y N D7 = (), then the canonical embedding

izﬂz M — ./\/lz;

is cofinal and elementary; that is, it is an n-embedding, where n = k(M7) = k(/\/lg)
All extenders in T are close to the models to which they are applied, so if crit(z';c 5) >
p(MY), then p(M[) = p(M]) and ] 5(p(M7)) = p(M]).

We shall also have a use for the natural partial embeddings that exist along
branches that have dropped.
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Definition 2.10 Let U be an iteration tree, and o <y 3. Then iﬁfﬁ 1s the natural
map from a (perhaps proper!) initial segment of MY into M% More precisely,

U * U U U
15 the canonical embedding,

Zdo{,b”rl = z’}‘;ﬁl © Zg,w
if v =U-pred(8 + 1), and

(@) = 15\ (ia5(2))

if X is a limit ordinal, and B is past the last drop in [0, \)y.

It would have been more natural to have originally defined igﬂ the way we just
defined # 5, but it is too late for that now. The difference between ‘47 and “/” is
barely visible anyway.

If 7 is an iteration tree, then lh(7) is the domain of its tree order, that is,
Ih(7) = {a | MT exists }. Soif Ih(T) = o+ 1, then M exists, but £/ does not.
T I3 is the initial segment U of T such that 1h(i4) = 8. So Mo+ exists, but there
is no exit extender E71o+L,

Remark 2.11 We allow iteration trees of length 1. Such a degenerate tree has no
extenders, and thus consists of only its base model. This convention plays some role
in the definitions of tree embeddings and strong hull condensation.

By normal we shall mean “Jensen normal”.
Definition 2.12 Let T be an iteration tree on a premouse M, then T is normal iff
(1) if 6+1 <In(T) and oo < 3, then Ih(E]) < In(E}), and

(2) z'fc;+ 1 <1h(T), then T-pred(a+1) is the least 3 such that crit(E]) < A(E}),
an

(3) M;L = M|, k), where (n,k)y < I(M}) is largest so that crit(E]) <

Pk(MgW)-

Definition 2.13 Let T be a normal iteration tree on a Jensen premouse; then for
any 3 < 1h(T),

N =sup{\r | In < B(F = E;]T)}
=sup{Ar | In(n+1 STﬁ/\F:E;;r)}
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So /\E is the sup of the “Jensen generators” of extenders used to produce /\/l; For
k=k(MT), M} = h* ¢ (ran(ig ) U A]).

If 7 is normal, then T-pred(S + 1) is the largest o such that A] < crit(E]).
Another useful characterization is the following. Let 6 be Crit(Eg)+, as computed in
M |Ih(ET). Then

T-pred(8 +1) = least o such that M |0 = MT|6.

Note here that 6 is passive in MZ, so for a as on the right, 6 is passive in M. The
formula may fail if we replace the | by ||, for when Agr = crit(Eg), T-pred(f+1) is
a4+ 1, not a.

Figure 2.2 shows how the agreement of models in a normal iteration tree is prop-
agated when the tree is augmented by one new extender. (Figures like this were first
drawn by Itay Neeman.)

T
F
th(Ep)
? A(Ep)
oLl =)
0 3 @ a+1

\/

Figure 2.2: A normal tree T, extended normally by F. The vertical lines represent
the models, and the horizontal ones represent their levels of agreement. crit(F) = p,
and [ is least such that p < )\(EZ;) The arrow at the bottom represents the
ultrapower embedding generated by F'.

If one replaces the condition crit(E]) < A(EJ) by the condition crit(E]) <
I/(EZ;) in the definition of (Jensen) normality, one obtains a definition of ms-normality.
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(This is called s-normality in [5, §5].) In fact, there are some advantages to working
with ms-normal trees, even in the context of Jensen premice. One is that full back-
ground constructions of Jensen-normally iterable M seem to require superstrong
extenders in V' ( but see [29]). On the other hand, one can show granted only a
Woodin with a measurable above that there is a ms-normally iterable Jensen mouse
with a Woodin cardinal, granted that there is in V' a Woodin with a measurable
above it. ( [23] yields an ms-iterable ms-mouse with a Woodin, and [1] and [5] then
translates it to an ms-normally iterable Jensen mouse with a Woodin.) Neverthe-
less, 2.12 is the more common notion of normality in the setting of Jensen premice,
and it will serve our purposes. We believe that there are elementary simulations of
Jensen normal trees by ms-normal trees, and vice-versa, but we have not verified this
carefully.

Remark 2.14 ms-normal iterations preserve ms-solidity. As we remarked earlier,
Jensen normal iterations may not.

We also need stacks of normal trees.

Definition 2.15 Let M be a premouse; then s is a normal M-stack iff s = ((Va, kay Ta) |
a < ), and there are premice M, for a < 8 such that

(1) Tq is a normal tree on M, |(Va, ko),
(2) My = M;

(3) if a < B and « is a limit ordinal, then M, is the direct limit of the Mg for
0 < a, and

(4) if v+ 1=a< B, then M, is the last model of T,

The definition allows a gratuitous drop at the beginning of each normal tree 7.
If (Va, ko) = U(M,,) for all «, then we say s is mazimal. We allow k, = —1, with the
convention that P|(v, —1) = P||v as above.

In (3), the direct limit is under the obvious partial maps ¢ : M — M,, for { <
v < a. We demand that for o < f a limit, there are only finitely many drops along
the branches producing these maps, and that the direct limit is wellfounded. We
write M¢(s) and T¢(s) for M and T¢. If dom(s) = a+ 1, then we write U(s) = To(s)
for the last tree in the stack. U(s) could have no last model.
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2.6 Jensen normal genericity iterations

Jensen normal genericity iterations must be allowed to drop, unless our identities are
generated by superstrong extenders. However, this dropping will not occur along the
main branch, so it is harmless. We explain this briefly now. The reader should see
[53, §7] for more detail on the extender algebra and genericity iterations.

Let M be a premouse, and p < 0 cardinals of M. We let B = IB%M be the w-
generator extender algebra determined by the extenders on the M |o- sequence with
critical point > p. . B is the Lindenbaum algebra of a certain infinitary theory 7T’
in the propositional language L5, generated by the sentence symbols A,,, for n < w.
For x Cw, x E A, iff n € x, and then x | ¢ for ¢ an arbitrary sentence of Ly has
the natural meaning. The axioms of T" are those sentences of the form

\ @a =V in({pe: € <) T A,

a<k a<A
whenever E is on the M|d-sequence, crit(E) = k > p, ig({we: £ < K)) [ A € M|n,
for some cardinal n of M such that n < Ag. Let us write T = T'(M |6, u).

The usual argument shows that if § is Woodin in M, then M | “B is é-c.c.”. It
is also clear that if M comes from a background construction in V', then every x € V
satisfies all axioms of T'. This is because if F generates an axiom as above, and E*
is its background extender, then E [ n = E* [ n N M, for all M-cardinals 7.

Given an iterable M as above, and an r C w, we form a Jensen normal tree 7
on M as follows: E is the first extender on the sequence of M with critical point
above y that induces an axiom of T(M]|supi,“d, u) not satisfied by x. The rest
is determined by the rules of Jensen normal trees. Note the hat above the ¢ in the
formulal! [0, @) may have dropped. o ,(p) = p, but it may happen that g ,(0) is
undefined.

As usual, the construction of 7 terminates with a last model M7 such that z
satisfies all the axioms of T'(M]|supi] , “d, ). We must see that in this case, [0, )7
has not dropped. Suppose that it has, and let £ +1 <7 « be the site of the last drop,
and T-pred(¢{ + 1) = 7. Let £ = E7, and let

=\ ¢a= Vislos: v <r) 1A

a<k a<A

be the bad axiom induced by E, and n a cardinal of MT such that ¢ € MT\n Since
we dropped when applying ET, n < crit(E]), so il [ n is the identity. But also,
MT|I(E) 9 My, so il (E) exists. Clearly, (E) still induces ¢ as an axiom
of T(./\/lT| sup zg—a “O, ). Smce x does not satisty w the genericity iteration did not
terminate at «, contradiction.
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2.7 Iteration strategies

Let M be a premouse. G(M,#) is the game of length 6 in which I and II cooperate
to produce a normal tree on M, with II picking branches at limit steps, and being
obliged to stay in the category of wellfounded models. See [53], where the game is
called Gi(M,0), for k = k(M). A @-iteration strategy for M is a winning strategy
for IT in G(M, ).

If A is a limit ordinal, then G(M, \,0) is the game in which the players play A
rounds, the a-th round being a play of G(V,0), where N has been produced by
the prior rounds. Thus a postion in G(M,\,0) that is not yet a loss for II is a
normal M-stack of length < A whose component normal trees each have length < 6.
I extends the stack at successor stages, including starting a new normal tree if he
wishes. II picks branches at limit stages, and his obligation is just to insure all models
are wellfounded, including the direct limit of the base models in the final stack. A
(\, 0)-iteration strategy for M is a winning strategy for IT in G(M, X, 0). See [53].

In order to unify the notation, let us set G(M,1,0) = G(M,6).

It is natural to generalize these standard iteration games so that player I has
the freedom to “drop gratuitously” on any of his moves. For example, if M is
a premouse, we let GT(M,0) be the variant of G(M,#) in which player II must
pick cofinal wellfounded branches at limit steps as before, and given that 7 with
Ih(7) = a + 1 is the play so far, I must pick E, from the M, = M sequence such
that 1h(E3) < lh(E,) for all 5 < a. (Here My = M.) As before, we set

¢ = T-pred(a+ 1) = least § s.t. crit(E,) < A(Ej).

Let (v, k) be least such that p(MI (v, k)) < crit(Eq), or (v, k) = [(M). Let v =
crit(E,)" in the sense of M,|1h(E,), or equivalently, in the sense of M|(v, k). We
now allow I to pick any (n,l) such that

(7,0) < {n, 1) < (v, k),

and we set

Ma+1 = Ult(Mf‘ <77a l>7 Ea)‘
We write M¢|(n,l) = T-pred(a + 1).

Definition 2.16 A weakly normal tree on an lpm M is a play of some GT(M,0) in
which player 11 has not yet lost.

In older terminology, a weakly normal tree is just one that is length-increasing
and nonoverlapping.
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Remark 2.17 Again, we allow degenerate weakly normal trees that use no exten-
ders. If M is the base model of some such 7, then 7 may drop to some N < M,
then end.

For A a limit ordinal or A = 1, we let GT(M, A, ) be the variant of G(M, ), 0) in
which I is allowed gratuitous dropping within each of the A rounds. (So G*(M,1,0) =
G (M,0).) For notational reasons, we’ll allow I to drop in the base model for the
beginning of a round as well, though this is no extra generality in fact. II wins iff all
models reached are wellfounded, and if A > 1, there are finitely many drops along
the sequence of base models, and their direct limit is wellfounded. We call a position
in some G (M, A, 0) in which II has not yet lost an M -stack.

Definition 2.18 An M-stack is a sequence s = ((Va, ka, Ta) | @ < B) with all the
properties of normal M -stacks, save that the T, may be only weakly normal.

We allow some or all of the weakly normal trees in our M-stack to be empty.
Given an an M-stack s as above, we write (v;(s), ki(s), Ti(s)) for s(i), My(s) = M,
and M;.1(s) for the last model of T;(s), when i < dom(s) — 1. We write U(s) for
Taom(s)—1(5), the last normal tree in s. We write M (s) for the last model of U(s), if
it has one. If s is a maximal M-stack, then we identify s with its sequence of trees
Ti(s), the v;(s) and k;(s) being determined by maximality. If s is merely normal, we
must specify the base models of the 7;(s) as well.

Tail strategies are defined by

Definition 2.19 Let Q be a winning strategy for 11 in GT (M, X\, 0), and let s be an
M -stack according to Q with Ih(s) < A such that My (s) exists; then Qs is the strategy
for GT(My(s), A —1h(s),0) given by:

Q(t) = Q(s71),
for all M (s)-stacks t.
The following notation will be useful:

Definition 2.20 Let Q be a winning strategy for 11 in GT(M,\,0), and let s be
an M-stack according to 0 such that 1h(s) < X and My (s) exists, and let N =
My (8)|[{v, k); then Qs n = Qo r0y- We also write Qg 5y for Qi n.
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When N = M|(v, k), we write Qy or ,xy for Qp n. Clearly, Qy is a complete
strategy for V. Our definitions so far allow the tails of a iteration strategy to be
inconsistent with the strategy itself; for example, one could have a strategy €2 for
GT(M, )\, 0), and P<<N <M such that (Qx)p # Qp. One could even have Qy; # .
We shall eventually completely rule out such internal inconsistencies for the iteration
strategies we care about. The following definitions make a start on that.

Definition 2.21 Let Q be a winning strategy for 11 in G (M, X, 0); then Q is posi-
tional iff whenever s and t are M-stacks by Q2 of length < X, and N < My (s) and
N S] Moo<t), then Q&N = Qt,N-

The iteration strategies that are our focus are positional, but it is beyond the
scope of this book to show that. We shall instead use some approximations to
positionality here.

Let 7 be a weakly normal tree on (), and Q < R. We can think of 7 as a weakly
normal tree Ty on R that always drops at least as far as () when it applies an extender
to the base model. 7Tj uses the same extenders and has the same models as T, except
that the base model of 7y is R. Let us say that 7 is the R-equivalent of T .

Definition 2.22 Let Q2 be a winning strategy for 11 in G (M, \,0), where A > 1.
We say that € is mildly positional iff whenever s is a M-stack by Q with lh(s) < A,
then

((l) QS,MOO(S) = Qs;
(b) whenever P <IN < My (s), then (Qsn)p = Qs p, and

(¢) whenever P I N < My (s), T is a weakly normal tree by Qs p, and Ty is the
N-equivalent of T, then Ty is by Qs .

The iteration strategies that are our focus in this book have two much stronger
internal consistency properties: they normalize well, and have strong hull condensa-
tion.

Definition 2.23 Let A be a limit ordinal, or A = 1. An complete (), 0)-iteration
strategy for M is a mildly positional winning strategy for player 11 in G (M, X, 0).
We say ¥ is a complete strategy for M iff it is a complete (X, 0)-iteration strategy,
for some ordinal \ and some 6.
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In Lemma 4.59 we show that complete strategies that normalize well and have
strong hull condensation have a property that we call strategy coherence. One clause
in strategy coherence is positionality, but restricted to stacks s and t consisting of
a single normal tree. In [18], we show that complete strategies that normalize well
and have strong hull condensation are fully positional.

We shall be especially interested in strategies defined on M-stacks of finite length.

Definition 2.24 Let 0 be reqular; then Y is a complete iteration strategy with scope
Hy iff ¥ is a complete (w, 0)-iteration strategy.

Remark 2.25 Here we have isolated (w, f)-strategies, rather than (6, )-strategies,
because we wish to avoid the theory of normalizing infinite stacks. In order to
compare complete (wy, wy)-strategies one would have to normalize stacks of arbitrary
countable length. This can be done, (see [14] and [15]), but we have chosen not to
go into the process here. Complete (w,w;)-strategies are adequate for the theory of
HOD in models of ADg that we develop in Chapters 5-7.

The background constructions in Chapter 3 do produce complete (wy, wy )-strategies
that normalize well for countable stacks. These strategies are determined by their
action on normal trees. Once that has been shown, our strategy comparison process
becomes applicable.

Although a complete strategy with scope Hy is only be required to act on fi-
nite stacks, it is part of player II’s winning condition that whenever s is a run of
G (M,w,0) by X, then the direct limit M, (s) of the M;(s) for i < w sufficiently
large exists, and is wellfounded. This requirement on 3 is crucial in the proof of the
Dodd-Jensen Lemma, 6.19.

The complete iteration strategies for premice that we consider in this book are
entirely determined by their action on normal trees ( see 4.60 ), but we do need to
consider how the strategies act on finite, non-maximal stacks of normal trees. We
have allowed them to act on non-maximal stacks of weakly normal trees because it
seemed natural to do so.

Given m: M — N weakly elementary, we can copy an M-stack s to an N-stack
s, until we reach an illfounded model on the 7s side. Thus if € is a complete
strategy for N, we have the complete pullback strategy 2™ for M.

Remark 2.26 It is possible that 7: M — N is weakly elementary, 7 is normal

on M, and #7T is not normal. For example, we might have k(M) = 1, and F on
the M-sequence such that p;(M) < crit(E), but w(crit(E))) < pi(N). If T starts
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normally with F, will drop to M ~, that is, to M with its degree reduced by one,
and form Ult(M~, E). Our copying process then requires 77 to start by forming
Ult(N~,7(FE)), which is for it a gratuitous drop.

Nevertheless, if T is weakly normal and 7 is weakly elementary, then 77 will be
weakly normal. In §5.2 we describe the natural normal tree on N into which 77
embeds; this tree is called (77)*.

Definition 2.27 [Pullback strategies] If ¥ is a strategy for N, and m: M — N is
weakly elementary, then Q™ is the pullback strateqy for M, given by

0" (s) = Qms),
for all s such that ms € dom(£2).

The copy maps are all weakly elementary, and if 7 is fully elementary, then the copy
maps are all fully elementary. (Cf. 1.3 of [30].)
It is also useful to have a notation for a join of strategies:

Definition 2.28 Let €2 be a complete strateqy for M, and s an M-stack by €2; then
Qs,<u = <Qs,<n,k> I n<vA k< w}.

Note that in general, {1 ., is strictly weaker than €2, (o).

We shall often be working with a countable premouse M, and an iteration strategy
¥ for M that is defined on countable trees of some sort, with AD™ as our background
assumption. We can then extend 3 so that it acts on trees of length w;, because
under AD™, w; is measurable. Here is a simple proposition along these lines.

Proposition 2.29 . Assume AD, and let ¥ be an wy-iteration strategy for a count-
able premouse M ; then X can be extended to an wy + 1 strategy for M.

Proof. Let T be a normal tree of length w; on M that is played by X. It will suffice
to show 7 has a cofinal, wellfounded branch. But let j: V' — N with crit(j) = w;
witness the measurability of wy. The pair (7, M) can be coded by a set of ordinals
A, and Los’s Theorem holds for ultrapowers of wellordered structures, so j: L[A] —
L[j(A)] is elementary. It follows that j(7) is an iteration tree on M, T = j(T) | w,
and w; < 1h(j(7)). But this implies that [0,w:);r) is a cofinal, wellfounded branch
of T. O

Although it is quite easy to prove, this proposition stands at a key junction in inner
model theory. The direct proofs of iterability only produce branches for countable
iteration trees, even in the realm of linear iterations. Yet w; + 1l-iterability is the

40



minimal useful kind of iterability; for example, it is the kind needed to compare
countable premice. All known proofs of w; + 1-iterability involve at some point
producing an wi-strategy ¥, and showing that > is sufficiently absolutely definable
that one can extend it to an w; + 1 strategy. In the proposition above, the absolute
definability of ¥ is evidenced by its membership in a model of AD. In contexts where
one’s goal is more ambitious than analyzing HOD in models of AD, the absolute
definability of > has to be more finely calibrated, and a model of some fragment
of AD that contains ¥ constructed along with . This leads into the core model
induction method, our most all-purpose method for constructing iteration strategies.

Proposition 2.29, simple as it is, is one important reason that inner model theory
and descriptive set theory have become so entangled in recent years.

When calibrating definablity in terms of pointclasses, the standard procedure
is to code elements of HC (e.g. premice) by reals, and subsets of HC (e.g. wy-
iteration strategies) by sets of reals. Of course, any reasonable way of doing this
is fine, but we may as well spell one out. For z € R = w¥, we say Cd(x) iff
B, =qf {{n,m) | 2(2"3™) = 0} is a wellfounded, extensional relation on w. If Cd(x),
then

e (w, Ey) = (M, €)

is the transitive collapse map, and
set(z) = M and sety(z) = m,(0).
So Cd is IT}, and sety maps Cd onto HC. For A C HC, we let
Code(A) = {z € R| Cd(x) Asety(x) € A}.

If ¥ is an iteration strategy with scope HC for a countable M, and I is a pointclass,
then we sometimes say “¥ € I when we mean Code(X) € T'.

Recall that a set A C R is k-Universally Baire (k-UB) iff there are trees T and
U on some w x Z such that p[T] = R\ p[U] holds in V[g] whenever g is V-generic
for a poset of size < k, and p[T| = A holds in V. We call such a pair (T,U) a x-UB
code of A1 If k is a limit of Woodin cardinals, then the x-UB are the same as the
< k-homogeneously Suslin sets; moreover, if A is k-UB, as witnessed by the pair of
trees (T, U), then the theory of (HC, €, p[T]) is absolute for forcing of size < k (cf.
[52]). This enables us to extend w;-iteration strategies that are xk-UB to s-iteration
strategies. As is well known, the extension is independent of the partucular UB code
chosen. In fact, with a little care, we do not need the Woodin cardinals to make it.

9The concept was first isolated and studied for its own sake by Q. Feng, M. Magidor, and W.H.
Woodin. See [3]. There are earlier related results due to K. Schilling and R. Vaught in [33].
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Proposition 2.30 Let A C HC, and suppose (T,U) is a k-UB code of Code(A).
Forb e H,, put

b€ B iff Col(w,< k) IF 3z € p[T|(seto(x) = b).
Then (HC, €, A) <x, (Hy, €, B).

Proof.(Sketch.) Note that p[T] and p[U] remain invariant in V°'“#*) in that if
seto(x) = seto(y), then x € p[T] iff y € p[T], and similarly for U. Also, whether
x € p[T] for any and all = such that setyo(z) = b is decided by the empty condition.
Suppose (Hy, €, B) = ¢la], where ¢ is X7 and a € HC. Let m: N — Vp with N
countable and transitive, and 7((T,U)) = (T, U). Let n(M) = H, and 7(B) = B.
We have 7(a) = a, and (M, €, B) = pla]. Using T and U and a simple absoluteness
argument, we see that B = AN M. So (M,e,AN M) | ¢la]. But ¢ is ¥y, so

(HC, €, A) = ¢lal, as desired. O

In order to apply the proposition to iteration strategies, we have to be careful
about how we present them. Given an w; strategy X, let Ay be the set of all pairs
(T, «) such that T is a tree of limit length by X, and o € X(7).

Corollary 2.31 Let X be an wy-iteration strategy for a countable premouse P, and
suppose that Code(Asx) is k-UB; then there is a k-iteration strateqy VU extending 3.

Proof. Let B C H, be such that (HC, €, Ay) <5, (Hy, €, B). It is not hard to see
that B = Ay, where V is the desired extension of X. [l

Clearly, the extension ¥ to H, is independent of the particular k-UB code of Ay,
chosen. We call ¥ the canonical k-extension of . Abusing language somewhat, we
may say that a k-iteration strategy is k-UB when it is the canonical k-extension of
an wi-strategy. The extension process works equally well for (\, w;)-strategies.

The following simple fact about such strategies is useful.

Proposition 2.32 Let ¥ be a k-UB k-iteration strateqy for some countable P, and
j: V. — M with M transitive; then j(¥X) N H, C X.

Proof. Let (T,U) be a k-UB code for Code(Ay). Suppose T € H, is by both ¥ and
j(X), and has limit length A. If & < A, and a € j(X)(7T), then letting seto(x) = (T, )
with z in VU@ <®) we get € p[j(T)]. As usual, this implies 2 ¢ p[U], and hence
x € p[T]. Thus a € X(T), as desired. O

We shall show in 4.55 below that the conclusion j(3)NY also follows from strong
hull condensation for X.
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2.8 Coarse structure

One must consider also iteration trees on transitive models M that are not equipped
with any distinguished fine structural hierarchy. In that case, we shall always assume
M = ZFC, for simplicity. In general, VM plays the role that M|a would in the fine
structural case. All extenders are total on the models to which they are applied, and
all embeddings are fully elementary in the €-language. We shall sometimes call such
M, and associated objects like iteration trees or embeddings acting on them, coarse,
in order to distinguish them from their fine-structural cousins.

Definition 2.33 Let E be an extender over V; then E is nice iff
(a) E is strictly short, that is, Ih(E) < A(E),
(b) Ih(E) is strongly inaccessible, but not a measurable cardinal,
(¢) Viney € Ut(V, E).

Nice E can be used to background extenders in a Jensen premouse, even though
Ih(E) < A(F). In practice, our background extenders will be such that 1h(E) is
the least strongly inaccessible strictly above 7, for some 7, so that (b) holds. The
requirements of (b) enable us to avoid a counterexample to UBH for stacks of normal
trees due to Woodin. See 4.40 below.

Definition 2.34 Let T be an iteration tree on a coarse M ; then
(a) T is nice iff whenever a + 1 < 1h(T), then M! = “E7T is nice”.
(b) T is normal iff

(i) if o < B and f+1 <1n(T), then In(E]) < 1h(E]), and

(ii) if a« +1 < Ih(T), then T-pred(a + 1) is the least B such that crit(E]) <
IW(ET).

This definition of normality is only appropriate for nice trees, but all our coarse
iteration trees will be nice, so that is ok. It would be possible to allow gratuitous
dropping, but we shall not do that. Nice iteration trees do not drop anywhere.
Moreover, we shall often restrict the choice of extenders in 7 even further.

Definition 2.35 Let T be an iteration tree on a coarse M, and F a set or class of
M then
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(a) T is an F-tree iff whenever o+ 1 <1h(T), then ET € i] (F).
(b) T is above k iff T is an F-tree, where F = {FE | crit(E) > k}.
(c) T is based on VM iff T is an F-tree, where F = VM.

(d) A putative F-tree on M is a system having all the properties of an F-tree on
M, except that its last model may be illfounded.

In Definition 2.35 we are not assuming that 7 is normal. It may be a stack of
normal trees, in which case we may call it an F-stack, or a putative F-stack. The
non-normal iteration trees that we consider will always be stacks of normal trees.
One could venture further into the wilds, but we shall not do that.

Definition 2.36 Let M |= ZFC be transitive, and F be a set or class of M ; then

(a) G(M,n,0,F) is the variant of G(M,n,0) in which 1 must choose his exit ex-
tenders from the current image of F, and

(b) an (n,0,F)-iteration strategy for M is a winning strategy for 11 in G(M,n, 0, F).

By convention, these strategies are complete.

In general, the iteration strategies for coarse M that we consider choose branches
that, when allowed to act on the largest possible base model, become the unique
cofinal wellfounded branch.

Definition 2.37 Let M = ZFC be transitive, let F be a set or class of M, and let
A, 0 € OR; then

(a) M is strongly uniquely (A, 0, F)-iterable iff there is a (A, 0, F)-iteration strategy
Y for M such that whenever T is a tree by ¥ of limit length, then 3(T) is the
unique cofinal, wellfounded branch of T .

(b) M is strongly uniquely 0, F-iterable for normal trees iff M is strongly uniquely
(1,0, F)-iterable.

We say that M is strongly uniquely (), f)-iterable above x, or for trees based on
VM iff M is strongly uniquely (), 8, F)-iterable for the associated F. Notice that
strong unique iterability is more than just having a unique iteration strategy; that
strategy must be to choose the unique cofinal, wellfounded branch.

Often, our F will be the class of extenders occuring in some coarsely coherent
sequence.
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Definition 2.38 A sequence F = (F, | a < ) is coarsely coherent iff each F, is a
nice extender over V., and

(1) a < = 1h(F,) < 1h(Fj), and

(2) if i: V. — UW(V, F,) is the canonical embedding, and E = i(F), then Ela =
Fla, and Ih(F,) < 1h(E,).

Definition 2.39 A coarse extender premouse is a structure M = (|M|, €, F) such
that | M| is transitive, F' € |M|, and (|M|, €) = ZFC + “F is coarsely coherent”.

We sometimes identify M with its universe |M|. We write FM for the distinguished
coarsely coherent sequence of M.

Given a coarsely coherent F', an F-iteration tree is a {F, | a < Ih(F)} -iteration
tree. That is, all extenders used must be taken from F and its images. Similarly for
F-stacks of normal trees. So the trees in an F-stack are nice. In the coarse case,
iteration trees do not have any necessary drops, and we prohibit gratuitous dropping
just to keep things simple. Thus all F-stacks are maximal, by convention, and a
complete (A, 6, ﬁ)—strategy is just a (A, 6) strategy for F-trees in the usual sense.

The following simple lemma uses only clause (1) of coarse coherence.

Lemma 2.40 Let (M, ﬁ) be a coarse premouse, and let 32 be an F-iteration strateqy

for M ; then for any N, there is at most one normal F-iteration tree played according
to X whose last model is N.

Proof. Let T and U be distinct such trees. Because both are played by X and normal,
there must be a 8 such that 7[5+ 1=U[S+ 1, but G # H, where G = EBT and

H = EY. Both G and H are taken from i(F), where i = if 5 = i 5. Say G occurs

before H in i(F). Then G € N because U is normal. But G ¢ N because T is
normal. U

Assuming AD™, we get coarse extender premice (M, F ) via the I'-Woodin con-
struction. (See [58][§3] and [51][§10].) These M can have a Woodin cardinal §, and
yet be correct for predicates in some complicated pointclass I'. We shall have that
9 is countable in V| and M is strongly uniquely (wy,w;)-iterable for trees based on
VM. The same construction also produces coarse strategy premice, although these
do not have Woodin cardinals. We say more about this in section 3.2.

Woodin has shown that if x is supercompact, Fis coarsely coherent and such
that x < crit(E) for all E on F', and UBH holds in V°!“<%) for normal F-trees on
V', then V is strongly uniquely F-iterable for normal trees. See Theorem 4.31. We
show in 4.40 below that this implies that V' is strongly uniquely (w,#, F )-iterable,
for all 6.
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2.9 Full background extender constructions

In this book, we shall be looking very carefully at full background extender construc-
tions, and in particular at how an iteration strategy >* for the background universe
induces iteration strategies for the premice occurring in such a construction. In
our applications, the background universes will satisfy “I am strongly uniquely F-
iterable” , where F is the sequence of background extenders used in the construction,
and X* will be the corresponding F-iteration strategy. In this section we look at the
well known construction of pure extender premice. Section 5.5 lays out the obvious
generalization to strategy mice.

We shall use the notation of [29] in this context. The reader should look at [29],
and at [I] on which it relies, for full definitions.

Definition 2.41 Let w be a wellorder of Vs, and k < §. A w-construction above x
is a full background construction in which the background extenders are mice, have
critical points > K, cohere with w, have strictly increasing strengths, and are minimal
(first in Mitchell order, then in w).

More precisely, such a construction C consists of premice Mfk, with k(M, ) = k,
and extenders F'- obtained as follows. (In the notation of [23], M, ; = Cx(N,), and
FC is a choice of background extender for the last extender of M,o =N,.) We let
My,o be the passive premouse with universe V,,. For any k, v,

My,k+1 = COTG(My,k) =def C(My,k)-

We have an anti-core embedding 7 : M, p41 — M, with crit(r) > p(M,y). For
k < w sufficiently large, M, = M, ;11, except of course that its associated k has
changed. That is, M, is eventually constant as k£ — w. We set

~

M, ., = eventual value of M, as k — w,

and
Mu+1,o = rud closure of M,,,w U {M,,,w},
arranged as a passive premouse,
and

~

Myi10 = (My11,0).
Finally, if v is a limit, put
M <" = unique passive P such that for all premice N,
N < P ift N < M, for all sufficiently large o < v.
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There are two possibilities now: we may add a new extender to the sequence, or
not.

Case 1. For some F' such that (M <", F) is a Jensen premouse, and F' is certifiable,
in the sense of Definition 2.1 of [29], we set

M,o= (M= F).
A bicephalus argument shows that, under a natural iterability hypothesis, there is
at most one certifiable F' such that (M <", F') is a premouse.
Case 2. Otherwise.

Then we set
Ml/,O = M<V.

(Again, our convention is that in case 1, M <" is not an initial segment of M, o.) A
w-construction need not add an extender whenever possible. We say C is maximal iff
it does so, that is, iff case 1 occurs whenever there is an F' meeting its requirements.

A certificate for F' in the sense of 2.1 of [29] is a short extender F*. Let us write
kp = crit(F) and Ap = ip(kp). F* must have strength some inaccessible cardinal
n > Ap, and satisfy

F*IAe N M=Y = F|)\p.

Since F* is short, ip«(kp) > 1 > Ap, so we cannot replace Ap by Ap + 1 in this
equation. We add here to the demands on certificates that

(1) F* is nice (so lh F* = n),
(i) Vr <v (IhFE < n),

(i13) ip-(w) NV, =wNV,,
(iv)

We then choose F€ to be the unique certificate for F' such that

F* € Vs, and crit(F™*) > k.

(x) FF is a certificate for F', minimal in the Mitchell order among all certificates
for F', and w-least among all Mitchell order minimal certificates for F.
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This has the consequence that 1h(FC) is the least strongly inaccessible 7 such that
Ap < nand V7 < v (IhES < 7). We also get that FC “coheres with C”. That is,
letting Cly = (M4, Fy) | T <y Ak <w) and F* = F¢,

L. ip«(C)Jv =Clv,
2. Ml% © is passive.

Thus the sequence FC of all FC is coarsely coherent, and (V, F ) is a coarse extender
premouse.

We may want to start with some coarsely coherent F given in advance. An F-
construction is then a C with the properties above, except that in case 1 we require
that F have a certificate in F, and we let FC be the first such certificate in F. Of
course, if C is a w-construction, then it is a FC_construction. It is an easy exercise to
show that if C is an F' -construction, then it is a w-construction, for some wellorder
w.

Definition 2.42 A background construction (for pure extender mice) is a sequence
C= (Ml‘fk, FC) with the properties listed above. We say that C is maximal iff it adds
an extender whenever there is one that meets the requirements of Case 1.

Of course, maximality is relative to the requirements for adding extenders. Any
construction C is maximal as an FC-construction.

The background constructions described above extract pure extender premice
from coarse extender premice. In Chapter 5 we shall describe background construc-
tions that extract fine-structural strategy mice from coarse strategy mice.

Let C be a background construction. By a C-iteration, we mean a FC-iteration
in the sense explained above. The length of C is the lexicographically least (u,[)
such that M E,l does not exist.

Lemma 2.43 Let C be a background construction; then for any premouse N, there
is at most one (v, k) such that N = M.

The proof is easy and well known. Notice that N = M, ;, implies by convention
that & = k(IN). Without this convention, the lemma would fail.

Associated to a construction C we have resurrection maps Res, , acting on initial
segments N of M, , with Res, x[N] = (n,) for some (n,l) <jx (v, k). The idea is
that N traces back to M, ; by following anti-core maps. o, [N] is the associated
elementary (at level [) embedding of N into M, ;. For example, suppose Res,; and
o, are defined. We define Res, 41, 0,141 by
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A. If N = M, k11, then Res, j+1[N] = (v, k + 1) and 0, 541 [N] = identity.

B. If N M, py1|(pT)Mor+1 where p = p(M,,},), then Res, x41[N] = Res, 1[N] and
Ovk+1 [N] = Uv,k[N]-

C. Otherwise, letting 7 : M, x41 — M, be the anti-core map, Res,;11[N] =
Res, x[7(N)] and 0, 4+1[N] = oy x[7(N)] o 7.

The reader should see [!] for the remainder of the definition. Two points on
agreeement of resurrection maps:

1. if N<a M, and VN’ (N I N' <M, = p(N') > ), then o, ;[ N][v = identity.

2. if NI N* < M,, and VN’ (N S N' I N* = p(N') > ), then o,;[N]ly =
Ovk [N*] f’Y

These of course just come from the fact that the anti-core map = : C(M) — M is
the identity on p(M).

Now let C = (M, F)) | (v,k) <iex (i,1)) be a construction above x. Take
% = 0 to save notation. Let ¥ be a (X, §)-iteration strategy for (V, F€). We wish to
describe the induced complete strategy ¥ for M, ;. For T a weakly normal iteration
tree played by Y, we shall have a conversion system for T in the sense of Definition
2.2 of [29]. Such a conversion system converts trees on M, to trees on V. The
particular conversion system we construct we call lift(7, M, ;,C). In general, a C-
conversion system for a weakly normal tree 7 consists of

(1) an iteration tree 7* on V,
(i) indices (mg,le) for € <1hT,
(73) maps m¢ for £ <1hT,

so that, using P, i¢,, Fe, P, ig,, F{ for the models, embeddings, and exit extenders
of T and T

Pr P
1. me: Pe— Mﬁélg is weakly elementary (where Mﬁélg is My, in g ¢(C)),
2. T and T have the same tree order,

3.if & <y v and (§,v]r does not drop in model or degree, then (n,,l,) =
izy((ng, le)) and 7, 0d¢, = ig, O Te.
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4. if £ = T-pred(v + 1) and this is a drop in model or degree to P <1 P, then

Y P,
(Mot1, b)) = Z{,u+1(ReSn§,l§ [ (P)]).
5. Let A\¢ = ip (crit(Fy)), and ag = Ih F¢ be the index of F¢ in P, and o¢ be the
© [7e(Pe || a¢)]. Then for € < v,

i5,¢(C)

resurrection map Uﬂg,lg

Ty [Ae = 0¢ 0 Mg Ae
and

Pf|supog o me“ Ae = Py sup og o me“ Ae.

The particular conversion system lift(7, M, x, C) is determined by these condi-
tions and the fact that

(a) (no,lo) = (v, k) and 7y = identity,

(b) let £ = T-pred(v + 1), and o, = l1h F,,, so that F, is the last extender of P, |a,,.
Let

G = last extender of Resf;f’l” (7, (P, |{a, 0))];
then
F; = background extender for G provided by ig ,(C).

(c) let &, v etc. be as in (b). If (§,v + 1]r is not a drop in model or degree, then

Toa([a, F17) = [o 0 m(a) e ()]

where o = o, 1, [T, (P,|,)]. If it is a drop, to P <1 P, then

— P*
(e flz,) = [0 o m(a), 7o me(£)]55
where o is as above, and 7 = oy, [ (P)) " .

In clauses (4) and (c), we treat a gratuitous drop to P in exactly the same way
as a necessary one, by resurrecting P.

Definition 2.44 Let C be a background construction, let M = M,Sk, be a model of
C, and let T be a weakly normal iteration tree on M, ; then

lift(T, M, C) = (T, {(ne, le) | € < (T)), (me | € < Th(T))),
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is the unique conversion system satisfying (1)-(5) and (a),(b) above. We write
T =1ft(T, M,C)o
for its tree component.

We can take M, to be the input for the lift function, rather than (v, k), because
of 2.43. 1ift (7T, M, C) is defined so long as its tree component 7™ is a putative iteration
tree, that is, all models of 7 except possibly the last are wellfounded. We are most
interested in the case that the background universe is iterable. If ¥* is a strategy for
the background universe, or even just a partial strategy defined on all trees of the
form lift (7, M, C), then ¥* induces a strategy ¥ for M: for 7 weakly normal on M,

T is by ¥ < 1ift(7T, M, C), is by X*.
We write
Y =0(C, M, %)

for this induced strategy. We may occasionally use the notation lift(7, M, C, ¥*)
for the largest initial segment of lift(7", M, C) that is by ¥*. So T is by Q(C, M, ¥*)
iff ift(7, M, C) = lift(T, M, C, 3*).

We need to see that the lifted tree 7* is normal. (This is true even if 7 itself is
only weakly normal.)

Lemma 2.45 Let T be weakly normal, and let ift(T, M, x, C,3*) = (T*, ((ne, l¢) |
§<IhT),(me | & <1hT)); then T* is normal.

Proof. Let P, ic,, F, ¢, if ,, ¢ be the models, embeddings, and extenders of T
and T*. Set

Re = crit Fg, )\g = iFE(/ig),
K¢ = crit Iy, Ae = irg (k).

Normality for 7* is determined by its agreement ordinals, which are the 1h ¥, not
the A}. So what we want to show is that for all o, 8, a < § implies lh F; < lh F},
and for all 3, T*-pred(8 + 1) is the least  such that rj < 1h F{. Let

i5.¢(C)
o¢ = 0,05 [me(Pe || (ag, 0))]

be the resurrection embedding, so that

F¢ = background extender for o¢ o 7¢(F) provided by ig(C).

Recall that in Jensen indexing, F is indexed at 1h F' = (\})VIt5),
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Sublemma 2.45.1 Let £+ 1 <1hT; then
(a) o¢ome(Ae) < Af = Ter1(Ae),
(b) oglmer1(lh Fe) = identity, for all B > £+ 1,
(¢) mal(Ih Fe + 1) = meqq [(th Fe + 1), for all B> € + 1.
Proof. For (a): let G = o¢ o me(Fy). Since FY is the background in i,(C) for G,
A > Mg = 0¢ oe(Ae). But
Tet1(Ae) = Tep1([D, constant ke function]?;)
= [9, constant r; function]?f
= )\Z,

where 7 = T-pred (¢ + 1) and P, < P, is appropriate.

For (b), we have since T is weakly normal that for all 5 > £+1, 1h Fy is a cardinal
in Pg, and py(p,)(P3) > Th Fe. We then get by induction on [ that plﬁ(M;;’[;;C)) >
Ter1(lh Fe), and meiq (1h Fy) is a cardinal in M, s B for all 8> &+ 1. This gives ().

For (¢), we have A¢q > 1h Fy, so

Wﬁr(lh Ff + ].) = 0¢g41 O Tle41 r(lh Fg + 1),
= Tep [(Ih Fe 4 1),

for all B> €+ 1. O
Now we show T* is normal. First, let a < 3, with 5+ 1 <1h7*. Then

I FY < X, = Tt () = 7500)
—0'5077'5()\ ) 5071'5()\5> <1hFﬁ,

as desired.
For the rest, it is enough to show that whenever o < 3, then

kp < Ao iff  kp <Ih F7.
Suppose first kg < A,. Then
Ky = 05 0Tp(kg) = Ta(Kp) = 0a © Ta(kp)

< SUp 0, 0 My “ Ay < lh F.

52



Suppose next kg > A,. Then
Kp = 0gomp(rg) 2 050 ms(Aa) = Ts(Aa) = Aq-

But A}, > 1h F}, so kj > 1h F}). O

If 3* is defined on stacks of normal trees, of any length, then we can extend the
lifting process and the induced strategy X for M, so that it is defined on stacks
of weakly normal trees if the same length. For example, if (T,U) is a stack on
M = M;C’k, and P = MZ is the last model of T, and lift(7, M,C)y = T* by ¥* with
last model Py, then we have

P*
. 3
7T£ : Pg — ]\47757l5

from this lift. But X% P: is a strategy for P on normal trees and by what we just

ST¥ C
said, it induces a strategy Q on N = Mo ©

ne e (We did not need that the background

universe was V.) We let

Yrp ="
= me-pullback of €.

Similarly, we let
lift((T,U), M, C) = (1ift(T, M, x, C),lift(meld, N, i] . (C))).

In this way we can define lift(s, M, C) for any M-stack s. We let lift(s, M, C)y be
the stack of normal trees in lift(s, M, C). The trees in s may be only weakly normal,
but those in lift(s, M, C)y have no drops.

Definition 2.46 Let C be a background construction, and let X* be a (X, 0)-iteration
strategy for (V,FC); then for any M = Mfk, Q(C, M, %*) is the complete (X,0)-
strategy for M given by

s is by Q(C, M, ¥") < 1ift (T, M, C)g is by X*.

If we fix a construction C and a strategy ¥* that witnesses the strong unique
F C.iterability of its background universe, then the induced strategies Q(C, M, ¥*)
are all strategy coherent. We prove this in Lemma 4.59 below, but it should be
plausible. The strategies and their tails are all derived from the same strategy %,
and X* is itself coherent because it picks unique wellfounded branches. Here we show
the induced strategies are mildly positional.

53



Lemma 2.47 Let C be a background construction, let 3* be a (X, 0)-iteration strategy
for (V, FC), and let M = M. Let NIM, and let (n,1) = Res, x[N] and 0 = 0,,x[N];
then

Q(C, M, =)y = Q(C, My, %),

Proof. This is immediate from the definitions. Letting ¥ = Q(C, M, ¥*), Xy =
Y,y is the tail of ¥ after the empty normal tree followed by a gratuitous drop
to N. But then if 7 is the first normal tree in a stack on N and lift(7, M,C) =
(T*, ((ve, ke) | € < Ih(T)), (pe | £ < 1h(T)), we see from the way dropping is handled

in conversion systems that (v, ko) = (n,1) and ¢y = 0. This is what we need. 0

Corollary 2.48 Let C be a background construction, let 3* be a (X,0)-iteration
strategy for (V,F©), and let M = Ml(fk,' then Q(C, M, ¥*) is a complete strategy.

Proof. Let ¥ = Q(C, M, ¥*). We must show that ¥ is mildly positional.

Yy comes from lifting the empty tree on M to the empty tree on V', then resur-
recting M to itself. So ¥y, = 3. Similarly, ¥y (s) = X for all s by 3.

Let P < N < M; we show that (Xx)p = Xp. For let (n,l) = Res,,[/N] and
o = o0,N|. Let (0, j) = Res, [0(P)] and 7 = 0,,;[0(P)]. It is not hard to see that
(0,7) = Res, x[P] and 7 0 0 = 0, ,[P]. We have then that both ¥p and (Xx)p (the
tail of 3 after two empty trees and two drops) are both equal to Q(C, M ;,¥*)7°.

The proof of the last paragraph applies also to tails s of ¥, so we have clause
(b) of mild positionality.

For clause (c), let Q<M let T be weakly normal on () and by ¥, and let U be the
M-equivalent of 7. Using Lemma 2.47, it is easy to see that lift(((0, Q), T), M,C),
is the same as lift(U, M, C),, except that the first of these normal trees has one step
of padding at the beginning. When 7T applies an extender to some initial segment
of its base model Q, lift({{D, Q), T), M, C) resurrects in C the image of P from the
resurrection of ). At the corresponding step in U, lift(U, M, C) will resurrect P in
C. Lemma 2.47 tells us we get the same lifting map both ways. O

Another elementary fact we need later is that lifting to a background universe
commutes with the copying construction. The proof is completely routine, but it
has the structure of somewhat less routine inductions we shall do later, so we run
through it here.

Lemma 2.49 Let R and S be transitive models of ZFC, R |= “C is a background
construction”, and let m: R — S be elementary with m(C) = D. Let M be a model
of C, N =n(M), and let s be an M-stack; then wlift(s, M, C)q = lift(7s, N, D).
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Proof. We assume for simplicity that s consists of one weakly normal tree T
on M. The general case is quite similar. Let U = «T, T* = lift(T, M,C)y and
U* = lift(U, N,D)g. We must see that U* = 7T*.

Let ¢: ./\/lz — ./\/l? be the copy map. Let

Lift(T, M, C) = (T, {(ve, ke) | € <Ih(T)), (e | £ <Th(T))
and
lift(@d, N, D) = (U, (e, le) | § <)), (e [ £ < Ih(U))).
Let us write C¢ = if ((C) and D¢ = iff (D). Set Pr = M’%’f& and Q¢ = szlé. The
map that resurrects @¢(E7 ) inside Ce is
pe = Ot [M,5 |(Ih(i0e(ET ), 0)).

Similarly, the resurrection map for 1, (EY) is
D

For any construction D and G the last extender of MB)O, we write B(G) = F? for
the background extender of G given by . Thus

E{" = B% o pcopc(E]),
and
Ezé{* == B]D{ e} Tg O 1/]5(E?)
We define oy : Mz—* — ./\/l?* by induction on &, maintaining by induction on &
(a) U+ 1 =7aT*€+ 1, and for all o <&, g, is the associated copy map,
(b) 0¢(Fe) = Q¢, and
(¢) g0 e = the o me.
Let ()¢ be the conjunction of (a) and (b), and assume that it holds. Let
E=E] and F = EY.
Thus 7e(E) = F. Let E* = Eg* and F* = E". So
0¢(E") = 0¢(B™ 0 pe 0 p¢(E))

)
= B o 1¢(0¢(pe(E)))
= B o 7 01 o me(F)
= F~.
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Line 2 comes from the fact that o¢(ps) = 7¢ by (b), and line 3 comes from (c).
Since o¢(E*) = F*, we get that F* is the next extender used in 77, and thus
TT*E +2=U*TE + 2. We let 0¢yq be the copy map,

7-* M*
M MY

oen(la, flg” ) = [oe(a), o5(H)]p"

where § = T-pred(§ + 1) is the predeccessor of € 4+ 1 in all our trees.
We must verify (b) and (c) of (f)e41. Suppose first that £ + 1 is not a drop in T
(gratuitous or otherwise). It is then not a drop in U either, so Peyy = i}, ,(Ps) and

Q§+1 = Z'%;Jrl(ng). But then

O¢41(Pes1) = 0e1 01} ¢ 11 (Pp)
= 4 e11 005(Pp)
= i%,*&l(@ﬁ)
= Qet1,

so we have (b). For (c), let us consider the diagram

Vet #
u u
M§+1 Q€+1 M§+1
e Og+t1
£+1
Pe+1 *
M§+1T P£+1 F~ MZ{—l F*
F
u E* u*
T3 p
] g
T T
Mﬁ Py Pﬁ Mﬂ

We are asked to show that o¢i 1 0 @ei1 = eq1 0 Teyq, that is, that the rectangle on
the top face of the cube commutes. We are given that all other faces of the cube
commute, so we have that o¢11 0 pey1 agrees with ¢e; o ey on ran(iggﬂ). Since
/\/IZJrl is generated by ran(iggﬂ) UA(E), it is enough to show that o¢1q 0¢@e1 agrees
with ¢er10mery on A(E). But on AM(E), 041 0per1 agrees with ogope and e yq omeiq
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agrees with ¢¢ o m¢, by the Shift Lemma. Hence our induction hypothesis (f)¢ (c)
gives us what we want.

The case that T drops at & 4+ 1 is similar. Suppose the drop is to J < J\/lz;
Let K = mg(J) be what U drops to at £ + 1, and let L = pg(J) and N Ys(K).

To get to Peyy and Q¢yy we must resurrect our drop. Let (v, k) = Res. L]) and

Y = M . Let t: L = Y be the resurrection map, that is, ¢ = o, x,[L]. Slmilarly,
let Z be the resurrection of N is Dg from stage (ng,ls), and let u: N — Z be the
resurrection map. From the definition of a conversion system, we see that

Pep1 = i;:z-Fl(Y)

and
Q£+1 = iz,é[,&l(z)-

But 05(L) = N by (1)s, so 03(Y) = Z by elementarity, so o¢11(Per1) = Qey1. This
gives us (b) of (f)e4+1. The reader can easily check (c) using a diagram like the one
above. Note here that o(t) = w. d

We get at once

Corollary 2.50 Let R and S be transitive models of ZFC, R |= “C is a background
construction”, and let m: R — S be elementary with m(C) = D. Let M be a model
of C, N =n(M), and let 3 be a complete strategy for S; then

Q(C, M,x™) = Q(D, N, $)".

2.10 TIterating into a background construction

The idea that if one compares a countable mouse P with some level M, Ck of a back-
ground construction, then only the P side moves, goes back to Baldwin and Mitchell,
and in some sense even to Kunen. The proof is very much like the proof one learns
now that least disagreement comparisons terminate. The Skolem-hull-of-V' embed-
ding is replaced by by some background extender embedding, and one gets thereby
that no backgrounded extender ever particpates in a disagreement.

The argument has been used many times at the level of Woodin cardinals (cf.
[35, Theorem 2.5] for example), but we know of no exposition in print of the very
simple form we need in this book. So we give one here.

Definition 2.51 Let M and P be premice, and let 3 be an iteration strateqy for P;
then
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(a) (P,Y) iterates past M iff there is a normal iteration tree T by ¥ on P with
last model ) such that M <Q),

(b) (P,XY) iterates to M iff there are T and Q as in (a), and moreover, M = @,
and the branch P-to-Q of T does not drop.

(c) (P,X) iterates strictly past M iff it iterates past M, but not to M.

Lemma 2.52 (Only the mouse moves.) Let C be a background construction above
K such that each FC is in Vs, where § is inaccessible. Let P be a premouse such that
|P| < Kk, and let ¥ be a 6-iteration strategy for P. Suppose that whenever E* = F©
for some v, we have

ip<(2) C .

Let M = M;C’k, and suppose that (P, X)) iterates strictly past M;?c’j for all (n,7) <iex
(v, k); then (P,X) iterates past M.

Proof. Suppose not. Let E be the first extender used on the M, ;-side in its com-
parison with P.

Claim 1. If (P, X) iterates strictly past M, ,, then (P, ) iterates past M, 1.

Proof. Let T with last model @) witness that (P, ) iterates strictly past M, ,. If
M, , and M, , ., are the same except for their distinguished soundness degrees n
and n + 1, then 7 witnesses that (P, X) iterates past M, .1 (perhaps not strictly),
as desired. Otherwise M, ,, is not sound, so it must be equal to (). But then
M, i1 = core(M,,,) = M?T for some & on the main branch of 7. This implies that
T 1€ 4 1 witnesses that (P, ) iterates past M, 1.

O

Claim 2. Suppose (P, X)) iterates strictly past M, for all k < w; then (P, X) iterates
past M, 1.

Proof. The literal premouse Muk is eventually constant as & — w. Thus there is a
fixed normal tree T of minimal length witnessing that (P,X) iterates strictly past
M, for all £ < w. Letting ) be the last model of 7, we have M, < @ for all
sufficiently large k, and thus M, ;9 < Q. O

Claim 3. Let v be a limit ordinal, and suppose that (P, ¥) iterates strictly past M, ;
for all n < v, and that M, is passive; then (P, Y) iterates past M, .

Proof. This is immediate. U
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Now suppose the lemma fails at v, k. By the claims, k = 0, M, is active, and
(P,Y) iterates past M<". Let E be the last extender of M, q, and let E* = FF be
the background extender for E, and let 7 be the tree by ¥ on P of minimal length
iterating it past M, o||Ih(E) = M<". Since the lemma is failing, F gets used in the
comparison of P with M, . So setting o + 1 = 1h(7"), we have that

(i) M[[Ih(E) = MT|[Ih(E),
(ii) M|1Ih(E) # MT|1Ih(E), and
(ifi) for all £ < o, Ih(E]) < Ih(E).

Let k = crit(E), let ig+: V — N be the canonical embedding, and let U = ig(T).
Note that because P is countable and k is a (measurable) cardinal, k < . Let

Claim 4. k <y A, [k, \)y does not drop, and ig- [MT = zz,j)\

Proof. If B <1 K, then 8 = ig«(8) <y A. Since [0, \)y is a closed set of ordinals,
k <y A. Since [0, k)7 has only finitely many drops, these are the same as the drops
of [0, Ay, so [k, Ay does not drop. Finally, if v € M7, then we have 8 <7 k and Z
such that i}, (Z) = z. But then

ip- ()

I
-~
&
—
. .
D =N
=
&I
SN—
SN—

as desired. O

Claim 5. U is by X, and Ulao+1=T.

Proof. U is by ig«(X). But ig«(X) C X, so U is by X. So in N, U is obtained
by iterating P, using X, so as to remove least disagreements with ig«(M). Since
E* ceritifies E, we have ig«(M)||Ih(E) = Ult(M|1h(E), E)||Ih(E) = M||1h(E).
Thus the process that produces U is the same as the process that produced 7T, until
extenders with length > 1h(E) are used, so T =UJa + 1. O

Now let G = Eg, where k = U-pred({+1) and £+1 <y A. G is an initial segment
of the extender of zz’ 1, 50 by Claim 4, GG is compatible with E. If G is a proper initial
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segment of F, then G is on the M||lh(E)-sequence, so G is on the MY-sequence
because MY||1h(E) = ig-(M)||1h(F). But then 1h(G) is not a cardinal in MY,
contrary to its having been used in Y. If F is an initial segment of G, we get that E
is on the sequence of ./\/l“ and hence on the sequence of MY = M7 . But this means

that E was not part of the least disagreement between MT and M, contradiction.
O

We can use this to show that the output of a maximal construction done below
a Woodin cardinal is universal for mice of size strictly less than its additivity. This
argument has probably been known since the late 1980s, but we can find no ap-
propriate reference. A stronger version involving partial background extenders and
universality with respect to weasels traces back to the paper [22] by Mitchell and
Schindler. The author adapted the stronger version to full background constructions,
where the Woodin cardinal becomes necessary. See [7, Lemma 11.1] and [29].

Theorem 2.53 (Universality at a Woodin cardinal) Suppose that F be coarsely co-
herent, F C Vs, and 0 1s Woodin as witnessed by extenders on F. Let C be a
magzimal F-construction. Let P be a premouse, |P| < crit(F,) for all v, and let ¥ be

a 0 + 1-iteration strateqy for P. Suppose that whenever E* is on ﬁ, we have
ip<(2) C .
Then there is a v < 0 and k < w such that M(Ck exists, and (P,X) iterates to Mfk.

Proof. The proof would be a bit easier if we assumed that C never breaks down,
but we do not need to do that. Here we say that C breaks down at (v, k) iff M7,
exists, and either

(i) the standard parameter of M, is either not solid, or not universal, or

(ii) v is a limit ordinal, k¥ = 0, and the Bicephalus Lemma fails, in that there are
background certified F' and G such that (M<"  F) and M<",G) are premice,
and F # G.

Claim 1. Suppose C breaks down at (v, k); then there is an (1, j) <jx (v, k) such
that (P, X) iterates to M.

Proof. Suppose first that there is an (1, j) <iex (v, k) such that (P, X) does not iterate
strictly past M, ;. Then for the lexicographically least such (7, j), (P, ) iterates to
M, ;, by 2.52, so we are done. Thus we may assume (P, Y) iterates strictly past M, ;
for all (n, j) <iex (v, k). By Lemma 2.52, we get that (P, ) iterates past M, .
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P is iterable, so the standard parameters of its iterates are solid and universal.
So (i) does not hold at (v, k), and it must be (ii) that holds. Let F' and G witness
this, and let F™* and G* be background certificates for them. Let T be the shortest
tree by which (P, ) iterates past M, o||Ih(F) = M, || 1h(G), and let a + 1 = 1h(T).
We now simply apply the proof of Lemma 2.52 to both F' and G, and it shows that
both of them are on the sequence of M. Thus F' = G, contradiction. O

Thus we may assume that C never breaks down, and that (P,X) iterates past
M, for all v < and k < w. Let

M = (M<5)(C

be the unique passive premouse such that o(M) = 4 and for all £ < §, M|£ I Mg,
for all sufficiently large a < §. Clearly, (P, X)) iterates past M. Let 7 on P be the
normal tree by ¥ that witnesses this. We have that 1h(7) =6+ 1, 6(7) = 6, and

M <aM],

because ¢ is inaccessible. Let b = [0,0)7, and for 8 < 4§, let f(5) = min(b— (5 +1)).
Since § is Woodin, we can find a nice extender F™* with critical point a and length n
such that for j = ip«

(1) ffa € a, and j(f)(a) <n,
(2) Mlln = j(M)||n, and

(3) j(b)Nnn=>bnNn.

Let 7+ 1 <7 6 be such that a = T-pred(r + 1), and let F' = E7. By (1) and (3),
7+ 1= j(f)(a) is the first point in j(b) above . Letting U = j(T) and A = j(a),
we have as usual that M7 = MY and

. T U
J [Moz = Zoz,A'

But in fact 7 [ n = U | n by (2) and the fact that j(X) C . So F = EY, where
a <y T+1<y A€ j(b), which implies that F* is a background certificate for F.
Let v be the least stage of C such that M||1h(F) < M<". Because lh(F) is a
cardinal of M, we must have M <" = M||1h(F). But then M, o = (M<", F'), because
our construction is maximal. After (v, 0) the levels of C do not project strictly below
Ar, because M < M]. This implies that F is on the M-sequence, contrary to its

being used in 7. O
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3 Normalizing stacks of iteration trees

In this chapter, we shall show how one can re-order the use of extenders in a finite
stack s of normal iteration trees, so as to produce a single normal tree W (s) such
that the last model of s embeds into the last model of W(s). We call this process
embedding normalization. Our goal here is to give some basic definitions and prove
some elementary theorems that help one deal with the complexities of this process.
In Chapter 4 we shall apply the resulting theory to the comparison of iteration
strategies.

We shall focus throughout the chapter on finite, maximal M-stacks, that is,
on finite stacks of normal trees on M that involve no gratuitous dropping at the
beginning of a round. Everything we prove generalizes easily to arbitrary finite M-
stacks, but rather than complicate the notation further, we shall just make some
occasional remarks on how the generalization goes.

The results of this chapter have the pleasant feature that one need only under-
stand the basic facts about iteration trees and premice in order to follow their proofs.
Indeed, it seems to us that this is a place where someone with minimal background
knowledge could get a feel for iteration tree combinatorics. With that in mind, we
have gone more slowly, including more examples and variant proofs than a more
advanced reader would require.

In that spirit, we begin in §2.1 by considering the simplest possible case, normal-
izing a stack of length two in which each component tree uses only one extender.
The results of this section are not used later, but they do help give a feel for what’s
going on. We also show in §2.1 that these simple stacks can be fully normalized, in
that, granted an iterability assumption, one can find a normal tree X (s) whose last
model is equal to the last model of s.

In §2.2 we consider the special case of stacks (7,U) in which U uses only one
extender, and in §2.5 we define W ((T,U)) = W (T ,U) for the general maximal stack
of length two. We do use some of the definitions of §2.2 in §2.5.

In §2.3 we introduce eztender trees, which are simple re-packagings of iteration
trees that are sometimes helpful. In §2.4 we introduce something much more im-
portant, the notion of a tree embedding.?” This notion is absolutely central to our
work here. What makes an iteration strategy > comparable with other strategies is
that if U is by X, and 7T is tree-embeddable into U/, then T is by . We call this
property of ¥ strong hull condensation. Tree embeddings play an important role in
the definition of W(T,U), as we shall see.

§2.6 and §2.7 are devoted to elementary facts about W (7T ,U). The most sub-

20Tree embeddings were isolated independently by Schlutzenberg and the author. See [14].
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stantial result here concerns the way branches of W (7T ,U) correspond in one-one
fashion with pairs consisting of a branch of 7 and a branch of . Finally, in §2.8 we
describe the normalization of stacks of arbitrary finite length, and say a few words
about normalizing stacks of infinite length.

In general, there are two sorts of base models M for the iteration trees we deal
with in this book: coarse premice, and fine-structural premice. Both sorts divide
further into pure extender and strategy premice. The definition of W (7 ,U) will
make sense in both cases. In this chapter we shall focus on the case that M is a fine
structural, pure extender premouse, with Jensen indexing for its extender sequence.
Until we get to Chapter 5, this is what we shall mean by the unqualified premouse.
We do also need to define W(7,U) in the coarse structural case as well, and we shall
indicate how to do so as we proceed. But then we are just talking about ultrapowers
of models of ZFC by nice extenders, so various things simplify.

One useful consequence of our definitions is:

Lemma 3.0 Let M and N be premice, coarse or fine, and let ¥ an iteration strategy

for M ; then there is at most one normal iteration tree T according to % having last
model N .

In the coarse structural case, this is not clear, even if ¥ chooses unique cofinal
wellfounded branches, unless we restrict our iterations to F -trees, for some fixed
coarsely coherent F. In that case, we have proved in in Lemma 2.40. That proof
works also in the fine structural case. We shall use Lemma 3.0 in an important way
in the proof of Lemma 3.67 below.

The construction of W(7T,U) does not require that any iteration strategy for M
be fixed; however, it may break down by reaching illfounded models, even if the
models of 7"U are wellfounded. In the case we care about, M has an iteration
strategy 2, (T,U) is played according to 2, and the initial segment of W (7 ,U) up
to our point of interest is also played by ¥. We can then invoke Fact 3.0, relative to
Y, for the models in W (7T ,U) up to our point of interest. We shall eventually show
that if > has strong hull condensation, then W (7T ,U) is also by X, and hence the
construction of W (7T ,U) does not break down.

3.1 Normalizing trees of length 2

We begin by looking closely at stacks of the form ((E), (F))).
Let M be a premouse, E on the sequence of M, crit(E£) < pgar)(M), and N =
Ult(M, E). Let F be on the sequence of N, and crlt( ) < A(E). It follows that
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Ult(N, F') makes sense; let @ = Ult(V, F'). So k(M) = k(N), and both ultrapowers
are k(M )-ultrapowers.
Let
Kk = crit(E), p= crit(F).
Let T be the iteration tree such that E] = E, E] = F, M] = M, M] = N, and
M7 = Q. Since u < M\(E), T is not normal. We show how to normalize it. There
are two cases.

Case 1. crit(F) < crit(E).

Since u < k and F is an extender over M (that is, over the reduct M™, for n = k(M)),
F is also an extender over M. Let P = Ult(M, F), and i¥) : M — P be the canonical
embedding. We have the diagram

F T M

N Q i (N) = U(P, ¥ (B))

B0
» g

M — P

Suppose first that M |= ZFC; then N is definable over M from E, and i} moves
the fact that N = Ult(M, E) over to the fact that % (N) = Ult(P,i¥ (E)). 7 is the
natural embedding from ¥ (N) to 1% (N). That is,

7((a, %) = la. gIF
for g : [u]!* — N, with ¢ € N. The tree U with models
MY =M, M{ =N, MY = P, MY = Ulty(P, i} (E))

and extenders
EY=F, FY=F, FY =iy (FE),

is normal. We call U the embedding normalization of T.

Remark 3.1 This implicitly assumes lh £ < lh F'. If lh F' < lh E, then F'is already
on the M-sequence, and the extenders of U would be EY = F, EY = i¥(F). The
diagrams and calculations above don’t change, however.

64



The proof just given was based on N being definable over M as its E-ultrapower
and i acting elementarily on this definition. But of course, ORY > OR is possible,
and anyway, we need to know i) has enough elementarity. If M = ZFC, all is fine.
We now give a more careful proof that works in general.

We assume k(M) = k(N) = 0 so that we can avoid the details of ultrapowers of
reducts and their decodings. The general case is similar. So every x € () has the
form i¥(g)(b) for g € N and b € [v(F)]<. We can write g = i (h)(a), where h € M
and a € [v(F)]<“. So

7= (i () (@) (b)
= ip o iy (h)(ip(a))(D),
with b, i¥(a) € [sup i “v(E)]<“. Let
G = (extender of iy o iy )[sup ik “v(E),
so that
Q = Ult(M, G).
The space of G is k, and its critical point is u. Let us write
R = Ulty(P, i3 (E))
H = (extender of iZJy(E) o i) supi¥ “v(E).
It is easy to see that
R =Ult(M, H).

But then we can calculate that G is a subextender of H. For let b € [v(F)]<* and
g " — [v(E)) with g € N. Let A C [crit(E)]" with A € N. (Equivalently,
A€ M.) We have

([b,g]F, A) € G iff [bgly € ip oy (A
iff for Fy a.e. i, g(j1)
iff for Fy a.e. i, (g (ﬂ)
iff ([, 9]]}4,2]}4( ) €
iff b, 9]} € il i (p) © z%(A)
iff  ([b,g]¥,A) € H.

)
€i
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So letting o : lhG — 1h H be given by

o([b.glr) = [b,glF .

we have

(,A) e G iff (0(a),A) € H,

so (G is a subextender of H under 0. We can therefore define 7 from ) into R by

7(la, f1&) = lo(a), f3 -

Note 7[1h(F') = o[ Ih(F') = identity. One can easily show that in the case M |= ZFC,
our current definition of 7 coincides with the earlier one.

Here is another way to obtain 7, one that is closer to the way we shall handle
the general case below. Let ¢: Ult(M, E) — Ult(P, E*) be the Shift Lemma map,
where E* = i¥(F). That is,

U(la, fI7) = [iw (@), iw ()]

By the Shift Lemma, v agrees with i¥/ on A\(E). It follows that F is an initial
segment of £, the extender of 1. Let 6 be the factor embedding from Ult(N, F) to
Ult(N, Ey), given by

0(la, ) = la, 9], = ¥(9)(a),

for all @ € [v(F)]<¥. We claim that 6 = 7.

To see this, note that 6 is the unique map = from @ to Ult(P, E*) such that
Y =moiN and 7 | v(F) is the identity. Clearly 7 [ v(F) = o | v(F) = identity, so
we must see that 1 = 7 0. Now both § and 7 make the diagram

N—"50Q iM(N) = Ult(P, i} (E))

O
» o

M ——- P

commute, 80 ¢ agrees with 70X on ran(i%). Thus it is enough to see that ¢ agrees

with 7 04X on the generators of E, that is, on v(E). But for a € [v(E)]<¥,

w(a) = i (a) = 7(iF (a)),

by the definitions of ) and 7. This completes our proof that 7 = 6.
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Before we move on to the case that crit(£) < crit(F'), let us look at the problem
of full normalization when crit(F") < crit(E). That is, we seek a normal tree on M
whose last model is literally equal to ). Full normalization is not important in this
monograph, but it is very useful in its sequels, for example [63] and [61]. The paper
[18] proves a general theorem on the existence of full normalizations for stacks of
normal trees on premice. The argument we are about to give contains one of the
main ideas in that proof.

Clearly, a full normalization of 7 must start with £ and then F. We are now
at the model P, and to get to @, we must replace 1% (E) by a subextender of itself.
One can see from the analysis above that the appropriate subextender is % (E) |
o“i¥(v(F)). What we need to see is that the transitive collapse of this subextender
is on the P-sequence. Here we must use the condensation properties of mice, and
hence we are assuming that P has these condensation properties. Of course our true
interest is in iterable P, which do have them.

We shall apply condensation iteratively. Let ((8;, ki) | 0 < i < n) be the 1h(E)-
dropdown sequence of M. That is

(B0, ko) = (Ih E,0)
and

(Bix1, kiv1) = lexicographically least () such that
(1) <o HM) and p(M (e, 1)) < p(M]{Bi, ki)

So long as they are defined, the ordinals

pi = P(M[(B; ki)

are strictly decreasing as i increases. The (f;, k;) increase, lexicographically. Note
that p; is a cardinal of M|B;41 with respect to r¥y,,, functions, and (811, kiy1) is
lex-largest such that this is true.

Let n be least such that (3, k,) cannot be defined this way, and set

(Bns bn) = 1(M) = (6(M), k(M)).

Notice that E was total on the reduct M*) so that crit(E) < p(M|{B;, k;)) for all
i < m, so by our case hypothesis, crit(F') < p(M|(f;, k;)) for all i < n. Thus we have

mi o M(Bs, ki) — ULL(M[(B;, ki), F)

for all # < n. We have

Ty = i
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and Ult(M|(B,, kn), F') = Ultg(M, F) = P. So R = Ult(P, m,(E)) was the last model

of our embedding normalization.
Claim 3.2 @ = Ult(P, m(E)).
Proof. 1h(E) is a regular cardinal in N. So

o =iy " =i [N||Ib(E),

and thus

Let
L = (extender of ifO(E) o it i (v(E)),

then it is easy to see that
Ult(P, mo(E)) = Ult(M, L).
Recall that G was the extender of length i¥ (v(E)) given by i¥ 0 i¥. As before, we
get 7 : lh(G) — 1h(L) by
a([b,g1F) = b gl ™,

defined for b € [V(E)]<* and ¢ : [u]" — v(E) with ¢ € N. (We assume here
k(M) = k(N) = 0; otherwise replace M and N by their k(M )-reducts.) But all such
g are in M||1h(E), so

o = identity.

As before, we get that G is a subextender of L under &, but this just means that
G = L, proving Claim 3.2. O

Claim 3.3 For 0 <i <n, Ult(M|(B;, ki), F') is an initial segment of P.

Proof. Ult(M|{B,, k), F') = P. Now suppose Ult(M|{(Bi11, ki+1), F) is an initial
segment of P. So then ;1 (M|[(5;, k;)) is an initial segment of P. It will suffice to
show ULt(M|{B;, ki), F') < w1 (M|{p;, k;)). But consider the factor map

o UM (B;, ki), ) = mia (M (B3, ki)

given by
Y(la, [ = [a, f310
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for f a function given by a r¥j,-Skolem term interpreted over M|f;. For simplicity,
let us assume k; = k;1; = 0, so this just amounts to f € M|p5;. Let p = p; that is,
assuming k; = 0, let

pP= Pl(MWz'),
p :p1<M‘6i>a
S = Ult(M|B;, F).

So ) : S — w1 (M|B;). Now pis still a cardinal in M|B;11. So (Ha)MBi = (ka)MIPin
for all a < p. So
crit(¢)) > sup m; “ p.
Also,
S = Hull{ (supm “ p U {mi(p)}),
as is easily checked. So pi(S) < supm;“p. Using the solidity witnesses, it is easy to
see that
p1(S) =supm“p and pi(S) = m(p).

We can apply condensation to ¢ to see that S < ;1 (M|p;) once we show that

sup 7; “ p is not an index of an extender on the ;1 (M]|f;)-sequence.

Suppose it were. Then sup;“p is not a cardinal of m;1(M|5;), so crit(¢) =
sup 7; “ p. This implies that m;, is discontinuous at p and that

M|Bit1 = cof(p) = p.
But then
Ult(M|Bis1, F) [= cof(supm;“p) = p.

But indices of extenders have successor cardinal cofinalities, and p is a limit cardinal
in Ult(M|Bit1, F), so sup m; “ p is not an index in Ult(M|pB;+1, F')-sequence. Therefore
it is not an index in the ;41 (M |B;)-sequence. O

By Claim 3.3, mo(F) is on the sequence of P. Thus our full normalization of 7
is the tree S, where

M = M, M =N, M§ = P, M5 = Q.

and
ES =E, ES = F, By = m(E).

Again, this assumes 1h(F) > Ih(E). Otherwise it is By = F and ES = my(E).
The following diagram summarizes Case 1.
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N
'r T

Q

N

f{ ifFV(Eﬁ %
M v

M r P

_

R

Here i% (E) = m(F). The notation is justified because (N|1h(E), E) = M|1h(E),
so i%¥ moves F as an amenable predicate, and produces thereby what we called 7o (E).
The construction in Claim 3.3 shows that in fact i¥(FE) is a subextender of i} (E)
under the map o : ¥ (v(E)) — i¥(v(E)) we identified earlier, o([b, g]¥) = [b, g]¥

for g : [u]” — v(E) with g in N.

Remark 3.4 All embeddings in the diagram above are all elementary and cofinal.
All but 7 are ultrapower embeddings. 7 is easily seen to be weakly elementary, and
it is cofinal because all the other embeddings are cofinal.

Remark 3.5 If G is the extender of i 0¥ then in fact v(G) = sup iy “v(E), as

shown by our earlier calculation. So v(i¥(E)) = supi¥ “v(E).

Remark 3.6 Let us consider the case that v(E) is a cardinal in M. Then (“a)M =

()N for all @ < v(FE), so for o as above, o|supi® “v(E) = identity. Thus

i¥(E) is the trivial completion of i (E)|supi¥ “v(E). If i¥ is continuous at v(F)
(i.e. cof M(v(E)) # p), then i¥(E) = i¥(E) and Q = R. If ¥ is discontinuous at
v(E) (i.e. cof(v(E)) = p), then Q # R, and in fact crit(r) = supi¥ “v(E).

So in this case, the embedding normalization of T uses i (E) to continue from
P, while the full normalization may use a proper initial segment of i}/ (F) to continue

from P.

Case 2. crit(E) < crit(F).

Let p = crit(F) and k = crit(E). We have assumed p < A(E), as otherwise T is
already normal. Let

P =U(M|( k), F)
where (&, k) is lexicographically least such that p(M|(£, k)) < p. Let

i: M| k) — P

be the canonical embedding, ¢ = Z.2/1|<§,k>‘ As in Case 1, N = Ult(M, E) and Q =
Ult(N, F'). The embedding normalization of 7 continues from M, N (assuming
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Ih(E) < 1h(F)), and then P by using i(£) now. Note i(F) should be applied to M,
not P, in a normal tree. So let

R = Ult(M, i(E)).
Let G be the extender of i¥ 0}/ and notice that G is short, with A\(G) = i¥(\(E)) =
supif “\(E). Let
7 ig (A(E)) = i P (A(E))
be given by
o([b,g1¥) = [b gl "

for g : [u]® — X(E) with ¢ € N. (Note that for n = k(M) = k(N), we have
Kk < po(M), so AM(E) < pn(N), so every v such function g belongs to N.) We
claim that

Claim 3.7 G is a subextender of i(E) under o.

Remark 3.8 In this case, G and i(E)are short, and o is the identity on their com-
mon domain.

Proof. Let a C supiX “ \(E) be finite, and let A C [k]% be in M. Let a = [b, g]¥,
where g € N and g : [11]®l — [v(E)]l%l. Then

(a,A) € G iff ([b,g]¥, A) €q
iff [b,g]} €ipoiy (A)
iff for F} a.e.fi, g(i) € iy (A)
iff for F, a.e.fi, (g(n),A) € E
iff (b, 9]}, A) € i(E)
iff (o(a),A) €i(E).

g

Thus we have a factor map 7 : @ — R from @ = Ult(M,G) to Ult(M,i(E))
given by
T([CL, f]g) = [a(a), f]f\(/[E)

Assuming lh(F) < Ih(F'), the embedding normalization of T is then U, where

EY=FE, F¥ =F, EY =i(E).
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If Ih(F) < 1h(E), it is Ef{ =F, BY =i(E).
The full normalization is obtained as in Case 1. Let

7o : M||1h(F) — Ult(M||h(E), F)
b . . L Ny M||1h(E)

e the canonical embedding. Letting o([b, g]%) = [b, 9] for b, g as above, we
have ¢ = identity, which yields G = m(£). One can show that my(F) is on the
P-sequence by considering the 1h(E)-dropdown sequence of M |¢ and using conden-
sation, as in Case 1.

The situation in Case 2 is summarized by the diagram

Vi

Mg

M€
p

We have assumed here £ = 0 to remove some clutter. Again, all the embeddings in
the diagram are cofinal and elementary. In the case of 7, this is because it is weakly
elementary, and it is cofinal because all the other embeddings are cofinal.

Remark 3.9 If (¢,k) = (Ih(E),0), then iy * = i N|In(E), so i¥(E) = iy *(E),
and @ = R. This is what happens if v(E) < crit(F) < A(E). The original T is
ms-normal but not Jensen normal. Its embedding normalization is Jensen normal,
and has the same last model as 7.

If (€, k) = I(M), then the diagram simplifies to
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If u < v(E) and v(E) is a cardinal of M and (£, k) = [(M), then % (E) is the trivial
completion of i¥ (E)[supiy “v(E). In this case, Q = R iff cof™ (v(E)) # u, and if
Q # R, then crit(7) = supif “v(E).

Remark 3.10 In both cases, the embedding normalization of ({(E), (F')) may break
down by reaching an illfounded model. Similarly for full normalization. (There we
also used condensation, hence indirectly iterability.)

Again we are interested in the case M has an iteration strategy . In that case,
the models are all wellfounded, and things work out as above. It doesn’t yet matter
what ¥ is, since the trees are finite.

3.2 Normalizing 7(F)

Let M be a premouse, let 7 a normal tree on M having last model N, and let F' be
on the N-sequence. Let @) be the longest initial segment of N such that Ult(Q, F)
makes sense, that is, such that F is total on @ and crit(F) < pg)(Q). We construct
a normal tree W on M such that Ult(Q), F') embeds into the last model of W via
a weakly elementary map. We call W the embedding normalization of T (F), and
write

W =W(T, F).

The reader can find some diagrams which may help visualize the construction of W
at the end of this section.

Let o be least such that F is on the M -sequence. Then M agrees with Q up
to Ih(F) + 1, and @ agrees with Ult(Q, F') up to Ih(F'), but not Ih(F) + 1. By Fact
3.0, W must start out with 7 [(a+1), if it is being played by some iteration strategy
Y for M such that 7 [(« + 1) is played by X. This is the context that is motivating
our definition of W, so we set

Wla+1)=Tl(a+1).
(This does not imply EY = ET just MY = M7 )
Now let p = crit(F), and let 3 < a be least such that either p < M(EJ), or
B = «a. F must be applied to an initial segment of MEV = /\/lg in W. That is
EW =F,
and the rest is dictated by normality:

W-pred(a + 1) = B,
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and

MY = M (6o, ko)
where (&, ko) is least such that p(Mg|(&o, ko)) < p or (&, ko) = I(M}Y), and

MY = UM F).
This gives us W[(a + 2).

Case 1. Q # N.

If 641 < 1h(T), then @ is a proper initial segment of Mg| lh(Eg), by the following
claim.

Claim 3.11 Let T be a normal iteration tree, 3 +1 < Ih(T), and M} |Ih(E]) <
R <A M] for some 0 > 3+ 1; then lh(EﬁT) < prr) (R).

Proof. Let S = M]. Tt is easy to see that pys)(S) > 1h(G) for all extenders G
used in the branch [0,6)7. Since some G with Ih(G) > Ih(E]) was used in [0,6)r,
we are done if R = S. If 6(R) = 6(5) but k(R) < k(5), then prs)(S) < prr)(R), so
again we are done. Finally, if 6(R) < 6(S), then R € S, so pr(r)(R) < 1h(E]) < o(R)
implies that 1h(E7) is not a cardinal in S. This is a contradiction. O

Let N = M] and Q = N|(,, k). If 8 < 6, then we apply the claim to R =
N{&, k+1). We have @ << N, so this makes sense. We have p(Q) = prr)(R) < 1t <
lh(EBT). It follows from the claim that R < /\/lg| lh(EﬁT). But @ < R. Thus @ is a
proper initial segment of MZ;\ lh(EZ;).

Soif B+1 < 1h(T), then Q = Mpg|(&o, ko) IM], o = §, and M2, = Ult(Q, F).
These conclusions hold trivially if 5+ 1 =1h(7), so in either case we set

W(T,F)=W[(a+2)
=TIHB+1)(F).

We call this the dropping case in the definition of W (T, F'). In this case, Ult(Q, F')
is actually equal to the last model of W (T, F).

Case 2. Q= N, and Ih(7T) =4+ 1.
Since Ih(7) =+ 1, then Q = N = ./\/lg Thus a = 3, and again

W(T,F)=W[(a+2)
=TIB+ 1) (F).
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Again, Ult(Q, F') is actually equal to the last model of W (T, F). The difference
between this and the previous case is just that we did not drop when we applied F

to T.

Case 3. Q = N, and Ih(7) > g+ 1.

In this case, Ult(NV, F') makes sense, so (Ih(E] ),0) < (&, ko), and in fact Ult(M], F)
makes sense for all  such that § < n < 1h(T).
For n < 1h(T), set

o) =147 L
(a 1)+ (- p). ifn>p.

So ¢ :[0,1h(7)) = [0,8)Ula+1, (a+1)+ (Ih(T)—f)) order-preservingly. We define
M;\(} , and
g T w
Ty My = M.

For n < 8, ¢(n) = n and /\/l;r = M)” and 7, = identity. We let
3 = canonical embedding of M} (&, ko) into Ult(MF[(&, ko), F).

(So the display above is a bit off; for n = 8, 7, may not act on all of /\/lnT For n # f3,
m, will act on all of M) Note that F'is close to M} |(&, ko) because it arose in a
later model of 7T, so that s is cofinal and elementary.

We define 7, and Mg\(}n) for n > f + 1 by induction.

For n =3+ 1, we let

w o T
Eg(p) = m8(Ep ),

and let 7 < (3 be least such that crit(E;Q’ﬁ)) < M(EY), and (v, k) be least such that
crit(E;Q’ﬁ)) > prr1(MP]y), and set

w W w
M¢)(6+1) = Ult(M‘r |<77 k>7 Ed)(,B))a
as required by normality. We get mg; from the Shift Lemma. There are two cases.
Case A. crit(E}) > p.

Since s = iy " ™ crit(mg(E])) > Ih(F). But F = EY. Thus m5(E]) = E)Y, is

applied to MY, = M};\(jﬁ), or an initial segment of it. That is
T=¢(f)=a+1
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in this case. In T, we must have
T'pred<5 + 1) = ﬁa

because  was least such that pu < I/(Eg) Similarily, the case hypothesis implies
that
M, = Ul(MT (&, ki), ET)

where (&1, k1) <iex (€0, ko). We have that mg : MBT|<§1,I<:1> — WB(MZ|<§1,/{31>) is

elementary, so when k; = 0 we can set

MT &

MY g I (€r)
7T5+1([a, f]Ef o

) = [ms(a), s ()] pw

#(8)

as in the Shift Lemma. (If &y > 0, the ultrapowers are decoded from ultrapowers
T
of reducts, but the Shift Lemma still applies. In the notation of [23], 7s( T/:/qlﬁ |£1) =

MY |
I, Wz}‘;); B(&).) We have that 74,1 is elementary ( a near kj-embedding) by [30], and

g1 1h(ET) + 1 = mg] I(E]).

Case B. crit(E] ) < p.

Then crit(mg(E])) = crit(E] ), so 7 = T-pred(f+1) = W-pred(¢(5+1)). It is clear
that Eg and WB(EE—) are applied to the same initial segment of M7 = M. Letting
this be M7 |(v, k), we get

mgin : UM (7, k), BF) —= UMY (v, k), ma(EF))

from " T
mon(la, [y ") = [ma(a), f500 "

Again, w4, is elementary, and 7g4; agrees with 75 on lh(EBT) + 1.

Remark 3.12 In Case A, ¢(T-pred(f + 1)) = W-pred(¢(f + 1)), while in Case B,
this fails, and in fact T-pred(8 4+ 1) = W-pred(5 + 1). It is because ¢ may not
preserve point-of-application for extenders that 7 may not be a hull of W, under
¢ and the m,’s, in the sense of Sargsyan’s thesis [30]. In fact, 7 will be such a
hull iff crit(EZ' ) > p for all n >p 5. For example, this happens when 7 factors as
TI(6+1)"S, where S is a tree on ./\/lg with all critical points > p.

The successor case when n > [ is similar. Suppose by induction that whenever
§,0 <
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(1) EY, = ms(E]).

(2) if 0 # 3, then 75 is an elementary embedding from M7 to Mg‘(}(;). (mp is cofinal
elementary from MT7|[(&o, ko) to MYs)-)

(3) if £ < 0, then 75 agrees with 7¢ on lh(Eg) + 1.

(4) (a) if T-pred(d) # B then ¢(T-pred(d)) = W-pred(¢(9))
(b) if T-pred(d) = f3, then
i. crit(E] ) > p= ¢(T-pred(d)) = W-pred(¢(d))
ii. crit(E] ) < u = W-pred(¢(d)) = B

(c) i if6 B, then (67T & iff 6(5) W 9(€))
ii. BT &= o(B) W ¢(&) iff the first extender used in (5, £]r has critical
point > .
(5) (a) if 6 # B, then 6 € D7 iff $(6) € D, and deg” (§) = deg"(4(5))
(b) if 6 # B, 6T &, and DT N (€,0]r = @, then m¢ 0 if, = Z'Z\(;a)@(g) o Ts

we then define ;4 : /\/l,7 41— ./\/l so as to maintain those conditions. Namely,

d(n+1)
w T
Egy = m(Ey ),

and letting 7 be least such that crit(E),)) < A(E)Y), and (v, k) be appropriate for
normal trees,

M o(n+1) Ult(MZ\}K’yv k>a E;Q}n))

We get m,41 from the Shift Lemma, with two cases, as before.

Case A. crit(E]) > p.

Let o = T-pred(n 4 1), i.e. o is least such that crit(E]) < A(E]). Clauses (1) and
(3) above tell us that ¢(o) is the least 0 in ran(¢) such that crit(E}))) < A(EpY).

But 7 > ¢() by our case hypotheses, so 7 € ran(¢), so 7 = ¢(c). We leave it to the
reader to show that if
MZ-Jrl = U1t<MZ| <)\7 7‘>7 Er?)?

then in fact i = k, and 7,(\) = 7. Thus we set

mysa (s g ) = [ma(a). o ()1t
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and everything works out so that (1)-(5) still hold.

Case B. crit(E]) < p.
Again, let 0 = T-pred(n +1). So o < 3. Since m,[Ih(E]) = m| h(E f , Tl =
identity, so crit(E]) = crlt(EVYn)) Thus ¢ = 7. One can show that £ and E))

é(n)
are applied to the same initial segment of M7 = MY, via ultrapowers of the same

degree. So we have
Ty UM (7, k), ET) — UMY (3, k), EYy)

given by

o1 ([a, f]ﬁ?'”) = [my(a), f]gﬂt:r'

The reader can check (1)-(5) still hold.
This finishes the definition of m,,;. For \ a limit, M;‘(}/\) and Ty : M] — MZ\()/\)
are defined by
M;\(}/\) = dirlim of Mg\(}a) for o T' \ sufficiently large,
(7 (x)) = ig\(}a),a,\) (mo(x)), for aT X sufficiently large.

(1)-(5) imply this makes sense, and that (1)-(5) continue to hold. This completes
our description of the embedding-normalization of 7 (F’).

We must see that for N the last model of 7 and R the last model of W, Ult(N, F)

embeds elementarily into R. But

Lemma 3.13 For any v > 8, F is an initial segment of the extender of m,.

Proof. F is the extender of mg. Since ﬂg[(;ﬁ)Mgf = 7r,yf(,u+)/\4g‘5 (because
(/ﬁ)MﬁT"S < Ih(E])), we are done. O

Thus there is a natural factor embedding 7 from Ult(NV, F') into R, given by
7(la, fI¥) = m,(f)(a), where N = M7

Lemma 3.14 7 is weakly elementary.

Proof. Let n = k(N). Let G be the shortest initial segment of the extender
of m, such that 7,(N") = Ultg(N",G). Then F is an initial segment of G, and
7| Ultg(N™, F) is g elementary from Ulty(N™, F') to Ulty(N", G), and ¥ elementary
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on ran(:¥"), which is cofinal in Ultg(N™, F'). This implies that 7 is r¥, elementary,
and rX, 1 elementary on a set cofinal in p,(Ult(V, F)).

The remaining clauses in definition 2.8, concerning the preservation of parameters
and projecta, follow from the fact that % and ., are weakly elementary, and Toil¥ =
Ty

g

Remark 3.15 We do not know whether 7 must be fully elementary. The problem
is that 7, “p,(/N) may not be cofinal in p,(R). If M-to-N does not drop in 7T, then
M-to-R does not drop in W, and therefore ., is cofinal and elementary, so 7 is cofinal
and elementary. When M-to-N drops, 7 may fail to be elementary, so far as we can
see.

Remark 3.16 The definition of W (7T, F) needs no change at all in the case that T
is only weakly normal. In this case, W (T, F') will only be weakly normal itself, in
general.

In a sufficiently coarse case, W is also the full normalization of (T, F').

Remark 3.17 There is an analogous construction that starts with an ms-normal
tree 7 on M, and an extender F' on the sequence of its last model N, and produces
an ms-normal tree W™S(T | F') such that Ult(N, F') embeds into its last model.

We shall write X (7, F) for the full normalization of (7, F). In a sufficiently
coarse case, X (T, F) = W(T,F).

Proposition 3.18 Let M, T, F, and (3 be as above. Suppose also that T is ms-
normal, and that k(M) = w and p,(M) = o(M). Let pn = crit(F), and suppose that
for all v+ 1 <1h(T),

/\/l;r = V(E;r) is a cardinal of cof # p.

(So T does not drop anywhere, and all models have degree w.) Then for all v < 1hT
such that v >
w T
My = Ulty, (M, F),

and the embedding normalization map m is the same as the F-ultrapower map.

Remark 3.19 A Jensen-normal tree that does not drop is ms-normal. We have
stated the proposition using the weaker hypothesis of ms-normality because its
greater generality may be useful, and anyway is natural in the coarse case.
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Proof. We show this by induction on ~. For v = 3, this is the definition of Mg‘(}ﬁ)
and 7. Suppose it holds for all v < 7, we must show it holds at n+ 1. Let £/ = E;r
and E* = m,(F) = E;\(jn)' Let 0 = T-pred(n + 1).

Case 1. p < crit(FE).

-
Then o > 3, and ¢(0) = W-pred(¢(n + 1)). Let S = Ult,(M],, F), and let ig/l”“
be the canonical embedding. We have the diagram

ML
T 'F T %Y
MnH S M¢(n+1)
E*
T w
MT ———— M,
ip° =7o

Here 7 comes from the argument in Case 1 of two-step normalization. Namely,

MIMT MY MT
let G be the extender of iy, """ o zgl", and H be the extender of i,.”" o ZQA”. Note

T
n+1 «

-
v(G) = sup zg/( v(E) and v(H) = sup ig‘” “v(FE), by our cofinality assumption.
Claim 3.20 G is a subextender of H under the map 1, where

W(lb, gl ) = [b, gl

Jorb e [V(F)< and g : [p]" = v(E), g € MT,,.
Proof. We calculate as before: for b, g as above and A C [crit(£)]<¥ with
Ae M,
T T T
(gl "™ A€ G iff gl ™ €y " oi" (A)
iff for F, a.e.u, g(u) € z'/;“T(A)

(by Los for Ult(M],, F))
iff for Fy ae.u, (g(u),A) € E

T T
iff (b gls " i (A)) € B
(by Los for Ult(M7, F))

) MT ML MT
iff [b,g]p" €ip” (g " (A))
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: My MT :
(since 1.7 and 5. agree on subsets of crit(£*))

T MT,
i gl € i (15 (4)
. MT . MT .
(since i " agrees with 7,, hence ., hence i} 7 on subsets of crit(£))
T
iff  ([b, g5, A) € H.
O

But now M and M, have the same functions g : [u]<* — v(E), by our
“coarseness” assumptions. So ¢ = identity, and G = H, and S = MZ\(}n +1)- So our
diagram is

T i W
F
MW-H \—%4) M¢(n+1)
Tn+1
E E*

MT MY
o — Mo(o)

7rg:iF

It remains to show iﬁA"T“ = m,41. Since both maps make the diagram commute,
it is enough to show iﬁ/q“ [V(E) = mpp [v(E). But myq[v(E) = 7, [v(E) by the
Shift Lemma, and 7, [v(E) = ig[”T [v(E) by induction, and z‘/}/t”T lW(E) = ig/l’?“ lv(E)
because M and M7, | have the same functions g : [u]< — v(E).

Case 2. crit(£) < p.

Let 0 = T-pred(n+1). Then in this case, 0 = W-pred(n+1). Let S = Ult(M],,, F).
We have the diagram

M
T 'F T w
M77+1 S M¢(7]+1)
E*
MT = MW

M : .
We show that S = Mg‘{nH) and i, "' = m,4; by the calculations in Case 2 of
two-step normalization. O
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Definition 3.21 For U a normal iteration tree on M, let
US" =U[(a+ 1), where a is least such that Th EX > 7,
and U<" = U if there is no such «. Let

U U, u
U = (M, | B exists Ny < \(E}')).

Definition 3.22 Let M, T, F and W be as above, then we write
W(T, F) — 7~< thm<F>AZ~F «7~> crit(F)
for the embedding normalization of T (F) just defined. We write a™F, gT-F ¢TF

and WZ’F for the auziliary objects «, B, ¢, e that we defined above.

The full normalization X (7, F') of T"(F') can be obtained as follows. We assume
that 7 is normal on M, N is the last model of 7, F' is on the N sequence, and
crit(F') < pp(N), for n = k(N). Let

W = T< 1hFA<F>AZ-Fu T> crit(F)

be the embedding normalization. Let 7<% = T(a + 1), f = W-pred(a + 1), and
¢ :1hT — lh W be as above. The full normalization is X', where

Xa+2) = Wi(a+2)
and
Mjf(n) = Ult(MnT, F) for n > .

(Note that if n > 3, then some G such that crit(F) = p < A(G) was used on the
branch to M, so for k = k(M]), p < pr(M]).) The tree order of X is the same
as that of WW. We have

T

T i X T W
Mn - M¢>(77) - M¢(n)

T
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where 7 is the natural factor map. What remains is to find the extenders E;Y(n) that
make X into a normal iteration tree. For this, let £ = EZ— , and

7 MT|(Ih(E),0) — Ult(M] |[(Ih(E),0), F)

be the canonical embedding. One can show using condensation that 7(E) is on the
sequence of M;f(n). Moreover, for o = W-pred(n + 1),

My = UMY [(€,m), (),

where n = k(MY ) = k(M7 ,) and £ is appropriate. The details here are like those
in the two-step case. Since we don’t actually need full normalization in comparing
iteration strategies, we give no further detail here. There is a much more careful
discussion in [18]. Here is a diagram of the situation.

il -
N—" S UW(N,F) ——— R

Each ./\/lnT is mapped into Mjf(n)’ and that in turn is mapped into Mg\(;n)'

Returning to W (7T, F'), here are a few illustrations that the reader may or may
not find helpful. Let 7 be normal on M of length § + 1, F on the sequence of M7
p = crit(F), § least such that p < A(E}), and a least such that F is on the sequence
of M, as above. We assume in the diagram that 3 < 6, and that Ult(M], F)
makes sense. Let ¢ : 0 = [0,5) U [a+ 1, (a+ 1)+ (0 — )] be the order-isomorphism
as above.

We illustrate first the embedding of 7 into W(T, F'), as it appears in the agree-

ment diagrams. We draw them as if 5 < «a, although § = « is possible.
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T lhEZ
I
Ia r lh By
$A(Ep)
ol w
0 B «Q 0
¢7 7T’Y fOI' g Z 5
w
$A(Eg) |[F
o[l H
0 I6; a+1 (a+1)4+ (0 —p)
We have
TiHa+1) =Wl(a+1),
F=EY,
and

ip“T " = remainder of W.

The next diagram shows how ¢ may fail to preserve tree order. By (4)(c) above,

we can have § <p & but ¢(8) €w ¢(€) iff 6 = 3, and the first extender G used in
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(0, &) such that G is applied to an initial segment of Mg satisfies crit(G) < p. Let
S<t be the set of such £ >7 3, and S=# the remaining ¢ >+ 3. The picture is

52 s 6 57" p 5
a+1
F
\ / \ /
\\ /8 : // \\ /8 : //
\ | / \ | /
\ | / \ | /
\ | / \ | /
\\ \ // \\ \ //
vy vy
Ay Ay
v v
T w

Finally, we illustrate the relationship between the branch extenders of [0, &)y and
[0,0(8))w. If € < 3, they are equal. For £ = 3, the picture is

F

L L

K K
extender of 0, 58)r extender of [0,0(8))w
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because [0, 8)r C [0, ¢(8))w, and just the one additional extender F is used.
For £ > f3, let G be the first extender used in [0, )7 such that A(G) > A(E]).
The picture depends on whether p < crit(G). If p < crit(G), it is

F(H)
il :
{ F(G)
G { i
F
e ]
L { L]
K{ K|
extender of [0, 8)1 extender of [0, 0(8))w

In this case, F' is used on [0, ¢(§))w, and the remaining extender used are the images
of old ones under copy maps.
If crit(G) < p < A(G), the picture is
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extender of [0, 8)7 extender of [0, ¢(3))w

In this case, the two branches use the same extenders until G is used on [0,&)r. At
that point and after, [0, ¢(£))w uses the images of extenders under the copy maps.

Notice that in either case, there is an L used in [0, #(€))w such that crit(L) <
crit(F) < A(F) < A(L). This will be important later.

Remark 3.23 There is nothing guaranteeing that the models of W (T, F') are well-
founded. In our context of interest, 7 is played according to an iteration strategy
Y. Part of “normalizing well” for ¥ will then be that W (7T, F') is according to X.

3.3 The extender tree V™

The fact that ¢7*" does not fully preserve tree order or tree predecessor is awkward.
Here is another way to visualize our embedding of 7 into W (T, F) given by ¢7-F
and the W?’F’S.

For V a normal tree, let
Ext(V) ={EY |a+1<1hV}
be the set of extenders used. Note Ext()) determines ¥V modulo a strategy X for the
base model of V, by normality. For v < 1h(V),

e¥ = increasing enumeration of {E) | v+ 1 <y 7},

87



increasing in order of use (index, length).
Note that each of 65, MK and V[(7+1) determines the others, by normality. Set
Vot ={e¥ |y <1V}

Vet determines V. The structure (V™' C) is the extender-tree of V.

If F and G are extenders, then F'and G overlap iff [crit(F'), A\(F'))N[crit(G), A(G)) #
@. We say F' and G are compatible iff Jo(F = Gla or G = Fla). Here are two
elementary facts:

Proposition 3.24 Let V be a normal iteration tree; then

(1) if s~(F) € V™' and s~(G) € V', then F and G overlap, and
(2) if s,t € V™ and s(i) is compatible with t(k), theni =k and s (i+1) = t(i+1).

Now let 7 be normal on M, and W = W (T, F). Let ¢ = ¢7F', 7 = W?’F, etc.
We define a partial map
pr.r: Ext(T) — Ext(W)

by
prr(El) = me(E{) = Effy.
So pT,F(EZ)i iff £ € dom ¢, and either £ # 3, or £ = 3 and ./\/lg| lh(Eg) < MZK
We can view p as acting on branch extenders. For s € T let

Ls

. least i such that crit(F') < A(s(7)), if this exists;
—= ZS —=
undefined, otherwise.

Let £ € dom ¢ and s = eZ—. Then if dom(¢) = f + 1, we have

W s, if £ < 6;
s™(F), if&=p.

If dom(¢) > 5+ 1, then i, exists precisely when s = eg for some £ > [+ 1, and

S, if £ < f;

v )T, if £ = 3;

O s, (FY T (s(i)) |6 > 4,), i crit(F) < erit(s(is));
slis (T (s(3)) | i > i), if crit(s(is)) < crit(F).

So if E is used before H in ez, then pr r(E) is used before py r(H) in e;;‘(’é).
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Definition 3.25 Let W = W(T,F), and suppose s € T is such that Yu €
dom(s), pr,r(s(p))d; then

Py p(s) = unique shortest t € W™ such that
Wy € dom(s), pr r(s()) € rant)

For jj = prr, we have that p(e/) = e, except when § = 5. At 8, we have
6% = ﬁ(@Z)“(ﬂ- The map p: T — W(T, F)™* does preserve C.

Proposition 3.26 Let s,t € dom(p”F); then
(1) 5 C t = pls) C p(t), and

(2) s Lt=p(s) Lp(t).

3.4 Tree embeddings

An iteration strategy X for M condenses well iff whenever U is by ¥, and 7 is a
sufficiently elementary embedding from 7 into U such that w[(M U {M}) is the
identity, then 7 is by Y. By weakening the elementarity required of 7, we obtain
stronger condensation properties.

In the Hull Condensation property of [30], one is given an embedding o : h(7) —
lh(¢/) and embeddings 7, : M7T — ./\/lzj(a). o preserves tree order and tree-predecessor.
The 7,’s have the agreement one would get from a copying construction, and they
commute with the branch embeddings of 7 and . Moreover, 7,(E]) = Eg’(a). A
simple example in the way T = W sits inside U = 7(W), in the case 7: H — V is
elementary and 7[(M U{M}) = id .

A hull embedding (o, T) as above induces a map p : Ext(7) — Ext(U) by

P(E]) = a(ED).

We then get p: T — U* from p as in 3.25.. p preserves C and incompatibility in
the extender trees. p is related to o by

ﬁ(eaTH) = ezc/r{(a—i-l)'

But for A a limit, p(e] ) may be a proper initial segment of eﬁ’(/\).
We now define the notion of a tree embedding from 7 into ¢. This will be a tuple
with most of the properties of o, 7, ¢ above. The pair (o, 7) is resolved into two pairs:

the pair (v, 5), which embeds the models of 7 into models of U/ in a minimal way,
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and the pair (u,?), which connects the exit extenders of 7 to exit extenders in U.
The the requirement that o preserves tree predecessors is relaxed to the requirement
that if 5 = T-pred(y+1), then U-pred(u(y)+1) € [v(8),u(B)]y. We shall also allow
the t,’s to be partial, in a controlled way. Recall here the partial branch embeddings
i 5. (CE. 2.10.)

Definition 3.27 Let T and U be normal iteration trees on a premouse M, with
Ih(7) > 1. A tree embedding of T into U is a system

(u, (sg [ B <1(T)), {ts | 6+ 1 <I(T)),p)
such that
(@) u:{ala+1<Ih(T)} = {a|a+1<1hUf)}, and a < = u(a) < u(p).

(b) p : Ext(T) — Ext(U) is such that E is used before F' on the same branch
of T iff p(E) is used before p(F') on the same branch of U. Thus p induces
p: T — U™ as in Definition 3.25.
(¢) Letv :1h(T) — Ih(U) be given by
ei{(ﬂ) = p(e})
Then
Sp Mg— — Mﬁ{(ﬁ)
is total and elementary. Moreover, for a <r f3,
550 10,5 = Tfau(s) © So-
In particular, the two sides have the same domain.
(d) For a+1 <1h(T), v(a) <y u(a), and
_u
bo = T u(a) © Sa-

Moreover,

p(E]) = ta(E])

Moreover, for a < 3 < 1h(T),

sglh(ET) 4+ 1 =t,]Th(ET) 4 1.
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(e) If 8 = T-pred(a + 1), then U-pred(u(a) + 1) € [v(B),u(B)]u, and setting
p* = U-pred(u(a) + 1),
Sa-i—l([aa f]gg) - [toz(a)ﬂ izj(ﬁ),ﬁ* © Sﬁ(f)}ggl(a)a

where Pgl/\/lg is what E is applied to, and P* <MY, is what Eﬁ’(
to.

15 applied

@)

The appropriate diagram to go with (e) of Definition 3.27 (for the non-dropping
case is)

T Sat1 u
Ma+1 Mv a+1)
Eg(oc)
u
ET Mu(ﬁ
tp
u
Mﬁ*
P
5B
T u
M; M)
T ta u
M Mu(a)

Here iﬁ’( 85+ S8 =P is a possibly partial map, defined and elementary on P.
Definition 3.27 is not quite right in the case that 7 is only weakly normal.

Definition 3.28 If T and U are weakly normal trees on M, with Ih(T) > 1, then a
tree embedding from T to U is a system

(u, (s | B <Ih(T)),{ts | B+ 1 <Ih(T)),p)
satisfying all the clauses of 3.27, except that in clause (c), we demand that
EXE /\/lg — N
elementarily, where Ng < M%’(ﬁ). The N¢ must be given by
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(i) No= M,

(1) Nay1 =% o1 oiﬁ’(ﬁ)ﬁ* o s3(P), where P<ANy is such that M, = Ult(P, ET),
and

(iii) if X is a limit, then Ny = i¢,\(Ng), for all sufficiently large § <y \.

We need the Nj’s because we want to allow T to drop gratuitously along the branch to
B, while at the corresponding step along the branch of U to v(8), U has not dropped,
or not dropped as far. The Shift Lemma formula in clause (e) needs no change, but
now what it may be giving us is an elementary embedding of Ult(P, ET) into a proper
initial segment N, of Ult(P*, Eﬁ’(a)). Note that ® completely determines the Ng,
so we can write Ng = Ng.

One can easily see that if 7 is normal, then ¢/ must also be normal, and Ng =
Mﬁ’(ﬂ) for all . So the two definitions of tree embedding are consistent with each
other. Only occasionally do we actually need to consider the case that T is weakly
normal, but not normal. We don’t need to consider the case that U is not normal at
all, but we have allowed it for the sake of completeness. The notion of tree embedding

we have defined doesn’t seem to make much sense if T fails to be weakly normal.

Definition 3.29 For weakly normal iteration trees T and U,
(a) ©: T — U iff D is a tree embedding of T into U,

(b) if ®: T — U, then u® v® s t2 and p® are the component maps of ®, and

o) o)

(c) T is a psuedo-hull of U iff there is a tree embedding of T into U.

Remark 3.30 It is easy to see that ®: T — U if and only if &: T — U | , where
v =sup({v®(a) + 1| a < 1h(T)}).

Definition 3.31 A tree embedding ®: T — U is cofinal iff Ih(U) = sup({v®(a)+1 |
a <1h(T)}).

Remark 3.32 By clause (c), v(0) = 0 and so = id. It is possible that w(0) > 0.
By clause (d), v(aw+ 1) = u(a) + 1. Clause (b) implies that a +1 <y g+ 1 iff
v(ia+1) <p v(B+1). I X < 1h(T) is a limit ordinal, then v(\) = sup{v(§) | & <7 A\}.
So v preserves tree order, and is continuous at limits. The map u may not preserve
tree order.
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Remark 3.33 Given u(«) and t,, we can characterize v(a) as the least £ <y u(«)
such that ran(t,) C ran(if,,,)-

If ®: T — U is a tree embedding, then 7 and U have the same base model,
and s is the identity map. One might ask whether there is a natural more general
concept, one that allows MJ # MY. Indeed there is, but it reduces to the notion
above. Namely, one can have an elementary m: MJ — MY, together with a tree
embedding from the copied tree n7 into U. This seems to be the natural way to
relate trees on different base models.

Any tree embedding induces an embedding of extender trees:

Proposition 3.34 Let ®: T — U be a tree embedding, let p = p®, and let p: T —
U™ be the induced map on extender trees; then Let s,t € dom(p”F); then

(1) sCt=p(s) Cp(t), and
(2) s Lt=p(s)Lpt).

Let us record the agreement properties of the maps in a tree embedding. In the
context of Jensen premice, embeddings that agree on 1h(E) will generally be forced
to agree on lh(F) + 1. For example, in clause (e) of 3.27, s,41 agrees with ¢, on
Ih(ET) + 1, because the Shift Lemma produces this kind of agreement. One does
encounter embeddings that agree on Ag, but not on Ag + 1. With this in mind, we
see that

Lemma 3.35 Let (u,(sg | 8 <1hT),({tg | F+1 <1hT),p) be a tree embedding of
T into U; then

(a) if a+1 < 1h(T), then t, agrees with s, on \],
(b) if B <« <I(T), then sq agrees with tg on Ih(E}) +1, and
(b) if B < a <IW(T), then s, agrees with sg on N}

Proof. For (a), notice that if F' is used in e/, then p(F) is used in ezqf(a), and so
Ap(ry < Crit(iﬁf(am(a)). Thus sup s, “\ < crit(iqu(a)’u(a)). But t, = iff(a)
we have (a).
Part (b) is just a clause in the definition. Part (c) follows at once from (a) and
(b). O
One could not replace A by sup{lh(F) | F € ran(e])} in the lemma above.
The reason is that there could be a last extender F used in e¢/. (So F = Eg

a

93



where @ = §+ 1.) Then p(F) is the last extender used in eﬁ’(a). It could be that
crit(iﬁ’(a),u(a)) = A\p(r), and thus t, and s, both disagree with s, at Ap. (This is
the only way the stronger agreement lemma can fail.)

Remark 3.36 The proof of 5.3 in Chapter 4 gives a formula for the point of appli-
cation of Eff(a) under a tree embedding of T into U, namely

U-pred(u(o) + 1) = least n € [v(5), u(5)]y such that crit zﬂmu(ﬁ) > 2“7;’(/3)777 o sa(f),

where
B = T-pred(a + 1) and p = crit(E]).

Remark 3.37 It is easy to see that 7,U, and u determine the rest of the tree
embedding. For p is given by p(ET) = Eff(a), and p determines p and v. We then
determine the copy maps s, and t, by induction on a. t, is determined by s, by
to = 221;{(04)@(01) 0 8q. If @ is a limit, we easily get s, from v(«) and the fact that
84 © ig’a = iﬁ’(ﬁ)m(a) o sz holds whenever § <r a. Clause (e) determines s, from
earlier s and ¢ values.

p determines u, hence p determines the whole of the tree embedding as well.

Remark 3.38 Suppose that Ih(7) = a+1 and ®: T — U is a tree embedding. Let
s = 5% u=u® etc., so that so: M] — sz(a) is our enlargement of the last model
of 7. Then for all § < a,

Sa(lh(EﬁT)) = 1h(E3<5)),

by 3.35. Thus s,, T, and U [ v(a) + 1 determine u, and hence the whole of ®. As
far as @ is concerned, MY . is the last relevant model of #. So we can say that if T
has successor length, then a tree embedding from 7 to U is just a map from the last
model of 7 into some model of U that is elementary in a certain strong sense.

The reader might wonder why the u-map and ¢t-maps of ®: T — U are undefined
at a, where a +1 = 1h(7). In general, forcing ® to include a value for u(a) is
wrong, because u is being used to connect exit extenders, and 7 has not yet chosen
an exit extender at «. If we demand ® include a value for u(«), then what we would
like to call extensions of ® may have to revise this value. That is awkward. (See
Lemma 5.3 for a characterization of when it is possible to extend ®: 7 — U to
U: (T(F))—U.)

In the caseU = W (T, F), there is a natural way to define u and £ at o = Ih(7)—1,
namely, u(a) = 1h(U) — 1, and ¢, = (a) © Sa- 1t helps to make a definition here.

v(a),u
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Definition 3.39 Let T and U be weakly normal iteration trees of lengths a+1 > 1
and B+1, and let : T — U be a tree embedding, with ® = (u, (s¢ | £ < ), (te | € <
a),py. Suppose that v(a) < B; then we define

(@, U) = (uwU {{a. B}, (s | € < @), (te | € < ) () ua) © Sa)s P)-

We say that U is an extended tree embedding iff ¥ = W(®,U) for some ® and U,
and write ® = ¢(V) and U = r(¥) for the unique such ® and U.

Extended tree embeddings are not tree embeddings, they are tree embeddings that
have been extended in a small way. If ®: 7 — U is a cofinal tree embedding, then
its extension W(®,U) is completely trivial. In general, an extended tree embedding
from 7 into U is completely determined by 7T, U, and its last s-map.

Remark 3.40 7 is a pseudo-hull of W (T, F'), and in fact, there is an extended tree

embedding U = (u, 5,t,p) from T into W (T, F). In our embedding normalization
notation, u = ¢ t5 = W;—’F, and p(EgT) = E::[(/g()fr’F) for € +1 < Ih(7). This
determines p and v. u agrees with v except at § = 57f] where we have v(8) = 3
and u(B) = o7t + 1.

Letting ® = ¢(V) be the associated tree embedding, it is easy to see that & is
cofinal iff 7 (F') is not normal.

Definition 3.41 Let ® be a tree embedding from T intoU, and ¥ be a tree embedding
fromU into V; then Wo® is the tree embedding from T into V obtained by composing
the corresponding component maps of ® and V. Similarly, if ® and V are extended
tree embeddings, then W o ® s the extended tree embedding obtained by composing
corresponding maps.

It is easy to check that composing corresponding maps does indeed produce a
tree embedding or extended tree embedding, as the case may be.

3.5 Normalizing 7T~ U

In this section we define the embedding normalization W (7,U) of a maximal M-
stack (T ,U) of length 2. It is not hard to extend our definitions so that they apply to
arbitrary M-stacks of length 2, but the additional notation introduced by gratuitous
dropping would be a burden. So rather than deal with arbitrary finite stacks here,
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we shall show later that in our context of interest, they can be reduced to maximal
stacks. (See 4.60.)

To begin with, note that W (T, F') makes sense in somewhat greater generality.
Let 7 be a normal tree on the premouse M. Let S be another normal tree on M,
and F be on the sequence of the last model of S. Let a be least such that F' is on the
sequence of M$, so that S[(a+1) = S, Let 8 be such that 3 = S-pred(a + 1)
would hold in any normal S’ extending S|(a + 1) such that F = ES'. That is,
SIf+1=8<itl) Suppose that

TIB+1=818+1

Suppose also that if §+1 < Ih(7), then dom(F) = MT|n for some n < A\(E]), that
is, assume that

Trﬁ +1= 7'<crit(F).
We define a normal tree W(T,S, F).
Remark 3.42 The last supposition holds if either v = 8 and 1h(F) < Ih(E]), or

o > 3, and 1h(E5) < Ih(E]). This will be the case when we use W(7,S,F) to
define W (T,U).

Let Q < N = M], where 6 + 1 = 1h(T), and let
p = crit(F).

Suppose that Ult(Q), F') makes sense, that is, dom(F') < pr)(Q). Suppose also that
@ is the longest initial segment of N to which F' applies, that is, either ) = N,
or p(Q) < p < pr)(Q). We want to define W(T,S, F) so that Ult(Q, F) embeds
weakly elementarily into the last model of W (T, S, F).

There are three cases.

Case 1. ) # N.
In this case @ is a proper initial segment, of M7|1h(E]), by the argument given in
the dropping case of the definition of W (T, F).

W(T, S8, F) = Si(a+ 1)°(F)

is the unique normal continuation W of S[(a+1) of length o+ 2 such that £ = F'.
Note here that MZ: = /\/lg, and @ is what F' would be applied to in a normal
continuation of STa + 1. (Unlike the case T = S we discussed before, it is possible
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that @ # N and a > (.) In this dropping case, the last model of W (T,S, F) is
equal to Ult(@, F'), and doesn’t just embed it.

Case 2. Q = N, and Ih(T) = 3+ 1.

Again
W(T,S,F)=S8[(a+ 1) (F)

is the unique normal S’ of length o 4 2 extending S such that ES' = F. Q = N =
M7, and so Ult(Q, F) is equal to the last model of W (T, S, F).

Case 3. Ih7T >+ 1,and Q = N.
In this case, we construct W = W (T, S, F) just as before. We set

Wila+1) = Sl(a +1),

and

Mg\fs—l = Ult(ME|<7a k>7 F)7

where k, v are appropriate for normality. (Note ./\/lg = /\/l‘g = MEV) Let ¢(&) = ¢
for &€ < B, and ¢(§) = (a+ 1)+ (§ — ) for £ > (. Let m¢ = id for £ < S,
and w5 : M} |(v,k) = M}, be the canonical embedding. Note that by our case
hypothesis, F' applies to M], and hence to MJ|Ih(E]), so (Ih(E]),0) < (v,k).
Thus 73 moves EJ. So we can use the Shift lemma to lift the rest of 7, defining an
elementary
e ./\/lz — M};\(}g)

for £ > (8, by induction on &. If o = T-pred (), then ¢(o) = W-pred(¢(&)), unless o =
Band crit(E7 ;) < p. In this case, Crit(E;I(/g)fl) = crit(E] ;) < p, so W-pred(4(€)) =
B, rather than ¢(3). We write

W(T,S, F) — 8<thm<F>r\iF « 7—>crit(F)
in this case.

Remark 3.43 Recall that 7 and S were normal on M. Let ¥ be an iteration
strategy according to which both 7 and S are played. F' and ¥ determine S(a+ 1),
because F determines MS|lh F, and thus S[(a + 1) as the unique normal tree on
M by ¥ leading to a model having F' on its sequence, and using only extenders of
length less than lh F'. S[(a + 1) is all we need of S to determine W(7T,S, F). So
we could write W(T,%, F) for W(T,S, F), or if ¥ is understood, write W (T, F) =
W(T,S,F).
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Notation 3.43.1 Let a5 and 875 be the a and /3 described above. In Case 3,
let 75 and ﬂz’S’F for £ <1h7T be the maps ¢ and 7 described there. In Cases 1
and 2, let dom(¢75F) = B+ 1, with ¢75F(¢) = £ if € < B, and ¢75F(B) = a + 1.
(Where a = a7 and 8 = 75F) Let WZ’S’F =id if £ < 3, and WBT’S’ M =
ME|§ — M., be the canonical embedding in those cases.

In cases 2 and 3, we have an extended tree embedding
(I)T,S,F = <’LL, <8§ | £ < 1h7->7 <t§ ’ E+1< 1h<T)>,p>

from T into W(T,S, F). It is determined by setting

u = qu,S,F‘

Some of its other maps are given by
ts - ﬂ-g ’

and
p(ED) == ST(E]).

In case 1, these objects determine a partial extended tree embedding from 7 [ 541 into
W(T,S, F). This is a system with all the properties of an extended tree embedding,
except that its last map ¢g may only be defined on some @) < MZ; We call it @7 s p
as well.

The illustrations associated to W (7T ,S, F') are pretty much the same as before,
allowing for the possibility that S # 7. In particular, if £ > 37%F then F either
appears directly as one of the extenders used in [0, ¢(§))w, or appears indirectly via
some extender F(G) used in [0, ¢(§))w, where crit(G) < p < A(G) and G is used in
[07 f)T

Now let 7 be a normal tree on a premouse M, with last model (), and let I/ be
a normal tree on ). We do not assume that 4 has a last model. We shall define
W(T,U) =W, the embedding normalization of T"U. For this, we define

W, = W(T,U|(y+ 1)),
the embedding normalization of 7 U|(y + 1), by induction on ~y. Let us write
@ = MY = last model of U|(y + 1).

We shall maintain that each W, successor length, with last model
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R, = last model of W,
— MWW)

2(v

and that there is an elementary embedding
oy Qy = R,

As we go we construct extended tree embeddings ®, -, for n <y v, from an appro-
priate initial segment of W, to W,. ®, , is determined by its u-map ¢, , acting on
an initial segment of Ih(W,)), and its t-maps we call

7 . Wn W’Y
w0 M MY

defined when 7 € dom(¢, ). (There is the possibility that 77 acts only on some
proper initial segment of M. That happens iff (7,7]y has a drop.) Roughly, the
system (W, | v < 1h(Uf)), (P, | 1 <u 7)) is an iteration tree of iteration trees,
whose base node is Wy = T, and whose overall structure is induced by Y. The &, ,
are the branch embeddings of this tree.
We set
Wo=T,

and let oy be the identity. Now suppose everything is given up to v. We let

F, = o, (EY).

Let a, be the least £ such that F, is on the sequence of ./\/l?}”. So F, is on the

sequence of /\/lzv” for all £ such that o, < & < 2(y). We assume the following
agreement hypotheses:

(%)
(i) Forn <& <, oy[(Ih(EY) + 1) = o [(Ih(E) + 1).
(ii) For n <& <7, oy < ag and 1h(F,) < 1h(F).

(ili) For n < & <+, R, agrees with R¢ up to Ih(F},), but 1h(F)) is a cardinal of Ry,
so they disagree at 1h(F}).

(iv) For i < & <7, Wyl(a, +1) = Wel(a, + 1), and Eat = F,.
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(v) Forn <,
(a) for all £ < ay, Ih(E}"") < 1h(F,), and
(b) if oy < 2(n), then Th(F,) < Ih(En™).

Claim 3.44 (ii) and (v) of (*)y41 hold.

Proof. For (ii), if n < v, then Ih(EY) < Ih(EY), so Ih(F,) < Ih(F,) by (i) at ~.
Moreover, if o, < ay), then by (iv), F, is on the sequence of M};‘:ﬂ = MZ\:]". But F,
is also on the ML sequence, by (iv). Since Ih(F,) < Ih(F,) and F, is on the R,

n
sequence, we get that F), is on the R, sequence. However, F), is used in W, by (iv)

at v, and thus F}, is not on the R, sequence.
(v)(a) holds because otherwise F, would be on the sequence of some MZV” for

¢ < a.,. For (v)(b), suppose a., < z(7y). Since F, is on the sequences of Mz\i” and of
Mz\ﬁﬂ, we must have 1h(F,) < lh(E,l?:V). O
Now suppose n = U-pred(y + 1). We set

W’Y+1 = W<Wn> W’ya Fw)-

Let us check that this makes sense. Let us write /' = F, and @ = a,. Clearly
a = oV F | Let
= Crit(E';”),

and
i =0, () = crit(F).
Let
5 — 5Wn,W7,F

= least ¢ such that p < )\(E;/VV) or & = 2(y)

be the tree predecessor of @ + 1 in any normal continuation S of W, [(a + 1) that
uses F'. Since 7 is the least ¢ such that i < A(EY), we have by (i) of (x), that

n = the least £ such that p < A\(F,).
But W, [(a, +1) = W, (e, +1), and EZ\;” = F, or else n = 7. In either case, § < a,
SO

Wyl(8+1) = W, (8 +1).
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Moreover, since 8 < a,), if f < z(n) then

W. W,
Ih(E;™) <Th(Ez"),
with equality holding iff 8 < «,,. These are the conditions we needed to check, so
W(W,, W,, F') makes sense.
Let @, 11 be the (possibly partial) extended tree embedding ®yy, . r. Its u-map
is
gbn,w-i-l = ¢WTIVW%F7

and its t maps are
ny+1l _ Wy W+, F
! =m. "

For 6 <y n,
P51 = P10 Py

This of course means that ¢s.1 = ¢y441 0 @5, and T = w(’;gﬂl) o . Here the
compositions are considered as defined wherever they make sense.

Note that @, 1 is partial iff y+1 € DY. If y+1 € DY, then dom(¢,+1) = B+1,
and WZ”H acts on a proper initial segment of MEV".

0441 is determined as follows. Let

Q’Y-i—l - Ult(Q*a Erz;{)7

where Q* < Q),,.

Let R* = R, if Q* = @,, and R* = 0,(Q*) otherwise. ¢, [Q* is elementary from
Q" to R*.

Suppose first that we drop in U, i.e. Q* # @,. Then p(Q*) < i, and o, is a near
k(Q*) + 1 embedding, so

p=0,(1) = oy (1) < p(R"),

while pgp+) (R*) = 0,(pr@)(Q)) > p. So R* is what we would apply F to in a normal
continuation of W, [(a + ) Moreover,

Wyi1 = WM E(F) Ul(R*, F)

because we are in case 1 of the definition of W(W,,W,, F). So R,11 = Ult(R*, F),
and we can take 0,4 to be the Shift Lemma map.
Suppose next that Q* = @), so that we are in case 2 or case 3, and

W’y-{-l — W,y< lh FA<F>AZF « Wn> Crit(F)‘
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Wot1

. Since we are not
¢nn/+1(7')

For 7 < z(n), we have an elementary 777+ MM 5 M
dropping in U,

u U U

w1 = Ul(Q7, ET).

and
¢n,'y+1 (2(77)) = 2(7 + 1)'
We have then the diagram

Q41 v Ult(R,, F) S N Ry = MZE:E)
7:1/
n,w-l/I\ /I\ 1
z(n)
@y ——— By = M,
On

Here 6 is given by the Shift Lemma, and i) comes from the fact that F' is an initial
segment of the extender of WZ&Z;A, as we remarked before. (So ¢ [lh F = id.) We
then set

Oyp1 =100,

So when v+ 1 ¢ DY, we have the diagram
My T R

U n,7+1
’anle[ )I\ﬂ—z(n)

u
MY R,

When v + 1 € DY, we have the diagram

Uu Oy+1
M’er — R’Y+1

kU n,7+1
Z’Y+l/l\ /l\ﬂ—ﬁ

* U * U
M'Y+1 07,*> OH(M7+1)

where 3 = gWo W F
Claim 3.45 (x),41 holds.
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Proof. Left to the reader. O

We have completed the definition of W,;.
If A <1h(Y) is a limit ordinal, then
W)\ = lim Wa,
a<yA
where we make sense of the direct limit using the tree embeddings ®, ., for n <y
v <y A. We give a little more detail on this below.

In our context of interest, (7,U) is played by a background-induced iteration
strategy Y for M, and we shall show that all WW, are by . So in our context of
interest, all models above are wellfounded.

Here are a couple illustrations that the reader may or may not find helpful. Let
Y U1 U2 U 3 be successive elements of a branch of U. Write ¢; = ¢, ,,,,. Let 8; =
BV Wro B where 7, = 4341 — 1 and Fy = o, (EY). Thus W,,,, = W(W,,, W, F;),
and f; = crit(¢;). The ¢; might look like:

e

e

5; b1
Bo { Bo
%o b1 ®2

The last step pictured involves a drop. Notice that ;11 > ¢;(5;). (equality is

possible.) This is because U is normal. In W, ,,,

M;f”“ via an Fj-ultrapower. Moreover, W,  [(a+1) = W, [(a+1), where a+1 =

(). By our choice of a, A(E} ™) < A(F;) for all € < a. But A(F;) < crit(Fy1),

since U is normal, so Fj;; cannot be applied to any MZV”“ for & < ¢:(5;).

Because B;11 > ¢:(5;), and above ¢;(5;), ran(¢;) is an initial segment of ORD —
®(5;), we see that along any branch b of U, the direct limit of the ¢, , for v,n € b is
wellfounded.

Wir . . :
M @ZE)I is immediately above
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In fact, the direct limit has order type A + ¢, where A = sup, ¢, crit(¢,;), and
6 =1hT — 3, where (3 is least such that ¢g,(5) > A

In addition to the ¢-maps on indices of models, we have the m-maps on the
models. Let p; = crit(F;), and let In(W,,) = 6 + 1. Let n be the level of R,,, or
equivalently ./\/l;:”, that we drop to when we apply F5. The picture is

R’Yl RW R’YS
Wy
M¢1(§)
7.‘_21:’72 ) RN
-7 AN 123
./\/lVV71 | » B2
5/’/ 7"'71”}//
) \\ / "//
W F2 [
M%(ﬁl)nm/ H2
Y1572 PR AN
T .- .
Wa |-77
Mﬂ/l,/
ol 1
nga'YQ 77-2)’;1'73

One can look at ®,, ., for n <y 7, as a map on the extender trees. Let p, ., be the
p-map of &, ., that is

Py - Ext(WV,)) — Ext(W,)
and
W W W
pvm(Eg n) = 7T75”<E§ n) = E%l(g)-
So pn,,y(Egv")i iff £ € dom ¢, . Let
p(s) = least t € WS such that p“ran(s) C ran(t).
By Proposition 3.34, p, , preserves extender tree order and incompatibility; that

is s Ct = py~(s) C pPyy(t), and s Lt = p,,(s) L py~(t). Moreover
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Proposition 3.46 Let n <y v and ¢,~(a)l, and suppose whenever n <y & <y 7,
then ¢, ¢(a) > crit(¢e ). Then for s = e,

e @y = D (8)(Fr | 7+ 1 <y vy and for all i € dom p,,(s),
AP~ (8)(3)) < crit(Fy))

We omit the simple proof. The proposition says that the branch extender to
M;‘;L(a) consists of blow-ups by p, , of extenders used in the branch to MZV", to-
gether with certain F}’s used in U from 7 to ~. It generalizes our pictures on page
86 and before.

Suppose now that A < 1h(i/) is a limit ordinal, and we have defined W,, 0., and
the @, ., for n,v < A\. We let W(T,U[X) be the liminf of the W, for v < Ihi/. More
precisely, let

= Uv(EfLy{ )
and
a, = least a such that F, is on the sequence of M}¥>
= largest « such that W, 1[(a+ 1) =W, [(a + 1).
We put

W(T. U = | Wyl(ey + 1),

y<lhif

Since 7 < = ay < oy, W(T,U [ A) has limit length. There are no new o’s or ®’s
to be defined at this stage.

Now let b be a cofinal branch of U[A (not necessarily a wellfounded one). We
define the embedding normalization

Wy, = W (T, U"D)

by forming the direct limit of the W,, for v € b, under the ®, . for n <y v in b.
We begin with 1h(W). Let us put

(n,&)y e I iff n€b, and for all sufficiently large v € b, ¢"7(£).
Put

(n, &) <1 (6,0) iff for all sufficiently large v € b, ¢,,,(&) < ¢s5-(8).
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It is easy to see that <; is a prewellorder (even if b is illfounded, or drops infinitely
often). We set
Ih(Wj) = otp(!, <1).

For n € b, we let ¢,,,(£)] iff (n,£) € I, and in that case, set
Gnp(§) = rank of (n, &) in (1, <;).
We define the tree order <y, by: given (1, &) and (0,60) € I

(&) <w, dsp(0) iff for all sufficiently large v € b, ¢y~ (&) <w., ¢5+(0).

Although the ¢,,, do not completely preserve tree order, they almost do so. See
clause (4) in the list following Remark 3.12, and the illustration on p.85. Using this,
we can show <y, is a tree order. ¢, ; may fail to preserve tree order, but again, this
can only happen in a way similar to the possible failure described after 3.12. We
record this in a proposition.

Proposition 3.47 Let (n,§), (n,0) € I, and suppose & <w, & but ¢,,(§) Lw,
Onp(0). Then there is a unique v > n in b such that letting U-pred (6 + 1) = v with
04+1€b, F=Fy, and B = "o we have

1. 6 = ¢777’Y(§) SWV ¢n,’y(5); and

2. letting G be the first extender used in [0, ¢, ,(0)) such that \(G) > )\(E;V”), we
have crit(G) < crit(F) < A(G).

Moreover, in this case, if & = W,-pred(9), f = ¢,,(§) = W,-pred(¢, (0)), and

Worr-pred(dy,p41(9)) = B = Wyra1-pred(eyp41(£))-

We omit the easy proof. Using such arguments, we can show <y, is a tree order,
and

Proposition 3.48 Let (n,&) and (6,0) € I. Then ¢, (&) = Wy-pred(¢sp(0)) iff for
all sufficiently large v € b, ¢,,,(§) = W, -pred(¢s(9)).

Here is a more concrete description of lh()V,) and ¢, ;. Let

§ =W (T, U\

= sup a,,
F<A

= sup{crit ¢, , | n <u vy Ay € b}.
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(The last equality holds because if n = U-pred(y + 1) and v + 1 <y 7 where 7 € b,
then crit(¢y 1+1) < @y < crit(¢y41.7).)
Case 1. b drops somewhere.

Let v+1 be least in bN DY, and n = U-pred(y+1), and 8 = VW05 = crit(dy, 41)-
Let 8 = ¢o,,(7). Then for all v+ 1 <y 0 <y p, with p € b,

crit(gg,,) = ¢y0(5)
=1h(W,) — 1.

(Further dropping cuts down on the domains of the m-maps, not on that of the
¢-maps.) Thus
Ih(Wy) =0 +1
= Gyp(B) + 1= gop(7) + 1.

Case 2. b does not drop.
Let

T =1, = least a < lhT such that for all v <y &
with & € b, ¢p,(a) > crit(pq¢).

Then

¢0,b(7) =9,
IhiWy) =6+ (Ih T — 1),

and for £ > 7 with £ < Ih(7),
Gop(§) =0+ (£ — 7).

This case can happen in two ways: it can be that ¢g,(7) = crit(¢, ) for some n <y =y
with v € b, in which case that is true for all sufficiently large such n,~v. Or it can
happen that ¢, (7) > crit(¢, ), for all n <y v with v € b. In that case, 7 is a limit
ordinal, and the extenders in b are being inserted cofinally into the branch extender
of [0, T)T.

It can happen in Case 2 that 7 is a limit ordinal, but some ¢, (7) and its images
are in the “eventual critical points” along b. In that case, some tail of the extenders
used in b are being inserted after the blow-ups of all those in [0, 7)7.
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Now we define the models and extenders of W,. Suppose a = ¢, () < lh(W,).

Suppose n < £ < § € b. Then we have the map 71'55’55(7) acting on either M;Vg () OF
) il

£(7)
an initial segment thereof. We let

MY+ = dirlim of the MZ:Z(W) under the Wi’j’g () S

If b does not drop after 7, then we have

7]ab . Wn Wb
w7 M — M%,b(v)

as the direct limit map. Otherwise WZ’I’ may (or may not) act on a proper initial

W
segment of M5,
Finally, if o = ¢,,,(7) <1h(W,) and o + 1 < 1h(W,), then

EYr = 7P (EY).

One can check that with this choice of extenders, W, is a normal iteration tree on M.
For example, suppose that n € b and that for all £ > 7 in b, We-pred(¢, (v + 1)) =
¢ne(6), and we aren’t dropping, so

4% 14% 14%

Pn,e(y+1 £(0) Ty ()
Then
W _ W W
MG g1y = UM ) B ()

because each of the three objects in this equation is a direct limit of its £&-approximations,
for £ € b, and the maps commute appropriately. We omit further detail.
Now we also have the natural map

op: lef — Ry,
where Ry is the last model of W, given by
(i, () = 77 (0 ().

In the abstract, it may happen that not all models of W, are wellfounded. In our
context of interest, (7,U"b) is played according to an iteration strategy X for M,
and we show that ¥ is sufficiently good that W, is also played by .
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Now suppose A < lhif and b = [0, \)y, and all models of W, are wellfounded.
Then we set

Wy = W,

¢r],)\ = ¢77,b7
A _ nb

ot =77,
O\ = Op,

and continue with the inductive construction of W (7,U). If some model of W is
illfounded, we stop the construction, and say that W (7 ,U) is undefined.

Finally, if ¢ has a last model, we set W (T ,U) = W,, where lhtf = v+ 1. If U
has limit length A, then W (7,U) = W (T,U[\) has already been defined.

To summarize our notation associated to W (7 ,U): for v < 1hiUd,

F, = O-W(EZW/{)
where 0., : MY — R, = last model of W,, and
W’H—l = W(Wna Ww Fv)

where 7 = U-pred(y + 1). By normality, modulo an iteration strategy according to
which all W, are played, R, and W, determine each other, while F, and W, [(a,+1)
determine each other. The R,’s are not the models of a single iteration tree; they
constitute and enlargement of U, with accompanying maps o, : Mg’ — R,. We
proved the basic facts about agreement of models and maps in this enlargement in
(%), above; we list some of them again here for reference.

Proposition 3.49 Let v <n <1hU. Then
(a) R, agrees with R, below lh F.,
(b) on I (I0(EY) +1) = o | (Ib(EY) +1), and

(¢) Fy is on the sequence of R, but not that of R,. In fact, Ih(F,) is a cardinal
of R,.

The following diagram summarizes the situation. We draw the diagram as if the
maps in question exist, although sometimes they may not, because of dropping. Let
z(n) +1 = 1h(W,), and let " : M — R, be the canonical embedding (assuming
M-to-R,, does not drop).
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Ry = MY MY ! MY
R, .

Wo

M

The various embeddings all commute:

(i) M = 7T77(y 0

z(n)
. Wy W : .
7,7 " g el
(i) mdTodey =iy () o0 (o) O T (general version of (i))
Uy
(ili) oy 0dy, =7, 00y

In a sufficiently coarse case, the upper triangle in the diagram above collapses.

Proposition 3.50 Let T be normal on M, and U normal on the last model T .
Suppose also that T and U are ms-normal Suppose that whenever a« +1 < 1hT,

MT = v(ET) is strongly inaccessible.

Let Wy, oy : MY — R,, R, = M

2(n) €tC- be as above. Then

(1) R, = MY

n’

and o, =id, for all n < 1h(U);

(2) if n <v -y, then & =l
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Proof. Proposition 3.18 generalizes to W(W,,, W, F'), where F' comes from W,. We
use that repeatedly. O

Remark 3.51 There is a tacit hypothesis in 3.50 that all models in W, are well-
founded. The ms-normality hypothesis is there because if we replace v(ET ) by A(ET)
above, then the hypothesis implies that M = “ there is a superstrong cardinal”.

Remark 3.52 We shall need also to consider W (7,U) when (T,U) is a stack on
some M that is not a premouse of any kind. In that case we shall assume that
M | ZFC, and M is the background universe for some construction for a fine-
structural object. The background extenders used in this construction will constitute
a coarsely coherent sequence Fe M. (See 2.38.) We shall only be interested in F-
trees on M. Normality for such trees S means

l.a<f=1hES< lhEg, and
2. S-pred(y + 1) = least (3 such that crit(E7]) < Ih(E7).

Given (T, U) a normal F-stack on M, we can define W (T ,U) as above. In this
coarse case we shall have o, = id for all 7, and hence F, = Eg for all 4. Having
defined W, for n <, and with R, = ./\/l%, we let

u
a = least 7 such that for n = lh(E;”), VnMu = VnM”.

It is easy to see that o is the least 7 such that EY € if, o iT(F). We define

W’Y+1 = W(Wﬂv W’V? E'I;{)
= W, (o + 1) (B g W, W)

Y

The coherence of F implies that if o < o, then Ih(E) ") < Ih(EY), so that W, [(a
1)~(EY) is normal, so W, is normal.

This completes our definition of embedding normalization. Since we do not need
full normalization in this paper, we shall not discuss it further here.

Remark 3.53 One can regard the sequence of iteration trees (W, | v < lh(U)) that
occurs in the definition of W (7 ,U) as an iteration tree of iteration trees. One might
call such a system a meta-iteration tree, or meta-tree. The nodes in the meta-tree are
iteration trees, with 7 being the base node. The F, are used to extend the meta-tree
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at successor steps, via the W-operation. We have tree embeddings from one node to
the later ones along branches of our meta-tree.

The meta-tree associated to W (T ,U) is not the general case, however, because
there is in general no need to require that the F, be obtained by lifting extenders used
in some tree U on the last model of 7. This was first realized by Schlutzenberg, who
defined the general notion of “meta-iterate of 77. (Schlutzenberg’s term is “inflation
of 77.) Schlutzenberg also showed that if 7 is played by a strategy ¥ with the weak
Dodd-Jensen property, then ¥ induces a meta-iteration strategy for 7. See [11].
Schlutzenberg’s work was streamlined and re-written by Jensen, who introduced the
general notion of meta-tree. See [12]. Further general results on meta-iteration trees
and strategies can be found in [1&], along with a more detailed discussion of the
evolution of the idea.

3.6 Normalization commutes with copying

We prove that normalization commutes with copying. The proof is completely
straightforward, but takes a while to put on paper, because of the many embed-
dings involved. We shall use this fact to show that the pullback of a strategy that
normalizes well also normalizes well. The proof also serves as an introduction to our
proof that normalization commutes with lifting to a background universe. That in
turn is used in the proof that if a strategy for the background universe normalizes
well, then so do the strategies on premice that it induces. (See 4.41.)

Theorem 3.54 Let (T,U) be a maximal M-stack, and let 1: M — N be elemen-
tary. Let (T*,U*) = ¢(T,U) be the stack on N obtained by copying. Suppose that
W(T*,U*) exists; then

(1) W(T,U) exists, and YW (T, U) = W(T*,U*), and

(2) letU andU* have last models @ and Q* respectively, and W (T ,U) and W (T*,U*)
have last model R and R* respectively, and let

(i) p: Q@ — Q* be the map from copying (T ,U) to (T*,U*),

(i) o: QQ — R be the normalization map associated to W (T ,U),
(i1i) 0: R — R* be the map from copying W (T ,U) to W(T*,U*), and
(iv) o*: Q* — R* be the normalization map associated to W (T*,U*);

then @ oo = 0* o p.
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The following diagram depicts our situation:

R*
" [
N P Q" o
7_'* u*
" ‘I R
W T
M P Q
T u

Proof.
The embedding normalization W (7 ,U) has associated to it normal trees

W, =W(T,UT~v+1)
on M, for v < Thid. We also have extended tree embeddings
o, W, = W,
defined for n <y ~y. For n <y v, we set
Py = ut,
so that ¢, : 1ThW, — lhW,, and for 7 € dom ¢, ,

mYy — q)n,'y
ot =17,

so that 77 : MY MZVV

- (r)- Let Ry be the last model of W, o MY — R, as
before, and F, = o, (EY). So

()

Wy = W(Wna Fw)

when 7 = U-pred(y + 1).
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Similarly, W (T*,U*) has associated trees

Wi =W (T U [ 7+1)

Y

on N for v < Ihitf* = 1hU, together tree embeddings
o W, =W

defined when 1 <y 7. We call the v maps of these tree embeddings ¢; . : lh Wy —
lh Wy, and for 7 € dom ¢y, the ¢ map is 7. We let RZ = Dbe the last model of
Wi, o MY — R:and FF = of(EY"). We have that W2, | = W(W;, FZ) when
n = U*-pred(y + 1) (equivalently, n = U-pred(y + 1)).

We shall prove that for all ,

YW, =W-.
The proof is by induction on «y, with a subinduction on initial segments of W,. Given
that we know this holds for W, [n, we have copy maps
UL MY M

defined for all 7 < n. 9] =1 for all 4.
For v < 1hi4, let
wg: ./\/lzj — Mg*
be the copy map. So ¢4 is the copy map given by the fact that 7* = 7, and the
remaining ¢* come from the fact that 2* = (Y )U.

We write z(v) for hWW, — 1 and z*(v) for hW! — 1. (Once we have shown that
YW, = Wi, we get z(v) = z*(v), of course.) We may use oo for z(v) or z*(v)
when context permits. So R, = MZ}’;) = MW If (v,7]y does not drop, then
Guy(2(v)) = 2(7), and 77, = 77 R, — R,

Lemma 3.55 Let v <1hid. Then
(1) Wz =W,
(2) by =@, ifn,v <7y andn <y v.

(3) Whenever v <y v and (v,y]y does not drop in model or degree, then for all
T<hWw,, ¢;V'y(7—) o VY = Y o Y.

(4) ¥y 0 0y = 05 07
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Letting €2, be the system of all copy maps from W, to Wy, item (3) is keeping
track of the sense in which 0, 0®,, = ®; _0Q,. Here is a diagram of (3):

,(/)’Y
W’Y ‘z’vw(‘r) W;
M¢u,'y (1) Md)* (1)

Y
W?ﬁ el
wl/

.
MW T MY

There is a diagram related to (4) and the case 7 = z(v) of (3) near the end of the
proof.

Proof. We prove 3.55 by induction. Suppose that it is true at all v < . We show
it at v+ 1. Let v = U-pred(y + 1), and

F:F“/:UV(EZ&{%

and
a= osz’”

=aW,, W, F)

= least 7 such that F' is on the MY"-sequence.
So

Wy =WOW,, W, F)
= W, (o + 1)~ (F)ip < W, 0.

Let also

F* = Fr = o (EY).
Since U* is a copy of U, v = U*-pred(y + 1), so
Wiy = WOV, Wi, F).
Claim 3.56 (1) ] (F) = F",
(2) a = a(Wf;,W;‘,F*), and
(3) B(WVaW'y;F) - B(W;,W::,F*)

115



Proof. For (1), we have

Vi (F) = ¥l 0 05 (EY)
=00 ¢Z<Ez§{)
— ot (B
-

For (2), it is enough to show that Ih(F) < Ih(E)") if and only if Ih(F*) <
lh(ErV”). But if Ih(F) < Ih(EX"), then applying the copy maps 7, we have

Ih(F7) = Ih(¢] ., (F)) = Ih(¢I(F))
< Th(y7(EN))
— Ih(EM).

The first line holds because 1@(7) agrees with 17 on 1h(EX"). Conversely, if Ih(F) >
In(EY), then if h(F*) > lh(EZV;) by the same calculation.
For (3), we must show that crit(F) < A(E)"”) if and only if crit(F*) < )\(Erv”).

But this follows from the agreement of the copy maps 17 in exactly the same way.

O

The claim easily implies that ¢, .1 = ¢} _,,, which then gives us (2) of 3.55 at
v+ L )

We now define the copy maps 2 *!: M MO that witness Wi, =
YW, 11. As we do so, we show that (3) of 3.55 holds, that is, the ¢ and "' maps
commute with the embedding normalization maps of models of W, into models of
W, 11 and models of Wy into models of W7 .

We have W, 1 [(a+1) = W, [(a+1) and Wi, [(a+1) = Wi[(a+1), so we can
set

Pt =7 for all T < a.

Now F = E)* and F* = E;/V;“, moreover Y3 (F) = 1] ,(F) = F* because
Ih(F) < Ih(EX") if a < z(y). Letting P = M|, k) be such that

MU = Ul(P, F),

we have
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Majl“ Ult(P*, F*),

where P* = MEV§|<¢E(77), k). (Here we make the usual convention if n = O(MEV”).)
This is because W, [(5 + 1) = W, [(8 + 1), and similarly at the (*) level, by the

properties of embedding normahzatlon So ¢y = ¢5, and thus agrees with wzw

to )\(Eﬁ 7), hence past crit(F'). So we can let

vati(la f17) = 3™ (a), w3 ()5,

by the Shift lemma, and we have YW, 1 [(a+2) = Wi, [(a+2). Note that a+1 =
Guri1(B), sO @D% ) omy = %E’WH o1y by the Shift lemma, and this gives us
the new instance of (3) of 3.55.

The general successor case above o+ 1 is similar. Suppose we have YW, 1 [(n +
1) =W;, 1 [(n+1) as witnessed by P2t for 7 <n. Suppose n > «. Let

n=¢vrt1(§) = ¢:y+1<€)7

G = Ey"
and W
G*=FE, .
Then
GHG) = UL (T ()
= *g”“(wg (E{™))

*yy+1 7 W)
— ﬂ.& v+ (E€ )

W*
=B, =G

The Shift lemma now gives us w 1 as above, and we have YW, 1[(n + 2) =
7+1 f(’? + 2)

We leave the limit case of the subinduction to the reader. This finishes the
subinduction proving (1), (2), and (3) of 3.55 at step v + 1. For (4), let us set
7 =7+ 1. To simplify things, let us assume that (v, + 1]y is not a drop. Consider
the diagram
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R, R
or
/ ox
MY MY w
ved
wl)
EY RV ©° R*
Oy
/ o:
MU - MU

We are asked to show that o* o Y = o7 o o, in other words, that the square on
the top face of the cube commutes. The square on the bottom commutes by our
induction hypothesis. The square in front commutes because U* is a copy of U.
That the square in back commutes is clause (3) of our lemma at v + 1, which we
just proved. The squares on the left and right faces commute by the properties of
embedding normalization.

It is clear from these facts that the top square commutes on ran(iﬁ{ .). Since MY
is generated by ran(i%/ ) U A(EY), it is enough to see that the top square commutes
on \(EY).

Let a € [A\(EY)]<“. So 0,(a) € [\(F)]*“, and o,(a) = 0,(a) by Proposition 3.49
on the agreement properties of embedding normalization maps. Thus

V(or(a)) = i (o4(a))
= Y1 (04(a)),

using that the copy maps ¢, and ¢, both agree with 17 on A(F). On the other
hand, ¢f(a) € [AE], so
o1 (1)) = o (44 (a)

by the agreement in normalization maps on the W* side. But ¢], 00, =07 0 IM by
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induction, so

¥T, 0 0,(a) = ¥, 0 0, (a)
— o2 0 4¥(a)
)

2
u
= o7 0 (a),

as desired.
This finishes the step from v to v + 1 in the inductive proof of 3.55. We leave
the limit step to the reader. O

It is easy to see that Theorem 3.54 follows from Lemma 3.55.
O

3.7 The branches of W(T,U)

Let T be normal on M, and U be normal on the last model of 7. Let us adopt the
notation of the last section, so that we have W,, F,, a,, 3,, ¢,~, ™77 , and so on.
Suppose lhif is a limit ordinal #, and let

A=1W(T,U) =supa,.

y<6

Here we assume W (T ,U) exists, i.e. embedding normalization has so far produced
only wellfounded models. Let b be a cofinal branch of . We do not assume MY is
wellfounded. Note that W, still makes sense, as defined above.

Proposition 3.57 X\ = ¢o,(7), where T is least such that whenever n,~v € b and
n <u 7, then crit ¢, , < o (7).

Proof. Let n+1 € b, and o € U-pred(n + 1). Then ¢, 541 (crit(do 1)) = o + 1,
S0 oy + 1 < crit(¢y41,¢) for all £ € b. It follows that ¢ou(7) > A. But if 0 < 7, we
can find v+ 1 € b with n = U-pred(y + 1) such that ¢g,(0) < crit(¢,,41). Then
bop(0) = ¢o,(0) < ay, < A. Finally, A € ran¢g, (because any ¢ < 1h(W,) not in
ran @, is fixed by ¢,4), S0 A = ¢ (7). O

Proposition 3.58 Let a = [0, \)w, and X\ = ¢o,(T); then
§eca iff dneb(§ < crit(pny) AN <w, ¢on(T)).

We omit the easy proof.
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Remark 3.59 We don’t get a “continuously” from b. If 7 is fixed in advance, then
continuously in those b such that 7 = 7,, we can produce the corresponding a’s.

Definition 3.60 In the situation above, we write

a=br(b,T,U)
and
T=m(b,T,U)

for the branch of W(T,U) and model of T determined by b.

Remark 3.61 Let Ej, be the extender of it/. It is an extender over the model M7,
where £ +1 = lh7. One can show that 7 is the least a such that either Fj, is an
extender over M7 |1h E7 (that is, dom(E}) € M7 |1h(ET)) , or a = €.

The branch extender of a is given by
Proposition 3.62 Let a = br(b, T,U) and 7 = m(b, T,U) be as above; then

e TH = poy(el)(F, | o+ 1 € bAVi e dom(pos(e]))
ABos(e]) (1)) < erit(Fy)).

Here we are writing ew * because el (TH) really only depends on a and

W(T,U). We omit the proof of 3.62. For what it’s worth, here is a picture

(T U) W
for ey
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y 6 (U)
F

- sup w2t ANT

tI(ET)  yp(K)

i
>
\‘l

1M 13101,

K
. Vop(H)
H

o7 i ©) |1 7

MT W(T U)

Note 6(U) = S(W(T,U)). The F’s in the picture were all used in b. Some got put

directly into en (T’u), others indirectly via some pg;(G). AT is the sup of the Jensen
generators of extenders used to get to M7 . (In general, A7 < A(E7).) The extenders

in er " with generators beyond sup 7% “A7 are all directly inserted F’s.

Branches of W (T ,U) of the form br(b, T,U) come from cofinal branches of & and
models of T. There may also be cofinal branches of W (7T ,U) coming from cofinal
branches of U and mazimal (perhaps not cofinal) branches of T. So we extend our
definitions.

Definition 3.63 Let W = W(T,U), where T is normal on M and U is normal on
the last model of T. For £ <1hT,

(a) for v+ 1 <1hld, letting n = U-pred(y + 1), we set
(bO,n(g)v Zf (bO,n(g)\l/ and (b(],n(g) SW,, Crit(¢n,’y+1);

undefined, otherwise.

ndy (&, 7+ 1) = {

(b) For any v < 1hl,

T €bry(,y) Hf 7 =ndw(&,v +1),
for some & <7 § and v +1 <y 7.
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“nd” stands for “node”. We shall drop the subscript and write nd(§,v + 1) and
br(§,~) when context permits. Notice that if 7 = nd(£,y + 1), then whenever
v+ 1 <y 9, then ¢o5(§)], and 7 <y, ¢os(&£). This is true even if 7 = crit(¢, ,4+1)
holds in the definition of ndy, because crit(¢y 1+1) <w, ¢ys(crit(¢y4+1)). This gives

Proposition 3.64 1. Let & <7 & and v+ 1 <y v+ 1. Then

nd(o,7 + 1) <w ) nd(&,m + 1)
if both are defined,
2. br(&,7) is a branch of W(T,U) (not cofinal),
3. & <1 & and o <y 71 = br(&,Y0) is an initial segment of br(&y,v1).
Proof. Routine. U

Definition 3.65 Let ¢ be a branch of T and b be a branch of U. Then

]' brW(C7 b) = U§€c,'y€b brW(f) P)/))
2. ¢ is b-minimal iff for any £ € ¢, bryy(cNE,b) # bryy(c, b).

Again we omit the subscript YW when possible.

Remark 3.66 1. If b is cofinal in 1h(Zf), then br(c,b) is the <y (7 )-downward
closure of ¢g,“cNIW(W(T,U)).

2. Equivalent are: (1) ¢ is b-minimal, (2) for cofinally many £ € ¢, 3y+1 € b such
that nd(&, v+ 1)}, (3) forall £ € ¢, Iy + 1 € b, nd(&, v+ 1)].

We do not assume in Definition 3.65 that b and ¢ are maximal branches. So for
example br([ov €]T7 [O’ 7]U) = bI‘(f7 7)

We shall show that if a is a cofinal branch of W (T ,U), then a = br(c, b) for some
cofinal branch b of U and some c¢; moreover, there is a unique such b, and a unique
such b-minimal c. For this, we must assume that all W, are played according to a
common iteration strategy. The following is the key lemma.

Lemma 3.67 Let T, U be as above, and suppose there is an iteration strategy > for
M such that all W, v <1hlU, are according to X. Let v and § be <y-incomparable,
and let n be largest such that n <y v and n <y §. Let o = ¢, (@) and € = ¢, 5(€),
where & > crit(¢y, ) and € > crit(¢,5); then ex" is incompatible with els.
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Wy - W, _ oW o
Proof. Letu =eq ', u=e5",v=e¥ and v = ez ". Assume toward contradiction
that either u C v, or v C u.
Let

Yo + 1 =least § € (1,7]v,
do + 1 =least £ € (n,d]y,
so that E% and Ef;{) are the extenders used in U along the two branches of I/ at the

point where they diverge, and F,; and Fj, stretch W, into W, 11 and Ws,41. Let

(@) {least i such that crit(F,,) < A(a(:)), if this exists;
u) =

dom(a), otherwise,

and

K(5) {least i such that crit(Fys,) < A(v(7)), if this exists;
7) —

dom(v), otherwise.
Claim 3.68 k(u) = k(v), and for k = k(u), ulk = vk = ulk = v[k.
Proof. Let k = k(u). If k < k(v), then v(k) = v(k), so AM(v(k)) < crit(Fj,). But
Au(k)) > A(Fy,). [eWVOH (@) (k) = H is defined because a = crit(¢pqo+1). H is

¢77,’vo+1

either F,; or the stretch by F,  of some G such that crit(G) < crit(F,,). In either
case, A(H) > AN(Fy,). u(k) = yy41,(H), so AMu(k)) > A(H).] Since u(k) = v(k), we
have A(F,,) < crit(Fy,), so F,, and Fj, do not overlap, contradiction. k(v) < k(u)
leads to a parallel contradiction. So we have k(u) = k(v) = k.
For i < k, u(i) = u(i) and v(i) = 0(i). So ulk = 0k = ulk = v|k. O
Fix k = k(u). We may assume by symmetry that vy < do.

Claim 3.69 k € dom(u), and moreover, crit(u(k)) < crit(F,,).
Proof. If either statement fails, then

ew’YoJrl (a) (k) _ F

bn.vo+1 T oe

Since the extenders used in (7o + 1,7]y have critical point at least A(EY ), we get
Pro+1(Fro) = Fy.

(In fact, ¢yo414 (70 + 1) = identity, and 720" = identity.) So

u(k) = F

0"
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But k = k(v), and from this we get
A(Fs) < Aw(k))

as in Claim 3.68. Since \(F,,) < A(Fj,), we have a contradiction. O

Let G = u(k) and H = u(k). By Claim 3.69, along the branch from 71 to v, G
is being stretched above its critical point into H, by the copy maps corresponding
to the F, for 7+ 1 <y v and n < 7. Let 74 < 7 be least such that the stretching is
finished at ;. That is, setting

G=E"
711 = least 7 <y such that crit(¢, ) > ¢, (§)
= least 7 < such that 7" (G) = H.
If n <y 7+ 1 <y 7, so that F, was used in producing W,, from W,, then F; is an

initial segment of all the extenders of copy maps 7T5’T+1, where p = U-pred(7 + 1),
and p > crit(¢,,r41). From this we get

Claim 3.70 Forn <y 7+ 1 <y v, AM(F) < A\(H).
Proof. Just given. O

Claim 3.71 H # Fj,.

Proof. Suppose H = Fs,. We claim that v; < §p. If v, is a limit ordinal, then
yi=sup{t+1|n<y7+1<ym},so by Claim 3.70, A\(F5,) > A(F;) for cofinally
many 7 in 7y, which implies g > 7;. If 71 is not a limit ordinal, we have vy =7+ 1
where F. is used, so that A(F;) < A(H) = \(F},). Thus 7 < dp, so 1 =7+ 1 < .

On the other hand, H is used in W,, on the way to R,,. Thus R, and Rs, agree
below Ih(H), while H = Fj, is on the R, -sequence, but not on the R, -sequence.
This implies 09 < 71, a contradiction. O

By Claim 3.71, k € dom(v), and letting L = v(k), crit(L) < crit(Fs,). So L is
being stretched above its critical point into H along the branch from 7 to §. Let
01 < 0 be least such that the stretching is over with at d;; that is, setting

L=E"
01 = least 7 <y & such that crit(¢r5) > ¢y (1)
= least 7 <y § such that 7" (L) = H.

Since v # 01, we have A # M. Assume X/ < M. (It no longer matters
whether vy < do, so this is not a loss of generality.) That is, we have a 7 + 1 <y 0y
such that for all o + 1 <y 71, A(EY) < A(EY). This yields:
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(%) 7 < 61, and whenever o + 1 <y 71, then A\(F,) < A(F}).

Thus 7 > o, whenever 0 + 1 <y ;. So 7 > ;. We have that H is used in
both W,, and W,, so R,, agrees with Rs, below lh(H), which is a cardinal in both
models. But F; is used in Wj,, before H, so 1h(F;) is a cardinal in both R,, and
Rs, .

But then R,, and R, agree up to lh(F},), since R, || Ih(F;) = Ry, || Ih(F;). F; is
on the R;-sequence, and not the R, -sequence, so 7 < 7. Contradiction. [l

Corollary 3.72 Let 0 = nd(&,v+1) and 7 = nd(p,n1 +1), where vo+1 and v, +1
are <g-minimal. (Le.v,+1 <y y+1= 0 #nd(&,v,+1), and similarly for v +1,
7, and p.) Suppose that U-pred(vo+1) is <y-incomparable with U-pred(y;+1); then
o and T are <y (u)-incomparable.

Proof. Let n be largest such that n <y 0+ 1 and n <y 11 +1. Let n =
U-pred(no + 1) = U-pred(n; + 1), where ng+ 1 <y v+ 1and m +1 <y 1 + 1. By
the minimality of vy and 4,

crit(@n no11) < Goq(&)

and
crit (¢77,771 +1 ) < ¢O,n (p) :

[ To see this, recall that the ¢ maps along a branch of U have increasing critical

points, so if crit(¢y mo+1) > ¢o0,(€), then o = ¢g,(§), so 0 = nd(&, 1m0 + 1). Similarly
on the 7; side.] But then

Crit((ﬁnqurl) < o ()

and
Crit(¢n,71+1) < ¢0,77 (;0) .

By Lemma 3.67,
e 0t | lntt

But ¢ < 3, by the definition of nd(&,v + 1), so ¢ < ay,, so et . JWITU)

W'Yl +1 W(T,Z/{)
=e,

Similarly, e- , SO we are done. O

Corollary 3.73 Let a be a cofinal branch of W(T,U), and suppose a = br(cg, by) =
br(cy,b1). Then by = by, and by is cofinal inU. Moreover, if ¢y and ¢y are by-minimal,
then cy = c;.
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Proof. We show first that by is cofinal. Let p < lhif, and let 7 € a with 7 > «,, and
T=nd(& v+ 1),

for £ € cp and v+ 1 € by. Let n = U-pred(y + 1). Then

T = doy(§) < erit(dpq41) <y +1,

so a, < ay + 1,50 u <. Hence by is cofinal. Similarly for b;.

Remark 3.74 The proof showed that if nd(§,v + 1) and nd(§,v + 1) > «,, then
Y2

Suppose toward contradiction that by # b;. Let 1y € by and 1, € by be <y-
incomparable. Let 75,77 € a with 75 > «,, and 7 > «a,, and 79 = nd(§, 70 + 1),
71 = nd(p,7 + 1) for some vg+ 1 € by and v, + 1 € by. Then 1y <y 7 + 1 and
m <y 7 + 1 by the remark above. By Corollary 3.72, 74 is <y (7 )-incomparable
with 7. Since 19, 71 € a, this is a contradiction.

Finally, suppose ¢y and ¢; are bp-minimal. We claim ¢y = ¢;. For that it suffices
to show

Claim 3.74.1 Supposend(§,y+1) andnd(p, 6+1) are defined and <y (1 y)-comparable.
Suppose v+ 1 and  + 1 are <y-comparable. Then & and p are <r-comparable.

Proof. Although the ¢-maps do not fully preserve tree order, we do have
(Z) (an,“/(g) <w, ¢n,v(p) =& SWn P

(4i) &, p are <y, -incomparable and ¢, ,(£)! and ¢, ,(p)} implies ¢, ,(£) and ¢, (p)
are <y, -incomparable.

Now let £,v 4 1,p,0 + 1 be as in our hypotheses, and suppose & and p are <p-
incomparable. By (ii), we cannot have 7 +1 = § + 1. Suppose without loss of
generality v+ 1 <y 6 + 1. Let

n = U-pred(y + 1)
and
= U-pred(§ +1).

Then ¢, (§) is <w,-incomparable with ¢g,(p). Since ¢g,(§) < crit(dy,,41) we see
that ¢g,(£) is incomparable in W,y with ¢o,41(p). (If ¢, (§) < crit(¢y,,+1), this
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follows from (ii). If ¢g,(&) = crit(¢y41), it follows from the definition of W,44.)
Since ¢g,(§) < crit(Py41,u), Pon(§) is Wy-incomparable with ¢y ,(p), contradiction.
U

U
Finally, we show (assuming still that all W,, v < lhl{, are by a common X.)

Lemma 3.75 For any cofinal branch a of W (T ,U), there is a cofinal branch b of U
and a branch ¢ of T such that bryy(c,b) = a.

Proof. We begin by decoding notes of U from nodes of W (7T ,U). For & < In(W(T,U)),
set
d(§) = least «y such that & < a,.

Claim 3.75.1

d(&) = least v such that e?}” - egV(TM)

= least v such that ./\/l}é/v7 = M?/(T’u).

Proof. The two characterization are clearly equivalent. So it is enough to show that
E<a, & /\/l}é/v7 = MZV(T’M). The = direction is trivial. But if M?}” = /\/IZV(T’U),
then W, [({+1) = W(T,U)[({+1) by normality. Since W, [(a,+2) = W(T,U)[(a,+
2) (because F,, was used in the latter, and not the former), { < a,. O

Claim 3.75.2 & <wu) & = d(&) <v d(&).

Proof. Let o = d(&) and v; = d(& ). We claim that & € ran ¢g,. For let 7 be least
such that ¢, (7) > &. If ¢o,(7) # &, then there must be 0 <y n <y o+ 1 <y ¥
such that

Crit(¢n,o+1) < 50 < ¢n,0+1(crit(¢n,o+1))
and n = U-pred(c + 1). (All discontinuities in ¢g,, arise this way.) But then
o < ay,+ 1,50 & < a,, and 0 < 7y, contradiction.
Similarly, & € ran ¢, .
We claim that +, and 7, are comparable in U. Suppose not, and let 1 be largest
such that n <y v and n <y 71. Let

o = gbnno (50)
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and

&1 = (bnﬁl (gl) .

The hypotheses of 3.67 are satisfied, noting that & > crit(¢, ~,) because otherwise

ez:”‘) = ez:", whilst 79 was least such that ez:”‘)

ilarly, & > crit(¢,,,). The other hypotheses of 3.67 hold, so we conclude egm is

appears as a branch extender. Sim-

incompatible with egﬂ. This implies & and & are incomparable in W (T ,U). Fi-

nally, f(] SW(T,L{) £1 = 50 < 51, and tr1v1ally &] < él = d(&)) < d(£1> Since d(&))
and d(&;) are <y-comparable, d(&) <y d(&1), as desired. O

Claim 3.75.3 d : h(W(T,U)) — 1hld is an order-homomorphism, and ran(d) is
cofinal in Th(U).

Proof. As we remarked, & < & = d(&) < d(&) is trivial. Pick any v < lhi/, and
£ <IhW(T,U) with £ > a.,. (The «,’s are strictly increasing.) Then d(§) >~. O
It follows that for any branch a of W (7,U), we can set
d(a) ={y |3 € aly <v d(¢))},

and d(a) is a branch of U. If a is cofinal in W (T ,U), then d(a) is cofinal in U.
Next we decode nodes of 7. For any & < Ih(W (T,U)), set

e(§) = unique o < Ih 7 such that ¢g 4 () = &.
We showed in the proof of Claim 3.75.2 that £ € ran(¢g q()).
Claim 3.75.4 & <wu) & = e(&) <re(&).

Proof. Let v; = d(&;) and & = e(&;). As we noted above, the ¢ maps do not introduce
new tree-order relationships in ran ¢.

Subclaim 3.75.1 If ¢, (1) <w. ¢, (V), then p <w, v.

Proof. Easy induction on 7. O

So if & &7 &1, then ¢o,,(&0) Lw,, Goq0(61). That is, & Lw,, Goqe(&). If
crit(¢qg,0,) > &o, then we get & Zw,, &1, and since & < ay,, & Lwrw &, as
desired. So assume & > crit(¢, . )-

If §0 = Crit(dyy, ), then § <y by, (0) iff & <p, o for all . Since & ﬁWvo
¢07’YO (51)7 this yields & fwﬂ &1, 50 & ﬁw(ﬁu) &1, as desired.
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Finally, suppose & > crit(¢,,-,). So letting 7 + 1 < 75 be least such that
Y% < 7+ 1, and
B = BWoo, Wr, F),

we have
5<€0§Oz70<017—.

No extender in ran ., ,, can have critical point in the interval [crit(F;), A(F;)]. This

implies that if 7+ 1 <y v and § < £ < o, then for all 0 € dom ¢y, , & Lw, Py (0).

In particular, & ﬁwﬁ &1, 50 & LwiTw &1, as desired. O
For a branch a of W(T,U), we set

e(a) ={f ]3¢ ca(f <re())}

So e(a) is a branch of 7. Even if a is cofinal in W (T ,U), e(a) may not be cofinal in
T. e(a) may have a largest element, or be a maximal branch of 7 not chosen by 7.

Claim 3.75.5 Let a be cofinal in W (T ,U). Then a = bry(e(a),d(a)), and e(a) is

d(a)-minimal.

Proof. Let b= d(a) and ¢ = e(a). Let £ € a, we wish to show & € br(c,b). Let n be
least such that £ < a,,, so that n € b. Let ¢, (§) = &, so that £ € ¢. Let y+1 € b be
such that n = U-pred(y + 1). It will be enough to show that & = nd(£,~y + 1). For
that, it is enough to show that & < crit(¢y 11).

Let p € a be such that «, < p. Let o be least such that p < a,, so that o € b
and v+ 1 <y 0. Let ¢o,(p) = p. If £ > crit(¢y,+1), then € € (crit(¢py,,+41), o). But
we observed above that £ is “dead” along branches containing v + 1 for extensions
in ran ¢, ,, so since p is in ran ¢, ,, & Lw, p. But W, (e, +1) = W(T,U)[(a, + 1),

s0 & Lw(Tu) p, contrary to p € a.
It is easy to see that e(a) is d(a)-minimal. O
U

Definition 3.76 Given T mnormal on M, and U normal on the last model of T,
we write brw (T ,U) for the function bry, (defined on pairs of nodes and pairs of
branches) defined above. We write er,V for the function d and br?} for the function
e defined above.

Notation 3.76.1 To reconcile with our previous notation: if b is cofinal in U, there
is exactly one branch ¢ of 7 such that

(1) ¢=10,7]r or ¢ =[0,7)r for some 7 < lh T, and
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(1) bryy(c,b) is cofinal in W (T ,U).

This uses that 7 has a last model. We defined br(b, 7,U) to be bry(c, b), for the
unique such ¢. We define m(b, T, b) to be the unique 7 as in (7). We probably won’t
use that earlier notation much.

For 7 in (i) a limit ordinal, the earlier notation does not distinguish between
¢ = [0,7)r and ¢ = [0, 7]y, whereas the current one does. ¢ = [0,7)7 is the case
where, roughly speaking, the measures in Fj, concentrate on proper initial segments

of MT|6(Tsupe) = MT|NT.

Remark 3.77 We assumed 7 has a last model, but one could generalize some of
this by dropping that, and assuming that ¢ is on M(T).

Remark 3.78 There are two special cases worth mentioning.
(a) TU is already normal. Then W (7 U) =T U, and bry (c,b) = ¢"b.

(b) U is a tree on M|k, where x = inf{crit(E]) | n+1 < Ih7}. Then if U has
limit length, then W (7 ,U) = U-on-M, i.e. U regarded as a tree on M. For b
a cofinal branch of U, Wy, = W (T,U"b) = U ()T, and bry(c,b) = b p“c,
where ¢(n) =1hid + 7.

In our application, however, 7 and U will definitely not be separated this way.

Remark 3.79 br),(7,U) makes sense in the coarse structural case. Our proof that
it is 1-1 and onto used fine structure (via 3.67), as well as the hypothesis that all
W, are by some fixed . So that part is limited to the fine structural case. But not
much fine structure was used, and we shall adapt the proof to the coarse structural
case later.

3.8 Normalizing longer stacks

There seem to be in the abstract many different ways to normalize a stack (U, ...,U,),
one for each way of associating the U;. If we are in the case that embedding nor-
malization coincides with full normalization, and there is a fixed strategy > for M
according to which all these normalizations are played, such that for any NV there is
at most one normal Y-iteration from M, then clearly all these normalizations are the
same. They are just the unique normal tree by X from M to the last model of U. We
shall be in that situation below when we deal with coarse iterations of a background
universe. But in general, it seems that the various normalizations of u might all be
different from one another.
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We shall define > normalizes well by demanding that whenever U is a finite stack
by 3, then all normalizations of U are by ¥. In addition, we demand that ¥ pull
back to itself under normalization maps.

Definition 3.80 LetU = (U, ... ,Uy) be a finite stack of normal trees on M, where
n > 1. Let My = M, and M; be the last model of U; for 1 < i < n. A l-step
normalization oflj 15 a triple (k:,lj, 7Ty such that V is a stack of length n — 1 on
M = M, and

(1) 1 <k <n,
(2) Vi = Uy, for allm < k, and Vy = W (Ux,Uy+1),
(8) Letting No = M and N; be the last model of V; for i < n, we have that

(a) m;: M; — N; is the identity for i < k,
(b) T Myi1 — Ny is the map given by embedding normalization, and

(c) fork <i<mn,V;=m_1U1, and m;: M1 — N; is the copy map.
Clearly, U and k determine the rest of the normalization.

Definition 3.81 Let U = (U, ...,Uy,) be a finite, mazimal M-stack, with n > 1.
Let 1 <t < n; then a t-step normalization of U is a sequence s with domain t + 1
such that s(0) = (0,U, D), and whenever 0 < i < t, s(i+1) is a 1-step normalization

—

of V, where V is the second coordinate of s(i).

A complete normalization of (Uy, . .. ,U,) is an n—1 step normalization of (U, ..., Uy,).
We shall sometimes identify a t-step normalization s of ¢ with the stack of trees in
the second coordinate of s(t). If t = n — 1, then this is a single normal tree on M.

Remark 3.82 Benjamin Siskind has recently shown that the normalization opera-
tion is associative, in that if I/ is a finite stack of normal trees on a premouse M,
then all complete normalizations of s produce the same normal tree on M. This is

not at all obvious, even in the case that lh(U/) = 3, where there are only two possible
ways to normalize U.

For m > 1, and ¢ > 0, let us write Vﬁl(i) for the m-th tree in the second coordinate
of s(i) (or in its third coordinate, if ¢ > 0), and N for the last model of Vi, Let

Ng(i) = M, for all 7. For any e < i < n, and any m such that Ni® exists, there is a
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unique  such that N comes from le(e), in the sense that s(e)[(l+ 1) is normalized

to s(7)[(m + 1) by s[(e,i]. Let us write

| = Os,z’,e(

m)
in this case. Composing normalization maps and copy maps given by s[(e, ] yields
a canonical ' '

T - zs(e) — N3O,
where [ = 0*%¢(m). So if s is a normalization of (U, ... ,U,) with dom(s) =i+ 1,
then the stack V@ has last model Nﬁfz), where m = n — i, and n = 0**°(m), and
ﬂf;f;;? is the natural map from the last model of ¢ to the last model of V. Let us write

$,1,0

s __
™ =T

in this case. So 7° is the natural map from the last model of s(0) to the last model
of the stack in s(dom(s) — 1) that is given by s. All ﬂi’ff have the form 7*, for u
obtained from s in a simple way.

Probably the most natural order in which to normalize a stack is bottom-up.

Definition 3.83 Let U = (U, ...,Uy,) be a finite, mazimal stack of normal trees
on M; then the bottom-up normalization of U is the complete normalization s of U
such that for each i > 1 in dom(s), s(i) has first coordinate 1. We write W (U) for

-

the normal tree on M in the second coordinate of s(dom(s) — 1), and also call W(U)
the bottom-up normalization of U.

The definitions above extend to stacks 2 on M of infinite length. Again, it seems
to makes sense to normalize in any order, but the most natural way is bottom-up.
Suppose for example that U = (U, | n < w). Let Wy = Uy, and for n > 1 let

W, =W (U | i1 < n)).
For n > 0, let
(bni Wn — Wn+1

be the tree embedding given by the fact that W, 1 = W(W,, nl,,+1) for the appro-
priate 7. (®,, is partial iff U, drops along its main branch.) Then we set

-

W(U) =limW,,

where the limit is taken using the ®,. It is clear how to define this limit as an
algebraic structure, but not at all clear that it is an iteration tree. Its length may
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be illfounded, and the models occurring in it may be illfounded. As in the case of
finite stacks, what we need is that U has been played according to a sufficiently good
iteration strategy. The optimal result in this direction is due to Schlutzenberg; see
[11]. We discuss this matter further in the next chapter.

One can continue further into the transfinite. W(ZJ ) makes sense as an algebraic
structure for stacks U of normal trees of any length, and under appropriate iterability
hypotheses it is an iteration tree. In fact, one could go beyond linear stacks of normal
trees, and consider normalizing arbitrary trees on M. There is as of now no good
theory at this level of generality.

In this book we shall not need more than normalization for finite stacks of normal
trees.
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4 Strategies that condense and normalize well

In this chapter we define what it is for an iteration strategy to normalize well, and
to have strong hull condensation. We prove some elementary facts related to these
two properties, and we show that they follow from strong unique iterability.

All the good behavior of iteration strategies one could wish for seems to follow
from their normalizing well and having strong hull condensation. This good behavior
then follows from strong uniqueness, but strong uniquenessis too restrictive. Mice
with Woodin cardinals do not in general have strongly unique iteration strategies.
On the other hand, we shall see later that every iterable pure extender premouse has
an iteration strategy that normalizes well and has strong hull condensation. (See
Proposition 6.25.)

Assuming AD™, one can obtain strongly uniquely iterable coarse premice having
Woodin cardinals via the I'-Woodin construction. We discuss this in section 3.2.
In section 3.3, we show that UBH together with the existence of a Woodin cardinal
above a supercompact cardinal implies the existence of strongly uniquely iterable
coarse premice with Woodin cardinals. These are our main existence theorems for
coarse premice with strongly unique iteration strategies.

In section 3.4, we show that if C is a background construction done inside a
coarse premouse N* with an iteration strategy ¥* that normalizes well, then for any
model M of C, the induced strategy Q(C, M, >*) for M normalizes well. In section
3.5 we show that strong hull condensation is similarly preserved. In particular, if
>* is a strongly unique strategy for N*, then the background-induced strategies
Q(C, M, ¥*) all normalize well and have strong hull condensation. This (together
with its counterpart later for strategy mice) is our main existence theorem for fine
structural mice with strategies that normalize well and have strong hull condensation.

4.1 The definitions

The definitions in this section apply to both fine-structural premice and coarse pre-
mice.

Definition 4.1 Let X be a complete iteration (A, 0)-strategy for M, where X\ > 1.

(1) We say that 3 2-normalizes well iff whenever (T,U) is a mazimal 2-stack by
Y such that U) has last model Q, then

(a) W(T,U) is by X, and

(b) letting W = W(T,U) have last model R, and 7: () — R be the last t-map
of the embedding normalization, we have that ¥ , = (EV,R)W'
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(2) We say that 3 normalizes well iff all its tails X5 2-normalize well.

Clearly, if ¥ normalizes well, then so do all its tail strategies.

In 4.1(1), we restrict ourselves to maximal stacks (7,U) because we have not
defined W (T,U) when (7,U) is not maximal. It is in fact not hard to define W (s)
for non-maximal stacks of merely weakly normal trees. The theorems we prove here,
for example Theorem 4.21 and Theorem 4.41, hold for the resulting stronger version
of normalizing well.

Suppose that ¥ normalizes well, and 7 is a normal tree on M with last model
that is according to X. Let U on () be normal and by X7 ¢ and of limit length, and let

b= YroU) = E(T,U)),
and
Then

a = brz/{d/’u(Ca b)

where ¢ is some branch [0, 7)7 or [0, 7] of T that is chosen by 3. Moreover,
b= br, Y (a).

In other words, X((7,U)) and (W (T,U)) determine each other, modulo 7. (This

“moreover” part applies in the fine-structural case, and to the case of F-trees with
F coarsely coherent, with all W, by a fixed 3.) Applying this repeatedly we get

Proposition 4.2 Let > and ¥ be complete strategies for M with scope Hgs that
normalize well, and suppose that X agrees with W on normal trees; then ¥ agrees
with U on finite, maximal M -stacks.

Proof. We just gave the proof for stacks of length 2. Let (U, ...,U,+1) be a
maximal stack by ¥ and W such that i, ; has limit length. Let () be the base model
of U, 11, and R the last model of W ((Uy, ...,U,)) =W, and o: Q) — R the embedding
normaliztion map. We have that (W, ol, 1) is by both strategies because they
normalize well. By our result for stacks of length 2, X((W, ol 11)) = V((W, olUp11)).
But X(W, oly41)) = (U, -..,Un+1)) because X normalizes well, and similarly for
W, so we are done. O

We now show that if ¥ normalizes well, then in fact it does so for arbitrary finite
stacks, not just stacks of length 2.
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Proposition 4.3 Let ¥ be an complete (), 0)-iteration stmtegy for M that normal-
izes well, and let r be a stack of length < A by . SuppOSe U is a finite maximal
stack by 2, and s is a t-step normalization of U, and V = V*®) is the stack in s(t),
then

(1) V is by ., and

(2) if m = m° is the natural map from the last model Q on/_i to the last model R of
V, then ETAZ/ZQ = (ETAQR)W.

Proof. We show by induction on n that > normalizes well for stacks of length n. The
same proof works for tails >, of X.

For n = 2 this is true by hypothesis. Let ’71“(6{1,1/{2>“§ be a stack of length n + 1
by 3. We want to see that the 1-step normalization obtained by replacing (U, Us)
by W (U,,Us), and S by 7S for 7 the normalization map, behaves well. It is clear
that this implies ¢t-step normalizations behave well, for all ¢.

Let V be a complete normalization of ’71, with 6 the normalization map from

= M7 to N* = MY. 0 lifts U to OUy; let p: M4 — M%™ be the copy map.
Note that (V, 0U,, plhz) is a stack by X, because Xy y« pulls back under 6 to YN
by our induction hypothesis. Let Q* be its last model. Let

W* = W(@Z/ﬁ, pZ/[Q),

and let R* be the last model of W*, and ¢*: Q* — R* the normalization map. The
hypothesis of our proposition tells us that (V, W*) is by ¥, and that

E<V’9ul:pu2>7Q* = (2<V’W*>9R*)U*
Let @ be the last model of 'f”(b[l,?/b), let
W =W (U,,Us),

and let R be the last model of W. Let 0: Q — R be the normalization map. The
situation can be encapsulated in the following diagram.
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92/{1 pUQ
% 0 Y R
W }
M N P 8)
7“— U Uz

Here P = MY and P* = M%  and p: P — P* is the copy map. The maps

Y:Q — QF and ¢: R — R* are copy maps. We get ¢ from Theorem 3.54; in this
case, copying (U, Us) via § commutes with normalizing (U, Us). We have

poo =000
from 3.54.

. Since AW = W*, and ¥ pulls back to itself under 6 by induction, we have that
T (W) is by 2, and Sp iy, p = (S wey,r=)?. It follows that

E(V W*) *)(j)oa'

™
-
2
=
a:’i/

og*oy

~~

= (Zwwe).r*)
(ZW,W*),R*)O*W
Z(V Uy ,plha),Q* )w

—

M/‘\

T (U Ua),Q

Line 1 holds because Y normalizes well for ’f', line 2 comes from 3.54, line 4 holds
because Xy y+ 2-normalizes well, and line 5 holds because Y normalizes well for T.
This takes care of the case S = 0. The general case follows easily. Since
Z7-A<W>’R)" ZTAW ) o and S is by ZTAW )00 We have that o8 is by ETA< W)R
and moreover the 7'“( > ~0S-tail of ¥ pulls back under the relevant copy map to
the T(Uy, Us)"S-tail of 3. O

A very similar argument shows that the property of normalizing well passes to
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pullback strategies.

Theorem 4.4 Let ¥ be an iteration strategy for N that normalizes well, and let
m: M — N be sufficiently elementary that the pullback strateqy 3™ exists; then X7
normalizes well.

Proof. Let (V,U;,Us) be a stack by X7, with last model Q. Let W = W (U;,Us) have
last model R, and o: @ — R be the normalization map. We want to see that (V, W)
is by X7, and that the (V, W)-tail of X7 pulls back under o to the (V,U;,Us)-tail of
DILH

We have the diagram

N__ ™ $
P
e 2] R
W }
M K P 0
% U Us

Here ¢: K — K* and p: P — P* are copy maps generated by 7w, and W* is the
normalization of (OU;, plds). o* is the associated normalization map. 1 and ¢ are copy
maps, which we have because copying commutes with normalization. p oo = c* 0 9)
by 3.54.

The copy map ¢ tells us that (V, W) is by X7. The rest is given by

(EDwr)” = v Re)%

(Z<7FV W) R*) ooy

= ((Sywey,es)” )Y

(E ©V,0U1,plUz),Q* )w
>

s
T~ (UL U2),Q°
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This is what we want. [l

We turn to strong hull condensation. It will be conveneient here to extend the
definition of extended tree embeddings (3.39) so that they can act on weakly normal
trees T of length 1.

Definition 4.5 Let U be a weakly normal tree on M of length 5+ 1, and let N I M ;
then we say that izofﬁ 1s an extended tree embedding from the weakly normal tree

(0, N) into U.

The point of this perhaps strange terminology is to streamline the following def-
inition.

Definition 4.6 Let ¥ be a complete iteration strategy for a premouse M. Then %
has strong hull condensation iff whenever s is a stack of weakly normal trees by X
with last model N, and U is a weakly normal tree on N by X, n, then for any weakly
normal T on N,

(a) if T is a psuedo-hull of U, then T is by ¥s N, and

(b) if ®: T — U is an extended tree embedding, with last t-map 7: Q — R I MY
then Y~ (1.0 = (25A<m(a+1)>,R)ﬂ'

Because less is required of a tree embedding than is required of a hull embedding
in [30], the property is stronger than the property called Hull Condensation in [30)].
Hence its name.

Clause (b) was not part of our original definition of strong hull condensation. B.
Siskind then showed that (b) follows abstractly from (a) and normalizing well (see
[18]), via a strategy-comparison argument. We have made clause (b) part of the
definition here because it is useful, and one can obtain it directly for background-
induced strategies.

Despite the title of this book, it will turn out that strong hull condensation is
the fundamental regularity property of iteration strategies. All the other regularity
properties are implied strong hull condensation together with normalizing well. We
believe that a complete strategy with strong hull condensation need not normalize
well, although we have no example at the moment. However, any complete strategy
for normal trees that has strong hull condensation can be extended in a unique way to
a complete strategy for finite stacks of normal trees that has strong hull condensation
and normalizes well. This is a result of Schlutzenberg and the author. Schlutzenberg
also proved a stronger version of the theorem in which the extended strategy can act
on infinite stacks. See [11] and [18], and Theorem 4.34 in the next section.
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Remark 4.7 The papers [60] and [18] introduce a still weaker sort of embedding
of iteration trees, and make use of the resulting “very strong hull condensation”. It
turns out that strategies for premice that have strong hull condensation also have very
strong hull condensation, and this implies that they fully normalize well. However,
the proof of this requires a strategy-comparison argument. Strong hull condensation
has the virtue that we can verify it directly for background-induced strategies, so we
can use it in proving a comparison theorem.

Because we have included clause (b) in the definition of strong hull condensation,
it implies a property usually known as pullback consistency. Indeed, what is usually
called pullback consistency is just clause (b), as applied to T of length one.

Definition 4.8 Let €2 be a complete iteration strateqy for M. We say that ) is
pullback consistent i (ﬁ whenever u s an M-stack by Q, and s is a finite M-stack
by ., and - M is an iteration map of s, then for t = s[(m —

1) ((Vn(5), km(s), Toa (s )f(OéJr 1))%
Qu"t = (Qu“s)ﬂ-'

A pullback consistent strategy pulls back to itself under its own iteration maps,
where by “iteration map” we mean any map of a branch segment generated some-
where in a finite stack s by the strategy, from one model to a later one. This is a
strengthening of the pullback consistency condition from [30]. It follows at once from
strong hull condensation.

Lemma 4.9 Let €2 be a complete strategy for M that has strong hull condensation;
then Q) is pullback consistent.

Proof. Suppose first that 7 is a weakly normal tree on M. (u) by €, of length
B+ 1, and that a <7 B. Suppose that @ < M7 and Q C dom(izﬁ). Let U
be T[(a + 1), followed by a gratuitous drop to @, and let W be T followed by a
gratuitous drop to izy—ﬂ(@). Letting m = iaﬂrﬁ (), we have that 7 is the last t-map of
an extended tree embedding from U to W. (If a > 0, its associated tree embedding
is just the identity on 7 a4 1, and if @ = 0, we appeal to definition 4.5.) By part
(b) of definition 4.6, (Qu~(7y,r)" = Qu~(Tia+1),0, Which is what we need.

It is routine the extend this argument to finite M-stacks by 2, by pulling back
under the branch embeddings of the constituent normal trees, one at a time. U

Strong hull condensation is preserved by pullbacks:
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Proposition 4.10 Let m: M — N be weakly elementary, and let X2 be a strategy for
N having strong hull condensation; then ™ has strong hull condensation.

Proof.(Sketch.) There is a relevant diagram below. Let s be a stack on M with last
model K, and let K* be the last model of 7s, with §: K — K* the copy map. Let
U be on K and by (£7),, and let T be a psuedo-hull of ¢. It is not hard to see that
0T is a psuedo-hull of OU. Since OU is by Xrg k+, 0T is by Xy i+, s0 T is by (X7)s,
as desired for part (a).

For part (b), let ®: 7 — U be an extended tree embedding with last ¢-map
0: @ — R. By the (suppressed) construction of the first part, we have an extended
tree embedding V: 6T — 6U. Let o": Q* — R* be the last t-map of W. Let
P: QQ = Q* come from the copying of T to 67, and ¢: R — R* come from copying
U to OU. We have the diagram

R*
ou X [
N T8 K* Q*
0T
s 9 v R
u [ )
M K Q
s T

This is quite similar to the diagram in 4.4, because the situations are quite similar.
Again, we calculate

E (ms,6U), )¢OU
)cr*od;

(s~ wy.r)” = (
= (B(rs,000),
= ((Strsouy,m)” )Y
= (Strsom) @+)"
=(Z

)"
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The following elementary lemma on extending tree embeddings at limit steps will
be useful.

Lemma 4.11 Let X be a strategy for the premouse M having strong hull conden-
sation, and let T and U be trees of limit length by 3. Let ®: T — U be a tree
embedding such that

Ja < Ih(U)VB(a < B < Ih(U) = B € ran(u?)).

Let b =%(T) and c = X(U); then there is a unique tree embedding V: T b — U "¢
such that ® C W,

Proof. Let u = u®, and d = u~t“c. By our hypothesis that ran(u) contains a final
segment of the ordinals below lh(U), we see that d is cofinal in 1h(7). Moreover,
® extends to a tree embedding of 7d into U "c. By strong hull condensation,
d=3(T) =b, so we are done. O

If one weakens the hypothesis of Lemma 4.11 by requiring only that ran(u®) be
cofinal in 1h(#), then the conclusion may not hold. There is a counterexample in
[18], just after definition 1.3.

4.2 Coarse I'-Woodins and I'-universality

Of course, one cannot prove that there are any nontrivial iteration strategies without
making assumptions that go beyond ZF. Determinacy assumptions are particularly
useful in this regard. Under ADT, every Suslin-co-Suslin set is Wadge reducible to
an iteration strategy; in fact, there are countable iterable structures at every Suslin-
co-Suslin degree of correctness. More precisely

Definition 4.12 Let A CR. We say that (M, 0, 7,%) captures A iff
(a) M = ZFC + “§ is Woodin”,
(b) & is countable, and ¥ is a complete strateqy with scope HC for V5]‘f1, and
(¢) T € M is a Col(w,d)-term for a set of reals, and

(d) wheneveri: M — N is by ¥ and g is Col(w, i(5))-generic over N, then i(T), =
AN Nlg.
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Notice here that (M, d, 7,%) does indeed determine A, because for every real x there
are N and g as in (d) such that x € N|g].

The following came out of Woodin’s work in the late 1980s on large cardinals in
HOD under determinacy hypotheses. See [15] and [58].

Theorem 4.13 [Woodin] Assume AD; then for any Suslin and co-Suslin set A, there
is a tuple (M, 0, 7,%) that captures A.

Unfortunately, the models M produced by the proof of 4.13 are not given as fine
structural. They are “HOD-like”, but that doesn’t help until the analysis of HOD
to which this book contributes is done. However, one can use M as a background
universe for the construction of some fine structural premouse N, and hope to show
that N and its induced strategy capture some set close to A. This is the basic plan
behind the proofs we currently have for fragments of LEC and HPC, and it is therefore
the main source for the iteration strategies to which the theorems of this book apply.

In this context, it helps to be working with a background universe M having more
structure than is recorded in 4.12. We shall call the resulting pairs coarse I'-Woodin
pairs.

Assume AD™, and let I, T'; be good (i.e. closed under 3%) lightface pointclasses
with the scale property such that I' C A;. Let A be a universal I'y set, and let
U C R code {{p,x) | (Vyy1,€,A) = ¢lx]}. Let S and T be trees on some w X x that
project to U and —U. Using his work in [15], Woodin has shown ([78, Lemma 3.13])
that there is a countable transitive N* € HC, a wellorder <t of N*, and an iteration
strategy X such that for § = o(N*),

(a) (fullness) N* = VJL(N*U{S:Tﬂ})’
(b) N*is f-Woodin, for all f: § — § such that f € Cp(N*, <),

(c) for all n <6, there is an f: n — n such that f € Cpl(VWN*, <an VWN) and VnN*
is not f-Woodin, and

(d) X is an (wy,w)-iteration strategy for L(N*, S, T, <), with respect to nice trees
based on N*.

Concerning item (d), recall that wq-iterability implies w; + 1-iterability, granted
AD.

Definition 4.14 Assume AD™, and let ' be a good pointclass with the scale property,
and let N*,6,5,T, <, and X be as in (a)-(d); then

143



(1) we call (N*,6,5,T,<1, %) a coarse I'-Woodin tuple, and
(2) letting M = (L[N*,S,T,<],€,5,T), we call (M,¥) a coarse I'-Woodin pair.

Of course, S and T determine U, and hence A and I';. U is self-dual, so S is only
there for notational convenience. We write A = Ap. If (M, Y) is a coarse I'-Woodin
pair, then we write 6™, <M, T™ and S™ for the associated objects.

From [15] (see also [58, Lemma 3.13]), we have

Theorem 4.15 (Woodin) Let FV be a good lightface pointclass with the scale prop-
erty, and assume that all sets in I' are Suslin; then for any real x there is a coarse
[-Woodin pair (M,3) such that x € M.

Lemma 4.16 Let (P,X) be a coarse I'-Woodin pair, § = 67, T =TF, and S = ST.
Let s be a P-stack all of whose models are wellfounded, with iteration map i: P — @)
be an iteration map by X; then

(i) pli(T)] = p[T] and p[i(S)] = p[S],

(i1) if g is Col(w,i(0))-generic over N, then for A = Ar, (Vw]\ﬂf}, €, AN NJg]) <
(Vior1, €, A), and

(117) (Q,Xs) is a coarse I'-Woodin pair.

Proof. As usual: p[T]| C p[i(T)] and p[S] C p[i(S)], while p[i(T)] N p[i(S)] = 0
because () is wellfounded, and wellfoundedness is absolute to wellfounded models.
This gives us (i). For (ii), we use the Tarski-Vaught criterion. Suppose x € N|g] and
(Vos1, €, A) E Jy € Ryly, z]. There is then a branch of T of the form (¢, (y, z), f).
But then (¢, (y,z),i(f)) is a branch of i(T'), so there is a branch (¢, (y, z), h) of i(T)
such that y € N|g|, as desired.

(i) follows easily from (i) and (ii). O

Note that we did not assume in the lemma that s was by ¥. We shall show in a
moment that this follows, that is, that ¥ witnesses strong unique iterability.

If we drop down from P to L(N*, W, <), where W is the tree of a I'-scale on a
universal I' set, then § becomes Woodin, and Lemma 4.16 yields a pair capturing I'
in the sense of Definition 4.12.

Corollary 4.17 Let (P,X) be a coarse I'-Woodin pair, and 6 = 6. Let W be the
tree of a scale on a universal T' set, and let T be the natural term for p|W]; then

(LIVE, <P W), 6, 7,%) captures p|[W].
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Let M = L[N*,S,T,<|, where (N*,0,5,T,<,%) is a coarse [-Woodin tuple.
Let A = Ap, and let I'; be the good pointclass whose universal set is A. If P is
a X*-iterate of M, and ¢ is is P-generic over Col(w,i(d)), then P|g| is projectively-
in-A correct. Thus the Cr and Cr, operators are correctly defined over P[g]. It
follows that M and its iterates are Cr,-full, and ¥ is guided at 7 by a Q-structure
in Cr, (M(T)). More precisely,

Lemma 4.18 Assume AD", and let (M,Y) be a coarse I'-Woodin pair. Let T .U be
a stack of nice normal trees played by X2; then the following are equivalent

(1) XpU) = b,
(2) Cr,(MU)) € MY,
(3) MY is wellfounded.

Proof. Just outlined. O

It follows that if (M,3) is a coarse [-Woodin pair, then 3 is positional, that is,
¥, o depends only on Q. (Cf. 6.24.) Moreover, if () is an iterate of M via the stack

s, then for § = wy’,

(i) @ is strongly uniquely (6, §)-iterable, and
(i) @ = “ I am strongly uniquely (6, 6)-iterable.”

The strategy witnessing (i) is X, and the strategy witnessing (ii) is X [@. Moreover,
Yo is definable over (V,,41, €, A) from the parameter (\/5%, <9), uniformly in @, and
() and its generic extensions are correct for the theory of (V,,41,€,A). So we have

Corollary 4.19 Assume AD", and let (M,Y) be a coarse I'-Woodin pair; then M is
strongly uniquely iterable for countable stacks of countable normal trees. Moreover,
for k = wy,

M = “I am strongly uniquely (k, k)-iterable”.

If (M, %) is a coarse I'-Woodin pair, and C is a background construction done in
M, then C never breaks down, because all its levels have iteration strategies induced
by X. (M, FC) is then a coarse premouse,, and ¥ is a complete (wy,w;) iteration
strategy for (M, F ©). If C is maximal, in that it never passes on the opportunity to
add an extender, then C is universal in the following sense.
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Theorem 4.20 (I'-universality) Assume ADY, and let (N*,S,T, <, A) be a coarse
I'-Woodin tuple. Let P be a premouse in N* that is countable in N*, and let ¥ be an
wy -iteration strategqy for P such that Code(X) € I'(Code(P)). Let C be the mazximal
-construction of N*; then there is some v, k such that v < o(N*) and (P, X) iterates
to M,(Ek.

Proof. Let 6 = o(N*), and let N = L[N*, <, W], where W is the tree of a I-scale
on a universal I'-set. We have that N = “J is Woodin”, moreover, for x = w/,
Y | HY can be computed from W, and is therefore in N. (Note that HY is closed
under ¥, because if 7 is by X, then X(7) is a I'(T, P)-singleton.)

Letting ¥g = ¥ | HY, we have that whenever F' = FC for some v, then ip(3g) C
Y. For suppose T € HY is a tree of limit length by both 3y and ip(Xg), and let
b="2(T) and ¢ = ip(30)(T). Let g be N-generic for Col(w, |T|). Let Wy be the
tree projecting to Code(X) we get out of W, and let Code(7) = t, Code(b) = u, and
Code(c) = v. We have f such that (¢,u, f) € [Wp], so that (t,u,ir o f) € [ip(Wp)].
We also have g such that (t,v, g) € [ip(Wy)]. But ip(Wy) projects in V' to the codeset
of a single-valued partial function, by absoluteness of wellfoundedness. Thus b = c,
as desired.

We can now apply Theorem 2.53 in N. O

It is easy to see that a strongly unique strategy has strong hull condensation and
normalizes well.

Theorem 4.21 Let M be a coarse premouse, and let 3 witness that M is is strongly
uniquely (n, 0)-iterable; then 3 has strong hull condensation, and the complete strat-
egy determined by > normalizes well.

Proof. Strong hull condensation is immediate. For if ¢/ is by ¥, and T is a psuedo-
hull of U, then all models of T are wellfounded, so 7 is by X,. Further, if 7 is the
map on last models, then ¥7,, = 3 7 because X7;, chooses wellfounded branches,
and X 7 chooses unique wellfounded branches.

We show now that the complete strategy induced by ¥ normalizes well. So let s
be by ¥ and (7T,U) by X,; we must see that W (T,U) is by ;. Let Ih(U) = pu + 1,
and for v < pu set

W, =W(T,Ulv+1).

We show by induction on v that W, is by Y.
Wy =T is by X,. Suppose now that W, is by ¥, and let

W’y+1 = W(WWWWF)?
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where F' = O'W(E,,Z;{). Since we are in the coarse case, full normalization coincides
with embedding normalization, and o, is the identity, but we don’t need this. Let
a=aW,,W,,F)an = pB(W,W,,F). We have that W, [a+1=W, [a+1
is by ¥;. So it is enough to show by induction that W, [ o+ A+ 1 is by X for all
A <1h(W,). Clearly, we may assume that A is a limit ordinal.

The construction of W(W,, W,,, F') gives us a tree embedding ® from W, [ 5+ A
into W, 11 [ @ + X whose u-map satisfies u(f + &) = a+ 1+ ¢ for all £ < X. We can
use 4.11 to extend ®. If

¢ =E;Wys1 Ta+ ),

then letting b = u~!“c, we can extend ® to a tree embedding of (W, | 8+ A)7b to
(W,41 [ @+ A) "¢, and since psuedo-hulls of normal trees by X are by X,

b=XW, [ B+]).

So b=1[0,8+ Alw,, so ¢ = [0,a + Alw,.,, as desired.

Now suppose A is a limit ordinal. We want to see W, is by ;. Let W =
W (T, UIA) and let a = S(W). The results of section 2.7 go through for FM-iteration
trees on M, because of 2.40. Adopting the notation of 2.7, let

b =br))(a)

be the cofinal branch of U determined by a. So W(7T,U) " a is an initial segment of
W, and is by X;.

We show by induction on £ that W, [ £ + 1 is by X, the proof being like the one
in the successor case above. Let n = lh(W (T ,UI\)). Let

CDZCI)()J)Z T—)Wb

be the “putative tree embedding” we get from the construction of W;. (We don’t
know yet that the models of W, are wellfounded, so ® may not be a true tree
embedding.) Let u = u®, and let 7 be such that

n = sup a., = u(7),
F<A

so that 7 < 1h(7), and 7 = m(b,T,U[X). We show by induction on ¢ that if
n < & <1h(W,), then W,[(£ + 1) is by Xs. This is trivial if £ is a successor ordinal,
because ¥4 cannot lose at a successor step. But if £ is a limit, then we have

§ = u(§)
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for some limit ordinal & < 1h(7). Moreover, £ — 7 is contained in ran(u). Thus
by 4.11, letting ¢ = S(W, | €) and b = [0,£)r, we have u“b C c. It follows that
c=10,)w,, so that W, [ £ + 1 is by X, as desired.

So W, is by . But there is an embedding of ./\/lzg’ into the last model of W, so
MY is wellfounded, so b = S,((T,U | \)), that is b = [0, \)y, and Wy = W), is by
Y, as desired.

This shows that W (T,U) is by X,. Let m be the embedding normalization map

from the last model of U to the last model of W (T ,U). (7 is the identity in this

coarse case, but we don’t need that.) Then X7 WTU) = Ys~(Tu)y because the
m-pullback strategy picks wellfounded branches, and these are unique. [l

Let us assume AD™ for a while. Let (M,Y) be a coarse I-Woodin pair. M is
uncountable, because it incorporates the trees S and T'. ¥ acts on countable iteration
trees based on VM which is countable, but if we think of ¥ as moving only VM for
some a < w}, then there will no longer be unique wellfounded branches, just unique
Cr,-full branches. To get equivalent (3) of Lemma 4.18, we really needed to let %
act on S and T'. This showed up in the proof of 4.16.

In the AD™ context it is natural to be working with countable base models. This
leads us to

Definition 4.22 A coarse extender pair is a pair (N, F), %) such that (N, F) is a
coarse extender premouse, and X is a complete (wy,ws)-iteration strategy for (N, F
that normalizes well and has strong hull condensation.

From 4.21 we get at once

Corollary 4.23 Let (M, ﬁ) be a coarse premouse, with FC VM and let X witness
that (M, F') is strongly uniquely (wy,w,) iterable. Let § < o, with VM = ZFC, and
N = VM being countable; then ((N, F),Y) is a coarse extender pair.

In particular, if (M,Y) is a coarse I'-Woodin pair, § = ¥, and M |= “F is
coarsely coherent and F' C V5”7, then whenever § < a < wy is such that V,, = ZFC,
we have that (VM F),X) is a coarse extender pair.

4.3 Strong unique iterability from UBH

We now look at consequences of the Unique Branches Hypothesis for for the existence
of iteration strategies. The value of these iterability proofs that assume UBH is an
open question. Perhaps they will play an important role in the ultimate construction
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of iteration strategies for mice with very large cardinals, perhaps not. Perhaps in the
end UBH will be simply be a corollary of strategy-existence theorems that are proved
without assuming it. This is closer to the way inner model theory has developed so
far. In any case, we devote this section to describing some consequences of UBH for
iterability.

Definition 4.24 Let F be a set or class of extenders; then F —UBH holds iff when-
ever T is a normal F-tree on' V', then T has at most one cofinal, wellfounded branch.

In particular, nice-UBH is the restriction of UBH to nice trees. Woodin has
observed that a Lowenheim-Skolem argument shows that F-UBH follows from F-
UBH for countable trees.

Although F-UBH involves only normal trees, we can show

Lemma 4.25 Let F be coarsely coherent, and suppose thatF-UBH holds; then when-
ever s 1s a stack of F'-trees with last tree U, then U has at most one cofinal, well-

founded branch.

Proof. Suppose first that we have a stack s = (71,2/1 ) of length two. Let b and ¢
be a cofinal, wellfounded branches of U. Let W = W (T,U), and let

a=br(b,T,U)
and
d=Dbr(c,T,U).

It will be enough to show that a = d, for then b = ¢ by the results of Chapter 2.
We have assumed F-UBH for normal trees, so it is enough to show that M and
MY are wellfounded. The situation is symmetric, so it is enough to show M}V is
wellfounded. So suppose toward contradiction that

M is illfounded.
Let ¢op(7) = Ih(W(T,U). We see then from the normalization construction that
MY = Ult(MT | Ey),

where E is the extender of b.
We need some elementary covering properties of the models in 7. For n < 1h(7),
let
vy = sup({lh(G) | G is used in [0,7)7}).

It is clear that v, is either inaccessible or a limit of inaccessibles in /\/lnT It is clear
that v, is either inaccessible or a limit of inaccessibles in /\/l;r
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Claim 4.26 Let X C /\/lnT be countable in V'; then there is a Y DO X such that
Y e MT and M] E Y| <.

Proof. There are f, € V, for n < w, such that every x € X is of the form
ion(fn)(a), for some a € [v,]<“. So we can take Y = {ig,(fn)(a) | n < wand a €
(] =} O

Claim 4.27 Suppose M,, |= “0 is reqular but not measurable”; then 6 has uncount-
able cofinality in V.

Proof. We prove this by induction on 7. It is trivial for n = 0. Suppose we have
it for n < A, where X is a limit ordinal. Let # be regular but not measurable in M,
and let 6 = i, A(8). By induction, cof” (3) > w. But i, is continuous at 3, because
3 is regular but not measurable in M,. Thus cof" () > w.

Finally, suppose the claim holds at 7, and let # be regular but not measurable
in M, 1. Let v = lh(EZ') = Vpy1. If 0 < v, then the agreement between M, and
M, implies 6 is regular but not measurable in M,, so cof” (f) > w by induction.
If & = v, then 0 is regular but not measurable in M, by our hypothesis on the
extenders in F, so again cof' (f) > w. Finally, if > v and cof” (§) = w, then 0 is
singular in M, ;1 by claim 4.26, contradiction. U

Now let v = v, = Ih(ET). We have that &% (v) > §(U), for if not, then ¢o(7) <
A. (See 3.57, and the discussion near it.) But v is regular and not measurable in
MY = MT_ so it is continuous at v. Moreover, cof’ (1) > w, while cofV (§(U)) = w
because b is not the only cofinal branch of &/. Thus we can fix p such that

p <vand i¥f(p) > 5U).
Since the measures in £}, all concentrate on bounded subsets of p, we also have
vr < p.

Let us fix a witness to the illfoundedness of Ult(M7, E;), namely f, € M, and
a, € [0(U)]<* such that 7(f+1)(ans1) € 7(fn)(an) for all n, where

7 My — Ult(MT | Ey)

is the canonical embedding. By 4.26, we can cover {f, | n < w} by aset Y € M7
such that |Y]| < pin M7. Let Y C N, where N is a rank initial segment of M7
and let P be the transitive collapse of Hull’™ (Y U p). Letting g, be the collapse of
fn, we see that

Ult(P, Ey) is illfounded,
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as witnessed by the g,’s and a,’s. But MY agrees with M7 up to v, so
Pe M.

Further, Ult(P, E}) embeds into i¢/(P), so i/(P) is illfounded. But & (P) is well-
founded in MY, so MY is illfounded, contradiction.

This takes care of the case that s has length two. Given an arbitrary finite stack
s = t~U, with ¢t having last model N, set T = W (t). Because we are in the coarse
case, T has last model N. But 7 is normal, so the proof above shows that I/ has at
most one cofinal, wellfounded branch.

One can prove the full lemma for arbtrary stacks using the normalizability of
such stacks. This is shown in [44].

OJ
We do not know whether the coarse coherence hypothesis in the lemma is neces-
sary, but we would guess that nice-UBH implies nice-UBH for stacks. We shall see
below that one cannot drop the niceness hypothesis completely.
We turn to branch existence. The main results here come from [19]. That paper
shows that nice-UBH implies that every countable, normal tree on V has a cofinal
wellfounded branch. Combining it with Lemma 4.25, we get

Lemma 4.28 Let F' be co_grsely coherent, and suppose that F-UBH holds; then V is
strongly uniquely (w1, ws, F)- iterable.

For iterations of uncountable length, we need UBH in the appropriate collapse
extension.

Theorem 4.29 (Folk.) Let F be coarsely coherent, § < crit(F,) for all v, and
suppose that F-UBH holds in V[G], where G is Col(w, 8) generic over V; then V is
strongly uniquely (07,07 F)-iterable.

Proof. [Sketch.] Given T in V of limit length < 6%, we can regard T as a tree on
V[G] because 0 < k. In VI[G], T is countable, so by UBH in V[G] and [19] in V]G],
it has a unique cofinal, wellfounded branch. Because the collapse is homogeneous,
this branch is in V. U

In one situation, UBH in V' implies instances of UBH in V[G]:

Theorem 4.30 (Woodin) Let § be Woodin, and assume that F-UBH holds, where
F is a set or class of extenders with all critical points > . Let T be a normal F-tree,
with |T| < 8, and let G be V-generic for a poset of size < 0; then V[G] = “T has at
most one cofinal, wellfounded branch”.
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Proof. [Sketch.] We may assume G is countable in V[H], where H is V-generic for
the countable stationary tower Q_s. Suppose toward contradiction that b and c¢ are
distinct cofinal branches of 7 in V[G]. T can be regarded as a tree on V[H], and b
and c are still wellfounded when it is regarded this way.

But let 7: V' — M = Ult(V, H) be the generic elementary embedding. Since M
is closed under countable sequences in V[H|, #T € M, and one can check that b
and c are wellfounded as branches of 7#7. (Essentially the same functions into the
ordinals are used in forming M] and MF7, for example.) One can also check that
in M, nT is a w(F)-tree. Thus 7(F)-UBH fails in M, contrary to the elementarity
of . g

At supercompacts, we catch our tail:

Theorem 4.31 (Woodin) Suppose that k is supercompact, F s coarsely coherent,
crit(F,) > K for all v, and F-UBH holds; then for all 0, V is strongly uniquely
(0,0, F)-iterable.

Proof. Given s an F-stack on V with last normal tree T, with s € Vp, let
Jj:V — M, crit(j) =k, j[Va € M. In M, the lifted stack js has size < j(k), and all
its critical points are above j(k). So by 4.29 and 4.30, j7 has a cofinal wellfounded
branch b in M. (Note j(k) is a limit of Woodin cardinals in M.) The copy map
o M] — M7 witnesses that b is wellfounded branch of 7. g

In the theory of hod mice, it is important that strategies be moved to themselves
by their own iteration maps. More precisely, we would like to know that ifi: M — N
comes from a stack of trees 7 by X, then i(XNM) =Xz yNN. We shall obtain this
from the corresponding property of coarse strategies 3 such that > witnesses that V'
is strongly uniquely (), 0, F)-iterable.

Lemma 4.32 Let F be coarsely coherent, and let 3 witness that V is strongly
uniquely (X, 0, F)-iterable. Suppose that i: V. — N comes from a stack of trees
T by X; then i(X) = ¥z y N N.

Proof. Both i(X) and ¥  choose wellfounded branches. Since these are unique (in
V1), the two strategies cannot disagree. U

The remainder of this section contains some examples and results related to
unique iterability that are somewhat removed from the main line of this book.

First, there are some counterexamples to forms of UBH to keep in mind when
considering strong unique iterability for stacks on V. The counterexamples involve
extenders overlapping Woodin cardinals, and thus do not apply to the I'~-Woodin
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models of 4.14, which have no such extenders. They involve stacks of trees that are
not nice.

If we allow our trees to use extenders that do not have w-closed ultrapowers in the
models where they apppear, then as we said above, Woodin has shown in [67] that
there are in fact normal trees of length w on V' having distinct wellfounded branches.
(His construction requires a supercompact cardinal.) The construction relies heavily
on the non-w-closure, and it is quite plausible to the author that normal trees on V'
using only extenders that are w-closed in the models they are taken from can have
at most one cofinal wellfounded branch.

When one moves to stacks of normal trees, w-closure is no longer enough to avoid
counterexamples, as Woodin has shown. His example builds on one due to Neeman
and the author. In [28], they construct a stack U= (Up, Uy ) of normal iteration trees
on V such that for some strong limit cardinal ¢ of cofinality w,

(i) Up = (F'), where lh F' = strength (F) =4,

(ii) U, is an alternating chain on V5 = V(;Ult(V’F), with distinct branches b and ¢,
and

(iii) both MY and MY are wellfounded.

The key here is that because Vs = V(;Ult(V’F), both 44" and 4 can be extended so as
to act on V, and the construction arranges that i,(F) = i.(F). But then M} =
Ult(V, ip(F)) = Ult(V,i.(F)) = M4, So not only are b and ¢ both wellfounded as
branches of U, in fact MY = M

In the example above, Ult(V, F') is not closed under w-sequences. However,
Woodin showed that under stronger large cardinal assumptions, we can modify the
example so as to get a stack of length 2 of “almost nice” trees on V. Namely, suppose
we start with g a normal measure on g, where dy is Woodin, and Fj an extender
with length = strength equal to dy. Let Z be a linear iteration of p of length w, with
direct limit model N. Let F' and ¢ be the images in N of Fy and dy. Then let Uy be
the normal tree determined by Z~(F'), so that the last model of Uy is M = Ult(V, F).
and let U; be an alternating chain on M with branches b and ¢ which, when acting
on N, satisfy i,(F) = i.(F). The construction of [28] gives us this Us; we only need
cof(9) = w to hold in V, it need not hold in N. Again we have MY = M?, so both

branches are wellfounded. But now U is satisfies all the requirements of niceness,
with the exception that 1h(Fp) is measurable in M.

Remark 4.33 We shall see in 4.40 that this apparently small departure from nice-
ness is essential.

153



In both examples, the branches b and ¢ are not equally good. For example,
consider the first example. Let E, and E. be the two branch extenders. Since
our chain was constructed by the one-step method, exactly one of Ult(V, E}) and
Ult(V, E.) is wellfounded. But in (U, U;7b) and (Uy, U, "c), these branch extenders
are applied to Ult(V, F') rather than V. We have taken advantage of non-normality
to hide the difference between b and c. If we normalize, the difference shows up:

W (Uo, Uy "b) = Uy b3 (F)
and
W(Z/[(), Z/Il”c) = Z/ll“c”z'zjl (F)

Here U;7b and U;"c are acting on V', where only one of the two is actually an
iteration tree, in that all its models are wellfounded.

This suggests that we might iterate V' for finite stacks by simply choosing branches
that are consistent with the iteration tree we get by normalizing. We shall show now
that in fact any iteration strategy with strong hull condensation that acts on normal
trees can be extended in this way.

In the fine-structural context, this was first proved independently by Schlutzen-
berg and the author. Schlutzenberg went on to prove a stronger form of the theo-
rem, in which the extended strategy acts on infinite stacks. ( See [11].) The proof
of Schlutzenberg’s stronger form requires significant new ideas. The construction
in the finite-stack case is at bottom the same as the one we are about to give in
a coarse setting. The details are simpler in the coarse case, however, because our
assumptions will imply embedding normalization coincides with full normalization,
and hence various maps are the identity that would not otherwise be.

Theorem 4.34 Let M = ZFC + “F s coarsely coherent”, and let ¥ be a complete
(1,0, F) iteration strategy for M. Suppose that ¥ has strong hull condensation; then
there is a unique (w,0, F) strategy X* such that

(a) ¥ C3¥*, and
(b) ¥* normalizes well, and has strong hull condensation.

Remark 4.35 Let s be a stack of length w all of whose finite initial segments are
by X*. We do not demand that the direct limit along s be wellfounded, as would be
required if ¥* were to be a complete strategy. Adding this demand would take us
into the difficulties that Schlutzenberg overcame in the fine-structural case.

Remark 4.36 We do not assume in 4.34 that 3 witnesses strong unique iterability.
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Proof. Because Fis coarsely coherent, F-trees on M are nice, and thus embedding
normalization coincides with full normalization. In particular, if (7,U) is an F-stack
on M, with @ being the last model of 7 and N the last model of U, and W (T ,U)
exists, then W (7T ,U) also has last model N. The embedding normalization map
o: N — N is the identity, and the last t-map of the extended tree embedding from
T into U is equal to the main branch embedding */: Q — N.

We begin by extending ¥ to X, acting on stacks of length < 2. Let (7,U) be
a 2-stack of F-trees, with 7 by X. We define So((7T,U)) by induction on Th(lf),
maintaining by induction that W (7,U) is by X. Let us write

W, =W(T, U v+1)

as before.

Suppose that W, is by >; we wish to show that W, is by X. For let n be such
that

Wy = W(Wna F),

where F' = EY. Let a = a(W,,W,,F) an 3 = B(W,,W,,F). We have that
Wy la+1 =W, [ a+1is by X. Soitis enough to show by induction that
Wysi a4+ A+ 1is by X for all A < 1h(W,). Clearly, we may assume that A is a
limit ordinal.

But now the construction of W(W,, W,, F') gives us a tree embedding ® from
W, | B4+ X into W,11 [ @+ A whose u-map satisfies u(f + &) = a+1+&. We can
use 4.11 to extend ®. To repeat its proof: if

c= Z(W"H‘l r o+ )\)7

then letting b = u ™! “c, we can extend ® to a tree embedding of (W, [ 84 A\)7b to
(W,s1 [ a4+ A) "¢, and since psuedo-hulls of normal trees by ¥ are by X,

b=3XWy [ B+A).

So b= [0, 8+ Alw,, so ¢ = [0,a + Aw,,,, as desired.
Now suppose U of limit length A. It is enough show that there is a unique cofinal
branch b of U such that setting

Wy = W(T,U"b),
W, is by 2. For then we can set

Yo((T,U)) = b,
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and our induction hypothesis remains true at A+ 1. To show this, let W = W (T ,U)
and let a = X(W). The results of section 2.7 go through for F-iteration trees on M,
because of 2.40. Adopting the notation of 2.7, let

b=br))(a)

be the cofinal branch of U determined by a. So W(7,U) " a is an initial segment of
W, and is by 3. We show by induction on £ that W, | £+ 1 is by X, the proof being
like the one in the successor case above. Let n = Ih(W (7T ,U)). Let

(b:q)o,bi T—)Wb

be the “putative tree embedding” we get from the construction of W,. (We don’t
know yet that the models of W, are wellfounded, so ® may not be a true tree
embedding.) Let u = u®, and let 7 be such that

n = sup a., = u(7),
Y<A

so that 7 < Ih(7), and 7 = m(b, T,U). We show by induction on £ that if n < ¢ <
Th(W)), then W, [(€ + 1) is by X. This is trivial if € is a successor ordinal, because ¥
cannot lose at a successor step. But if £ is a limit, then we have

§ = u(§)

for some limit ordinal & < 1h(7). Moreover, £ — 7 is contained in ran(u). Thus

by 4.11, letting ¢ = ¥(W), | £ and b = [0,£)r, we have u“b C c. It follows that
c=10,&)w,, so that W, [ £ + 1 is by X, as desired.

This completes the definition of >y on stacks of length < 2. Clearly, normaliza-
tions of stacks by X are by . Suppose now we have ¥, where n > 2, and

(%), whenever T is an F-stack of length < n played by ¥, and having last model
R, then there is a normal F-iteration tree on V with last model R.

There is then exactly one such 7 by 2.40, and we write
T =W(T).
We define ¥, as follows: if 71“<U ) is a stack of length < n + 1 played by %, 1,

Sai(T2U)) = Sa((W(T),U))).
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Clearly, 3,41 is an F-iteration strategy defined on stacks of length at most n+1,
extending ¥,,. If 77(U) is a stack on V by 3,1 with last model R, then (W (T),U)

is a 2-stack by ¥ with last model R, so W(W(T),U) is a normal tree with last
model R. Thus (%),41 holds, and we can go on.

Let
=%
We now show that > normalizes well. For this, the following definition is useful.

Definition 4.37 (1) Let W be a normal iteration tree, and ¢ a limit ordinal. We
say that b is a -branch of W iff § = sup{lh(EY) | a+ 1 € b}.

(2) Let W and U be normal iteration trees, let b be a branch of U of limit order
type (perhaps mazximal), and let ¢ be a branch of W (perhaps mazximal). We

say that b fits into c iff for any extender F used in b, there is an extender G
used in ¢ such that crit(G) < crit(F) < 1h(F) < 1h(G).

Lemma 4.38 Let W and U be normal iteration trees, and let & be a limit ordinal;
then for any 6-branch ¢ of W, there is at most one d-branch b of U such that b fits
mto c.

Proof. Suppose a and b fit into ¢, where a # b. We get the zipper pattern, that is F),’s
used in a and G,,’s used in b such that crit(F),) < crit(G,) < v(F,) < crit(F,41) <
v(Gy). If H is used in ¢ and Fy fits into H, then Gy must also fit into H, since it
doesn’t fit anywhere else in ¢. By induction, all the F}, and G, fit into H. But then
0 < v(H), contradiction. O

Lemma 4.39 Let (T,U) be a stack of nice iteration trees on M, and b a cofinal
branch of U; then b fits into br(b, T ,U).

Proof. This is clear from the construction, and the fact that the o-maps of embedding
normalization are the identity in this coarse case. See the earlier diagrams of the
extender tree of W(T,U). O

We show now that all tails of ¥ 2-normalize well. So let S be a stack by %
with last model @, and let (7,U) be by Xg , with last model R. We must see that
W(T,U) is by Xz, and that X g T a0 .r = Sg~w (T r Here we are making use of
the fact that the o-maps in this coarse case are all the identity.
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The proof is by induction on 1h(lf), and the harder case is lh(U/) = A+ 1 for some
limit ordinal A, so let us just handle that case. Let b = [0, \)y, and 6 = §(U). Since
S™(T,U) is by X, we see from the definition of ¥ that

Wo = W(W(SNT)). U)

is the unique normal F-tree on V with last model R = MY, Moreover W chooses
the o-branch
a=Dbr(b,V,U) =X W, I 1)),

where we have set W(S™(T)) = V. Letting
c=br(b,T,U),

and

=

1 = S((W(S), W(T, UIN))),

we must show that ¢ = ¢;. Setting

—

we have by our induction hypothesis that W; is according to . Because the em-

bedding normalization o-maps are the identity, the common part model M(W,) =

V;;W(T’m)‘) = Vi%. By our uniqueness lemma for normal F -iterations,

Wl = WO rnv

so ¢ fits into (W) = a. Thus it is enough to see that ¢ also fits into a.
Let 7 =m(b, T,U), and

p: Ext(T) — Ext(W(T,U))

be the map on extenders induced by the tree embedding ® of T into W (T,U).
Suppose F'is used in ¢; we must see that F' fits into some H used in a. This is true
if F'is used in b, since b fits into a. The other possibility is that F' = p(G), where
G € ran(s]), so assume that. Let

q: Ext(V) — Ext(W)

be induced by the tree embedding ¥ of V into W(V,U), and let p = m(b, V,U).
Letting Ej, be the extender of z'zlf, we have that 7 is least such that Fj is an extender
over M7, and p is least such that FE} is an extender over MY, so that p is least such
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that M) agrees with M7 through dom(E). It follows that br([0,7)r, W(S), T+
1) = 1[0, p)v, and thus G fits into some K that is used in [0, p)y. But then F' = p(G)
fits into q(K), because t® and tg’ are both FEj-ultrapower maps, so agree with one
another on 1h(K) + 1. (Letting N be the last model of 7 and i: N — R the
canonical embedding, 7 and ¢7 agree with the common last t-map i/ of ® and W
this far.) Since ¢(K) is used in a, we are done.

We shall not give a full proof that ¥ has strong hull condensation. To see how
it goes, suppose ®: T — U is an extended tree embedding, where U is by X. Let
m: N — P be its last t-map, where these are the last models of 7 and &. We must
see that X7y = 37, p. Let V be of limit length and by both strategies. Now X7 x (V)
is determined by (W (T,V)), and Xy p(7V) is determined by (W (U, wV)). Using
®, we can obtain a tree embedding from W(7,V) into W(U,wV). We can then use
the fact that 3 condenses well on normal trees to show that X7 y(V) = Xy p(7V).

]

This gives us a result on strong unique iterability that does not require a super-
compact.

Theorem 4.40 Let F' be coarsely coherent, and suppose that V' is strongly uniquely
(1,0, F)- iterable; then V is strongly uniquely (w,0, F')-iterable. Moreover, letting %
be the complete strategy that witnesses this,

(a) 3 normalizes well and has strong hull condensation, and

(b) if s is a stack of length w of countable normal trees on V with last models M;(s),
then the direct limit of the M;(s) under the iteration maps of s is wellfounded.

Proof. By the first part of the proof of 4.34, we have a strategy Y witnessing that V'
is (w, 6, ﬁ)—iterable. Our hypothesis implies F-UBH, so by 4.25, ¥ witnesses strong
uniqueness.

That > normalizes well and has strong hull condensation follows from 4.21. ITtem
(b) in the conclusion comes from the branch existence arguments of [19]. Note for
example that each 7;(s) is continuously illfounded off the branches it chooses. O

4.4 Fine strategies that normalize well

Next, we show that if 3* is an iteration strategy for a coarse N* that normalizes
well, then the strategies for premice induced by ¥* via a full background extender
construction also normalize well.
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The reader should see the preliminaries section for our definitions and notation
related to background constructions, and to the conversion of iteration strategies
they mediate.

Theorem 4.41 Let C be a background construction done in some universe N* |=
ZFC, and let ¥* be a complete (X, 0)-iteration strategy for (N*,ﬁc). Suppose that
¥* normalizes well. Let M be a model of C, and ¥ = Q(C, M,¥*) be its induced
strategy; then X normalizes well.

Remark 4.42 We believe that the proof of 4.41 works even if the construction C
is allowed to use extenders that are not nice, so that embedding normalization does
not coincide with full normalization at the background level. This just means that
certain embeddings are no longer the identity, and hence must be given names in the
proof to follow.

Proof. We must show that all tails of ¥ 2-normalize well. We consider first a
2-stack on M, | itself.

Let 7 be normal on M, ko> and U normal on the last model of T, with (7 ,U)
by ¥. Let (T*,U*) come from lifting (7,U) as above. We shall show that W (T ,U)
lifts to an initial segment of W (7T*,U*). (If U has limit length, W (T,U) lifts to
W (T*,U*). If it has successor length, then dropping along the main branch of ¢ can
cause W (T ,U) to lift to a proper initial segment of W (7*,U*).) Since W (T*,U*) is
by ¥*, we get that W (T,U) is by X.

More precisely, let

hft(Tv MVO:kD’(C) = <T*7 <77§T> lz ‘ 5 < 50>a W? ‘ 6 < 50>>

We are using “1)” rather than “m” for the maps so as not to clash with our notation
for embedding normalization.
Let

. i760(©) .
lft (WL, My 8, (C)) = @ (G ) 1€ < 1ld), (o | € < Ihtd)),

u (g u
Let 7¢ : M{ — M, be the copy map, and
Ve = pe o,
so that
’(/JZE/{ : ./\/lzé{ — Qg,
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where R
. io,go’iO’5 (©)
Qs = Mycye™
So ¢ is the lifting map on MY given by our conversion of (7 ,U) to (T*,U*).
The embedding normalization W (7T ,U) has associated to it normal trees W, on
MC ,  for v < 1hif, and tree embeddings

vo,ko?
@, W, =W,

defined when n <y v. ®, , consists of its u-map ¢, : Th W, — ThW, for n <y 7,
and for 7 € dom ¢, -, a its t-map w7 : M MZ:”W(T). We have also

R, = last model of W,,
and o, : MY — R, and F, = o, (EY).
W1 = WO, F)

when 1 = U-pred(y + 1).
Similarly, W (7T*,U*) has associated trees W} on N* for v < lhif* = 1hlU, together
with tree embeddings
o)W, =W
defined when n <y« v, or equivalently, n <y 7. ®; . determines a u-map ¢, . :
lhWwy — bWy, and for 7 € dom ¢y, a t-map 7?2”. Since ¥* normalizes well, the
W, are by X*; moreover, by 3.50, the last model of W is /\/lg’ We have that

:;Jrl = W(W;;7 E’Z;{*)

when 1 = U*-pred(vy + 1) (equivalently, n = U-pred(y + 1)).

We shall prove that each W, lifts into W} 1h W, and hence is by . The proof is
by induction on 7, with a subinduction on initial segments of W, . Basically, we are
just showing that embedding normalization commutes with our conversion method.
The proof is like the proof that embedding normalization commutes with copying
given in 3.54, but there is more to it because in addition to copying, we are passing
to resurrected background extenders. Nevertheless, the main quality required to put
such a proof on paper is sufficient patience.

For v < 1hid, set

WOy, Moy sy, ©) = (S, (0 7)€ < TOWL), (07 | € < IhW)).

We shall show, among other things, that & = W Tlh W,, so that W, is by 3. Our
overall plan is summarized in the diagram:
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lift

* *
W, ——— &AW
vy Py

lift

W, ——— s SE AW

As before, we write z(v) for ThW, — 1 and z*(v) for lh W} — 1. We write oo for
z(v) or z*(v) when context permits. So R, = MZ\()Z) = MY and if (v,7]y does not
drop, then ¢, (2(v)) = 2(7), and 77}, = 7%7: R, — R,. Let us also write

z(v

W
Cz = Zo,g (C)

for the construction of M?};. In this notation,
Qy = (Mn%lg’)cz*ma
VV;k * ‘W* JA* . *
because M_.7 ) = MY and G e (y) = ig o Zg:&).
Lemma 4.43 Let v < lhU. Then

(1) St =W:[lhW,.

(2) Whenever v <y v and (v,v]y does not drop in model or degree, then for all
T<hWw,,

(2) <77;V,7(T)vlqzw(7)> =7 ((ny, %)), and
(i) ], sy 0 T = 72T 0 Y.
(3) Gnw Sy, if nv <7 andn <y v.
(4) (@) Ml L) = (1), and Cl,) agrees with C .., at and below this point,

(17) 1/}2(7) 00, = wg

Proof.
Here is a diagram related to 4.43:
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7

The fact that ¢, maps to @) is (4)(i). The fact that the triangle on the top commutes
is (4)(i7). That the square on the right commutes is (2), in the case 7 = z(v). We of
course need (2) at other 7 as well. That square on the left commutes is a basic fact
about embedding normalization.

The reader might look back at the diagram near the end of the proof of 3.55.
MY in that diagram corresponds to @, in the present one. We can take R} of
that diagram to also be @), in the present one, because our tree on the background
universe is nice. We don’t actually need that; if the background extenders were not
nice, then in the present case we would be introducing some o};: ), — R via the
embedding normalization of (7*,U*). ¥% would map into R}, rather than @,, and
the present diagram would transform into the previous one. (See remark 4.42 above.)

We prove 4.43 by induction on . For v =0, Wy =T and W} = T*, so (1) holds;
moreover, (n¢,1¢) = (nl 1) and ¢ = ¢I. (2) and (3) are vacuous. (4) holds: in
this case, z(0) = 2*(0) = lh(7) — 1, and <772(0)l2(0)) = (nY, %) because U is on the
last model of 7. That gives (7). For (i), ¥¥ = pyory = @/Jg;, since pg = identity and
70 = ¢l . But 0p = identity, so ¢ff = ¢ 0 0, as desired.

Now suppose Lemma 4.43 is true at all v < . We show it at v 4+ 1. Let
v = U-pred(y + 1), and

o= a;r’u
= least 7 such that F, is on the M»7-sequence.
Set ' = F,. So

W»y+1 - W(Wy, F)
=W, [+ 1) (F)ip W),

Then v = U*-pred(vy + 1), and
;4—1 = W(W;Eg*)
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Eg came from lifting Eg’ by 1&2’, then resurrecting it inside the construction of M%’*,
then using the background extender provided by this construction. M{f " is the last
model of WY, so the construction in question is ClL. ()" More precisely, let 1%’ <E*Ly{ )
be the last extender of

Q'VKQ? 0) =def P
and _
G= U(#,l%)[P]Ws{(Eg))’

where the resurrection is computed in C], ()" Set
G* = background extender for G provided by CJ. )
Then EY" = G*, and
ijkJrl = W<W:7 G*)
Recall that oo = a(W,,, F).

Claim 4.44 o = a(W},G*), and G* is the background extender for o o 17 (F') pro-
vided by C}, where o is the resurrection map o,y oy [Myz iy || (I3 (F),0)] of C.

o4

Proof. F'is on the M2 -sequence, so there is a background extender H* for ooy (F)
provided by C?. By induction, the extender EZV 7 used to exit MZV: comes from lifting
and resurrecting EY". But F comes before E’ 7. so H* comes before EZV 7 in Cy.
But letting E) = (Fy)C, we then have

Cr16 = C.10

for all 7 > a, and in particular, for 7 = z(y). Moreover, the part of the lifting and
resurrecting maps acting on F' does not change from « to z(7):

ool (F) =o' o] (F),

where ¢’ is appropriate for resurrecting wzm(F ) in ./\/l:ﬁ), and hence also by (4)(i)
in MZ‘:%) = ./\/l,Ly{ But our inductive hypothesis (4)(ii) yields
Ul (F) = ¥l 0 09(E)
= Ui(EY),
s0 0ol (F) = o' op}(F) = o’ (W4 (EY)) = G. Thus H* = G*. Hence oW, G*) < cv.
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But suppose G* € C7 for some & < a. Since h B < h F, Ih(E)") < 1hG*,
13 13 13

*

and so G* occurs after E;V” in Cg. So MZV” does not compute Vj, o+ the same way

that M?}; does, for all § > ¢ This implies G* ¢ (Cg, for all § > &, contrary to
G*eCL .,

This shows a = (W3, G*). In the course of the proof we also showed the rest of
Claim 4.44. g

Claim 4.45 1. The iteration tree in lifttONV,[(a + 1) (F), Mk, C) is
Wil (o + 1)7(G*).

2. B=pWC",

Proof. Part 1 is just Claim 4.44 restated. Part 2 follows at once from the fact that
the lifted tree is normal; cf. 2.45. O

Since a( Wy, F) = a(Ws, G) and " F = g9 we have ¢,,,41 C ¢ 41
Remark 4.46 If DYN[0,y+1]y = @, then bW,y =W W2, |, and ¢yy1 = ¢4,

We now show that (1) and (2) of Lemma 4.43 hold at v + 1. For this, we show
by induction on § that for £ <1h W, 4, letting

S =S8

v+

Induction Hypothesis (f);:
(1) S*IE =W 1€

(2) if (v,v + 1]y does not drop in model or degree, and ¢ ,4+1(7) < &, then

1 1 *v v Jv

() <ngjv+1(7)’ l;:r,vﬂ(T)) = 7T7-N+1(<777-’ [7)), and
1 V. v v

(b) wgiﬂ/ﬂ(ﬂ © 7T’Yﬁ+1 - 7T‘rﬂ—i_1 © wr'

Note that the limit step in the inductive proof of (})¢ is trivial.

Base Case 1. { = a + 1.

We have W, (1 [(a+1) = W, [(a+1) and W, [(a+1) = Wi [(a+1). Since Lemma
4.43 holds at v, we get (1)e(1). For (1)¢(2), let ¢y 41(7) < @+ 1. Then 7 < 3 and

Gui1(T) = 7. Moreover 27+ and 7271 are the identity. So (1)¢(2) boils down to
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(Y = (n¥, 1Y), and ¢! = Y. This holds because W, [(7+1) = W, 11 [(7+1),
so their lifts are equal.
Base Case 2. £ = a + 2.

We have

Wynil(a+2) = Woal(a+1)7(F)
and
Pl +2) = Wi (o + 1)7(G).

By Claim 4.44, G* is the background extender for o 07! (F') provided by C*!. So

S Na+2)=8"(a+1)(G)
= W:+l f(a + 2)7
and we have (1)¢(1). (Note that G* is applied to M$" in 8%, because lifting produces

normal trees.)
For (1)¢(2), the new case to consider is 7 = . Note that

y+1

@Z’g - w )
v+l Wy
Wﬁ = 18a+1

and

7%‘_1/,'er1 ZWW-H
B Byat+1:

The first because W,41[(8 + 1) = W, [(5 + 1), and the second two by our definition
of embedding normalization. (Note we are in the case that (5,a 4+ 1]y, ., is not a
drop in model or degree.) But

+1 W +1
Va1 © g, 2111 =g, 3:1 © QW

holds because lifting maps commute with the tree embedding in a conversion system.

This gives

v+1 v 'y+1 V,q/—&-l v
Vo410 Tg Tg o 1y

as desired.

IfFThW, = B+ 1ory+1€ DY or deg”(y+1) < deg”(v), then h W, 11 = a + 2,
so we are done. So suppose lhW, > 4+ 1, and (v,v + 1]y is not a drop of any kind
in .
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Inductive Case 1. (f)¢+1 holds, and £ > a + 1.
We must prove (t) at £ + 2. We are assuming { +1 <1hW, ;. Let

— Wt
E=E/",

Let o be the resurrection map for wg“(E) in Cg“, the construction of Mg =

W .
M, 7. That is,

0 = o g [Mege ey (9 (B), 0))
Let
E* = background extender for o o z/ﬂH(E) provided by (Cgﬂ.
S0

S +2) =S+ 1)7(EY).
Claim 4.47 E* = E; "'
Proof. Since £ > o + 1, we can write

f: ¢V,7+1(€), 52 6

Let
E = B},
so that
E=n{""(E)
Letting H =0 o ;bgH(E), we have
H =00 W™ ont*\(E))

=go (””“owg( )

by induction. Let ¢ be the resurrection map for wéf(E') in Cg—, that is,

0 = 0 Mg (b Ug¢(E), 0)].

It is not hard to see that
P

: (6) =o.



This is because 7T—7+1(< ¢,lg) = <777+1 l7+1> by induction hypothesis (2)(a), and

similarly 7r”7+1(w£—( )) = w*l( me " (E)) = {7 (E). But then

E;/V;+1 _ 7?3»7+1(E1/V:)

£ 3
= 7r£'f H (background for 6(17& (F)) in C¥)

= background for o (7 ;’7+1(¢g(E))) in (CgJrl
= background for H in Cg“
= F*
as desired. 0
From Claim 4.47, we have that S*[(£ + 2) is the unique normal continuation of

SHE+1) = Wi 1€+ 1) via B . That s, 8*[(€ +2) = W2, [(€ +2).

It remains to show, keeping our previous notation:

Claim 4.48 ¢]f] o] =77 oy

Proof Both maps act on /\/l?i”l The right hand side embeds it elementarily into

w v of (C§+17 where
1) = 720 (s )
The left hand side embeds ./\/lg”1 elementarily into M, oedsaey of Cgill So first we
show (f)¢11(2)(a):

Subclaim 4.48.1 (n] 1+ l7+1> 7?V7+1(<77§+17l'/ ))-

M1y tetr &+1 &+1
Proof. Let

0 =W, i1-pred(€ + 1)
=W, -pred(§ + 1)
= &) g-pred(§ + 1)

Case 1. crit(E) > crit(F,), or 6 < j.

This is the case in which ¢, 1 preserves tree predecessor, that is, 6 = Guyi1(0) =
yo11(0) for 0 = W,-pred(¢ 4 1). We have

" o
MP = Ult(P, B),
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where P < /\/lgv". Let

P = 7T§’7+1(15).

Embedding normalization leads to
MU = Ult(P, B),

where recall £ = WE’VH(E). Letting p be the resurrection map for P in C)*', that is

p= 0y el 5 (P,

p maps 1! (P) into (Mn,l)(cgﬂ, where
(n,1) = Res<ng“,zg“>[ gH(P)]a

we have

1 1 W
(Ugjﬁ ) lzj,-rl> = 20,5—:11 (<777 l>)7

because W, [({+2) = S*|(§+2) is a conversion system. Note that %g,7+1(<ng+1’ lg“)) =
(g™, 17" by induction. (TLe. Subclaim 4.48.1 at § instead of £.) Also, %g”“(@bg(f’)) =
s (T (P)) = T (P). 1t follows that
(n,1) = %g’wl(ReSng,lg [v5 (P)]%).

Thus

1 1 WV
(i B0 = i ((n,1)

W * _
= @e,gﬁ o 7T9’f’“/+1 (Resng,le’i [Q/Jg(P)])

v+l Wy _
=gl oigg (Resy [0 (P)))

* , 1 v
= Wg_::_ (<77§_+17 l'§+1>),

as desired.

Case 2. Otherwise.

In this case, we must have 8 < ¢ and crit(£) < crit(F). It follows that 0 = 3,
and W,-pred(§ + 1) = W, 1-pred(§ + 1) = 8. The argument above works, with

§=60=pand P= P, and 7Tg’7+1 and 7?9'5’%1 being replaced by the identity map. (
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If & < B they are already the identity. This case is similar to the case § < 5.) The
relevant calculation is

W y+1
(e 17} = 15 (Reso [0 (P)]

_Zﬁgﬂ(ReSn" i[5 (P)]%5)
= a0 ot (Resy in[v(P)]%)

*py+1
= ﬂ?ﬁf (<77§y+1, lgy-i-l))

)

The first equation holds because W2, [(§ +2) = S*[(£ + 2) is a conversion system.
The second comes from the fact that Wi, [(8 + 1) = W;[(8 + 1). The third
comes from properties of embedding normalization. The last comes from W} being
a conversion system. O

We now finish proving Claim 4.48. We keep the notation above. Let us assume

that we are in Case 1. Let z € Mg”l be arbitrary, and let

Dj\’Ul

z=la, g,

where a C hy is finite and f € P. (We assume k(P) = 0 for simplicity.) Then

Wi omgl @) = ol (7 (e, f17)
=7 ([ @), 7 (D))
(by the properties of embedding normalization, and the fact x, ’7+1(P) = P and

e " (E) = E)

Wit
= [poug™ om™ (a). poug™ o mp T ()
) and p resurrects ¢ T (P), as defined above. We have

7 (G), and p =757 (),

1
where o resurrects z/ﬂJr

(E
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Further )
*V, +1 12 *V, +1 14
Ten oV (r) =mg [ (Ve ([, f]p))

vy+1 v = v M;‘N:
7T§—+1 ([U © ¢g(a)a po %(f)]Eyv: )
3
T 00 uzla). A o po (s
— é 3 g p 2] EW:+1
3
M;’VZH

w
+ "+ + + M, VTl
[G © ¢2 ' © ”g l(a)vpo ¢g ' © ”;*w I(J )]E*e

The first 4 lines come from the way embedding normalization and lifting work. The
last line comes from our induction hypothesis.

We leave it to the reader to finish the proof in Case 2. This proves Claim 4.48.
O

Returning to the inductive proof of (1), we see that the limit case is trivial. We
are left with

Inductive Case 2. ¢ is a limit ordinal, and (})e.

We must prove (f)e¢41. We have S*[§ = W2, [€. Since ¥* normalizes well, the branch
[0, €]W§+1 of Wi, produced by embedding normalization is equal to ¥*(S*[£). Thus
S TE+1) =W, [(§+1). One can then prove (f)¢11 by looking at how the objects
it deals with come from the MY and MM for 7 <w, ¢,}41(£), and using our
induction hypothesis (f)¢. We omit further detail.

This completes our inductive proof of (1) and (2) of Lemma 4.43. We have already
proved (3) of Lemma 4.43. We now prove (4).

Recall that z(n) = ThW, — 1. The following diagram summarizes the proof of

(4).

v+1

¥
Oy+1 2(v+1) w3
u Wot1 - v+1
M’H—l Mz('y+1) Na(y+1)okz(v+1) < Mz(fﬁ»l)
U v,y+1 *v,y+1
E’Y /I\ /l\ﬂ—z(u) /l\ﬂ-z(u) /I\
U__ AW N wg
MV oy MZ(Z/) - RV v an(u)vlz(u) MZ(I/)

z(v)
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That the square on the right commutes is (f).(y+1). We have shown already that the
square on the left commutes. We have that ¢y¥ = "V () © Ov by induction. Further,
the diagram

U
W

MY —— € Mt = Mt

’y+1 an(’y+l)alz('y+1 ’y—i—l

i i’
v,y+1 v,y+1

u N
M an(u)’ z(u)

*

c MW — ye

z(y)

V

commutes, since it is part of the copy and conversion of U to U*. So ¥ J41 agrees

with wz(wl
ac [)\E,Zf]<w)

U
00y onraniy .. But MY, is generated by ranig ., union Apu. For

w'y 2(v+1) © T+l (a) = 1/}3(7) © (77(@- (*)
To see (%), note first o, [\ BU = Oqyq1 A B by facts about embedding normalization.
(See 3.49.) So it is enough to show that 1" (v +1 agrees with ?/’Zm on A\r . But for

a = ol as before, W,[(a +1) = Wypil(a +1). Also, Ap, < Agw,. Thus for
A=Ap, )

A= 9N
— 7ﬁD’YJrl r
+1
wZ(’y+1 r
This completes the proof of ().
But 9% = 2() © 0y by induction, and YU agrees with ¢, on Agy, by the
gropegtles of conversion systems. So 1/)2 1 agrees with wz;fy 11) O 0441 ON /\Eg» as
esired.

This completes the proof of (4) in Lemma 4.43 in the case that [0, + 1]y does
not drop in model or degree, so that we have z(y) = hW;; — 1 as well, and

Mw—l M. ”H) We leave the dropping case to the reader.
This completes the proof that if Lemma 4.43 holds at 7, then it holds at v + 1.
Now suppose v is a limit ordinal. Let

A =sup{a’¥ | ¢ <A}
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So W (T, Ulv) = W, IA, and W (T*,U* ) = Wi, Also
SIIA = WJIA,
because S [ag = Wi lag = Wilag for £ < A Since ¥* normalizes well, [0, )y =
S*(WzIA). Thus
SITA+1) =WIT(A+1).
We now go on to prove (f)¢, for £ > A, by induction. The proof is similar to the

one above. Having (f)¢ for & = IhW,, we go on to prove (4) as above. We omit
further detail.

This proves Lemma 4.43. U
Now let [h(U) = y+1. So W(T,U) = W, and W(T*,U*) = W;. By Lemma 4.43,
W, lifts to W2, so W, is by ¥. Let 7 = 2(y). Let P = MY R = M and

S = MZV;. We have N = M = M,y in the construction of ./\/lff = MZV;, by
Lemma 4.43. Moreover, the lemma tells us that W&l = 1) o 0,. Let then Q be the
strategy for NV induced by the construction of sz Then

YTy p = Q¥
— Qdﬂ;’oaw

— (QTZ);/)UW
= (EW%R)O-'Y .

Thus X 2-normalizes well.
Finally, we must show that all tails of 3 2-normalize well. It is enough to consider
tails of the form ¥ o, where 7 is normal on M = M, ¢ Let

vo,ko

hft(T7 M’ (C) = <T*’ <772—7 lg- | f < fO)? W? | § < §0>>
Let €2 be the iteration strategy for

.T*
* 10,50 ((C)
Q =M 7 T

Mgy otey

that is induced by > The argument we have just given shows that € 2-

- MT"
normalizes well. But X7 ¢ Ois by definition the pullback of Q7+ via wgo. So by 4.4,
X7 ¢ 2-normalizes well.
This finishes our proof of Theorem 4.41. U
Strong unique iterability yields strategies for coarse premice that normalize well
for infinite stacks. In particular, assuming AD™, if (M,X*) is a coarse I'-Woodin
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pair, then X* normalizes well for countable stacks. We believe that by extending the
proof of 4.41 one can show that normalizing infinite stacks commutes with lifting to
a background universe. Thus if we assume in the hypothesis of Theorem 4.41 that
>* normalizes well for infinite stacks, we can conclude that the induced strategies
Q(C, M, ¥*) normalize well for infinite stacks.

4.5 Fine strategies that condense well

We show that if >* is an iteration strategy for V' that has strong hull condensation,
then the strategies for premice induced by ¥* via a full background extender con-
struction also have strong hull condensation. The proof is routine, but we include it
for the sake of completeness. The corresponding result for ordinary hull condensation
was proved by Sargsyan in [30].

Theorem 4.49 Let N* = ZFC + “C is a background construction”. Let ¥* be
a (A, 0)-iteration strategy for (N*,ﬁc). Suppose that (v, k) < 1h(C), and X is the
complete (N, 0)- iteration strategy for Mfk induced by X*. Suppose finally that ¥*
has strong hull condensation; then X has strong hull condensation.

Proof. We show first that > condenses properly on weakly normal trees. The
proof that all its tails 3, do so as well is similar. We then deal with the pullback
clause in the definition of strong hull condensaion.

Let U be a weakly normal iteration tree on M = ME) 1k, that is by X, and let
®: T — U be a tree embedding, with

@ = (u,{s5 | B < I(T)), {t5 | B+ 1 < In(T)),p).

Let Ng = Ng’, so that sg: J\/lg — Npg <l./\/l“ . The reader will lose little by assuming

that 7 and U are fully normal, so that Ng = /\/l o(8)- Nevertheless, we shall not make
that simplification here.
We must see that 7T lifts to a tree by ¥*. Let

Lift(U, M, C) = U", (b, me | £ < 1h(U)), (ve | € <1h(U))).
It is enough to show that 7 lifts to a psuedo-hull of U/*. For this, let

hft(Ta M7 C) = <T*a <77§a lf ’ f < lh(T»? <90€ ‘ f < lh(T)>>
Note that both 7* and L{* are fully normal. (See 2.45.) Let C, = i} ,(C) and
D, =, (C). Let Qo = and X, MD“ . Thus

nl’

Yo: M = Qa,
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and
ot My = Xq
are the liftup maps of the two conversion systems. The map that resurrects @, (E7)
inside C, is
Oa = o ta[My, [(I(pa(E7)), 0)]:

7’0(7la

Similarly, the resurrection map for 1, (EY) is
Ta = 000ma [ Moy, | ({0 (E)), 0)].

For any background construction D, if G is the last extender of ME’O, we write
BP(G) = FP? for the background extender of G given by D. (Note G is the last
extender at most once.) Thus

E;f* =B%o Oq © Qoa<EZ;)

and
EY" = BP o1, 09 (EY).

Let us write R, for the level of C, that has o, 0 p,(E]) as its last extender, so that
0, maps an initial segment of @, to R,. Similarly, let Y, be such that 7, o ¥, (EY)
is the last extender of Y,,.

We shall construct a tree embedding ®*: 7* — U* by induction, with

@ = {u, (s | B < I(T)). (ws | B+ 1 < 1h(T)), q).

Notice here that u® = u = u®. Because ®* is to be a tree embedding, this completely
determines the putative ®*, and what we have to show is just that ®* is indeed a
tree embedding of 7* into U/*.

For v < 1h(7), let

O = &%y = (WHE[E+1 <}, (ra | B <), (ws [ B+1<7),4)-

Let v be the common “minimal realization” map of ® and ®* given by v(0) = 0,
v(a+ 1) = u(o) + 1, and v(A) = sup,., v(a) for A a limit ordinal. We show by
induction on v that

(1) ®*|v is a tree embedding of T*[v into U*,
(2) for a <7, Yy(a) © Sa = Ta O Pq, and

(3) for ar < s Ta(Qa) - @Dv(a)(Na) g Xv(a)~
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Let (), be the conjunction of (1)-(3). The following diagram illustrates the
situation:

"/)u(a) *
Miia) » Xu(a) € Mﬂ(a

AZ/{ "Z/[*
y(a),u(a) "o (o), u(a)

djv(a)

ta Moy = Xo@) € MY, | we

Sa Ta

M] ———— Qae MI’

Some care is needed in reading this diagram. The bottom rectangle is just (2)
and (3) of our induction hypotheses, and is always valid, provided we understand
that s, may only be elementary as a map of M/ into a proper initial segment N,
of Mz;’(a). Similarly, r,(Q.) may be a proper initial segment of X, ). (These would
be the relics of gratuitous dropping along [0, «)r or [0,v(«)]y.) The top rectangle
involves only the conversion of U to U*, so our induction hypotheses are irrelevant.
It is valid if and only if (v(«),u(cr)]y does not drop (in model or degree), so that
izj(L)’u(a)(Xv(a)) = Xu(a)- In the case that (v(a),u(a]y drops, something like it is
valid. We discuss that below.

To start with, ®% is given by setting v(0) = 0 and ry = identity map from
N*= M to N* = MY".

If A is a limit, and (), for @ < A, then

* *
AT U(I)a
a<A

in the obvious componentwise sense. It is clear that (x), holds.
If v =X+1for A <1h(7) a limit such that (x),, then ®3,, is just ®} together
with the map 7y, defined as follows. Recall that v preserves tree order, and

v(A) = supv(«).

a<<A

For a <7 A and # € MT" | we set



Using (1) at v < A, we see that ry is well defined, elementary, and as required for
(%) at1-

Finally, suppose we have ®},_ | satisfying (*)s+1. The whole of ® ,, is determined
by u(«), which is already given to us, but we must see this choice works; that is,
that ()a42 holds for the system it determines.

Let
G=ET,
G" = EZ;* = (BCQ ©0q0 (Pa)(G)a
H == E,Zj(a)7
H* = E,Z;{(;) = (BDu(Ot) 0Ty O wu(a))(H)
Set also
Wo = ii{(*oz),u(a) O Ta,

as we are forced to do. Note that w,(C,) = Dy(a). Lemma 5.3 below will tell us that
the following claim is what we need.

Claim 4.50 (a) Ty@)© Yu(a) Oiﬁ{(a)
(Ih(G) +1).

(b) wa(G*) = H*.

05, [ (Ih(G)+1) = ii’f(* 0740040 Py |

u(a) a),u(@)

Proof. We prove (a). Suppose first that (v(«),u(a]y does not drop. In that
case, ig’(*a)’u(a) (Xu(a)) = Xu(a), so the top rectangle in the diagram above is valid.
Expanding the diagram, we have

wu(a) Tu (o)
u
Moy = Xue) = Y
Yo(a) u(a) o () u(a) Yo(a),u(a)
’va(a) Ty ()

My — Xo@) — Yi)

Sa Ta Ta

MT

(0% Do

Qa R,

Oa

Notice that r(0a) = Ty). So the diagram commutes, and in particular the two
routes from M7 to Y, () around the outer edges are the same. This gives us (a).
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Suppose now that (v(«),u(a)]y drops. Let I = s,(G). Since H = iﬁ’(am(a)(_f),
all extenders used along (v(«), u(a]y have critical points strictly below the current
image of A;. For simplicity, let us assume there is just one such drop, at &, where
v(a) <p € <y u(a). (It doesn’t matter whether or not the drop is gratuitous.) Let

0 = U-pred(£). We have the following diagram:

wu(a)

Tu(a)

MZ{L{(O‘) - Z.i{(*oz),u(a (X”U(CY)) —_— Xu(a) — Yu(a)

k
% e % e % e
M h X ¢ Y,
ig,¢ i ig,¢
Mzé, Pe X, J 7 l Y,
z‘ff&)ﬂ iff(*a),a
Vo(a v(a
M) 2 X - Yo(a)
Sa T T
MT = Qa - R

In the diagram, j = qun[@bg(M?M]De resurrects the drop in U, and 7p = [ o j.
We have X¢ = ig¢(Z), and 7¢ = dc(I). Also, h = if¢(j) and k = i, (7). The
unlabelled vertical arrows on the far left are the maps of U. Finally, r4(04) = Ty(a)-

The facts we have just enumerated imply that all parts of the diagram commute
on the image of Ih(G) + 1. (For the square at the bottom left, this is our induction
hypothesis.) The reason for restricting to the image of Ih(G) + 1 is that the resur-
rection maps j, h, k and the 7’s and o, are partial, defined on initial segments of the
models displayed above. But all are defined on the image of Ih(G) +1 in that model.

The fact that the two routes from M7 to Yi(a) going along the outer edges are
the same when restricted to Ih(G) + 1 gives us part (a) of the claim.

Part (b) follows easily from the fact that the images of G in Y,,) along the two
outer edges of the diagram are the same.
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This proves Claim 4.50. U

By Lemma 5.3, there is a unique tree embedding ¥ from 7*[(« 4 2) to U* that
extends @, and satisfies u¥(a) = u(a). Let ®%_, be this U. We check now that
(%) a2 holds.

Let 8 = T-pred(a + 1), and let 7 = U-pred(u(a) + 1). Because ® is a tree
embedding, 7 € [v(5), u(5)]y. Let us assume for simplicity that there is no relevant
dropping, that is,

(a) (a+1) ¢ D7, and
(b) DY N [w(B),v(a+1)] = 0.
So M7, = Ult(M},G) and MY ) = Ult(MY H)). Let p = izjﬁ)ﬁ) osg and p* =

v(a+1

(
iﬁ’(*ﬂ)ﬁ o rg. The lifting construction yields M7, = Ult(M]",G*)) and Mﬁ’(’;ﬂ) —

Ult(MY" | H*), moreover
Xo(at1) = ig[(*ﬁ),v(aJrl)(XU(ﬁ))'
Tv(at1) 18 given by the Shift Lemma:

oty ([ FI? ) = [wa(a), o* (DX

Here is a diagram of the situation.

¢v(a+1) «
u u
Mv a+1) Xv(a—f—l) € MU(OH—l)
Sa+1
Ta+1
Pa+1 ¢
MaTJrl Qa1 € MaT+1 H*
H
U Pr u*
M X, e MY
G G*
1[) *
P u v(B) P ux*
Mis) X € My
S8
T
7 T
M - Qp € Mg
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The diagram resembles the diagram associated to our proof the copying commutes
with embedding normalization. That is not an accident, of course. Embedding
normalization yields tree embeddings, and lifting to a background universe is similar
to copying. We have simplified the diagram above by ignoring the fact that sz is
only elementary as a map into Ng, which may be a proper initial segment of ./\/lf)’( 8)-
In that case, s maps Qg to the corresponding initial segment 1,3 (Ng) of Xys).
Similarly, so41 and 7441 will then map M, and Q41 to proper initial segments
of le(a-s-l) and Xv(a+1).

We are asked to show that t,a41) © Saq1 = Pat1 © Tas1, in other words, that
the rectangle on the top face of the cube commutes. We argue just as we did in the
proof of 3.55. The rectangle on the bottom commutes by our induction hypothesis.
The rectangle in front commutes because 7* comes from lifting 7 to the background
universe. The diagram on the back face commutes because U* comes from lifting U.
The maps on the left face commute because ® is a tree embedding of 7 into /. The
maps on the right face commute because we obtained r,,; from the Shift Lemma.
(This of course is where we used that H* = w,(G*).)

It is clear from these facts that the top rectangle commutes on ran(iga +1)- Since
MT,, is generated by ran(i} ) U A(G), it is enough to see that the top square
commutes on A\(G). But

wv(a—i-l) O Sa+1 f/\(G) = Tu(a) © wu(a) © iz{;{(a),u(a) O Sa f A(G)

Zél(a),u(a) 074 004 0 Pal A(G)
= Tat1 © Par1[MG).

=1

Line 1 comes from the facts that s,,; agrees with izj(am(a) 0 o on A(G) by the
way it is defined using the Shift Lemma, and that 1, (a41) agrees with 7,4 0 ¥y(a) on
A(H) for a similar reason. Line 2 comes from Claim 4.50. Line 3 again comes from
using the Shift Lemma, now at the level of 7* and U*.

This completes the proof that 3 condenses well on weakly normal trees. The proof
that its tails do so as well is similar. Let us now consider the pullback condition,
clause (b) of 4.6. For this, let us keep our previous notation, but assume that
Ih(7) =a+1, 1h(Ud) = B+1, and that v(«) < 5 and ¢ has been extended by adding
the t-map

U
T = to(a),8 © Sa-

Let us assume J <dom(n), and let K = 7(J). We need to see that (Xy k)™ = X7 ;.
For that, consider the diagram
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u U Uur
M - ig,3(Xp) X Xp M3
% &5 %
u h u*
M X M
i,¢ i ig,¢
MY ’ X Z MY
izél(ix),e ii’{a) 0
U wv(a) X u*
Mv(a) v(a) Mv(a)
Sa Ta Ta
Pa *
M7 Qa M7

In the diagram, j = O'Mn[’(/)g(MZ’u]Do, and h and k are its images under the U*
embeddings. We are assuming for definiteness that & dropped once on (v(«), 8y,
at its step from 6 to £&. The maps 7, h, and k are defined only on initial segments of
the models displayed, but all are defined on the image of J in that model.

Let L = ¢o(J) and P = ¢3(K). Let also N = i(K) = k~'(P). By the commu-
tativity of the left column in the diagram, it is enough to see that the Dg-induced
strategy of P pulls back under k o ¢y(q) 3 © 7o to the C,-induced strategy of L. The
following claims show this. Put Y = 2’”207 5(Xv(a)).

Claim 1. Q(DB, Y, Elt{* W"rl)N = Q(]D)g, Xg, EZ[*[5+1)1;3.
Proof. This follows at once from Lemma 2.47. O

. % % Z'Z/{*
Claim 2. Q(Dy(a), Xo(a), 2 Tv(oc)+1) = Q(Dg, Y, Sjpu ) v

®

Proof. Let m = izz/){(a), - Because X has strong hull condensation, it is pullback consis-
tent, SO ZZ{* (’U(Oc-‘rl) - (EZ[* [ﬁ+1)ﬂ. But Q(]D)ﬂ, }/, EZ{* {54}1)# - Q(Dv(a)7 XU(O!)7 (ZZ{* {ﬁ+1>ﬂ')
by 2.50. O

Claim 3. Q(Caa Qom Z;‘* ra+1) = Q(DU(@)’ XU(OC)’ Zzt{* [v(a)+1)ra'
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Proof. Since ¥* has strong hull condensation, X%, = (5 ,4)41)™ We can
therefore apply Corollary 2.50 again. O
Let A = Q(Dg, Xp, X5 15,1)p- The claims imply that Q(Ca, Qa, X5+, )L is the
pullback of A under k o ig[(*a),g o 14, and hence that ¥ ; is the pullback of A under
ko ii’(;m 074 0 p,. By commutativity, X7 ; is the pullback of A under g0 iﬁ’(aﬂ 0 Sq-
But this means that it is the pullback of ¥ (s41),x under iff(a)ﬁ 0 S,, as desired.

This completes the proof of Theorem 4.49.
O

4.6 Pure extender pairs and strategy coherence

As we have just seen, background constructions in I'-Woodin universes yield iteration
strategies for premice that condense and normalize well. It seems that all the nice
behavior of iteration strategies one could wish for follows from these two properties.
We shall see this as we proceed. Because of that, the following is one of our central
definitions.

Definition 4.51 (M,Q) is a pure extender pair with scope Hy iff
(1) M is a pure extender premouse, and M € Hs,
(2) Q is a complete iteration strateqy for M, with scope Hs, and

(3) Q normalizes well, and has strong hull condensation.

We are only interested in the case that €2 is absolutely definable. In the most
important context, M is countable, €2 has scope H,,, and its absolute definability is
witnessed by membership in a model of AD". At other times we are working under
hypotheses that allow us to reach something close to this AD' context in a generic
extension.

The proviso “scope Hs” implies that € is an (w,d)-strategy. It would be more
natural to require that Q be a (4, )-strategy, but then our comparison proof for pure
extender pairs would need to go into normalizing infinite stacks.

It follows immediately from the definitions that any iterate of a pure extender
pair is also a pure extender pair. That is, if (P, ) is a pure extender pair with scope
Hs, and s is a P-stack by ¥ with last model @, then (@, %) is a pure extender pair
with scope Hs. We have already in effect proved another useful basic fact, namely,
that elementary submodels of pure extender pairs are pure extender pairs. More
precisely,
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Lemma 4.52 Let (M,Q) be a pure extender pair with scope Hs, and let m: N — M
be weakly elementary, where N is a pure extender premouse; then (N,Q") is a pure
extender pair with scope Hg.

Proof. Clearly, ()™ is a complete iteration strategy for N with scope Hs. 2™ normal-
izes well by 4.4, and has strong hull condensation by 4.10. U

Another elementary fact is
Lemma 4.53 Let (M,2) be a pure extender pair; then Q is pullback consistent.

Proof. We proved this in Lemma 4.9. O

Concerning pairs with scope going beyond HC, the following lemmas will be
useful. The first says that the strategy restricted to countable trees determines the
strategy on all trees.

Lemma 4.54 Let (P,X) and (P, A) be pure extender pairs with scope Hg, and sup-
pose that X2 and A agree on countable normal trees; then ¥ = A.

Proof. Otherwise we have a normal 7 of limit length by both ¥ and A, with 3(7) = b
and A(7T) = ¢, and b # ¢. Let H be countable and transitive, and

m: H =V,

be elementary, with 7 large and everything relevant in ran(r). Let P,T,b,¢in H be
the collapses of P,T,b,c. So b # ¢. Letting

U=nrT,

it is easy to see that U "b is a pseudo-hull of 7b. (For example, the relevant u-
map is just 7[lh(U).) Similarly, U~ ¢ is a pseudo-hull of 7 "c. But by strong hull
condensation, b is by ¥ and U "¢ is by A, so b = ¢ because the strategies agree
on countable normal trees. This is a contradiction. 0

The reader should compare the following lemma to Proposition 2.32.

Lemma 4.55 Let (P,X) be a pure extender pair with scope Hgs, and let j: V — M
be elementary, where M is transitive and crit(j) > |P|; then j(X) and 3 agree on all
trees in j(Hs) N Hy.
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Proof. Otherwise we have a normal tree 7 with distinct cofinal branches b and ¢
such that 77b is by ¥ and 7 "¢ is by j(3). As in the proof of the last lemma, this
gives us a countable normal tree I/ on P with distinct cofinal branches b and ¢ such
that U b is a pseudo-hull of 7b and U ¢ is a pseudo-hull of 7 "c. Thus % (U) = b.
But since U is countable, and M is wellfounded,

M U™ c is a pseudo-hull of T c.

Thus 7(X)(U) = ¢. But U is countable, hence fixed by 7, so X(U) = ¢, a contradiction.
]

For the remainder of this section, we look at one further elementary property,
strategqy coherence. To see what is at stake here, suppose (P, ) is a pure extender
pair, and k is a cardinal of P such that k < p(P). Let T be a tree on P|x that is
according to Xp|;. We can also think of 7 as a tree on P, or as a tree on Ult(P, EX)
whenever 1h(E”) > k. Does it follow from our definitions that, considered this way,
T is by X7 There is no reason to believe that an arbitrary complete strategy X
would be coherent in this way, but we shall show that strong hull condensation and
normalizing well guarantee it.

Given m: P — R weakly elementary, we can copy a P-stack s to an R-stack ms,
until we reach an illfounded model on the 7s side. Thus if ) is a complete strategy
for R, we have the complete pullback strategy 2™ for P. We extend the construction
slightly, so as to allow stronger ultrapowers on the R side than the copied ones. This
will let us lift weakly normal trees to fully normal ones.

Let T be a weakly normal tree on the premouse P, and let k = k(P). Let

m: P — Qv k)

be weakly elementary; then we can copy 7T to a fully normal tree U on @) as follows.
(We care most about the case P = Q|(v, k) and m = id.) U has the same tree order
as 7T, so long as it is defined. Let P, and @, be the a-th models, and E, and F,
the a-th extenders, of 7 and U. We shall have a weakly elementary

Ta: Po = Qol(Va, ko).

Here my = 7, vy = v, and ky = k. We have the usual agreement and commutativity
conditions:

(1) whenever 8 < a, 7, [ Ih(Es)+1 = 7| h(Es)+1) and Q.|| 1h(Fs) = Qp|| 1h(Fp),
and

(2) whenever 5 <t «, then 7, o ig—’a = i%’a o g.
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(We do not demand any further coordination of the points at which the two trees
drop. 7 may drop gratuitously where U does not, and & may drop where 7 does
not because the dropping point is above some (v, k,).) The successor step is the
following. We are given E, on M,; set

Fa = Wa(Ea>7

or F, = FQalake) if = FPa  Let § = T-pred(a 4+ 1) = least & such that
Kk < A(E¢), where k = crit(E,). By (1) above, 8 = U-pred(a + 1) according to the
rules of weak normality for /. Let

Pa-‘rl - Ult(Pﬁ|<777 l>7 Ea)>

and
ch—f—l = Ult(QBK’% 7’L>, Fa)a

where (n,1) is chosen by player I in T, and (7, n) is determined by normality. It is
easy to see that

(m3(n), 1) <iex (7, 1).

(If (n,1) = [(Mp), we understand mz(n) = vz here, and we have | = kz. Since
7 is weakly elementary, and no proper initial segment of Mg projects < &, no
proper initial segment of Qg|(vs,l) projects < mz(k). But mg(k) = crit(F,), so
(g, 1) <jex (v, n). If (9, 1) <iex [(P3), a similar argument works.) We then set

(Vat1, kat1) = %,a+1(<76(ﬁ>7 1)

and we have (Vo11, kat1) <tex {(Qas1). Tatr1 comes from the Shift Lemma definition:

7Ta+1([aa f]) = [Wa(a)’ Wﬁ(f)]’

where the equivalence classes are in Ult(Pg|(n, 1), E,) and Ult(Qg|(v,n), Fi,) respec-
tively. The proof of the Shift Lemma tells us that m,; is weakly elementary. (Even
if we had started with elementary maps, the case that (ms(n),l) <iex (7,n) could
lead to 7,41 not being fully elementary.)

Of course, at limit steps A < Ih(7), we stop unless [0, A]7 is a wellfounded branch
of U. If it is, we get my, vy and k) from commutativity, and continue.

Definition 4.56 Given m: P — Q|(v, k) weakly elementary and T on P weakly
normal,

(a) (7T)" is the normal tree on Q defined above. We call it the (7, v, k)-lift of T.
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(b) When P = Q|{v,k) and w is the identity, we let T+ = (xT)™.

(c) If Q is a strategy for Q defined on normal trees, then Q") is the strategy
on weakly normal trees given by pulling back: QUH(T) = Q((zT)*). When
P = Qv k) and © = id, we write QW) for Q)

With 7 = identity and (v, k) = [(P), we get a reduction of weakly normal trees
on P to fully normal trees on P, and of P-stacks to finite maximal stacks of normal
trees. So

Lemma 4.57 Let P be a premouse that is 0-iterable for normal trees; then P is
O-iterable for weakly normal trees. If P is @-iterable for maximal, finite stacks of
normal trees, then P has a complete (w,0)-iteration strategy.

We don’t actually need this lemma, because background constructions give us
directly strategies that apply to non-maximal stacks of merely weakly normal trees.

Definition 4.58 Let 3 be a complete strategy for P; then we say (P,) is strategy
coherent iff whenever s is a P-stack by X with last model @), then

(a) for any (v.k) <UQ), (£:0)"" = Ssqiuk), and

(b) whenever T is a normal tree on Q by ¥y, and N A M7 and N < /\/lg, then
Y6 Tl (at1),N = Zs TI(8+1),N -

We do need the following lemma.
Lemma 4.59 Let (M,Y) be a pure extender pair; then 3 is strategy coherent.

Proof. We begin with part (a). Let s be an P-stack by ¥ with last model @), let
Q2 =%, and let R = Q|(v, k). Let T be a weakly normal tree on R such that for
U=T"=(d,v,k)T, U is by Q. We must see that T is by Qp. Let R, = M,
Qo = MY, and
Ta: Ra = Qul|(Va, ko)

be as in the construction above.

Let Ty be the Q-equivalent of T; that is, Ty is the weakly normal tree on ) that
uses the same extenders as 7, and always drops at least as far as R when it applies an
extender to its base model ). The construction above then gives us a tree embedding
® from Ty into U. Namely, u® = v® = identity, s® = t® = 7,, and N® = Q. |(va, ka)-
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Since (P, Y) is a pure extender pair, € has strong hull condensation. This implies
that 7q is by . But Q is mildly positional, so T is by Qg, as desired.

We now prove (b). Let 7 be normal on @ and by ¥,, and let N <« M7 and
N < ./\/lg Let Vo = Xri(a+1),n and ¥y = Ygyg41),n, and let U be a normal tree of
limit length on N that is by both ¥y and ¥;. We may assume a < . Let v < «
be least such that N <M. Then N < MT7|¢, where & = Ih(ET), so by part (a) we
may as well assume N = MT||¢.

Looking at the normalization process, it is easy to see by induction on 7 < Ih(if)
that

W(T [+ LU Tn+1) = W(T [ B+ 1.U [n+1) | doy(y).

where ¢y, is the u-map of the tree embedding of 7 [ f+ 1 into W(T [ B+ 1),U |
n+1). So
W(T Ty+1LU)=W(T | B+1),U),

and in parallel fashion,
W(T I v+ LU)=W(T | a+1),U).
But then let by = Wo(U) and by = ¥y (U), and let
a; = br(b;, T [ (v +1),U)).

Since ¥ normalizes well, X,(W (T | (y+1),U)) = a;, for i = 0,1. Thus ag = a;. By
3.73, by = by, as desired. Il

Recall that ¥ is positional iff whenever s and ¢ are stacks by X, and NV is an initial
segment of the last model of each, then ¥,y = ¥, 5. Positionality clearly implies
part (b) of strategy coherence. The techniques of [60] show that normalizing well
and strong hull condensation together imply positionality, but the proof is not an
elementary combinatorial one like that above.

It was in order to be able to prove part (a) of strategy coherence that defined very
strong hull condensation using weakly normal trees, and dealt with the small extra
awkwardness this brings to the proof that background-induced strategies have strong
hull condensation. We shall use Lemma 4.59 in our comparison proof for iteration
strategies. One can see on heuristic grounds that it must come up somewhere; one
could not hope to compare an incoherent strategy with a coherent one.

Our work in the last few sections has shown how to reduce a complete strategy
that normalizes well and has strong hull condensation to its action on normal trees.
We summarize this now.
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Theorem 4.60 Let (P,X) and (P,V) be pure extender pairs with scope Hg, and
such that X and W agree on normal trees; then ¥ = W.

Proof. Note first that ¥ and W agree on weakly normal trees. For if T is by ¥ and
weakly normal, then 7 is a normal tree by X because (P, ) is strategy coherent.
So T is by ¥, and hence T is by ¥ because VU is strategy coherent.

Now suppose (T,U) is a P-stack by X. Let @ be the last model of 7 and R the
last model of T, and let 7: Q@ — N < R come from the copying/lifting process.
Then (7, (7ld)") is a maximal stack by %, because X is strategy coherent. But %
and U agree on maximal stacks by Proposition 4.2, so (T, (7ld)™) is by ¥. Also,
T is by ¥ and V7o = (\117}+’R by strong hull condensation for ¥. But nif is a
psuedo-hull of (7lf)*, so (T, nlU) is by ¥, so U is by Wr g, so (T,U) by by W.

Clearly, this works for finite stacks of any length, so > = V. O

In the next chapter we shall prove a basic comparison theorem for pure extender
pairs. The following terminology helps smooth the statement of this theorem.

Definition 4.61 Let (P,X) and (Q, V) be pure extender pairs with common scope
Hy; then

(a) (P,S)<(Q. %) iff PQQ and £ = Vp.
(b) (P,Y)<(Q, ) iff P<Q and & = Up.

(c) (P,Y) iterates past (Q, V) iff there is a normal tree T on P by ¥ with last
model R such that (Q,V) < (R, X7 r). If P-to-R drops, or if Q < R, then we
say that (P,Y) iterates strictly past (Q, V). If Q@ = R and P-to-R does not
drop, then we say (P,X) iterates to (Q, V).

Note that if (P, Y) iterates past (@, ¥), then the normal tree 7 on P witnessing
this is determined completely by ) and X: it comes from iterating away least extender
disagreements, with the () side never moving. No strategy disagreements show up
along the way, because there are no strategy disagreements at the end, and (P, Y) is
strategy coherent.

We shall show that assuming AD™, for any two pairs (P, X) and (Q, ¥) with scope
HC, there is a pair (R, (2) such that either

(i) (P, X) iterates to (R, ), and (Q, V) iterates past (R,(), or
(i) (@, V) iterates to (R,(2), and (P, ) iterates past (R,2).
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5 Comparing iteration strategies

The standard Comparison Theorem of inner model theory applies to mice. One
statement of it is

Theorem 5.1 Let P and Q be premice of size < 0, and suppose ¥ and ¥ are 61 +1-

iteration strategies for P and @) respectively; then there are normal trees by % and
U by U of size 6, with last models R and S, such that either

(a) R<S, and P-to-R does not drop, or
(b) S <R, and Q-to-S does not drop.

This theorem, and the comparison process behind it, are the main engines driving
inner model theory, but they have a clear defect. We haven’t really compared the
data. We were given (P, X)) and (Q, ¥), and we only compared P with (). Whether
it is the P-side or the ()-side that comes out shorter could depend on which iteration
strategies for P and @) we use. (See Proposition 6.26.)

The standard way to to avoid this problem when it might arise is to make as-
sumptions that imply P and () can have at most one iteration strategy. This is
good enough for practical purposes in many situations, but it is unnatural, and leads
to somewhat awkward devices like the Weak Dodd-Jensen Lemma. The better re-
sponse would be to strengthen the Comparison Theorem by finding a process which
will compare all the data.

In this chapter, we shall do that. The resulting comparison process is the key to
developing the theory of a class of strategy mice sufficiently rich to analyze HOD in
models of ADg+ NLE. This theory is the practical payoff for the work we do here,
but one can see without knowing anything about HOD in models of determinacy
that we are filling a gap in basic inner model theory.

We shall prove the main comparison theorem for pairs (P, ) such that P is a
pure extender premouse, in Jensen indexing, and X is a complete strategy for P
that normalizes well and has strong hull condensation. The proof adapts easily to
ms-indexing, and to hod mice. The good behavior of ¥ is needed for the argument,
and it is unlikely that one could drop it as a hypothesis. It does not seem to be a
restrictive hypothesis; for example, every iterable P has an iteration strategy with
these properties. (See Proposition 6.25.)

The first two sections contain some preliminary lemmas. The last contains the
comparison argument.
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5.1 Extending tree embeddings

We shall prove an elementary lemma on the extendibility of tree embeddings. Its
proof uses

Proposition 5.2 Let S be a normal tree, let 6 <gn, and suppose that P < /\/l;j, but
P # M3 whenever o <g 6. Suppose also that P € ran(i5,). Let

a = least v such that P < M;g
= least vy such that o(P) < lh(Ef) ory=mn,

and
B = least v € [0,n]s such that o(P) < crit(i‘fw) ory =n.

Then 8 € [6,n]s, and
(a) either B =a, or B=a+1, and \(ES) < o(P) < 1h(ES);
(b) if P = dom(EY), then S-pred({ +1) = a = f3.

(We allow § = n, with the understanding iss is the identity.)

Proof. By normality, for any v < n, P < ./\/lg iff lh(Ef) > o(P). So the two
characterizations of « are equivalent. Clearly, P < M3, and thus o < 3. We have
that o(P) > 1h(E?) for all ¢ <g §, and hence by normality, for all o <g § whatsoever.
So 6 < a, and S €[4, n]s.

Suppose a < f3; then o(P) < Ih(ES), so o(P) < 1h(ES) where o is least such that
a < oand o+ 1 <g B If o(P) < A(EJ), then because § < ¢ and P € ran(i3,),
we have o( P) < crit(ES), which contradicts our definition of 8. So A(ES) < o(P) <
Ih(ES). If crit(i5,,,) = A(ES), then P is not in ran(i5, ), so crit(s3,, ) > o(P), and
thus f =0 + 1.

This yields (a). For (b), note that if A(ES) < o(P) < 1h(ES), then P cannot be
the domain of an extender used in §. So we have @ = 3. We have already observed
that S-pred({ +1) = a.

U

On extending tree embeddings, we have

Lemma 5.3 Let ® = (u,(sg | B < a),(ts | B < «a),p) be a tree embedding of T
into U, and let F be an extender on the M -sequence such that 1h(F) > lh(EZ;) for
all B < a. Let T(F) be the unique putative normal tree S extending T such that
F = ES. Let € < 1h(U); then the following are equivalent:
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(1) There is a tree embedding ¥ of T™(F) into U such that ® C ¥ and u¥(a) = &,

(2) v(a) <y &, and EY = ii’]’(aM 0 So(F).

Moreover, there is at most one such V.

Proof. Tt is easy to see from definition 3.27 that (1) implies (2).
Suppose that ¢ witnesses that (2) holds. Set w(o) = & and t, = iff(a)’g O Sq4.
Clearly,

tal A = 54N,

and
crit (2o ¢) > Aoy

Let p(F) = G = EY. We shall find sq41 such that ¥ = (u, (sg | 8 < a+1),(tg| 8 <
a),p) is a tree embedding of S = T(F) into U.
Let p = crit(F') and p* = crit(G). Let

B = S-pred(a+ 1) = least ns.t. p < AT,

and
B* = U-pred(§ + 1) = least n s.t. p* < M.

Let v = (uH)Mal@E) and P = MT|y. Similarly, let ~* = (u***)Mg“h(G) and
P = M?h* So P is the domain of F' (the sets measured by it), P* is the domain
of G, and t,(P) = P*. The rules of normality tell us that

B = least ns.t. P = M|y,

and
B = least ns.t. P* = MY|y*.

(P and P* are passive, so these identities imply that v and v* are passive stages in
MﬂT and M%’) Suppose first that 3 < a. We then have that u < A/, so
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where the last equalities hold because 1 < A ET- Thus P* is in the range of ii’f( 8)u(B)"
Proposition 5.2, with 6 = v(f), n = u(f), and P* as its P then tells us that

p* = least n € [v(B),u(B)]v such that crit ﬁf,u(ﬁ) > qu/(ﬁ),n o sp(p).

Let @) be the first level of ./\/lg beyond P that projects to or below p, and let Q* be
the first level of ./\/l%’ beyond P* that projects to or below p*. So M7, = Ult(Q, F)
and MY, = Ult(Q*, G). Let

p = (55 © 38)1Q.

We have that

We can then set
Sat1([a, /1) = [tala), ¥ 5 0 s8()S

as we are required to do by definition 3.27, and the Shift Lemma tells us that s,.1
as defined is indeed well-defined, elementary, and agrees with ¢, as required in a tree
embedding.

We must check clause (b) of definition 3.27. The new case involves F' and G; we
must see that F € ran(e‘g) iff p(E) € é4.. But for E € Ext(T),

E €ran(e}) < p(E) € 3%(5)
& p(E) € ran(e.).

The right-to-left implication in line 2 holds because if E ¢ ran(e}) and 1h(E) <
Ih(ET), then E is incompatible with some H € ran(e}), so p(E) is incompatible
with p(H) € eﬁ’(ﬁ), so the right hand side of line 2 fails. On the other hand, if
Ih(E) > 1h(E]), then lh(p(E)) > h(p(E])) = lh(Eg(B)), and since §* < u(f), again
the right hand side of line 2 fails.

The case that o = (3 is similar. In this case, we apply the proposition to P* with
0 =v(B) and n = £. This gives us that

B* =least n € [v(f), &y such that crit i, > ﬁ(ﬁ)m o sz(p).

We leave the remaining details to the reader. O
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Remark 5.4 The proof gives a formula for the point of application of Eﬁ’(a) under
a tree embedding of 7 into U, namely

U-pred(u(a) + 1) = least n € [v(5), u(5)]y such that crit @Mmu(ﬂ) > ﬁ(ﬁ),n o sa(1),

where
3 = T-pred(a + 1) and p = crit(E]).

Remark 5.5 One can have the following situation, for F' = E7:

| N

Mu )Mu - )Mu
v(a) Y gy (@)

It can happen that dom p = M7, but domt, = M7 [1h F, so t,(F) is the last exten-
der of MZ(Q). In this case, 2,,(q) is acting like a resurrection embedding, resurrecting
p(F), and (v,u(a)]y drops.

5.2 Resurrection embeddings as branch embeddings

We prove a technical lemma on normal iterations past levels of a background con-
struction.

Let X be an iteration strategy for the premouse F,, for finite stacks of normal
trees, that normalizes well and has strong hull condensation. Suppose that ¥ is
universally Baire. Let C be a background construction above |Py|T, and (1, ko) <
length(C). Let us write M, = M. Suppose that whenever (v, k) <joy (v0,k0),
My, is not a -iterate of Py. It has been known since the mid-80s that whenever
(1, k) <jex (v, ko), only the Py side moves if we compare it with M, by least
disagreement, using > to pick branches. See Lemma 2.52.

Thus for (v, k) <jex (0, ko), we have

W, = unique shortest normal tree on % by X
with last model @ > M, .

Our technical lemma says that below (1, ko), the resurrection embeddings of C
are captured by branch embeddings of the Wy .
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Lemma 5.6 Let (0,7) < (w,ko), and let P < My,. Let T = 09,[P]°, so that
T: P — Mg . where {0y, jo) = Resy ;[ P]. Let

00,30’

T =Wy ,I(a+1), where o is least such that MZVJJ > P.

and o <wg;
0-J0

£,

00,507

Wi
Then T =Wy, ; [+ 1), Wy ;. has last model M, 0o — ME

__ 7 700540
and T = lo

We remark that our convention that P 4 @ when @ is active and P = Q||o(Q)

matters here. It could be that for a as in the lemma, F = Eﬁf is such that
Ih(E) = o(P). The resurrection embedding 7 is given by a branch of Wy, ; that has

« in it, and may not have o — 1 in it, even though P is an initial segment of M,/
in a weaker sense.

Definition 5.7 If M is a premouse such that k(M) > 0, then M~ is the premouse
that is equal to M, except that k(M~) = k(M) — 1.

Sublemma 5.7.1 Suppose that M, is not k + 1-sound. Let m : M;Hl — M, be
the anticore embedding. Let §+ 1 =1hW}, ; then

(a) Wy, has last model M, y,
(0) W, pa = Woil(&o + 1),
(c) & is the least vy such that 1h EE;V:"“ > p(M, ), and
: WV
(d) letting Ih(Wy,) = & + 1, we have & <y:, &, and leir = .

Proof. . )

By definition, ./\/12}””“ > M, . But M, is not sound (= k+ 1-sound), so J\/lzjy’k =
M, ). This gives (a).

The iteration Wy, from Fy to M, ; must have dropped. The last drop had to be
to M, k41, and it lies on the branch to M, ;. So we can fix n such that

W N
M, j+1 = dom lyér s and lyg, =T.

W*
We have that M, 1 < M, “*.
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Letting p = p(M, 1), we have that M, ;. agrees with M, to prMvk — My,

Thus W), ., and Wy, use the same extenders E such that lh £ < p.
We claim that W}, uses no extenders E such that Ih(E) > p. For if W;, .,

uses F such that Th £ > p, then the branch Po—to—./\/l;\:””c+1 uses such an F, since
So+1=ThWy .. h(E) < o(M,ky1) because Wy, ., was of minimal length. But
then p < crit(E) is impossible, because dom(E) C M, j41, and M, ;41 is sound.
However, crit(E) < p is also impossible, since no model on the branch [0, §] after £
can project into (crit(E),lh E).

So we have that W}, ., = W 1§ + 1. We have (a)-(c) of the sublemma already.

W*
For (d), we need to see § = 7. Since M, 41 I My ", & < 1. Suppose toward
W,k

contradiction that & < 7. We then have that o(M, j+1) < lh(E£0 ") because M, ;11
is an initial segment of both Mz:”’k and MZV"”“. But let 6 + 1 be the successor of 7
on the branch [0, &;] of Wy, that is, W -pred(§ + 1) = n and 6 +1 <p+ &;. Then

Mygir = (M), and so In(Ey ) < o(Myxy1) < Ih(Ep**). Thus n < &, so

n < &, a contradiction. g

Proof. [Proof of Lemma 5.6] We go by induction on (#, j). Suppose Lemma 5.6
holds for (0, j') <iex (0, 7), as well as for all @ < P, where P < My ;. Let

p = least x such that k = p,(5) for some S < My ;
such that P 9.5, and n = k(S).

(Here we do not mean k = p(S) = p,s1(S), where n = k(5).) Pick S to be the first
such. We can assume that p < o(P), as otherwise 7 = identity, and all is trivial.
Thus k(S) > 0.

The reader can check that oy ;[S][P = 0¢;[P] = 7. If S < Mp;, then we can find
some (', j') <iex (6,7) such that S = My ;. [Let (v, k) be least such that S < M, ,
and assume toward contradiction that S # M, ;. We must have k£ > 0, as otherwise
S < M, ; for some n < v. Since S j{l M, ;—1, we have ]\/[V_k # M, 1, that is, the
coring down is nontrivial. We must have py(M, ,_1) < p, because py(s)(S) = p, and
S < MV,k? so if p < pk(Mz/,k—l)a then S < My’k_l. SO pk(Mu,k—l) < p. P4 My’k and
pr(M, k) < p, contrary to our definition of p.]

The argument above also shows that oy ;[S] = o¢ y/[S]. So we can apply our
induction hypothesis at ¢', j'. Note that Wy ;[(a + 1) = Wy, ;/ [(a + 1).

Thus we may assume S = My ;. So j = k(S) and j > 0. If 0y ;[S] = 04,;-1[5],
then as (6,7 — 1) <jex (6, 7), our induction hypothesis carries the day. Otherwise, we
have that Mp ;_; is not sound. Moreover

09,j[S] =m0 0g;1[5],
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where 7 : My, — Mp ;1 is the anticore embedding.
Let o+ 1 =1hWy, and 3+ 1 =1hWj, ,. By the sublemma, S < MZV“ and
W
M@,j—l = M,B 9,]717 a Swg’jil ﬁ7 and

Wy .
__ 070
71—_2047,3 .

Wy
Also, Wy ; uses only extenders of h < p, so a is the least v such that P < M, 7,

Remark 5.8 The reason that the statement of Lemma 5.6 does not have o + 1 =

lh Wy ; is that that is clearly not always true. It becomes true when we reduce 0,7)
to a <9/,j,> with S = Mg/’j/.

Let P, = m(P). Let
Wi,
oy = least v such that P, I M, ™77,

We can assume crit(m) < o(P), as otherwise P I Mpy ;1 and 7 = 0g j_1[P], so we are
done by induction.

Claim 5.8.1 « <y\};j_1 aq Swg*j_l B
RAZ .
Proof. Let v € (a, Blw; | be least such that o(Fy) < crit(i, 577'). We claim that
ToWs W
a; = ~. Certainly, P, < M, "7'. Also, P ﬂ My 7' Since P is in the range of
W
ia’g’]’l, we get a; = 7. See the proof of Proposition 5.2. O

The claim also showed that
TP =pq, [ P.
Now we apply our induction hypothesis to P; < My ;1. We get 0y, jo such that

L Weao.jo [(n +1) = Wi M1 +1).

Wi
2. W, , has last model Mp, ;, = M, 090 and

Wy
) _ 5 700sd0
3. on <wy §, and g ;1 [P1] =1, ¢
. Weodo - Ny N
But ¢ ;[P] = 0 j_1[P1] o m. This yields oq;[P] = Uy g Oty = 1,7, as
desired. [l
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5.3 Iterating into a backgrounded strategy

In this section we prove the basic comparison theorem for pure extender pairs. In
the next chapter we shall generalize it to least branch hod pairs, but all the main
ideas occur in the pure extender proof.

The proof is based on proving (*)(P,X), for pure extender pairs (P,Y). This
involves iterating (P, X) to a level (M, x, €2, ) of some background construction C.
In the statement of (*)(P,X), C is the construction of some coarse I'-Woodin back-
ground universe N* that captures X, but here we shall assume somewhat less about

C.

Definition 5.9 Let F be coarsely coherent; then Q%BH 18 the partial iteration strategy

for V: if TU) is a finite stack of normal F-trees by QUBH such that U has limit
F
length, then

UBH (7~ . , :
Qz"(T™U)) =b iff b is the unique cofinal, wellfounded branch of U.

So if V' is strongly uniquely iterable for finite stacks of normal F -trees, then Q%BH
is total, and it is the unique iteration strategy witnessing this. Moreover, QUBH
normalizes well, and has strong hull condensation. The results of Chapter 3 show
that this is the case if V' is a coarse I'-Woodin model, and F its distinguished coherent
sequence, and under other hypotheses as well. But our notation allows the case
that Q%BH is partial. Q%BH(f“@O) can fail to be defined because U has no cofinal

wellfounded branch, or because it has more than one cofinal wellfounded branch.

Definition 5.10 Let C be a background construction above k. Suppose M, ), exists.
Then ng is the partial strategy for M, induced by Q%BH i.€.

c

T s by QOF, iff  1ift(7, My, C) is by QLM

FC >
whenever T is a finite stack of weakly normal trees on M, .

So if V' is strongly uniquely (w, 0, F ©)-iterable above x, then st is a complete
strategy with scope Hy that normalizes well and has strong hull condensation.
The following is essentially Theorem 1.15, but in the pure extender model case.

Theorem 5.11 Let (P,X) be a pure extender pair with scope Hs, where 0 is in-
accessible. Let C be a background construction above |P|* such that all FS are in
Hs. Let (v,k) < 1h(C), and suppose that (P,X) iterates past (M, Q5 ), for all
(n,7) <iex (v, k); then (P,X) iterates past (Mffk, Q(Ek)
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Remark 5.12 X is total so if (P, X) iterates past (M, Q5 ), then QF, is total. So
although did not assume unique iterability in the hypothesis of Theorem 5.11, we
got the le are total, until we reach an M, ; that is beyond ¥. Before that point,
C-lifted trees have unique cofinal wellfounded branches.

Theorem 5.11 yields at once a comparison theorem for pure extender pairs. The
following is the pure extender case of our main strategy comparison theorem.

Theorem 5.13 (Pure extender mouse pair comparison) Assume ADT, and let (P, %)
and (Q, V) be pure extender pairs with scope H,,; then there are countable normal
trees T on P and U on @QQ by ¥, with last models R and S respectively, such that
either

1. P-to-R does not drop, R 1.5, and X7 r = Yy r, or

2. Q-to-S does not drop, S <R, and Yy ¢ = X73.

Proof. By the Basis Theorem of AD", we may assume that Code(X) and Code()
are Suslin and co-Suslin. (The paper [63] shows this directly, assuming only AD.)
So we have a coarse I'-Woodin tuple (N*, <, S,T,>¥*), where I' is a pointclass big
enough that 3 and ¥ are coded by sets of reals in I'. We may assume P and @) are
in N*, and countable there. Let C be the maximal <1-construction of N*. Since we
are in the pure extender case, we have that C does not break down.

We now apply Theorem 4.20. This gives us a (v, k) such that Mfffk is a X-iterate
of P, and P iterates by ¥ past MC., for each (n,j) <iex (v, k). Similarly we have

(1, 1) such that MEJ is a \If—iteraten%f @, and () iterates by ¥ past Mf%, for each
(n,7) <iex (v, k). By Theorem 5.11, no strategy disagreements with the strategies
in C show up in these iterations. So if (v, k) <jex (u,1), then by Theorem 5.11, we
get conclusion (1), with R = M, and Y7z = QF . If (i,1) <iex (v, k), then we get
conclusion (2).

Let T,U,R, and S witness in N* that either (1) or (2) holds. 7 and U are
countable in V', and N* is sufficiently correct that either (1) or (2) holds in V.

g

Remark 5.14 When we generalize the comparison theorem for pure extender pairs
to strategy mouse pairs in Chapter 5, we shall have to re-organize the proof a bit.
Lemma 2.52 and Theorem 4.20 don’t help in the strategy mouse context, so in effect
we must prove the analogs of both Theorem 5.11 and Lemma 2.52 as part of one
induction.
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The rest of this chapter is devoted to the proof of Theorem 5.11.

Proof. [Proof of Theorem 5.11] The proof is by induction on (v, k). Suppose that
(P, X) iterates past M5, for all (v, k) <iex (o, ko). For (v, k) <iex (vo, ko), let

W, . = unique shortest normal tree on Py by %
with last model @ > M, .

Let M = M,, x,, and let U be a normal tree on M that is of limit length, and is
by both EW;«O ey M and QF Let

vo,ko

lift(U, M,C) = (U*, (n,, 1, | 7 <1htd), (¥ | 7 < 1hif)).
Lemma 5.15 If b is a cofinal, wellfounded branch of U*, then szo kovM(U) =b.

Lemma 5.15 implies that &/* has at most one cofinal wellfounded branch. More-
over, that branch is identified by X, if it exists, and ¥ is universally Baire. So a
simple reflection argument will then give that &/* has a cofinal, wellfounded branch.
From this we get that ZW:OW M and ngko agree on normal trees, and then by the
proof of Theorem 4.60, they must agree on finite stacks of normal trees. (If we were
assuming ng,ko is total, we could simply quote 4.60 at this point.)

Proof. [Proof of Lemma 5.15] Let
Sy =M
0 _ S Ne©
NO =MD, =M

Nysly = Tnyly 0
so that
Y MY — N
is elementary. We have M = M{ = N{, and 4§ = identity. We write (W;,)5" for
(v, k) <iex i1~ ({10, ko)) to stand for &7 ((n,1) — W;,),k. Note that
g (Z)ns, =xns,

by Lemma 4.55. Also iff_ (Py) = Fy. Thus (W; ;)% is by X.
The statements above also make sense for b replacing 7. So S, = MY, N? =
Miﬁlb, U MY — NP ete. Set

Wy =W, )%
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for v <1hUf or v =b. Let 2*(y) + 1 =1h(W;) and put
Wi
N,y - MZ*('Y)'

So W is our normal tree from Py to No™> M = Ng that is by X. We have NY<N,
for all . If v <y 7 and (v,7]y does not drop, then & (W;) = W;. (This is not the
case if we have a drop.)

Now let’s look at the embedding normalization of (W{,U™). This is a maximal
normal stack, so our theory of embedding normalization applies to it. (If N = N,
then U™ =U. In any case, U and U™ have the same tree order. ) Set

Wy =W W5, UT[(v +1))
for v < 1hd, and
Wy = WG, (UT)7D).

So Wy = W;. The W,’s are all by ¥, because ¥ normalizes well and U* [(y+1) is by
Y. Suppose that W, is by X, and let X((Wo,UT)) = ¢; then W, is by ¥ because ¥
normalizes well, so br(b, Wo,U™) = br(c, Wo,U™), so b = ¢. Thus X(W,,UT)) = b,
and hence X((Wy,U)) = b by strategy coherence. This is what we want, so it is
enough to show that W, is by .

We shall show

Sublemma 5.15.1 W, is pseudo-hull of W .

That is enough to yield Lemma 5.15, since W; is by X, and ¥ has strong hull
condensation.
Proof. [Proof of Sublemma 5.15.1] We construct by induction on v an extended
tree embedding
O W, = W

We write z(y) + 1 =1hW,, and
D, = (u, (s5 | B<2(), (5 | B<2(7)),07).

The domain of u” is z(y). Let v = v® be as in Definition 3.27. Then domv? =
z(7) + 1. Because @, is an extended tree embedding, we have v7(2(7)) <w: z*(7),

and the last t-map tZ(A/) from M:\g) to M:Y?v)' We shall write simply ¢” for tZ(A/), and

R, = M2

z(y)’
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so that
" R, — N,
is the last t-map of ®,. As we noted above, the last t-map of an extended tree

embedding determines the whole of the tree embedding.
The embedding normalization process gives us extended tree embeddings

U, W, =W,

defined when v <y v. We use ¢, , for the u-map of ¥, ., so that ¢,,, : ThW, — 1hW,,
the map being total if (v,7]y does not drop in model or degree. We write 727 for
the t-map tg}”’”, so that
a0 MY MZV” ()
T T v,y (T

elementarily, for v <y 7 and 7 € dom ¢, . Let also e, , = p¥7, so that

o\ W.
cvr(Ba") = By (o)

is the natural partial map from Ext(W,) to Ext(W,). Let also
0717 ; ./\/lZT;l+ — R,

be the natural map from ./\/11;7’+ to the last model of W,, and

F77 = 071](E7Z;{+)7
so that
W77+1 = W(W§7 WT]? Fﬁ)

where £ = U-pred(n + 1). Finally,
a,, = least a such that F), is on the MY sequence.

We also have an extended tree embedding W : W) — W> defined when v <gy ¢
and (v,7]y does not drop. The maps of @} _ are all restrictions of zﬁ’v, so we don’t
need to give them special names. Part of what we want to maintain as we define the
&, is that in this case, the diagram

@, i
%
W, W

Wy v

vy

W, —— s W



commutes, in the appropriate sense. The other inductive requirements have to do
with the agreement between ®, and ®, for n < ¢, and the fact that o, factors into
wg . We spell the requirements out completely below.

Since Wy = W, ®y is trivial, consisting of identity embeddings.

Remark 5.16 Before going through the induction in technical detail, let us look at
the definition of ®; in a simple case. This case contains the main idea.

Let F = EY" = EY = ¥ (FY). Let G be the resurrection of F' in C, and suppose
G = F for simplicity. Let F™* be the background extender for F' given by C. Then
Wy = W(W, F) and Wy = ip-(W,). Let a = a(Wp, F'). The last model of Wy is
ips (M), and ip«(M) agrees with Ult(M, F) up to Ih(F) + 1. (The “plus 17 part is
important, and it is why we were careful about choosing our background extenders.)
It follows that W; uses F; in fact Wi [(a+2) = Wi [(a+2), with F = E)Y}, = Eﬁl.
This gives us the desired tree embedding from W; to W;. For example, the map
pl: Ext(W;) — Ext(Wy) is given by:

p(E)=E, if E= Eg/vl for some £ < a+ 1,
and if there is no dropping at a4 1,

p'(eo1(E)) = ip-(E).

This is typical of the general successor step. Various maps that are the identity in
this special case are no longer so in the general case. In particular, the resurrection
maps may not be the identity. But the key is still that if W, ., = W(W,, W,, F), and
H = ¢Y(EY) is the blowup of F' in the last model of W, and G is the resurrection
of H inside S,, then W, = ig-(W}), and G is used in W, . [ There is a small
revision to the first part of the conclusion in the dropping case.] In showing this, we
shall need to know that the map resurrecting H to G appears as a branch embedding
inside a certain normal tree WJ* extending WJ.

Setting p?™(F) = G determines everything. For we certainly want p?*! to agree
with p7 on the extenders used before F'in W, ;. Moreover, we need to take a limit
of the ®,’s along branches of ¢/ in order to get past limit ordinals, and this requires
that p?™ o e, 441 =4, o p”. But this accounts for all the extenders in dom(p**!),
so we have completely determined p?*!, and hence ®. 4, from ®,.

The following little lemma says something about how lej{,y(W;) sits inside WJ. In

the language of tree embeddings, the map [ it describes is just s\;; 7,

202



Lemma 5.17 Suppose v <y 7, and (v,7v]y does not drop. Let 5 < z(v); then

sup it “B <y -ijv(ﬁ)

Y

Moreover, setting 6 = sup zzj; “B, we have that (0, zw(ﬁ)]W; does not drop, and there

is a unique embedding [ : MEV;* — MZV; such that

W*
‘o ZZf;(ﬁ)

Proof. We have

because (v,7|y did not drop. If B is a successor ordlnal or 2”7 is continuous at f3,
then 6 = z,ﬁ’v(ﬁ) and all is trivial. Otherwise, let 7 <y 3 be the site of the last drop;
then 7/ (1) is the site of the last drop in [0, ZM(B)]W; and &’ (1) <. 6. Finally,
we can define [ by: if n € (7, B)w: and

=iy (n)
then "
Wi W g
Uiy g (2)) = i,6 (4 ().
It is easy to see that this works. ]

The following diagram illustrates the lemma.

J1 Wi

W
My @ (9)

PO%ng
J

Here ji 0 jo = 4/ (j). (The diagram assumes j exists which is of course not the
general case.) jg 1s glven by the downward closure of {#%/_ (E) | E is used in [0, 5)w; }.

Again, [ is just s
We proceed to the general successor step. Suppose we are given ®, for n < 7,
and let us define ®,,,. For any v+ 1 < 1hi/, let

o M, =(EY),
o X, =M, |Ih(H,) = N,|Ih(H,), and
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o res, = o0, 1 [ X))
So res, is the map resurrecting ¢*(EY) inside S,. Let also
oY = M;}, where (0, j) = Res,, 1 [X,],
e G, =res,(H,), and
e G% = background extender for G in i’ (C).
So res,: X, = Y, G, is the last extender of Y,, and G = Ezf Finally, let
02: ./\/lg’ — K, ﬂMT
be the copy/lifting map, and set

_ 1_.0
0y = 0,00,

so that o, : /\/lzj — Ki < R,. To save notation below, we shall just write o, : ./\/lg —
R,. Our induction hypothesis is

Induction Hypothesis f.

(t)y (a) For§ <n <7, Pel(ag+1) = Oyl(ag +1).
(b) For all n <y, t7 is well defined; that is, v"(2(n)) <w; 2*(n).
(c) Forv<n<v,s! [(IhF, +1)=res, ot”[(Ih F, +1).
)

(d) Let v <n <+, and v <y 7, and suppose that (v,n|y does not drop. Let

i* =4 and let T = ¢,,,(€); then

V'V]’
(i) if £ < z(v), then u"(7) = z*(u”(f)),
(ii) if & < z(v), settlng Jj = Uy(g) wie and k=

embedding I: MV — MY
[os¢, and

W*
Lyn(r) an(r)

w(g such that kol =i*oj, and sZowg’":

’U"(T)

*

N . . R 4% W*
(iii) if & = z(v), then settln*g J =ty ( )Z ) and k = o1(r) 2 ()
is an embedding [: MZ\V}Z /\/l ) such that kol = 7" o j, and

'f]o V777: o v
slome losg.

(e) For £ <y, ¥ =t o0y

v
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(f) . For all v < n <7,Y, agrees with N, strictly below lh G,. G, is on the
Y, -sequence, but 1h G, is a cardinal of V,,.

Items (a), (¢), and (f) are our agreement hypotheses on the ®,.
Clauses (¢) and (f) should be read with clause (¢) in mind. By (e), for all n < ~,

G, =t"(F,).

For v < n <7, res,ot” maps R,|1h F, elementarily into Y,,, and SZ(n) maps R, || Ih F,
elementarily into N, || 1h(G,). But dropping last extender predicates, the domain
models are the same, and () says that the range models are the same. By (c¢), the
maps agree on lh(F,). (This also uses (a), and the agreement between s and ¢ maps
in a tree embedding.) The upshot is that (), implies

res, ot’[(R, || Ih F,) = s”

2o [ (By [ Th E),

forall v <n <~.

Remark 5.18 Literally speaking, (f),.(c) does not make sense, because t”(lh F,) ¢
dom(res, ). Here and below, we are declaring that if o: P — @) is a resurrection map,
then o(o(P)) = o(Q).

Remark 5.19 In most cases, (f),.(c) implies that if ¥ < 7, then ¢7 agrees with
res, ot” on 1h(F),) + 1. For letting G, =t (F}), we have that

W
crit(z,,

(cm)er(m) = A

Thus in any case, t" = t"( ) agrees with s" (n) O1 )\Fy, and thus with res, of” on Ap,

by (f),.(¢). The stronger agreement will fail iff crlt( on(z(m).2=(m) = AG,- The reader
can check that for this to happen, F,, must be the last extender used in W,,, so that
n=v+1,and z(n) = a, + 1.

Item (d) captures the commutativity hypothesis ®, 0¥, , = ¥} o®,. It is written
out in terms of the component maps of these tree embeddings; the map [ in part (d)
is (sv(e)) V7. (1),.(d)(i) says that p?(e,,(E)) = i, (p”(E)). Here is a diagram to
go with the rest of this clause. In the diagram, 7 = ¢,,(£). The far right assumes

u”(€) exists, that is, £ < z(v).
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n
W, St ,;; k W;;
v My — Ml
e l &
W S¢ W J W
N N v
Mﬁ Mvu(g) Muu(g)

Here j and k are the branch embeddings of W, and W,;. There is a similar
diagram when £ = z(v), with z*(v) and z*(n) replacing u”(§) and u"(T).

Remark 5.20 The embedding along the bottom row of the diagram above is either
t¢ or t¥, depending on whether § < 2(v). The embedding along the top is either ¢7
or t7. So (f),.(d) implies that

n vn o U* v
Cgpn(e) O T = lyy O lg

if £ < 2(v), and
o= U ot

7
t!o o) = o

Remark 5.21 (f), implies that for v < n <,
t2 [(IhF, + 1) =res, ot”[(Ih F,, + 1).

This is because a, < z(n), and F, = Ex. So on Ih(F,) + 1, t} ~agrees with SZ(T])

by the agreement properties of tree embeddings (3.35), and hence with res, ot” by
(1)y-(0).

If o, < 2z(v), then since @, is a tree embedding, t[(Ih E}+1) = t% ([1h B}/ +1).
But 1h F, < 1h EXY", so t” and t agree on Ih(F,) + 1.

Thus ¢4, # t4*" in general. (In fact, always.) The two maps agree up to Ih(F,)
if res, is the identity on ¢, (Ih(F))), but they need not agree past that, and they do
not agree below that if res, is not the identity that far. They may map into different
models.

This is all consistent with (f),.(a), because ¢, is not part of ®,[(cy, + 1). The
map t§7 is recording how the extender E};V ¢ is blown up into We. As we go from v to
v+ 1, EZ‘:“ is replaced by F, = EZ\:"“. So the map blowing it up must be changed
somewhat — even below 1h F},, if there is resurrection going on in S,. But EX is
not part of W, [(a, + 1), so this does not affect (a).
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In defining ®,;, we shall make use of 5.6, which implies that res, is present in
a branch embedding of some (W;,)%". Let

7, = least § such that X, < MZ\};.
Let’s also drop some subscripts for now, by setting
(I H,G,G*, X, 1) =(F,,H,,G,,G., X, 7).
Claim 5.22 1. If a, = 2(v), then 7 € [V (a), 2" (7)]w ,
2. If ay, < 2(y), then T € [v”(av),uv(av)];w.

Proof.

* W3 .
L If oy = z(y), then v7 (o) <z 2°(7)- O(F) =ty () © $1(y(F) is on the

sequence of M?j@). Since lh Eg% <lhFforalé < a,, lh(pV(E;/v”)) < 1ht"'(F)
for all § < a,. Cofinally many extenders used in [0,v(a,))w: are in ranp?,
which gives lhs] _ (F) > lh E;/V; for all £ < v¥(a,). So v7 () is less than or

equal to the least 7 such that ¢t?(F') is on the MTW 7 sequence. That 7 is the
least i such that t7(F) = ifg@m o s (F), so that 7 € [v7(ay), 2*(7)]wz. (See
proposition 5.2.)

2. If oy < 2(y), then 7(F) =t (F) = 1,10 ) ur(ar) © Sa, (F). In this case

7 =least (3 € [v(ay), u(a,)|w: such that crit(iru(a,)) > o) (h F).

This can be shown as in 1. We omit the details.

By Lemma 5.6, there is a normal tree YW;* such that

(1) Wi* is by X, and extends WX [(7 + 1),
(#) letting &, = ThW;* — 1, G is on the Mg;* sequence, and not on the MY
sequence for any a < &,

RV
(117) 7T <wsr &, and i [(IhH +1) =res, [(h H +1).
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Let e
N7 = Mgw” )

We shall show that WJ* is an initial segment of WJ,,, and that G is used in

W : :
i1 (So Gy = E¢ """.) By induction, the same has been true at all v < 7. That
is, we have

Induction Hypothesis (7).

(T)y (g9) . Forall v < v, W;* is an initial segment of W} [(v7(c,) + 1). The last
model of W;* is N} = M), and Y, < N

Here is a diagram showing where G came from, in the case that o, = z(y).

(N, H)

Here k is the branch embedding of W7, and it is the identity on h(H) + 1. [ is the
branch embedding of W2*, and it agrees with res, on Ih(H) + 1.
If o, < z(7), then the corresponding diagram is:
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Here again, k is the branch embedding of W», and it is the identity on Ih(H) + 1. |
is the branch embedding of WJ*, and it agrees with res, on Ih(H)+1. R, and Mz\i”
agree up to Ih(F') + 1, and 7 agrees with ¢]_on Ih(F) + 1. (In fact, on )\E(m.)

In either case, we get

*k

Claim 5.23 res, ot” agrees with iz\jzav)@ os) onlh(F)+1.

Proof. Suppose o, < z(7). Let k and [ be as in the diagram above. Then for
n < h(F),

res, ot”(n) = res, Otgw (n)

N4%
= res, O(k S Zm’(yaw),m © ng)(rrn

W3
=185 0(iy (o)1, © Sa, ) (1)



as desired. The calculation when a., = z() is similar. O

Now let
v = U-pred(y +1).

Thus we have

Sy+1 = Ult(S,, GY),
where G* is the background extender for G = G, provided by i (C). We write

*

iGr =i
for the canonical embedding.
Case 1. (v, + 1]y does not drop in model or degree.

In this case, we have

<77’Y+17 l’y+1> = 7;G* (<77V7 lu))
Nyg1 = ig«(Ny)
and
Wiy = ig-(W)).

Y

Our goal is to define ®..;, and with it ¢!, so that the following diagram is
realized (among other things).

210



_ _—
M Ry Ny Sy
T ic '
W’y+1 1G*
u Oy R tv N W S
MV v v y+1 v
4% w
Py Py

As we remarked in the case v+ 1 = 1, it is important to see that the resurrection
of the blowup of F', which is in our case G, is used in Wy ;.

Claim 5.24 (a) Wj,,[&, = WI[E,.

(b) G=E. "
Proof. Let p = crit(F), where F' = F,. Let 0,(fi) = p, where fi = crit(EY). Since U
does not drop at y+1, no level of MY beyond Ih EY projects to or below fi. So no level
of R, beyond lh F, projects to or below p. So no level of N, beyond lh H, projects

to or below #(y). Thus res, is the identity on “(u)™"", and N*[(#(p)t)Ne =
N, (7 ()TN, Also, (#"(u)*)M < Ag,. Thus

v Nu * | UV N: v N.
NI () = N (o) = N ()
But also, if v < 7, then no proper initial segment of M%’ projects to or below 1h EY,
so no proper initial segment of NN, projects to or below lh G,, so res, =id on IhG,,

and N, [t7(u")™ = Nz|t7(ut)™> .. Thus in both cases (v < v and v = ),

N ()™ = N[ ()™
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Letting A = 7(u™)™, we have then that ig-(N,|A) = ig-(NZ|\). But Ult(N:,G)
agrees with ig-(NZ|A) up to IhG + 1. (We chose G* so that they would agree at
IhG.) Thus

Ny | IhG = N7 || Ih@

and lh G is a cardinal in N,1y. Since W7, and WJ* are normal trees by the same
strategy >, we get Claim 5.24. O

By Lemma 5.3, there is a unique tree embedding W of W, 1[(, +2) into W2,
such that ¥ extends @, [(a, + 1), and u” () = &,, or equivalently, p¥(F) = G. We
let ®.11[(cvy + 2) be the unique such V.

In order to establish the proper notation related to ®...1[(c, + 2), as well as its
relationship to ®,, we shall now just run through the proof of Lemma 5.3 again.

Let’s keep our notation p = crit(F'), and write

pt=1"(p) = t"(n) = crit(G).
Let
§ = pr
so that I is applied to MEV” = M;VVH in W,41. Let
B = W7, -pred(§, + 1),
that G i lied to M = M2 in W
so that G is applied to M. = Mg in Wr_;.
Claim 5.25 (a) 5* <7, and M]ﬁ/\? = M;v” = M?ﬁ = ./\/lgvV
(c) If B < z(v), then B € [v"(B), u”(B)]w; -
(d) If B = z(v), then 5* € W”(B), 2*(V)]w:-
Proof. Let P be the domain of F' and P* the domain of G; that is,

W*
— v+1
= My

P = Rv|(H+)R7

and
PP = N0 () ) = N () )

(N., agrees with N7 this far because we are not dropping when we apply F .) By the
rules of normality,

B* = least « such that P* = MY lo(P*).
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Put another way, WJ*[5* + 1 is unique shortest normal tree on Fy by ¥ such that
P* is an initial segment of its last model, and o(P*) is passive in its last model. But
we showed in the proof of Claim 5.24 that P* = N}|o(P*), and o(P*) < Ag,. We
also showed that (res,)[P* = identity. Thus P* = N,|o(P*), and o(P*) < Ap,. So
P is a passive initial segment of the last models of W, Wy, W2, W™, and W ;.

Thus all these trees agree up to 8* + 1. As o(P*) < lh(H,), p* < 7. This yields (a).
For (b), note that * is a cardinal of S, so |MZV”| < p*in S, for all o < p*. It
follows that pu* < §*, and if s = ez\*}” is the branch extender, then s: p* — V.. If

@41 =1h(W2) or A(E,«)"™ > p*, then 5* < p*. So we may assume that E = ELA:;

exists, and Ay = p*. This implies P* = MZ\:; |1h(E).
Working in S, let

and

: W
[TeX: (MH*’Y) — M;},
where 6 = ig«(p*). Since s = ig«(s)[u*, we have that ./\/l:?f = MY, e [0,0)y,

and [p*,0)y has no drops. Thus MZ\:; agrees with M} up to their common value
of p*%, and in particular, £ is on the M}-sequence. It follows that E is on the
sequence of ig+(P*). But now let

k: Ult(P*,G) = ig-(P7)

be the canonical factor map. We have that crit(k) = Ag, and in particular, crit(k) >
o(P*). Since o(P*) is passive in Ult(P*,G), it must be passive in ig(P*), contrary
to our assumption that F is indexed there. This proves (b).

For (c): if B < z(v), then pu < )\Egvu, SO

pr=1t"(n) = tg(n)
_ W v
= Ty (g)ur(s) © 5(14)-

* Wy * v * wy wy :
Also, " < A(E,.(g), so 7 < u”(B) and P* < M .05 || A(E,.{4))- But since

P w7 € raniis g

(we don’t actually need @ because in this case [v(3),u”(8)]w; does not drop), we
get

]

B* =least a € [v"(B), u”(B)]w; such that crit(i, . 5) > i:‘;%m’a(sg(u)) or a =u"(f)..
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Proposition 5.2 essentially proves this, but the situation is not quite the same, so we
repeat the argument.

First, note that v(8) < g*. Forif £ = E}Y/V” is used in [0, B)w,, then Ag < u,
and thus Ay (g) = t;()\E) < t"(Ag) < tY(u) = p*. This implies v”(8) < p*.

We have by the agreement of W;* with W; up to 5" + 1 that

B* = least a such that P* = MY |o(P*).

Let o be least such that o € [vV(8),u”(8)]w: and crit(z'?jiy(ﬁ)) > iﬁ%ﬁm(sg(u)) or
a = u’(5). We want to see f* = «. Since P* = MZ‘;LEB)IO(P*), we have 5* < a. We
must see v < *. If o = v”(), this holds, so assume a > v*(3).

If o < « and EY” is used in 0, a)w>, then AEY?) < o(P*). This is true if
o+ 1 < v¥(B) because v”(f) < *. If v¥(5) < o+ 1, then E, is used in (v”(8), alw:,
and since P* € ran ivyffﬂ)’uy(ﬁ), o(P*) < crit(E,), and o was not least.

It follows that lh(E;/V’j) < o(P*) for all 0 < a such that Ey is used in 0, ),

and hence for all ¢ < o whatsoever. So if o < a, P* % MY |o(P*), as E, is on the
sequence of the latter model, but not of the former. Thus o < 3%, as desired.

This gives (¢). The proof of (d) is similar. O

With regard to part (b) of the claim: it is perfectly possible that § is a successor
ordinal. We can even have = a + 1, where A\g, = p. In this case v¥(5) < 5* = u*,
and sf(p) < p* as well. So 8* = p* is strictly between v”(3) and either u”(f3) or
2*(v), as the case may be. This is a manifestation of the fact that the tree embeddings
®,, are very far from being onto, when v > 0.

Claim 5.26 1. If B < z(v), then * = least a € [W"(B),u"(B)|lws such that
crit (i, ) > i (s5(w)
cur () 7 o (8).a\ S5 \H))-

2. If B = z(v), then B* = least o € [v"(f), 2" (Vlw: such that Crit(’izvf*(y) >
W (o ’
Z'[)V(B)7a(8ﬁ(/’l’))

3. In either case, the embeddings t”, res, ot”, and ivmy}%ﬁ) 5+ © S all agree on the
domain of F.

Proof. This is what we actually showed in Claim 5.25. The following diagram
illustrates the situation when f < z(v).
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W*
My (8)

k
M
B*

Mg ’ MW*B)

We have shown that both k£ and res, are the identity on the domain of GG, that
is, on t¥(u)* of MZZ”. The agreement of ¢ with ¢} on lh(EgV”), which is strictly
greater than (u7)%, completes the proof. The case that 8 = z(v) is similar. O

Now let

— W
P = (g pe © 5o
so that p : /\/lgv” — /\/lg\i;. On the domain of F', p agrees with ¢V and with res, ot”.
We can then define ®,,; at o, + 1. That is, we set

W e, = ula,,

P Ext(W, o) = 7 | Ext(, o),

+1 __
sg = sg for n < vy,
and
v+l 4y
=1 for n < a,.

Then we set

u'tt () =&,

pH(F) =G,

and let sa +1 be given by the Shift Lemma,

Wy wy
Mg

S (e f157 ) = [res, of"(a), p(f)]g -

We have shown that p agrees with res, of” on the domain of F. By (}),, p agrees
with ¢7 on the domain of F'. Since res, is the identity on the domain of H (cf. 5.24),
p agrees with res, ot” on the domain of F', and we can apply the Shift Lemma here.
Let us also set
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* %k
WV

t7+1 —
Oy vy (a’Y)vg’Y

085 -

Wit w3

Then 7 MW — M i) = ./\/lfv”*, and ¢! agrees with res, ot” on Ih(F)+1,
by claim 5.23.
This gives us @41 [(a, + 2).

Claim 5.27 &, [(a, +2) is a tree embedding of W 1 1(ay +2) into Wi, (&, +2),
and extends @, [(ay, + 1).

Proof. We checked some of the tree embedding properties as we defined ®,,,. We
must still check that #]*! satisfies properties (d) and (e) of definition 3.27. Noting

that EZX” = I and that ¢ agrees with res, ot” on 1h(F") 41, this is easy to do. See
the proof of lemma 5.3. O

We can define the remainder of the maps «”*' and p**! of @, right now. If
B <& < z(v), then we set

W (Gyr11(E)) = ig-(u”(€)),

and
P ey 1(E)) = ie- (0" (E)),
for £ = Eg/v”. Note that this then holds true for any F, since if F = Eg/v v for some
¢ < B, then p*i(ey 41 (E)) = p™1(E) = p"(E) =i (p"(E)).
The definition of the s and ¢-maps of ®,,;, and the proof that everything fits
together properly, must be done by induction.

As we define @4, we shall also check the applicable parts of (f),+1. We begin
with

Claim 5.28 &, [(ay + 2) satisfies the applicable clauses of (F)y+41-

Proof. We have @, [(ay+1) = ®,[(a,+1) by construction, which yields (f),+41(a).
Suppose that (1),+1(b) is applicable, that is, that z(y+1) = a,+1. So z(v) = .
We have 07" (a, +1) = & + 1. So what we must see is that {, +1 <w:  2"(v+1).
That is, we must see that G is used on the branch to z*(y + 1). We are in the
non-dropping case, so z*(y + 1) = ig«(2*(v)). The relevant diagram here is
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Wi Wi
y+1 v+1
. E—
igx(8*) Mz*(wrl)

M

W*
y+1 ;
Mg’y+1 el

* Wi
Mgt ——— MY

z*(v)

wi
Mv”(ﬁ)

If s is the branch extender s = eg\?, then ig«(s(i)) = s(i) for all i € dom(s), and

thus s C e.WW* . It follows that
igx (B*)

S
Mﬁ* - Mﬁ* 9

and that A
i LM = 000

The factor map o in our diagram is the identity on the generators of G. Tt follows
that G is compatible with the first extender used in z;\)”;;l (5% and thus G is that
extender, as desired.

Turning to (1),+1(c), the new applicable cases are (ii) and (iii), when £ = 8 and
T = a,, + 1. Let us suppose that it is (ii) that applies, that is, that § < z(v). The
last paragraph showed that G is used on the branch to ig«(4*) in this case as well.

We have the diagram
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Wipn % Wi

Migr(ay = Mo, )
g
MWWH Slj'l*'l MV f,+1 U
atl Mg Wyt
iG
v h wp
F Mﬁ* Mu”(ﬁ)
p
/ .
tl/
W, s wy
Mg = M
MR :
Here Wg’,ﬁ_l =i " . The branch embeddings ¢ o o of Wi, and ho f of W)

play the roles of k£ and j in (f),.(d). The role of [ is played by ig o f. The diagram
commutes, so we are done. The case = z(v) is similar.

Turning to (1),.(c), it is enough to show that SZ:L agrees with res, ot” on Ih(F')+
1. But this follows from the Shift Lemma.

We turn to (),.(e), that ¢, | =7 o o, 1. This is applicable when z(y 4 1) =

a, + 1, and hence since we didn’t drop, z(v) = 5. So Mgv” =R, MM = R .1,

ay+1
* 4% . . . .
MZYZV) = N,, and z*z’:—Jlrl) = N,41. Expanding the diagram immediately above a

little, while making these substitutions, we get
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— N

Ory41 Sa +1 *
u v i y+1 u*
%
M’Y+1 — R’Y‘i’l M&—y-‘rl U1

U
"+l

We have 1"+ = pooo sl and t¥ = hop.
Y
Note first that ¢¥,, agrees with t7"" 0 0,y on ran(#%/_,,). This is because

u U _ur u
¢7+1 © Zl/,y—l—l - Zl/,"/—l—l © ¢V
U

= o (hopoa)

(by (1))

_ v+l U
=t 004101 44

The last equality holds because of the commutativity of the non-y part of the dia-
gram.

MY, | is generated by ran(iff, ;) U\, where X\ = Agu. So it is now enough to
show that /%, | agrees with "' 0 o,y on A. But note

Y TA = res, oA

— 2
=r1es, ot 00, [\
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(by (1)+)

=t"lo oy A
(because 17! agrees with res, ot” on Ar)

= t’erl 9] O"H‘l r)\

The last equality holds because 0., agrees with o, on Ih(F)+1, by our earlier work
on normalization. This proves (t)41(e).

For (f),41(f), note that N, agrees with N* = ./\/lg:* below 1h(G), and the latter
is a cardinal in NV,yy. This and (f),(f) give us what we want.

This proves Claim 5.28.
O

For the rest, we define ®..41[n+ 1, for a, +1 < n < z(7y + 1), by induction on 7,
and verify that it is a tree embedding. At the same time, we prove those clauses in
(1)4+1 that make sense by stage n. The agreement clauses (a), (¢), and (f) already
make sense once we have @, (., + 2), and we have already verified them. So we
must consider clauses (b), (d), and (e).

First, suppose we are given ®,1[(n+ 1), where ., +2 <n+1 < z(y+1). We
must define @, [(n + 2). Let

¢V7’Y+1 (T) =1,
_ W,
E = E17 +1,
and
K =EM.
Let

E* = p"*YE) and K* = p”(K).

We have already defined p?*! so that ig«(K*) = E*, and v (n) = ig-(u”(7)). We
can simply apply lemma 5.3 to obtain ®.44[(n +2) from ®..;[(n+ 1). For we have
the diagram from (f),41(c).

Wy %1 Win Wi
My » Myhg » M)
ﬂ;_””/-!—l 1 Zu,nyrl
W, S: * Wk
v v - v
M- o(r) Moy



Taking £ = w1 (n), we see from the commutativity of this diagram that E;/V =

o s7HL(E)*). Thus the condition (2) in 5.3 is fulfilled, and we can let

w1+ (n), n
@7+1(F%7§ +2) be the unique tree embedding of W, 1 [(n + 2) into W7, that extends
®,111(n+ 1), and maps E to ig (p”(K)).

We now verify the applicable parts of (f),+1. The proofs are like the successor
case 1 = a., that we have already done. We consider first clause (d). The new case
to consider is { = 7+ 1. We have ¢, ,+1(7+1) =n+1. Let 0 = W,-pred(r + 1) and
0 = W,q1-pred(n + 1) index the places K and E are applied. Let ¢* and 6* index
the models in W and W7 to which K* and E* are applied. Let us write i* = ig:.
We have i*(K*) = E* and i*(0*) = 0*.

For purposes of drawing the following diagram, we assume 7+ 1 < z(v). The
situation is

Y1
Wy it Wit Wit
MO =0 ML ===y MO
E W, 5741
MT+1
Wot1
M
Ko
K
W,
MO’ v v
SO'
By Fy

There are two cases being covered in this diagram:

(Case A.) crit(F) < crit(K). In this case, = ¢, ,+1(0), and 7 = 7271, The map [ in

our diagram is given by the part of (f)..(d) we have already verified.

221



(Case B.) crit(K) < crit(F). In this case, § = o < 3, where 8 = "I, Moreover,
Wyl(o +1) = W,1[(0 + 1), and 7 is the identity. Moreover, 5 < a, by the
way normalization works, so the part of (f),.(a) we have already verified tells

us that s¥ = ng, and /\/l =M ﬂfl%e) We take [ to be the identity as
well. In other words, the bottom left rectangle in the diagram above consists
of identity embeddings.

We also have dom(FE) = dom(K) < crit(¢*) in this case (though F # K is
perfectly possible). So then dom(E*) = dom(K*), which implies that M =
/\/lg*”“, and ¢ [MZ\*}: is the identity. Thus the bottom right rectangle also
consists of identity embeddings. ( It is however possible that u”(c) # v (o)

in this case.)

In both cases, our job is to define h so that it fits into the diagram as shown.
Using the notation just established, we can handle the cases in parallel.
We define h using the Shift Lemma:
W21

sz) . . Mo+

h(la, [l ) = [i*(a), 7" ()] ="
Note here that i*(u” (7)) = u?™!(n) by our induction hypotheses, so i* maps MY

u"(T
the model where we found K*, elementarily into M ﬂﬁl the model that had E*.
So the Shift Lemma gives us h, and that hoig+ = ig 0"

We shall leave it to the reader to show that the rectangle on the upper right of
our diagram commutes. If s is the branch extender of [0, u” (7 + 1)}y and t is the
branch extender of [0, u ™! (n + D)]w=, . then i*(s) = t. Moreover, if s(a) = K* and
t(b) = E*, then i*(s[(a+1)) = t[(b+1). This implies that the upper right rectangle

commutes.
So we are left to show that hos? ; = sgﬁ o1 Let x = b, f] " be in
MP¥. Then

WV
h’ o 8T+1< )) = h(8:+1([b7 f]'l/\(/lo ))
= h([t(B), ity e 0 Sk
W MW:;Jrl
= [ o (b)), 0" 0 iy 4o 0 e (Hp"

The second step uses our definition of s¥ ;. On the other hand,
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1 A1 1/ v+l MV
sy o mt (@) = sy (m T (b £l )

= S )

W Myt

— [7+1 vyy+1 v+1 7+1 0%

= [ty om/7(D), by ii(gyge © 59 © ()] :

Now let’s compare the two expressions above. The function f is moved the same

way in both cases because the bottom rectangles in the diagram above commute.
That is,
-k 9 v -W:;+1 y+1

y'u
7 O Zv”(o),cr* 0S8, = ZU7+1(9)79* O Sy oT.

So we just need to see that
y+1 vy+1l _ ox v
ly" " om; =1 ot,.

But this follows from the part of (t),41(d) that we have already verified. The relevant
diagram is

+1
t
m
Wytr Wt Wit
My Mgy - » Moo
ﬂ,_l;mﬂrl i*
W SZ WH *
v v _ v
MDY ——— M P M

Thus we have verified the new case of (f),41(d) that is applicable to ®,41[(n+2).
We turn to (t),41(e). If it is applicable, then z(y + 1) = n + 1, and because

we did not drop, z(v) = 7+ 1. We must show that ¢*,, = 7" 0 0,,;. We have

R, = Mmf ' and R, = M. Making these substitutions and expanding the
upper part of the diagram above, we get
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v+

S
y+1 z(v+1)
’Y+1 v+1
v,y +1 .
/l\ 1\#2(”) /l\h /lkz
sv
W (% z(v) W; W*
v 3 —
Ml/ RI/ M’UV(Z(V)) M ) — NV

The embedding across the bottom row is # o g,, and hence by induction, it is ¥.
The embedding across the top row is 77! o ,11. The diagram commutes, so
u U u U
y+1 °1, R V,’Y © ¢V
=" ot'oo,.

_ v+l U
=17 0044107, 49-

Thus 7" 0 0,41 agrees with ¢/, | on ran(#%_,,). So it will be enough to show the

two embeddings agree on A = A BY- For that, we calculate exactly as we did in the
case ) = ay + 1:

gﬂ A = res, O@Ds’ A
=res, ot” 0 o[\
=t oo, A

=t oo [\

The last equality holds because o, agrees with ¢..41 on Ih(F')+1, by our earlier work
on normalization. This proves (f),.(e).
Finally, suppose that A is a limit ordinal, and we have defined ®,;[n for all
17 < A. Then we set
Oopr A= @ogaln

n<A

We are of course assuming ®,1[7 is a subsystem of ®.,,[3 whenever n < 3, and
the tree embedding properties clearly pass through limits, so this gives us a tree
embedding of W, 41[A into WJ ;[\

In order to define @, [(A + 1), for A < z(y + 1) a limit ordinal, let 7 be such
that

A= ¢V7’Y+1(7—)'

Consider r = fﬂ“(ez‘/”“). Since ®.41[\ is a tree embedding, p7*! is C-preserving on

WY, Thus 7 is the extender of some branch b of W2, . In fact, b is the downward
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closure of {ig«(v”(§)) | £ <w, T}. Recall that the v-maps preserve tree order, so that
{ig=(v"(§)) | € <w, 7} is contained in the branch [0, ig- (v"(7)]w=,, of W2, . So

v+1

V) = supfic- (v7(8)) | € <w, T}
Moreover, we can define s}“ : MKV”“ — Mz\ﬁﬁ/\) using the commutativity given
by (c) of definition 3.27:

Wi y+1

1, . W
s\ (ign " (x)) = Zm+1(9)7m+1(,\)(59 ().

It is easy to verify the agreement of SKH with earlier embeddings specified in clause
(d) of 3.27. Thus @4 [(A + 1) is a tree embedding.

We must check that the applicable parts of (),4+1 hold. Let us keep the notation
of the last paragraph. For part (b), we must consider the case z(y+1) = A\. We have
not dropped in (v,v + 1]y, so z(v) = 7, and v”(7) <w: 2*(v) by (f),. We showed
that v7*(A) <w=,, ig-(v”(7)) in the last paragraph. So v7™(\) <w:,  ig-(2*(v)) =
2*(y + 1), as desired.

For (f)y+1(d), the new case is { = 7, and A = ¢, ,41(7). Everything in sight
commutes, so things work out. Let’s work them out. Setting i* = i*/ and letting

v,y+1»
k be the branch embedding from /\/lvmjﬁb) to MZ/*V(“’UT(T), the relevant diagram is

!
Wy A Wit k Wit
ML = Moty = M)

v

S *
Wy v wWe
M —— M
Wryt1
M, —
/l\ SG
v, yA1L
To
MY
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Here we are taking 0 = ¢, ,11(0), where o <y, 7, and o is sufficiently large that
®u.~+1 Preserves tree order above 0. We also take o to be a successor ordinal, so that
i*(v”(0)) = 7 (7). The map [ is defined by

I WV Wi

Loy () v (7) () = Lyr+1(9) 07+ () (1" (2))-

(Where of course we are taking the union over all such successor ordinals ¢.) If we
draw the same diagram with 7 replaced by some sufficiently large 79 <w, 7 and A
replaced by Ao = ¢, ~+1(70), then all parts of our diagram commute, because we have
verified (t),41 that far already. Since all these approximating diagrams commute, [
is well-defined, and the diagram displayed commutes. Moreover, it is easy to check
that kol =¢* [MZ\V)ZT). Thus we have (})41(d).

The proof of (1),+1(¢) is exactly the same as it was in the successor case, so we
omit it.

Remark 5.29 Actually, that proof seems to show that (f),.(e) is redundant, in that
it follows from the other clauses.

Thus 7' 0 011 agrees with ¢, on ran(i, ). So it will be enough to show the
two embeddings agree on A pu. For that, it is enough to see t’*! agrees with # on
Ar. But in fact, £ agrees with ¢ on 1h(F}), for all £ < v, so we are done.

This completes our work associated to the definition of ®41[A+1, for A > a, a
limit. Thus we have completed the definition of ®..;, and the verification of (}),41,

in Case 1.

Case 2. (v, + 1]y drops, in either model or degree.

Let
fL= crit(Ef/’),
P = dom(Eff),
Q = first level of ./\/lz;l beyond P

that projects to or below p.

We have that

_ u U _ u u
P = MZI/4|(M+)MV|1h(EV) _ Mg‘(/fr)Mv“h(Ev).
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Let
— o) = crit(F),
=0,(P) =dom(F),
Q =o0,(Q) = first level of R, beyond P
that projects to or below pu.

Since o, agrees with o, on Ih(F,), we can replace o, by o, in the first two equations.
( But if v < 7, then @) ¢ dom(c,).) We have that

P =R |(u*)" ) = R, | ()1,
In this case, z(y+ 1) = o, + 1, and

Wi = Wyl(ay + 1) (UIK(Q, F)).

Claim A. res, ot” agrees with res, ot” on Ap,.

Proof. This is clear if v = ~. But if v < v, then ¢ agrees with res, ot” on A\p, by
(t)4(c). (See the remarks after the statement of (f),.) But also, res, is the identity
on res, ot”(Ag, ), because v < «y. This yields the claim. O

We have H = t'(F') and G = res,(G). We have that res,: N,|lh(H) —

NZ|Th(G), and that res, agrees with il:?& on h(H). Let

Q" = My, where (n,1) = Res,, 4, [t"(Q)]*,
o =0y, [t (Q)]%,

pt=o"(t"(n)), and

P = o*(t'(P)).

o* is a partial resurrection map at stage v. We had res,: N,|lh(H,) — N}|1h(G,).
o* resurrects more, namely t”(Q), but doesn’t trace it as far back in iff ,(C). Because
no proper level of t¥(Q) projects to t¥(u), o* agrees with res, on t”(P). So

o ot"[P =res, ot"| P = res, ot” [ P,

the last equality being Claim A. The embeddings displayed also agree at P, where
they have value P*. Note that P = dom(F') and P* = dom(G).
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We have that Q* is the last model of (W;’Z)SV. Set

7—*:( * )SV.

n,l

Lemma 5.6 tells us that 7* has the following form. Let £ be least such that (@) <
M. Then T*[€+1 = W;1€+1, and letting I0(T*) = 7+ 1, § <g- 7 and 0" = if,.
We have that

1 = g (T7), and
Ny = i (@),

by the way that lifting to the background universe works in the dropping case. As
in the non-dropping case, the key is

Claim B.
(1) Wi1& +1=WE, + 1, and
(i) G=EL "

Proof. We have that dom(G) = res, ot”(P) = res, ot”(P) by claim A, so dom(G) =
o* o t'(P) = P* = Q*|(u")?". P is MY|I(F) cut off at its uT. So P* is
res. ot'y(./\/ll?i”\lh(F)), cut off at its (u*)*, that is, P* is Mg” |1h(G), cut off at
(w)*. e

Thus Q" agrees with M, * |1h(G) up to their common value for (u*)*. It follows
that ig«(Q*) agrees with Ult(./\/lgﬂ Ih(G), G) up to 1h(G) + 1, with the agreement
at 1h(G) holding by our having chosen a minimal G* for G. Claim B now follows
from the fact that YW;* and W}, are normal trees by the same strategy. U

We now get @, by setting p?™(F) = G, and applying Lemma 5.3. We must
see that (f),41 holds. Part (a) is clear.
Let 8* = W, 1-pred(&,).

Claim C.
*) . Qk * W:ykl
(1) h(7*) = p* + 1, and Q* = Mz

(2) pr=p" and if s = SZ:, then s: p* — V-.
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Proof. By definition, 8* is the least a such that MZV:“| (P*) = P*. But Q* is
the last model of 7, and P* = Q*|o(P*), so since T* and W, are normal trees by

the same strategy, * < Ih(7™) and M}, = ./\/lﬂﬁ“. This gives (1).
Part (2) is proved exactly as in case 1. O

Now consider (),41(b). We have v" (o, +1) =&, + 1, and 2*(y + 1) = ig-(u*).
So we must see that &, +1 <=  ig-(n"), that is, that G is used on the branch of
Wi, toig-(u*). But if s = e, then s = ig(s)u*, so u* is on the branch of Wr,,
to ig«(p*). Moreover, ig«(s)(p*) is compatible with G, so it is equal to G, as desired.

(t)7+1(d) is vacuous, because we have dropped. We shall leave the agreement
conditions (¢) and (f) to the reader, and consider (¢). That is, we show ¥ | =
7" 0 0 11. The relevant diagram is

M R Ry = M ' o :w(r; ")
}l;ﬂ“ }‘F }G/
Q— Q) T @
Wﬁ /
Ry
Here k =i ﬂﬁzaﬁl) (7+1) Thus the embedding along the top row is "™ oo, ;.

The lifting process defines Q/J,Y b

dyia(fa, f@) = [resy o ty(a), 0" o (NG,

where we have dropped a few superscripts for readability. Let us write i for A1
Then .41 agrees with 7™ o ., on ran(i), because

t’YHoa,yHoi:ig*oa*ot”oa,,
. *
—ig 00" ot

= ¢7+1 0.

The first line comes from the commutativity of the diagram, the second from (1), (e),
and the last from the definition of ..
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So it is enough to see that ., agrees with t"*! o 0.1 on A, where \ = )\(Eff)

But note that 7! = ko Slj}rl, and crit(k) > Ag. So t7*! agrees with the Shift

~

+1 v+1 ; o
ar+1 00 Ap. Thus ¢ agrees with res, ot” on Ap. So we can calculate

Lemma map s

i1 A = res, o, 1A

_ 2
=res,ot’ ooy

= t7+1 ©O0~t1 r)\

The second line comes from (t),)(e), and the third from our argument above, together
with the fact oy [A = oy41[A.

This finishes case 2, and hence the definition of ®.; and verification of (f),11.

We leave the detailed definition of ®, and verification of (1), for A a limit ordinal
or A\ = b, to the reader. The normalization W, is a direct limit of the W, for
v €[0,A)y. The tree Wy is &% (W), for v past the last drop. So it is a direct limit
too. We define @, to be the direct limit of the ®, for v € [0, \)y; past the last drop.
Part (d) of (f) tells us we can do that. We omit further detail.

This finishes our proof of Sublemma 5.15.1, that W, is a psuedo-hull of W;. [

That in turn proves Lemma 5.15 U

Lemma 5.30 Let M = M, x,, and let U be a normal tree on M that is of limit
length, and is by both Ewﬁo,ko’M and Q. Let

lift (U, M, C) = (U*, (-, 1 | 7 < Thtd), (Y% | 7 < 1hUh));
then U* has a cofinal, wellfounded branch.

Proof. Let m: H — Vj be elementary, where H is countable and transitive,
and 6 is sufficiently large, and everything relevant is in ran(w). Let & = 7 (i),
S*=nt'U*),and T =7 (W} 1,)-

Because ¥ is universally Baire, 771(X) = X N H, so (T,S) is by . Moreover,
letting

b=%((T,S)),

we have that b € H. (Because b € H[g| for all g on Col(w, 7), for 7 € H sufficiently
large.) It will be enough to see that M$" is wellfounded, as then the elementarity of
7 yields a cofinal wellfounded branch of U/*.

By [19], 8* has a cofinal, wellfounded branch c¢. The proof of Sublemma 5.15.1
shows that W. is a psuedo-hull of W*, where W, = W(T,87¢) and W* = S (T).
That is because we can run the construction of ®. in H; we don’t need ¢ € H to
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do that. But then W is by X, so W, is by X by strong hull condensation, and
c = X((T,S)) since ¥ normalizes well. Thus ¢ = b, and M§  is wellfounded, as
desired. 0

We can now finish the proof of Theorem 5.11. We have just shown that EW:O ey M

agrees with Q(Eo,ko on normal trees. We must see that they agree on finite stacks T

of normal trees. But for such 7',

T is by QF < 1ift(T) is by QUEH

vo,ko
& W(ift(T)) is by QLEH
& lift(W(T)) is by QUEH

-

& W(T)is by .

C
vo,ko

QY2H normalizes well on its domain. (This is implicit in the results of Chapter 3,
section 2.) The third comes from the fact that embedding normalization commutes
with lifting to the background universe, which we proved in the proof of Theorem
4.41. The last comes from the agreement of ¥ with Q(Eo,ko on normal trees.

This finishes the proof of Theorem 5.11. U

The first equivalence is our definition of {2 The second comes from the fact that
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6 Fine structure for the least-branch hierarchy

We now adapt the definitions and results of the previous sections to mice that are
being told their own background-induced iteration strategy.

The particular kind of strategy mice dealt with in this book we call least branch
hod mice. Paired with their iteration strategies, they become least branch hod pairs.
Least branch hod pairs and pure extender pairs share many basic properties, and so
we define a mouse pair to be a pair of one of the two varieties. Section 3 discusses
some of the basic properties of mouse pairs.

The deeper results about least branch hod pairs require a comparison theorem.
The proof of our comparison theorem for pure extender pairs generalizes in a straight-
forward way to least branch hod pairs, provided that we have background construc-
tions for them that do not break down. The main problem is to show that. That is,
one must show that the standard parameter of any pair reached in such a construction
is solid and universal.

One might worry that the usual solidity and universality proofs require a com-
parison, so we are being led into a vicious circle. But this is not a problem, because
if (M,Y) has been reached in some construction, and C is the maximal hod pair
construction of some coarse I'-Woodin mouse that captures ¥, then C cannot break
down until it has reached an iterate of (M, ). This means we do have enough back-
grounded hod pairs to show the comparisons involved in the solidity and universality
proofs do terminate.

But we do in fact confront a new problem in adapting the usual solidity /universality
proof. Namely, when we compare (M, H, p) with M, we must do so by iterating them
into some background construction C, and so disagreements will very often happen
when the two sides agree with each other, but not with C. If we proceed naively, this
renders invalid the usual argument that we can’t end up above M on both sides. Our
solution is to modify the way the phalanx is iterated, so that sometimes we move the
whole phalanx up, including its exchange ordinal. Schlutzenberg has, independently
and earlier, developed and used this idea in another context.

Sections 4 through 7 are devoted to background constructions of least branch hod
pairs, and the proof that all their levels have well behaved standard parameters.

6.1 Least branch premice

A least branch premouse (Ipm) is a variety of acceptable J-structure. Acceptable
J-structures are structures of the form (JZ, €, AN J4) that are amenable, and sat-
isfy a local form of GCH. The basic fine structural notions, like projecta, standard
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parameters, and solidity witnesses, can be defined at this level of generality, and
various elementary facts involving them proved. This is done in [11], and we assume
familiarity with that material here. See the preliminaries section for more.

The language L, of least branch premice should therefore have symbols € and
A. Tt is more convenient in our situation to have €, predicate symbols E, F, ¥, B,
and constant symbol 4. If M is an lpm, then M = (N, k), where N is an amenable
structure for Ly, and k = k(M). We often identify M with N. The predicates and
constant of N can be amalgamated in some fixed way into a single amenable AM.
So we are within the framework of [11]. o(M) is of course the ordinal height of M.
We let 6(M) be the « such that o(M) = wa. The index of M is

(M) = (6(M), k(M)).

If (v, 1) <iex (M), then M|(,1) is the initial segment N of M with index I(N) =
(,1). (So EN =EMAN, FN = EM 2N = %M A N and BY is determined by %V
is a way that will become clear shortly.) In order that M be an Ipm, all its initial
segments N must be k(N)-sound. If v < 6(M), then we write M|v for M|(v,0).

As with ordinary premice, if M is an Ipm, then EM is the sequence of extenders
that go into constructing M, and F'™ is either empty, or codes a new extender
being added to our model by M. FM must satisfy the Jensen conditions; that is, if
F = F™ is nonempty (i.e., M is extender-active), then M |= crit(F)* exists, and for
p= crit(F)™™ o(M) = iM (). FM is just the graph of i¥ [(M|u). M must satisfy
the Jensen initial segment condition (ISC). That is, the whole initial segments of F'M
must appear in EM. If there is a largest whole proper initial segment, then 4"
its index in EM . Otherwise, ¥ = 0. Finally, an lpm M must be coherent, in that
i (EM)o(M) +1 = EM”(Q)).

In other words, the conditions for adding extenders to M are just as in Jensen.

The predicates ™ and BM are used to record information about an iteration
strategy €2 for M. The strategy €2 will be determined by its action on normal trees,
in an absolute way, so that we need only tell the model we are building how €2 acts
on normal trees, and then the model itself can recover the action of €2 on the various
non-normal trees it sees. Since this simplifies the notation, it is what we shall do.

Let us write M|(v, —1) for (M|(v,0)); that is, for M|(v,0) with its last extender
predicate set to (.

Definition 6.1 An M-tree is a triple s = (v, k,T) such that
(1) (v, k) <iex (M), and

(2) T is a normal iteration tree on M|(v, k).
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We allow here T to be empty. The case k = —1 allows us to drop by throwing
away a last extender predicate. Given an M-tree s we write s = (v(s), k(s), T (s)).
We write M (s) for the last model of T (s), if it has one. We say 1h(7(s)) is the
length of s.

What we shall feed into an Ipm M is information about how its iteration strategy
acts on M-trees.

_ ¥M is a predicate that codes the strategy information added at earlier stages, with
¥M(s,b) meaning that T (s) is a normal tree on M|{v(s), k(s)) of limit length, and
T (s)7b is according to the strategy. We write Eﬂf[k for the partial iteration strategy
for M|(v, k) determined by ™. We write
YM(s) = b iff ©M(s,b)
iff E%s),k(s) (T(s)) =0b.
We say that s is according to XM iff T (s) is according to E%S) K(s)-

We now describe how strategy information is coded into the B predicate. Here
we use the B-operator discovered by Schlutzenberg and Trang in [10]. In the original
version of this paper, we made use of a different coding, one that has fine-structural

problems. The authors of [65] discovered those problems. The discussion to follow
is taken from [65].

Definition 6.2 M is branch-active (or just B-active) iff
(a) there is a largest n < o(M) such that M|n = KP, and letting N = M]|n,

(b) there is a <y-least N-tree s such that s is by ¥, T(s) has limit length, and
YN (s) is undefined.
(¢) for N and s as above, o(M) < o(N) + Ih(T (s)).

Note that being branch-active can be expressed by a Y sentence in Ly — {B}
This contrasts with being extender-active, which is not a property of the premouse
with its top extender removed. In contrast with extenders, we know when branches
must be added before we do so.

Definition 6.3 Suppose that M 1is branch-active. We set
n™ = the largest n such that M|n = KP,
oM = {a|n™ +a e BMY,

s™ = least M|n™ -tree such that Mt g undefined, and

v™M = unique v such that n™ + v = o(M).

234



Moreover, for s = sM,

(1) M is a potential Ipm iff b™ is a cofinal branch of T (s)|v™M.

(2) M is honest iff v™ =1h(T(s)), or v™ <IW(T(s)) and b™ = [0, ™M) ().
(8) M is an lpm iff M is an honest potential lpm.

(4) M is strategy-active iff v™ = 1h(T (s)).

We demand of an Ipm M that if M is not B-active, then BM = ().

The ¥ predicate of an Ipm grows at strategy-active stages. More precisely, sup-
pose that 6(@Q) is a successor ordinal, and M = Q|(6(Q) —1). If M is strategy-active,
then in order for () to be an lpm, we must have

»@ =My {(s,bM)},

while if M is not strategy-active, we must have 3@ = ¥M_If 6(Q) is a limit ordinal,
then we require that Y9 = Un<6(Q) ¥ We see then that if M is an lpm and
v < 6(M), then XM C M and M|y is strategy-active iff XM £ $:M,

This completes our definition of what it is for M to be a least-branch premouse,
the definition being by induction on the hierarchy of M.

Definition 6.4 M is a least branch premouse (lpm) iff M is an acceptable J struc-
ture meeting the requirements stated above.

Notice that if M is an lpm, then no level of M is both B-active and extender-
active, because B-active stages are additively decomposable.

Returning to the case that M is branch-active, note that n* is a ¥} singleton,
because it is the least ordinal in BM (because 0 is in every branch of every iteration
tree), and thus s is also a 3} singleton. We have separated honesty from the other
conditions because it is not expressible by a ()-sentence, whereas the rest is. Honesty
is expressible by a Boolean combination of ¥, sentences. See 6.9 below.

The original version of this book required that when o(M) < n™ + Ih(T(s)),
BM is empty, whereas here we require that it code [0,0(M))r(s), in the same way
that B™ will have to code a new branch when o(M) = n™ + Ih(T(s)). Of course,
[0, )75y € M when o(M) < n™ + Ih(T(s)) and M is honest, so the current BM
seems equivalent to the original BM = (. However, B = () leads to YM being
too weak, with the consequence that a >; hull of M might collapse to something
that is not an Ipm. (The hull could satisfy o(H) = nf + [h(T(s")), even though
o(M) < p™ 4 Ih(T(sM)). But then being an Ipm requires B # §.) Our current
choice for BM solves that problem.
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Remark 6.5 Suppose N is an lpm, and N = KP. It is very easy to see that ny
is defined on all N-trees s that are by XV iff there are arbitrarily large £ < o(N)
such that N|¢ &= KP. If M is branch-active, then 7™ is a successor admissible;
moreover, we do add branch information, related to exactly one tree, at each successor
admissible. Waiting until the next admissible to add branch information is just a
convenient way to make sure we are done coding in the branch information for a
given tree before we move on to the next one. One could go faster.

We say that an Ipm M is (fully) passive if F™ = () and BM = ().
We would like to see that being an Ipm is preserved by the appropriate embed-
dings. @-formulae are useful for that.

Definition 6.6 A rQ-formula of Ly is a conjunction of formulae of the form
(a) Yudv(u C v A p), where ¢ is a ¥y formula of Lo such that u does not occur
free in @,
or of the form

(b) “F # 0, and for p = crit(F)*, there are cofinally many & < p such that 17,
where 1 is .

Formulae of type (a) are usually called Q-formulae. Being a passive lpm can be
expressed by a ()-sentence, but in order to express being an extender-active lpm, we
need type (b) clauses, in order to say that the last extender is total. r@Q formulae are
7o, and hence preserved downward under X;-elementary maps. They are preserved
upward under Yy maps that are strongly cofinal.

Definition 6.7 Let M and N be Ly-structures and w: M — N be ¥y and cofinal.
We say that 7 is strongly cofinal iff M and N are not extender active, or M and N
are extender active, and m*(crit(F) )M is cofinal in (crit(F)T)N.

It is easy to see that

Lemma 6.8 rQ) formulae are preserved downward under ¥i-elementary maps, and
upward under strongly cofinal ¥q-elementary maps.

Lemma 6.9 (a) There is a Q-sentence ¢ of Ly such that for all transitive Lo
structures M, M = ¢ iff M is a passive lpm.

(b) There is a rQ-sentence ¢ of Ly such that for all transitive Ly structures M,
M = ¢ iff M is an extender-active lpm.
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(c) There is a Q-sentence ¢ of Ly such that for all transitive Ly structures M,
M = ¢ iff M is a potential branch-active lpm.

Proof. (Sketch.) We omit the proofs of (a) and (b). For (c), note that “B # ()" is
$1. One can go on then to say with a 3 sentence that if 7 is least in B, then M]|n is
admissible, and s exists. One can say with a II; sentence that {a | B(n + )} is a
branch of 7 (s), perhaps of successor order type. One can say that B is cofinal in the
ordinals with a ()-sentence. Collectively, these sentences express the conditions on
potential Ipm-hood related to B. That the rest of M constitutes an extender-passive
Ipm can be expressed by a II; sentence. O

Corollary 6.10 (a) If M is a passive ( resp. extender-active, potential branch-
active ) lpm, and Ultg(M, E) is wellfounded, then Ultg(M, E) is a passive
(resp.extender-active, potential branch-active ) lpm.

(b) Suppose that M is a passive (resp. extender-active, potential branch-active)
lpm, and w: H — M is ¥q-elementary; then H is a passive (resp. potential
branch-active) lpm.

(c) Let k(M) =k(H) =0, and m: H — M be ¥y elementary; then H is a branch-
active lpm iff M is a branch-active lpm.

Proof. r@-sentences are preserved upward by strongly cofinal ¥y embeddings, so
we have (a). They are Il,, hence preserved downward by ;- elementary embeddings,
so we have (b).

It is easy to see that honesty is expressible by a Boolean combination of X,
sentences, so we get (c).

O

Part (c) of Corollary 6.10 is not particularly useful. In general, our embeddings
will preserve honesty of a potential branch active Ipm M because ¥ and BM are
determined by a complete iteration strategy for M that has strong hull condensation.
So the more useful preservation theorem in the branch-active case applies to hod pairs,
rather than to hod premice. See 6.13 below.

Remark 6.11 The following examples show that the preservation reults of 6.10 are
optimal in certain respects.

(1) Let M be an extender-active Ipm, and N = Ulto(M, E), where E is a long
extender over M whose space is (crit(F))*)*, so that the canonical embedding
7: M — N is discontinuous at (crit(#)*)*. Then 7 is cofinal and ¥, so that
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M and N satisfy the same Q)-sentences, but N is not an lpm, because its last
extender is not total. 7 is not strongly cofinal, of course.

(2) The interpolation arguments in [37] yield examples of 7: M — N being a
weakly elementary (with k(M) = k(IN) = 0), and N being an extender-active
Ipm, but M not being an lpm. Again, M falls short in that its last extender is
not total.

The copying construction, and the lifting argument in the iterability proof, do
give rise to maps that are only weakly elementary. However, in those cases we know
the structures on both sides are Ipms for other reasons. On the other hand, core maps
and ultrapower maps are fully elementary, so we can apply (a) and (b) of Corollary
6.10 to them. We do need to do this.

6.2 Least branch hod pairs

If M is an Ipm, then iteration trees on M can be understood in the same fine struc-
tural sense as iteration trees on ordinary premice. We are interested in least branch
premice M that have well-behaved iteration strategies (), strategies that normalize
well and have strong hull condensation. Another aspect of the good behavior of
Q) is that all Q-iterates of M are least branch premice whose strategy predicate is
consistent with the appropriate tail of €.

It is really the pair (M, ) to which our definitions and results apply.

Definition 6.12 (M, ) is a least branch hod pair (Ibr hod pair) with scope Hg iff
(1) M is a least branch premouse,
(2) Q is a complete iteration strateqy for M, with scope Hs,

(3) Q normalizes well, and has strong hull condensation, and

(4) If s is by Q and has last model N, then N is an lpm, and XN C Q.

Of course, § as in (2) is determined by .

We say that (M, Q) is self-consistent just in case it has property (4).

Definition 6.12 assumes we have made sense of embedding normalization and tree
embeddings as they apply to iteration trees on least branch premice. The definitions
and basic results that apply to pure extender premice go over word-for-word, so we
shall simply assume it has been done.
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There is one small difference in the two situations, in that the class of Ipms is not
closed under ¥y ultrapowers or »; elementary embeddings, because of the branch-
honesty requirement. But we will always be dealing with hulls or iterates of pairs,
and Ipm-hood is preserved in that context. For iterates, that is just part of clause
(4) of 6.12. In the case of hulls, it is part of the following lemma.

Lemma 6.13 Let (M,Q) be a least branch hod pair with scope Hs, let 7: N — M
be weakly elementary, and suppose that if N # 0, then F is total over N; then
(N,Q7) is a lbr hod pair with scope Hs.

Proof. N is an lpm by 6.10, except perhaps when M is branch-active. In this case,
N is a potential branch-active lpm, and we must see that N is honest.

Solet v="vN b=0" and T = T(sV). If v = Ih(T), there is nothing to show,
so assume v < lh(7). We must show that b = [0,v)7. We have by induction that
for @ = NInV, (Q, Q%) is an Ibr hod pair, and in particular, that it is self-consistent.
Thus 7 is by Q7, and so we just need to see that for U = T v, U™b is by QF, or
equivalently, that 7t/ b is by (2. But it is easy to see that 7/ b is a psuedo-hull of
m(U)"bM | and § has strong hull condensation, so we are done.

Thus N is an lpm. 27 is a complete iteration strategy defined on all N-stacks in
Hys, where Hj is the scope of (M, ). Q™ normalizes well by the the proof of 4.4, and
has strong hull condensation by the proof of 4.10.

Finally, we must show that (N, Q") is self-consistent. Let P be a Q™ iterate of N,
via the stack s. Let () be the corresponding iterate of M via 7s, and let 7: P — Q)
be the copy map. Then

U is by X = 7(U) is by £9
= 7(U) is by Qs 0
= T7U is by Q50
= U is by (Q")s p,

as desired. O

Definition 6.12 records the properties of the hod pairs we construct needed to
prove the comparison theorem and the existence of cores. The other properties one
might hope for seem to follow from these, as they did in the case of pure extender
pairs, and by the same proofs. For example, from the proofs of 4.9, 4.59, and 4.60,
we get

Lemma 6.14 Let (M, ) be an lbr hod pair with scope Hy; then
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(a) (M,Q) is pullback consistent and strategy coherent, and

(b) if (M, W) is an lbr hod pair with scope Hy such that U and S agree on normal
trees, then ¥ = ).

Inspired by these and many other similarities, we define

Definition 6.15 (M, <) is a mouse pair iff (M,Q)) either a pure extender pair, or
an Ibr hod pair.

The reader will naturally ask whether there are other classes of strategy pairs
(M,¥) which behave like the two classes we have isolated here. The answer is
positive. The remarks to follow were stimulated by a suggestion by Hugh Woodin.

One can vary how much of ¥ gets encoded into ¥, and when that is done. One
can think each of these variations as associated to some ¥ formula p(v). Roughly,
a @-premouse M starts to encode a branch for 7 when it reaches some « such
that M|a = ¢[T]. Pure extender premice are yp-premice, for ¢ = “v # v”. Least
branch premice are p-premice, for ¢ a ¥; formula that can be abstracted from §5.1.
Other X; formulae would lead to classes that might be called “p-mouse pairs”. The
requirements of normalizing well, strong hull condensation, and self-consistency are
the same for all classes of p-mouse pairs. What varies is how much of the strategy
> is encoded into M, and when that is done.

We should note that the rigidly layered hod pairs of [30] are not p-mouse pairs,
because the condition governing branch insertion is not first order. p-mouse pairs
have the condensation properties of pure extender pairs, while rigidly layered hod
pairs do not.

The analysis of HOD in models of AD" that do not satisfy ADgr may need ¢-
mouse pairs, for ¢ not one of the two formulae we have given privileged status in
Definition 6.15. But this is speculation right now, and we have no real applications
for classes of mouse pairs beyond those identified in 6.15, so we have avoided the
extra generality.

6.3 Mouse pairs and the Dodd-Jensen Lemma

Mouse is generally taken to mean iterable premouse, and the Comparison Lemma is
taken to say that any two mice M and N can be compared as to how much infor-
mation they contain. But in fact, how M and N are compared depends on which
iteration strategies witnessing their iterability are chosen. There is no mouse order
on iterable premice, even of the pure extender variety, unless we make restrictive
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assumptions which imply that the iteration strategy is unique. The canonical infor-
mation levels of the mouse order are occupied not by mice, but by mouse pairs. These
pairs are the objects to which the Comparison Lemma, the Dodd-Jensen Lemma,
and the other basic results of inner model theory apply. In the special case that
M can have at most one strategy, we don’t need to make the pair explicit, but in
general, we do.

Let us introduce some terminology that reflects this point of view. We have
already used some of it as it applies to pure extender pairs. (See 4.61.)

Definition 6.16 Let (P,X) and (Q,$2) be mouse pairs.
(a) (P,Y)<(Q,Q) iff PLQ and ¥ = Qq.

(b) m: (P,X) — (Q, Q) is elementary (resp. weakly elementary ) iff 7 is elementary
(resp. weakly elementary) as a map from P to Q, and X = QT

(c) A (normal, weakly normal) iteration tree on (P, X) is a (normal, weakly nor-
mal) iteration tree T on P such that T is by 3. The o pair of T is (M, X7 1041).

(d) A (P,X)-stack is a P-stack by ¥. If s is a (P, X)-stack with last model @Q), then
the last pair of s is (Q, s ).

(e) (Q,¥) is an iterate of (P,X) iff there is a (P, X)-stack with last pair (Q, V).
If s can be taken to be a single normal tree, then (Q, V) is a normal iterate of
(P,X). If s can be taken so that P-to-Q in s does not drop, then (Q,¥) is a
non-dropping iterate of (P,X).

(f) (P,Y) <* (Q,R) iff there is an iterate (R, V) of Q,§) and an elementary
m: (P,X) — (R, V). We call <* the mouse pair order.

Notice that the natural agreement of pairs in a normal tree on (P, X)) follows at
once from strategy coherence. Here are some further elementary facts stated in this
language.

Lemma 6.17 Let (P,Y) be a mouse pair with scope Hg, and let (Q, ) be an iterate
of (P,X); then (Q,) is a mouse pair with scope Hy.

Proof. Tterates of pure extender premice are pure extender premice, and normalizing
well and strong hull condensation are defined so that they pass to tail strategies. If
M is an lpm, then N is an lpm by clause (4) of 6.12. The properties in (3) and (4)
of 6.12 clearly pass to tail strategies. U

In the mouse pair language, the elementarity of iteration maps amounts to pull-
back consistency. So we have
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Lemma 6.18 Let (P,X) be a mouse pair, and let s be a (P,X)-stack; then the
iteration maps of s are elementary in the category of mouse pairs. That is, if
Q = /\/laTm(s)\(u, k) and m: Q — Mx(s) is the iteration map of s, then for t =
sf(m — 1) ((vm(8), km (), Tm(8)[(a + 1))), 7 is elementary as a map from (Q,%:0)
to (Mxo($),Xs).

The appropriate statement of the Dodd-Jensen Lemma on the minimality of
iteration maps is:

Theorem 6.19 (Dodd-Jensen Lemma) Let (P,%) be an mouse pair, let (Q,$2) be
an iterate of (P,Y) via the stack s, and let w: (P,X) — (Q, ) be weakly elementary;
then

(a) the branch P-to-Q of s does not drop, and

(b) letting is: P — @Q be the iteration map, for all n < o(P), is(n) < w(n).

We omit the well known proof. Notice that it requires the assumption that
Y%igo = 2. This was at one time a nontrivial restriction on the applicability of the
Dodd-Jensen Lemma, and led to the Weak Dodd-Jensen Lemma of [27]. Now that
we can compare iteration strategies, the restriction is less important.

We get the Dodd-Jensen corollary on the uniqueness of iteration maps.

Corollary 6.20 Let (P,Y) be a mouse pair, (Q,$2) a non-dropping iterate of (P,X)
via the stack s, and suppose (Q,Q) < (R, V), where (R, V) is an iterate of (P, ) via
the stack t; then

(a) (Q,Q) = (R, V), and the branch P-to-R of t does not drop, and
(b) letting is and i; be the two iteration maps, is = i;.
In the language of mouse pairs, the Comparison Lemma reads

Theorem 6.21 (Comparison Lemma) Assume ADY, and let (P,X) and (Q,¥) be
mouse pairs with scope HC of the same type; then there are iterates (R, A) of (P,%)
and (S,Q) of (Q,¥), obtained via normal trees T on P andU on Q, such that either

(1) (R,A) <(S,Q) and P-to-R does not drop, or
(2) (S,Q) < (R,A) and Q-to-S does not drop.
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We proved this for pure extender pairs in 5.13, and we shall give the proof for
least branch hod pairs in 6.54. For now let us assume it. We get

Corollary 6.22 Assume AD™; then

(a) For (P,%) and (Q,¥) mouse pairs with scope HC' of the same type,

(P,Y) <" (Q,¥) ©3(R,Q)IT[(R, Q) is a dropping iterate of (Q, V)
and m: (P,X) — (R,Q) is weakly elementary).

(b) When restricted to a fized type, <* is a prewellorder of mouse pairs with scope
HC.

Proof. The left-to-right direction of (a) follows from the Comparison Lemma. The
right-to-left direction follows from Dodd-Jensen. For (b), the Comparison Lemma
implies that <* is linear. That it is wellfounded follows from (a), using the proof of
the Dodd-Jensen Lemma. O

For the record

Definition 6.23 Let (P, X)) be a mouse pair; then 3 is positional iff whenever (Q, V)
and (R, Q) are iterates of (P,X), and Q = R, then ¥V = ().

The property is clearly related to what is called being positional in [30]. In the
present context, with gratuitous dropping allowed, it implies clause (b) of strategy
coherence.

[18] proves

Lemma 6.24 Assume AD™, and let (P,X) be a mouse pair with scope HC; then ¥
18 positional.

Fortunately, this lemma is not needed in the proof of the Comparison Lemma 6.21.
Its proof instead relies on a comparison argument.

Here are two propositions that explain the relationship between pure extender
mice and pure extender pairs.

Proposition 6.25 Assume AD", and let P be a countable, ws-iterable pure extender
premouse; then there is a 3 such that (P,X) is a pure extender pair.
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Proof. Let U be an arbitrary w; iteration strategy for P. We may assume W is Suslin
and co-Suslin by Woodin’s Basis Theorem. ( See [52], Theorem 7.1.) Thus there is
a coarse ['-Woodin mouse (N*, <,S,T,¥*) that captures W. Working in N*, we get
that P iterates by ¥ to a level (@, V) of the pure extender pair construction of N*.
Let m: P — @ be the iteration map; then (P, ¥") is a pure extender pair. O

Proposition 6.26 Assume ADT, LEC, and 6, < 0; then there are pure extender
pairs (P, %) and (P,)) such that (P,%) <* (P,€).

Proof.(Sketch.) By LEC, there is a pure extender pair (P,€2) such that Q is not
ordinal definable from a real. Fix such a pair. By the Basis Theorem, there is a
Y such that (P,X) is a pure extender pair, and X is ordinal definable from a real.
Suppose toward contradiction that (P, ) <* (P, X); then

0= (ES)7r

for some stack s and iteration map w. Thus 2 is ordinal definable from a real,
contradiction. [l

It follows that under the hypotheses of 6.26, there are pure extender pairs (P, Y) and
(P, 2) such that for some R, P iterates normally by ¥ to a proper initial segment of
R, and normally by €2 to a proper extension of R.

The Dodd-Jensen Lemma hypothesis that 37 , = X is too restrictive for use in
the proof of solidity and universality of standard parameters. For that proof, we
need the Weak Dodd-Jensen Lemma of [27].

Note that the proofs we have given that background induced strategies normalize
well and have strong hull condensation actually yield (wy,w;) strategies €2 such that
each QF, for lh(s) < wy, normalizes well and has strong hull condensation. Here Q is
the complete strategy, defined on finite stacks ¢, given by Q*(t) = Q(s™t). We need
this in the weak Dodd-Jensen argument to come.

Let N be a countable pure extender premouse or lpm, and (e; | i < w) enumerate
the universe of N. A map m: N — M is e-minimal just in case 7 is elementary,
and whenever o: N — M|(n, k) is elementary, then (n, k) = I[(M), and if o # ,
then for ¢ least such that o(e;) # m(e;), we have m(e;) < o(e;) (in the order of
construction). A complete strategy 2 for N has the weak Dodd-Jensen property
relative to € iff whenever M = M (s) for some stack s by , and there is some
elementary embedding fom N to an initial segment of M, then the branch N-to-M
of s does not drop, and the iteration map ° is e-minimal.

Lemma 6.27 (Weak Dodd-Jensen) Let (M,S)) be a mouse pair with scope Hg, and
let € be an enumeration of the universe of M in order type w. Suppose that £ is
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defined on all countable M -stacks s from Hg, and that for any such s having a last
model, (Mx(s),$2s) is an lbr hod pair. Then there is a countable M-stack s by 2
having last model N = My (s), and an elementary m: M — N, such that

(1) (N, (25)7) is a mouse pair, and

(2) ()™ has the weak Dodd-Jensen property relative to €.

Proof. The proof from [27] goes over verbatim. Notice here that any such (N, (2,)™)
is an lbr hod pair, by 6.17 and 6.13. U

The proofs of Lemmas 4.54 and 4.55 go over from pure extender pairs to least
branch hod pairs with no change. We get

Lemma 6.28 Let (P,X) and (P,A) be mouse pairs with scope Hg, and suppose that
> and A agree on countable normal trees; then > = A.

Lemma 6.29 Let (P,X) be a mouse pair pair with scope Hg, and let j: V — M be
elementary, where M is transitive and crit(j) > |P|; then j(X) and ¥ agree on all
trees in j(Hs) N Hs.

We have stated the elementary results about lbr hod pairs in this section as results
about mouse pairs, because that is their natural context. We are mainly interested
in Ibr hod pairs for the rest of this book, so we shall return to that level of generality.

6.4 Background constructions

It is easy to modify the background constructions of pure extender premice described
in the preliminaries chapter so that they produce least branch hod pairs. The back-
ground conditions for adding an extender are unchanged. If we have reached the
stage at which M, is to be defined, then our construction, together with an iteration
strategy for the background universe, will have provided us with complete iteration
strategies ), ; for M, ;, for all n < v. We must assume here that the background uni-
verse knows how to iterate itself for trees that are of the form lift(7", M, ;, C)o. Each
(M, 1,€,,) will be a least branch hod pair. If M, is to be branch-active according
to the Ipm requirements, then we use the appropriate €2,; to determine BMvo,

The additional strategy predicates in our structures affect what we mean by cores
and resurrection, but otherwise nothing much changes.

As before, M, j41 is the core of M, ;. We shall need to show that the standard
parameter of M, ; behaves well, so that this core is sound, and agrees with M, ; up
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to &, where & = (p(M,, )T )Mvk. Letting m: M, 11 — M, . be the uncoring map, and
v < &, this requires that (£2,;)(,) agree with the m-pullback of (€,1)(x(y), on all
stacks belonging to M, x|{. We shall show this, but we shall not show that these two
strategies agree on all M, x|(7,)-stacks in V. We doubt that is true in general, but
we do not have a counterexample.

The simplest sort of iterability hypothesis under which we can carry out such a
construction is the following.

Definition 6.30 IH, s is the assertion: for any coarsely coherent F such that all F,
have critical point > k, and belong to Vs, (V, F) is strongly uniquely (9, 9)- iterable.

Assuming AD", we have by Corollary 4.19 that whenever (N*,4,S,T, <1, ¥*) is a
coarse I'-Woodin tuple, then L(N*, <1, 5,T) |= IH, s, where 0 is the [“Woodin of N*.
So we could be doing our background construction inside this model.

Now let § be inaccessible, w be a wellorder of Vs, and x < d. Let us assume IH,; s
for a while; we shall relax this assumption later. A least branch w-construction above
k is a full background construction in which, as before, the background extenders
are nice, have critical points > k, cohere with w, have strictly increasing strengths,
and are minimal (first in Mitchell order, then in w). The index of the last pair in
our construction is some (v, k) <jx (4, 0).

More precisely, such a construction C consists of least branch premice Ml(,c’k and
extenders Fy>. The length 1h(C) of C is the least (v, k) such that M7, is not defined.
M is the passive premouse with universe V,,, and €2y ¢ is its unique iteration strategy.
The indices are pairs (v, k) <jex (9,0) such that —1 < k < w.

C determines resurrection maps Res, ;, and o0, for (v, k) <jex 1h(C), in the same
way as before: we define Res, j11, 0,541 by

1. If N = M,+1, then Res, ;+1[N] = (v, k + 1) and o, 541 [N]| = identity.

2. It N< M, ji1|(pT)Mrr+1 where p = p(M, ), then Res, 11[N] = Res, x[N] and
au,k+1[N] = Uu,k[N]-

3. Otherwise, letting 7 : M, 41 — M, be the anti-core map, Res,;11[N] =
Res, x[7(N)] and 0,41 = oy x[m(N)] o 7.

For the definition of Res,o and o0, see [I]. The resurrection maps are fully
elementary, and their agreement properties are the same as before.

The definitions of conversion system, and of the particular conversion system
lift (7, M,C) = (T, {(ne,le) | € <IhT),(m | £ < 1hT)), for T weakly normal, do
not change. The lift of an M-stack is essentially the stack of the lifts, as before.
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lift(s, M, C)y is the stack on V' that is one component of lift(s, M,C), and it is a
maximal stack of fully normal trees. Conversion systems treat gratuitous dropping
like ordinary dropping.

The sequence (FC | FMvo £ 0) of background extenders is coarsely coherent, so
by IH.s, V is strongly uniquely (4,9, ﬁ)-iterable. Let ¥* be the iteration strategy
witnessing this. X* then induces a complete strategy Q(C, M, ¥*) with scope Hs for
M = My, for each (v, k) <1h(C). That is,

s is by Q(C, M, ¥*) iff lift(s, M, C)p is by 3.
We write
ng =Q(C, M,fk, ¥*) [finite stacks,
for the (w, d)-iteration strategy determined by Q(C, M7, X*).

Remark 6.31 For example, let s = (3,1, T) be an M, j-stack of length one, and let
N = M, ,|(5,1). Let

(n,1) = Res, x[N], and 0 = 0, ,[N].
So o is elementary from N to M, ;. Then letting
lift(O'T, Mn,hC?E*) = <T*7 <<77£7l5> | £ < lhT>> <7T§ | £ < lhT>>>

we have that

(B,1,T) is by Q,, iff T+ is by X*.
IfQ = ./\/lz is the last model of 7, and 7 : ) — MgT is the copy map, then m¢ o7
maps ) into a model of the construction i) (C). This enables us to define
on stacks extending s; for example, if ¢ = s7(v,n,U), then we handle the possibly
gratuitous drop in @) by resurrecting m¢(Q|(7, n)) from the stage m¢(Q) inside z'OTE(C),
just as above. Etc.

Our construction determines in this way complete iteration strategies Qﬁk for
M., defined on stacks in H, for each (v, k) < Ih(C). We demand that (M, x, Q) be

a least branch hod pair; otherwise we stop the construction and leave M, ; undefined.

Suppose now we have M, ;, and €2, 5, with & > 0. Let p = p(M, 1) and p = p(M, %)
be the k + 1-st projectum and parameter. Let u be either the sequence of solidity
witnesses for pg(M, ), or that sequence together with py_1(M, ) if the latter is
< o(M,y). Let

m: N — MV,k
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where NV is transitive and
M,
ran(r) = Hulll™ (o U {p, u}).
We shall prove, for k£ > 0,

(T)V,/v
(a) Myk|(p")M+ = N|(p™)¥, and
(b) 7= !(p) is solid over N.

Items (a) and (b) of (f) are the universality and solidity of the standard parame-
ter. They are needed to see that the iteration maps of €2, ;41 are elementary, which
goes into the proof that the lifting maps in the construction of €2, ;41 are weakly
clementary. So we need (a) and (b) before we can define €, 1.

Corollary 6.66 below proves (f),x (for & > 0) under the assumption that for every
countable M and 7: M — M, elementary, letting ¥ = (2,,)"[HC, L(¥,R) &
ADT. Note here that ¥ is s-Universally Baire, where  is our lower bound on
the critical points of background extenders, by the uniqueness implicit in IH, 5. So
L(¥,R) = AD" follows from there being infinitely many Woodin cardinals below k.
(If we are already assuming AD", and the construction C takes place inside a coarse
['-Woodin mouse, then the argument is slightly different.)

If (M, ) satisfies (),x, then we let

M, 41 = transitive collapse of Hullﬁ”f (pU{p,u}),

with k(M x+1) = k+ 1. The lifting procedure and our iterability hypothesis IH, s
yield a complete iteration strategy

_ 0OC
QV7k+1 - Qu,k+1
for M, x+1 on stacks in Hj.

Lemma 6.32 [IH, s/ Assume C satisfies (1),x; then

(1) (My 41, k41) s a least branch hod pair, and

(2) setting v = (p+)MV’k> (Ql/,k)('y,0> = (QV,k’-I-l)('y,O)'
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Proof. Part (2) is an immediate consequence of the fact that for & < (pT)Mv*
and Q = MI/,]{Z|<£7 l>7 Resu,k[@} = Reslx,k—i—l[@] and Uu,k[Q] = UV,kz—i—l[Q}'

For part (1), we repeat the proofs that background induced strategies normalize
well and have strong hull condensation (4.41 and 4.49) that we gave in the pure
extender model case. What is left is to show that (M, k11, Qu k1) is self-consistent.

For this, let (N,Q) = (M, j+1, 2 k+1), and let s be a stack on N by €, with last
model P. Let 7 € ¥¥. We must see that 7 is by Q. Let

s* = lift(s, N, C),

and let R be the last model of s*. Let ¥* be the unique FC-iteration strategy for V,
so that 3. 5 is the unique FP strategy for R, where D is the image of C in R. We
have

7 N —Q
where () is a model of the construction of R. Let ¥ be the strategy for ) induced
by the construction of R. We have that

Q, =0,

because this is how € is induced by ¥*. So we are done if we show that 77T is by W.
But 7(7T) € %9, so 7(T) is by ¥ because (Q, ¥) is an Ibr hod pair in R. Moreover,
U has strong hull condensation, not just in R, but in V. (That is because a psuedo-
hull W of some U by W lifts to a psuedo-hull W*, of some U* by ¥, p, and even if
W and W* are not in R, X}, ; chooses unique-in-V cofinal wellfounded branches, so
W* is by X%, p, and hence W is by W.) Since 77 is a hull of (7)), 77T is by ¥, as
desired.
g

If (1),.x is not the case, then we stop the construction, leaving M, ;1 undefined.
Suppose now that (f), holds for all £ < w. For k < w sufficiently large,
M, = M, x11?', and we set

M, ., = eventual value of M, ; as k — w,
and
M, 41 = rud closure of M, U{M,,},
arranged as a fully passive premouse.

Q10 =0C 11,0 is the C-induced strategy. The proof of Lemma 6.32 gives

21Except of course that the distinguished degree of soundness differs.

249



Lemma 6.33 [IH, s/ Suppose (T),x holds for all k < w; then (M,11,0,410) is an
Ibr hod pair with scope Hs.

Finally, if v is a limit, put
M=" = unique fully passive structure P such that for all premice N,
N < P iff N < M, for all sufficiently large (o, 1) < (v,0).
Case 1. M < is branch active.
Let M = M=, and b = Q<*(sM); then
MV,O - (M<V7 ®a B)7
where B={nM +~|yebAn +v < o(M)}.

Case 2. There is an F such that (M <", F,()) is an lpm, crit(F') > &, and there is a
certificate for F', in the sense of Definition 2.1 of [29].

As we remarked, cases 1 and 2 are mutually exclusive. We shall prove

(1),,_1- There is at most one F' such that (M <", F\§) is an lpm, crit(F') > x, and F
admits a certificate in the sense of Definition 2.1 of [29].

This is the Bicephalus Lemma; see Corollary 7.5. We are now allowed either to set
MV70 - (M<V7 ®7 w)a
that is, to pass on the opportunity to add F', or to set
M,o= (M= 0,F).
In the latter case, we add the same demands of our certificate as we had in
Definition 2.42, and again choose F* to be the unique certificate for F' such that

(x) FF is a certificate for F', minimal in the Mitchell order among all certificates
for F', and w-least among all Mitchell order minimal certificates for F.

Thus the sequence of all FC of all FC is coarsely coherent. By a C-iteration, we
mean a FC-iteration in the sense explained above.

Case 3. Otherwise.
Then we set

MI/,O = (M<V> ®7 @)
In any case, €2, is the C-induced strategy for M, . We get

Lemma 6.34 [IH, s/ Let v be a limit ordinal, and suppose that (1)a,; holds for all
a<vandj <w; then (M,o,0) is an lbr hod pair.
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This finishes the definition of what it is for C to be a least branch w- construction
above k.

We may wish to restrict our choice of background extenders to members of some
coarsely coherent sequence F given in advance. Such C we call least branch F-
constructions. Any w-construction C is a least branch FC-construction. Also, it is
not necessary that the iteration strategy for the background universe used in the
construction pick unique wellfounded branches. What we need is that it normalizes
well, has strong hull condensation, and is moved to its tails by its own iteration
maps. So let us drop our hypothesis IH, s, and make the following definitions.

Definition 6.35 A coarse strategy premouse is a structure (M, F Y) such that

(M, ﬁ) is a coarse extender premouse, and % € M, and for some 6, the following
hold in M :

(a) 0 is inaccessible and F € Vj,

(b) ¥ is a (0,0, F)-iteration strategy for V that normalizes well and has strong hull
condensation, and

(c) ifi: V — N is an iteration map associated to the stack s by 2, then i(X) C X;.

Inside a coarse strategy premouse (M,F,¥) we can do least branch (F X)-
constructions. These are sequences C = (M, , Q,x, F,), where the M, are formed

as above using background extenders F, € F', and the €}, are given by 2, =
Q(C,M,,%). In order to show that C does not break down, we need a further

assumption about the countable elementary submodels of (M, F ).
The next definition is meant to be considered in the AD™ context.

Definition 6.36 A coarse strategy pair is a pair ((M, F ¥),¥*) such that
(a) (M, F %)) is a countable coarse strategy premouse,

(b) ©* is a complete (wy,w;) iteration strategy for (M, F) that normalizes well and
has strong hull condensation, and

(c) ifi: M — N is the iteration map associated to a stack s by ¥*, then i(X) C X¥.
The proofs of 6.32, 6.33, and 6.34 show

Lemma 6.37 Let (M, F.X),%*) be a coarse strategy pair, and let C be an (F,%)-
construction done in M ; then
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(1) if (f)vr then (M, i1, Qps1) s a least branch hod pair with scope HC, and
setting v = (,OJF)M””“, (Qu,k)('y,o) = (Qu,k’—i-l)('y,()};

(2) if (T)ux holds for all k < w, then (M,11,0,41,0) is a least branch hod pair with
scope HC', and

(3) if vis a limit ordinal and (1)ax holds for all o < v and k < w, then (M, 0,0)
is a least branch hod pair with scope HC.

Notice here that the pairs referred to in (1)-(3) have scope all of HC, even though
they come from a construction done in the countable model M. This is because X
extends to X*, and X* has scope HC.

Definition 6.38 C is a least branch background construction iff C is a least branch
(F, X)-construction, for some F and ¥. We say C is maximal iff it never passes on
an opportunity to add an extender.

Definition 6.39 A least branch background construction C is pathological iff for
some (v, k), (1)ux is false.

A pathological construction is one that reaches a pair (M, , €2, ;) whose stan-
dard parameter does not behave well, or that reaches a stage (v, —1) at which the
Bicephalus Lemma fails.??

We shall show that assuming AD™, if {(M, F ¥)),X*) is a coarse strategy pair,
and C is a least branch (ﬁ, ¥)-construction done in M, then C is not pathological.
Lemma 6.37 is a preliminary step in that direction. The remaining steps are taken
in Theorem 6.57 on the existence of cores, and in 7.3, the Bicephalus Lemma.

The existence of coarse strategy pairs under AD™ comes from

Theorem 6.40 Assume AD™, and let (M, X*) be a coarse I'-Woodin pair. Let § =
M and F C VM be such that M |= “F' is coarsely coherent”. Suppose § < 0 < «
with 0 and o inaccessible in M. Let P = VM and ¥ = S*NVM; then (P, F,X),X*)

1S a coarse strategqy pair.

221t is not clear that we need to stop our construction because of a bicephalus pathology. We
might continue by not adding any extenders to M <", or by picking one of the certified extenders
and adding it. However, the existence of a bicephalus pathology would cause problems later, in the
argument that a certified extender that coheres with M <# must satisfy the Jensen initial segment
condition. Without this, we can’t show the model we construct reaches even a Woodin cardinal,
or, in the I'~“Woodin background model case, is universal.
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Proof. Since ¥* is guided by Cr Q-structures, ©* N VM € M, that is, ¥ € P.
Moreover, M believes it is strongly uniquely (6,0, F )-iterable by 3, so P believes
> has strong hull condensation, normalizes well, and moves itself to its tails under
iteration. Thus (P, F ,2) is a coarse strategy premouse. The remaining clauses of
definition 6.36 follow from the fact that X* witnesses that M is strongly uniquely
(w1, wr )-iterable in V. O

If we are starting with ZFC and very large cardinals, together with IH, 5, we can
use

Theorem 6.41 Assume ZFC plus IH, 5, and that there are A < p < k such that \ is
a limit of Woodin cardinals, and pu is measurable. Let w be a wellorder of Vs, C be
a w-construction above k, and let Q be the unique FC-iteration strategy for V; then
there is a coarse strategy premouse of the form (N, FC QIN) such that V¥ = V.
Moreover, whenever . .
m: (M,FP,%) — (N,F¢ Q|N)

is elementary, with M countable transitive, then letting ¥* = Q" [HC,

(a) (M, FP, Y),X*) is a coarse strategy pair, and

(b) L(R,%*) = AD*.

Proof. We leave it to the reader to find N such that (IV, ﬁC,Q[N) is a coarse
strategy premouse. Since 7 is elementary, (M, F D Y)) is a coarse strategy premouse.
(M, FP, Y)), ¥*) is a coarse strategy pair because strong hull condensation, normal-
izing well, and self-consistency pull back under 7. Finally, ¥* is k-universally Baire
by IH,s. Since we have A and p, we get that L(R,%*) = AD™. O

Theorem 6.41 makes theorems about the constructions of coarse strategy pairs

proved assuming ADT applicable in the ZFC context. Whatever was true of C in N
is true of 77(C) in M.

Remark 6.42 If C is a maximal, non-pathological, pure extender w-construction
above k, then the map (v, k) — Mffk is ordinal definable. w enters into picking
the F, but not into defining the Ml(fk, by the Bicephalus Lemma. But it is not at
all clear that if C is a maximal, non-pathological, least branch w-construction, then
each MSk is ordinal definable. The problem lies in the use of w to pick background
extenders. Although our strategy for V' is unique, different choices for the F'€ lead to
different ways of lifting trees on Mffk to V, and hence possibly different candidates
for st. Information about €, is being recorded in later M, ;, making it possible
that they are not ordinal definable.
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Remark 6.43 Let M = M;C’k and 2 = Q‘Sk, and suppose M | ZFC. Then QM
is definable over M, by a definition that is uniform in (v, k). That is because the
restriction of € to normal trees in M is given by ©¥, and that determines its re-
striction to stacks of normal trees because €2 normalizes well, and that determines
its restriction to stacks of weakly normal trees in M because (2 is strategy coherent.

6.5 Comparison and the hod pair order

We can adapt Theorem 5.11 to hod pairs.

Definition 6.44 Let (M,Y) and (N,Q) be mouse pairs; then

(a) (M,Y) iterates past (N,Q) iff there is a normal iteration tree T by ¥ on M
with last model Q) such that N < Q, and X7y = (L.

(b) (M, %) iterates to (N, Q) iff there are T and Q as in (a), and moreover, N = @,
and the branch M-to-Q of T does not drop.

(c) (M,3) iterates strictly past (N, Q) iff it iterates past (N,€2), but not to (N, ().

The normal tree T above is completely determined by N and ¥; it must come
by iterating away the least extender disagreement. (M,Y) and (NN, (2) are strategy
coherent and self-consistent, so (M, X) iterates past (N,Q) if and only if (i) no
strategy disagreements show up as we iterate, (ii) no non-empty extenders from N
participate in least disagreements, so that N does not move, and (iii) NV is an initial
segment of the final model on the M-side.

The following notation is convenient: let C be a construction such that M, is
extender-active; then

(My_1, Q1) = (M=, Q7).

Setting v = 0(M,), we can write this (M,;_, Q5 1) = (M7o[{v, =1), (5 0) (y,-1))-
Adapting the proof of Theorem 5.11, we get

Theorem 6.45 Suppose that (V, ﬁ, A) is a coarse strategy premouse, with F C Vs,
where § is inaccessible. Let (P,X) be a least branch hod pair with scope Hs such that
|P| < crit(E) for all E on F. Let C be a (F,A)- construction, and let (v, k) < Ih(C)
be such that (P,X) iterates strictly past (MS;, Q5 ), for all (n,j) <ix (v,k); then
(P, ) iterates past (M, Q).
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Remark 6.46 It is not possible that (P,X) iterates to (MJ_,,QS_,), for some v/
such that F€ # (). For if so, then in Ult(V, FS), (P,X) would iterate strictly past

(M, _,), contradiction.

v,—1»

Remark 6.47 It follows by our work realizing resurrection embeddings as branch
embeddings that if M iterates to MV 111, then it iterates strictly past MZ(SZ. This
terminology might be a bit confusing at first, because the iteration tree 7 from M
to My, is an initial segment of the tree ¢/ from M to My;. Along the branch of U
from M to MEZ we dropped once, at M¢ 141> from degree l+ 1 to degree [. That drop
meant that M iterates past, but not to, M,;. This is the case even if ME, M;Cl 41
as an lpm, with only the attached soundness level changing. Then U Would be T,
together with one gratuitous drop in degree at the end.

Remark 6.48 We do not know whether there can be more than one (v, k) such that
(P, X) iterates to (M, Q5 ).

Theorem 6.45 easily implies theorem 1.15 of the introduction:

Theorem 6.49 Assume ADY, and let (P,Y) be a least branch hod pair; then (*)(P, %)
holds.

Proof. Let N* be a coarse I'-Woodin model that Suslin-co-Suslin captures X, as in
the hypothesis of (*)(P,X). We can then simply apply 6.45 inside N*. O
In order to apply (*)(P,X), we need to know that there are coarse I'~-Woodin

models whose maximal hod-pair construction does not break down before they absorb
(P,X). The following lemma will help with that.

Lemma 6.50 Assume IH, s, and let let C be a least branch construction above k.
Suppose that M‘Ck exists. Let (P,X) be a least branch hod pair with scope Hg such
that o(P) < k; then for any v, k:

(a) if (P,X) iterates strictly past all (MM,Q(C ) such that p < v, then C satisfies
(T)V,*l) and

(b) if (P, ) iterates strictly past (M, Q5. ), then C satisfies (1),

Proof. For (a), suppose toward contradiction that Fy # Fj, and for i € {0, 1},
(M<¥, F;, () is an lpm, crit(F;) > k, and F; is certifiable, in the sense of Definition
2.1 of [29]. It follows that for i € {0, 1} there is a construction C; such that Ml% =

(M=<¥, F;,0), and for all 4 < v and k, (M QC ) = (M5, Q7). Tt follows from

uk’ ko
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Theorem 6.45 that (P, ) iterates past both (MES,QS%) and (MZ%,QSB). This is
impossible, for it has to be the same iteration, but Fy # Fj.

For (b), we have a normal tree 7 on P by 3, with last model N = MZ;, such
that either

(i) Ml(fk is a proper initial segment of N, or
(ii) My, = N, and [0,7]r drops (in model or degree).

We claim that in either case, C satisfies (1),x, a contradiction.

Let p and s be the projectum and standard parameter of M, ;. (That is, the
k + 1-st.) In case (i), M, is sound, so (a) and (b) of (1), hold trivially.

Suppose we are in case (ii), and let Q = M7 |(6(Q), k) be the last structure we
drop to in [0,7]r. So k(Q) =k, and @ is sound (i.e. k + 1 sound), and setting

i = ie,w
we have that ¢: ) — N is elementary, and
p(Q) = p(N) = p < crit(i).

Since there was no further dropping, Q and N agree to their common value for pu*.
Also, i maps p(Q) to s, so s is solid. This gives us (a) and (b) of (1), 4. O

From this we get

Theorem 6.51 Assume AD", and let (P, X)) be an Ibr hod pair with scope HC. Let
Code(X) € T, and let (N*,6,S,T,<1,¥) be a coarse I'-Woodin tuple, and let C be the
mazimal least branch construction of N*; then there is an (v, k) such that

(i) v <4,
(i) (M, Q5,) exists (that is, the construction has not broken down yet), and

(iii) there is a normal T such that (P,X) iterates via T to (Mg, Q).

Remark 6.52 Clause (iii) of the conclusion can be understood as a truth in N*
about XN N*. But letting (ka)* be the strategy on all stacks in V' that is induced
by C and W, (iii) implies that in V', X7, , = (Q(Ek)*

Proof. If not, then by applying 6.45 and 6.50 in N*, we have that C does not
break down at all, and P iterates past M z(SC*,O in N*. The proof of universality at a
Woodin cardinal in the pure extender premouse case (see 2.53 and 4.20) then leads
to a contradiction. O

We can now show that under AD™, any two least branch hod pairs are comparable.
First, some notation for cutpoint initial segments:
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Definition 6.53 For M and N lpms, we write M < N iff M < N, and whenever
E is on the N-sequence and Ih(E) > o(M), then crit(E) > o(M).

Theorem 6.54 Assume AD", and let (P,X) and (Q, V) be Ibr hod pairs with scope
HC then there are normal trees T and U by X and ¥ respectively, with last models
R and S respectively, such that either

(a) R<S, X7 r =Yy g, and the branch P-to-R of T does not drop, or
(b) S <R, ¥y s = Xr.5, and the branch Q-to-S of U does not drop.

Proof. We find I'-Woodin background universe N* having universally Baire rep-
resentations for both strategies. Letting C be the maximal least branch construction
of N*, we have that there are (v, k) and (u,l) such that (P, X) normally iterates
to (M, ,) and strictly past all earlier pairs, while (Q, ¥) normally iterates to
(Mg, Q7,) and strictly past all earlier pairs. If say (v, k) <iex (1), then (Q,V¥))
normally iterates past (Mffk, Qﬁk), and the latter is a normal, nondropping iterate
of (P,%). By perhaps using one more extender on the @-side, we can arrange that
Mffk is a cutpoint of the last model. This yields a successful comparison of type (a).

If (u, 1) <iex (v, k), then we have a successful comparison of type (b).
U

Theorem 6.54 was phrased in the language of mouse pairs in 6.21. We get at once

Corollary 6.55 Assume AD", and let (M, Q) be an Ibr hod pair with scope HC; then
every real in M is ordinal definable.

It is natural to ask whether M satisfies “every real is ordinal definable”. Borrow-
ing Lemma 8.1 from the future, we have

Theorem 6.56 Assume AD", and let M, Q) be an Ibr hod pair with scope HC. Sup-
pose M = ZFC + “§ is Woodin”. Working in M, let UB be the collection of ¢-

universally Baire sets; then
M |= there is a (X2)Y® wellorder of R.

Proof.. Working in M, let N € C iff N < M and p(N) = w. We claim that
N is in C' if and only if there is a ¥ such that (N, ¥) is an lbr hod pair, and W is
d-universally Baire.

For let N € C'. By Lemma 8.1, Qp is d-universally Baire in M. Clearly, (N, Qy)
is an lbr hod pair in M.
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Conversely, let (N, ¥) be an lbr hod pair in M such that p(IN) = w, and ¥ is §
universally Baire in M. Let S be the first initial segment of M that projects to w
and is such that S ¢ N. We apply Theorem 6.45 in M. Letting C be the maximal
construction below ¢ in M, neither side can iterate past M because ¢ is Woodin.
It is easy to see then that there must be a (v, k) such that both (N, ¥) and S, Qyg)
iterate to MECVM; otherwise we would get N € S or S € N. This then implies S = N,
as desired. (It also implies ¥ = Qg, by pullback consistency.)

This easily yields the theorem. U

Theorem 6.56 stands in contrast to the situation with pure extender mice, which
can satisfy “not all reals are ordinal definable”. (See for example [39].) We shall
show in Chapter 7 that V' = HOD holds in any hod mouse with arbitrarily large
Woodin cardinals, and in fact, a version of V' = K holds true.

One feature of our comparison process is that we may often use the same extender
on both sides. That does not happen in an ordinary comparison of premice by
iterating least disagreements. This feature can be awkward. What we gain is that
we never encounter strategy disagreements in our comparison process. A comparison
process that involves iterating away strategy disagreements as we encounter them
(such as the process of [30]) will also often use the same extender on both sides.
But such a process (if we knew one in general) might have some advantages. For
example, it might be possible to get by without assuming the existence of a I'-Woodin
background universe, where Y and >; are in I'. It might also give better bounds on
the lengths of comparisons between uncountable pairs.

For example, Grigor Sargsyan has pointed out that our results leave the following
question open. Suppose that (P, X)) and (Q, V) are pure extender pairs with scope Hg,
where ¢ is Woodin, and that o(P) = o(Q)) = w;. Suppose that whenever i: V — N
with N transitive, then i(X) C ¥ and i(¥) C W. Our results show that (P,)
and (@, ¥) have a common iterate (R, A) such that one of P-to-R and Q-to-R does
not drop. Can we find such an (R,A) with o(R) = w;? The standard “weasel
comparison” proof shows that one can find iterates (R, Ay) and (R, A;) such that
o(R) = wy, but if one demands that Ay = A;, the question is open, and our strategy-
comparison theorem does not answer it.

6.6 The existence of cores

As in the case of ordinary premice, we can formulate our solidity and universality
results abstractly, in a theorem about least branch premice having sufficiently good
iteration strategies.
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Theorem 6.57 (The existence of cores.) Let M be a countable lpm, and let U be
an iteration strategqy for M defined on all countable M -stacks by . Suppose that
whenever s is a countable M-stack by ¥ having last model N, then (N, V) is a
least branch hod pair. Suppose that V is coded by a set of reals that is Suslin and
co-Suslin in some L(T',R), where L(I',R) &= AD". Let p = p(M) and r = p(M) be
the projectum and standard parameter of M, and let
H = transitive collapse of Hull™ (p Ur);
then

(1) r is solid, and
(2) H|(p*)" = M|(p")™.
Remark 6.58 We don’t need the full strength of a model of AD" with ¥ in it.

Proof. Let q be the longest solid initial segment of r. Let r = ¢ U s, where either

s = or min(g) > max(s). Let

ap = least 8 such that Thy ,(BUq) ¢ M.
Here k = k(M). We may assume ag € M, as otherwise r = () and g = p(M) =
o(M), in which case the theorem is trivially true. Let

K = transitive collapse of Hull (ag U ¢),
and let m: K' — M be the collapse map. We may assume that oy € K, as otherwise
K <1 M, so Thy! | (apUq) € M.

Claim 0.
(a) If ¢ =r, then p = .
(b) If ¢ # r, then p < ap < max(s).
(¢) K = ap is a cardinal.

Proof. (a) is clear. For (b), let W be the solidity witness for ¢ U {max(s)}, that
is, the transitive collapse of Hull™ (max(s) U ¢). We are assuming W ¢ M. This
implies that Thy%;(max(s) U q) ¢ M. [Proof: Suppose T' = Thy(max(s) U q) is
in M. Note max(s) is a cardinal of W, and max(s) = crit(n), where 7: W — M
is the uncollapse. So T' € M|n(«a), and M|n(a) = KP. So W € M|r(a).] Thus
ap < max(s).

We have p < ag because otherwise p(M) = gq.

(c) is clear if ag = p. So we may assume 7 # id. (c) is clear if oy = crit(n), so
we may assume ag < crit(7). Suppose f: f — «p is a surjection, with 5 < ag and
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f € K. Let n(f) be TE{CWH definable from parameters in v U ¢, where 8 < v < ay.
Then from Thy , (yUq) one can easily compute Thy. , (agUq), so Thik | (yUq) ¢ M,
contrary to the minmality of «y.

O

We shall show that if ¢ # r, then Th%rl(ozo Ugq) € M. This implies ¢ = r, so r
is solid. We then show that K satisfies conclusion (2). The argument is based on
comparing the phalanx (M, K, ap) with M, as usual.

Let M = {e; | i <w} be an enumeration of M in which for some n, r = (eo, ..., €,)
(in descending order, so ey = max(r)). By Lemma 6.27, we may assume that ¥ has
the weak Dodd-Jensen property relative to €. This involves replacing W by a pullback
of one of its tails, but we stay with the same M, and it is the first order theory of
M that matters in (1) and (2).

Remark 6.59 Under the additional hypothesis that ¥ has the weak Dodd-Jensen
property relative to some €, we can strengthen the strategy agreement part of (2) to:

for v = (P+)M7 Viyo) = (‘Iﬂ)<%0>'

In the comparison argument, we iterate both M and (M, K, ag) into the models
of a common background construction. Additional phalanxes (N, L, ) may appear
above (M, K, ) in its tree.

The background construction is the following. Working in our model of AD"
having ¥ in it, let (N*, 6%, 5, T, <, ¥*) be a coarse I'-Woodin tuple, with M countable
in N* and Code(V) in I'. Let C be the maximal <-construction done in N*. (N*, ¥*).
C may break down before stage 6%, but by Theorem 6.51 it absorbs (M, V) before
that. In other words, letting

M,

0= ME

n,l

and €,; = Q¢

n,0
we have

Claim 1. Let k = k(M). There is an n < ¢* such that (n, k) < [(C), and (M, ¥)
iterates to (M, x, Q2,), and strictly past all earlier pairs in C.

Let us fix ko = k(M), and 1y < 6* and U a normal tree on M with last model M, x,
witnessing Claim 1. For each (v,1) <ix (10, ko), let U,; be the unique normal tree
on M witnessing that (M, V) iterates strictly past (M, €2,).

We now want to compare (M, K, ap) with the M,; for (v,l) <jex (10, ko). For
each such (v,l) we shall define a “psuedo iteration tree” S,; on (M, K, ap). We shall
have complete strategies attached to the models of S, ;, and as before, the key will
be that no strategy disagreements with 2,; show up, and that M, ; does not move.
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The rules for forming S,; will be the usual ones for iterating a phalanx, with the
exception that at certain steps we are allowed to move the whole phalanx up. (We
don’t throw away the phalanxes we had before, we just create a new one.) Whenever
we introduce a new phalanx, we continue the construction of S by looking at the
least disagreement between its second model and M,;.

Fix v and [. Let us write Y = U, ;. At the same time that we define § = S,;, we
shall copy it to a normal tree 7 = 7,; on M that is by U. We allow a bit of padding
in T; that is, occasionally Mj = MZH. We shall have copy maps

T: MG — M]
with the usual commutativity and agreement properties. We should write wg’l here,
but will omit the superscripts when we can. The strategy we attach to M is

Xg = (Vri041)™-
We shall have that (M$, %) is an Ibr hod-pair. Finally, we have ordinals A\j for each
0 < 1h(S) that measure agreement between the models of S, and tell us which one
we should apply the next extender to.*

We start with

MG =M, M$ =K, and \§ = ay,

and
MT =M =M.

We let 7y = identity, and let m;: K — M be the uncollapse map. Since crit(m) >
ap = N5, mo and 7 agree up to the relevant exchange ordinal. We think of 0 and
1 as distinct roots of §. One additional root will be created each time we move a
phalanx up, and only then.

As we proceed, we define what it is for a node 6 of S to be unstable. We shall
have that if 0 is unstable, then 0 <g 6 and [0, 0] does not drop. We then set

Qg = sup z"gﬂ “ou.

The idea is that 6 is unstable iff (M§, M3, ap) is a phalanx that we are allowed
to move up. If # is unstable, then # 4 1 is stable, and a new root in §, that is, there
are no & <g 0 + 1. These are the only roots, except for 0. Our first unstable node is
0, and 1 is stable.

The padding in 7 corresponds exactly to the unstable nodes of S, in that 6 is
unstable iff M] = M], .

We maintain by induction on the construction of § that the current last model is
stable, and conversely, every stable model is the last model at some stage. So really,

ZEarlier we defined A7, for 7 a normal iteration tree, to be the sup of the Jensen generators on
the branch [0, a)r. (See 2.13.) Our use of the notation now is a different one. Psuedo-trees are not
normal trees, so there is not a literal conflict. But if S is a psuedo-tree, then AS corresponds to
AJ_ 1 in the normal case, and not to A7
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we are defining S§”, which has a stable last model, by induction on 7, sometimes
adding two models at once, and taking S = Un S". We shall suppress the superscript
71, however. All extenders used in § will be taken from stable nodes. We also maintain
that if M$ has been defined, then

Induction hypotheses. If 0 is unstable, then
(i) 0 <s 0, the branch [0,6]s does not drop in model or degree,
(i) A§ < ag < pp(MS), where k = k(M),

)

)
(iii) every T <g 0 is unstable,
(iv) there is a & such that M§ = MY,
)

(v) p(MG) = supig,“p,
(vi) ay = least § such that Thﬁ:ﬁ (BUie(q) & M3.

Item (ii) explains why [0, f#]s does not drop in model or degree, for an extender
applied to M§ must have critical point < A\3. Concerning item (iv), notice

Claim 2. If 0 <g 6, and [0, 0]s does not drop in model or degree, and M5 = MY,
then then [0,&]y does not drop in model or degree; moreover i‘& g = iz(’)f ¢

Proof. This follows as usual the weak Dodd-Jensen property of W. If for example
that [0,&]y drops, then ioe maps M elementarily into a dropping W-iterate of M,
contradlctlon Similarly, 7 ,; must be “to the left of” i3, with respect to €. But also

T 0 iff ¢ i an elementary map from M to M7, so if y = mg 0 i, is to its left. So if,
is to the left of &, so 5, = if . U

The following notation will be useful. For any node v of S, let
st(y) = least stable @ such that 6 <g 7,
and

S-pred(st(y)) if S-pred(st(y)) exists

rt(y) = .
st(7y) otherwise.

Note that if € is unstable and 6 + 1 <g =, then rt(y) = 6 + 1. If 6 is the largest

unstable ordinal <g ~, then rt(y) = 6. Finally, if there are unstable ordinals <g =,

but no largest one, then rt(y) = sup{f | # <g v and 6 is unstable }.
The construction of & can end in one of two ways:

(1) We reach a stable 6 such that either
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(a) M,; <1 M§ or
(b) M§ < M,,;, and [rt(6),0]s does not drop in model or degree.

In both cases, the full external strategies will be lined up, by Lemma 6.64 below.
Case 1(b) constitutes a successful comparison of (M, K, ay) with M, which iterated
past M, via U. So in case 1(b), we leave S, ,, undefined for all (n,m) > (v,1).
In case 1(a) our phalanx has iterated strictly past M, ;, and so we go one to define
Su,l+1-

There is a second way the construction of S can end.

(2) We reach a stable @ such that for some &, M§ = MY and neither [rt(6), §]s nor
[0, £]p has dropped in model or degree. Moreover, letting Q = M3 |[(6(M35), —1)
be the result of removing the last extender predicate, we have that Q < M,,;.

If Mg is not extender-active, then this is the same as case 1(b) above (and we must
have (v,1) = (no, ko)). But if M is extender-active, it is a new way to end. We think
of it as a successful comparison, and leave S, ,, undefined for all (n,m) > (v,1).
Note that in the extender-active case, we have not actually lined up the strategies
of M§ and ./\/l? We’ve lined up the part of them that acts on @), and we’ve lined
up the last extender predicates themselves, but not how the strategies act on trees
involving the last extender.
In both case (1) and case (2), the last model of S is MS.

Claim 3. Induction hypotheses (i)-(vi) hold for # = 0 and 6 = 1.

Proof.. (i)-(vi) are trivial for = 0, and vacuous for § = 1. O

The rules for extending S at successor steps are the following. Suppose ./\/1‘7S is the
current last model, so that v is stable, and suppose the construction is not required
to stop by (1) or (2) above. So we have a least disagreement between MS and M,,.
Suppose the least disagreement involves only an extender F from the M% sequence.
By this we mean: letting 7 = 1h(F),

o M, |(,0) = MS|(r,—1), and

* ()0 = (59)(r-1)-

Lemma 6.64 below proves that this is the case. Set
XS = Ap.
Let £ be least such that crit(E) < Af. We declare that S-pred(y+1) = &. Let (3,n)
be lex least such that either p(MZ[(3,n)) < crit(E), or (8,n) = (6(Mg), k(MS)).
We set
ME,, = U(ME| (8. ). B).
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and let ig ,+1 be the canonical embedding. We let
M'7y—+1 - Ult(Mz—Kﬂ—ﬁ(ﬁ)? TL), WW(E))u
and let 7,41 be given by the Shift Lemma, as usual. If £ is stable, or if (5,n) <jex
(6(MZ), k(MZ)), then we declare v + 1 to be stable, and we just go on now to look
at least disagreement between j\/lf 41 and M,,;. Nothing unusual has happened.
Induction hypotheses (i)-(vi) concern only unstable nodes, so they are vacuously
true at 6 =~ + 1.

Remark 6.60 There is an anomalous case to consider here. It occurs also in the
solidity proof for ordinary premice, where Schindler and Zeman found the arguments
that take care of it. (See [12].) This case only occurs when oy = lh(F), for some
extender F' from the M-sequence. Equivalently, for some (all) unstable &, e = 1h(F)
for some F' from the M-sequence. Then we could have an unstable £ and a v such
that S-pred(y+1) = £, and crit(ES) = A(F), where F is the last extender of Mg |a.
Thus (8,n) = (ag,0), and M5, = Ult(MZ|(ae,0)) is not an lpm, because F is a
missing whole initial segment of z? ” 4+1(F). But this is ok. The next disagreement
will force us to apply z‘g L1 (F) to M‘g , and that will produce an lpm; moreover,
AMES) = Aig,41(F)), so v + 1 is now a dead node. One can cope with the fact
that z‘g ~+1(F) has a missing whole initial segment in the termination arguments; the
argument is the same as that of Schindler-Zeman. We shall not give any further
details of this anomalous case here.

Now suppose ¢ is unstable, and (8,n) = (6(M¢g), k(M¢)). (Since ag € M, this
means the anomalous case does not occur.) We look to see whether /\/lf 41 is also a
model of U. If not, then again we declare v 4+ 1 to be stable, and go on. Our new
last node v + 1 is stable, so (i)-(vi) are vacuous for § = v + 1.

Finally, if Mf 41 1s also a model of U, then we declare v + 1 to be unstable, and
v+ 2 to be stable. Set

M§+2 = transitive collapse of Hulleﬂ(awﬂ U Zgﬂﬂ(q)).
Let also 0.4 : Mf+2 — /\/l:S/Jrl be the collapse map, and
MVTJFQ =M7,,, and
Ty42 = Ty41 © Ong1-

Our new last node is stable. Our induction hypothesis (i) holds for § = v + 1
because it held for = £, and because A\¢ < ag. (iii) is clear. For (ii), we must
define A, 1. Suppose that there is a least disagreement between MS_, and M,,;, and

v+2

lemma 6.64 applies to it, so it involves only some F' from the sequence of ./\/lf o If
there is no such F', Mf 1o 1s the last model of S, and we leave )\f 41 as undefined as

)\fH is. If F' exists, we set

>‘§+2 = )‘(F)v
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and
>‘§+1 1nf()‘~/+2 , Q1)

This insures that (ii) holds at # = v + 1. It also insures that A, < A41 < Ay,
so that the A’s remain nondecreasing, which is something we want. m,, o agrees
with w41 on S, as required. (MS,,, MS,,,a5,,) is the result of moving up the
phalanx.

Remark 6.61 It is possible that A,1; = A,49, and Ih(F) < ay4;. Indeed, this will
happen a lot. In this case, F' will immediately move the phalanx (./\/l7 15 ./\/l‘v9 +2) Qyi1)
up again. Moreover, since A\,;1 = Ay42, no extender ever gets applied to /\/l7 4o 1t
is a “dead node”. The phalanx (./\/ly 1 ./\/lﬂ/ 12, 1) May get moved up repeatedly,
along various branches, but that doesn’t really involve ./\/l7 0. After contributing F,
it became irrelevant.

Induction hypothesis (iv) is clear. Next we verify (v) and (vi). For this we need

Claim 4. For a C A finite, E, € M?

Proof. Let Mwl = MZ’ By claim 2, [0, 4]y does not drop, and s§+1 = szj. It
follows that E is also used in Y. Say E = EY. Let x = crit(E). We have

sup Ar < Kk < Ag,
T<E

because we are applying E to /\/ls

Suppose first that E is not the last extender of MS Then E, € ./\/lf, and
since kK < )\S < >‘£+17 E, C M§+1’)‘§+1 Thus by the agreement of models in S,
E, € ME,. If ag = crit(og), then ag is a cardinal of Mg, . If Mg = Mg, we get
E, € M{, as desired. If not, then k < a¢ < crit(oe), and crit(o¢) is a cardinal of
/\/lgﬂ, 50 By € Meyq| Cl"lt(O’g) which yields E, € /\/l‘S as desired.

Suppose next that F is the last extender of M2 5, and the braneh to v of S has
dropped. Let n be the site of the last drop, i.e. n is least such that 2 2 . maps the full
MS elementarily to MS Then k € ran(i nw) and v > (£ + 1). This implies n > &.
(Proof n <g&is 1mposs1b1e since [0, £]s does not drop. So if n < £, and F' is the first
extender used in (1, 7]g such that Ar > k, then F is applied to M where 7 < £. So
crit(F) < A < &, and & ¢ ran(i5_.) Thus crit(i5 ) > . Letting 7 = S-pred(n), this
easily yields E, € MS. Then We can argue as we did in the preceding paragraph
under the hypothesis that E, € MS and we get F, € MS as desired.

Thus we may assume that E is the last extender of ./\/lS and the branch of § to
v (i.e. either [0,v]s or [rt(7),7]s) does not drop in model or degree. By a parallel
argument, we may assume that E is the last extender of MY, and the branch [0, 3]y
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does not drop in model or degree. But that means we stop our construction for
reason (2), with M:"; being the last model of S, contrary to our assumption. This
proves Claim 4.

O

It is precisely in order to insure Claim 4 that we stop the construction for reason

(2).
Claim 5. Ttems (v) and (vi) of our induction hypotheses hold.
Proof. Let i =i, and k = kg = k(M). Consider first (vi). For § < a, let

MS _
Ty = Thy 5 (BUdg¢(q)),
and for f < a41, let

Rg = Thkﬁ“(ﬁ Uit y41(a))-

If 5 < o, then T € ./\/lg, and we can use i(7p) to compute R;g), as usual with
solidity witnesses. Since 41 = supi“ozg, this gives half of (vi). For the other half,
assume R = R,_,, is in M$ L1 Say
MS
R = [CL, f]E ¢ '
Letting T' = T, we then have (¢, u) € T iff (p,i(1)) € R iff for £, almost every u,
(o, ) € flu). Smce E, € M, T € M, a contradiction.
Consider now (v). Let t = p(M§) and o = p(M§) be the standard parameter

and projectum. Let 7 = supi‘o.

Remark 6.62 Our proof shows that ig s(q) is an initial segment of ¢, but it does not
show ¢ = ij 5( r). The standard parameter could move down in its non-solid region.

Let for any 5,z € /\/lf

MS
Ts(x) = Thy,5(BU{z}),
and for B,z € Mfﬂ, let

Ry(x) = Thy 7 (U {x)).

If R (i(t)) € MS,,, say R.(i(t)) = [a, f], then using E, we can compute T,(t)
inside Mg, contradiction. Thus p(MS3,;) < 7. On the other hand, let x < f < o
and © = [ f] in Ult(MS, E). Then Tﬁ(f) € M, and we can compute R;g)(z)

from i(Tg(f)) in M3, . (First, compute Ry (i (f)) Then note z = i(f)(a), and
a C i(f).) Since ran(i) is cofinal in 7, we get 7 < p(MS, ).
This proves Claim 5. U

Now let 6 be a limit ordinal, and let b = W(7 [6) be the branch of 7 chosen by W.
b may have pairs of the form 7,7+ 1 in it where MT = /\/l7 +1; this occurs precisely
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when v € b is unstable. By construction, the set of such pairs is an initial segment
of b that is closed as a set of ordinals.
Suppose first

Case 1. There is a largest n € b such that 7 is unstable.
Fix this . There are two subcases.

1(b) for ally € b— (n+1), rt(y) = n+ 1. In this case, b — (n + 1) is a branch of S.
We let S choose this branch, that is,
m+1,0)s=b—(n+1),
and let Mg be the direct limit of the M$ for v € b— (1 + 1) sufficiently large.
The branch embeddings 7 4, for v > 7 in b, are as usual. mp: Mg — M] is
given by the fact that the copy maps commute with the branch embeddings.

We declare 6 to be stable.

1(b) forall y € b— (n+1), rt(y) =n. We let S choose
[0,0)s = (b—mn) U[0,n]s,
and let M$ be the direct limit of the Mf for v € b sufficiently large. The
branch embeddings iﬁe, for v > n in b, are as usual. m: M5 — M] is given
by the fact that the copy maps commute with the branch embeddings. Again,

we declare 6 to be stable.

In this case, 6 is stable, so (i)-(vi) still hold.

Case 2. There are boundedly many unstable ordinals in b, but no largest one.

Let n be the sup of the unstable ordinals in b. We let & choose
[0,0s] = (b —n) U0,7]s,
etc. Again, we declare 0 to be stable, and (i)-(vi) still hold.

Case 3. There are arbitrarily large unstable ordinals in b. In this case b is a disjoint

union of pairs {v,v + 1} such that v is unstable and v + 1 is stable. That is, in S
we have been moving our phalanx up all along b. We set
[0,0)s = {£ € b| ¢ is unstable },
and let MJ$ be the direct limit of the M‘g for € € b unstable. There is no dropping
of any kind in [0, #)s. The branch embeddings zf’g and the copy map 7y are as usual.
If M is not a model of U, then we declare 6 to be stable. Otherwise, we declare 6
to be unstable, and set
M§.| = transitive collapse of HullMg()\‘g Ui e(q)).
A5 is defined as it was in the unstable successor case: first we define \g, 1, then set
A5 = inf(\g, 1, ap).
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Let also
09 Mg+1 — Mbs

be the collapse map, and
MJ. = M], and
To4+1 = T9g © 09-
e agrees with my on )\g , as desired.
(i)-(iv) are clear. Items (v) and (vi) are routine.
We shall use the following proposition in the next section.

Proposition 6.63 Let 0 be a limit ordinal such that 0 is stable in S,;, but every
§ <s,, 0 is unstable in S,;; then cof (0) = w.

Proof. Let t = eg”‘l be the branch extender of [0, §)s, and A = dom(¢). By hypothesis,
tin € Uy for all n < A, but ¢t ¢ U For n < A, let &, be such that
U,
thn = s "
Then n < v implies s?ﬁ C s?y, and hence &, <y &,. Letting p = sup({§, | n < A}),
and b be the branch of U[u determined by the &,’s, we have that ¢ is the branch
extender of b in U, so b # s, s0 b # [0, 1)y This implies cof (1) = w, so cof(A) = w,
so cof(f) = w, as desired. O

This finishes our construction of the psuedo-tree S, ;, and its lift 7,,;. Notice that
every extender used in & was taken from the sequence of a stable node. Every stable
node, except the last model of S, contributes exactly one extender to be used. The
last model of S is stable.

Recall that we assumed that the construction never reached a strategy disagree-
ment between the current model of S,; and (M,,2,;), and that the extender dis-
agreements involved only empty extenders on the M, ; side. Let us record this in a
lemma.

Lemma 6.64 Let v < 1h(S), where S =S, is defined as above; then either
(1) (Miv E'y) Sl (Mu,lv Qu,l); or
(2) (M,;,Q,;) < (/\/lf,Zy), or

(3) there is a mnonempty extender E on the Mf sequence such that, setting T =

(i) EX =0, and
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(i) (34) -1y = (1) (r,0)-

So far as we can see, the lemma can only be proved by going back through the
proof of Theorem 5.11, and extending the arguments so that they apply to S,,;. That
involves generalizing strong hull condensation to psuedo-trees like S, and normalizing
well to stacks (S,U), where U is a normal tree on the last model of S. Then we need
to run the construction of 5.11, showing that W (S,U"b) is a psuedo-hull of i;(S),
where b is the branch of U chosen by €2,,;. There is nothing new in these arguments,
but it does not seem possible to get by with quoting our earlier results. We therefore
defer the proof of Lemma 6.64 to the next section.

Claim 6. For some (v,1) <jex (10, ko), the construction of S,; stops for either reason
1(b) (that is, MS, < M,,;), or reason (2).

Proof. 1f not, then the construction of § = S, , must reach some M$ such that
M, 1, is a proper initial segment of Mg. But M, y, is a U-iterate of M via a branch
of Uy, 1, that does not drop; let j be the iteration map. We have 7y from M§ to the
last model of 7y r,. Then my o j maps M elementarily into a proper initial segment
of the last model of 7T, x,, contrary to the weak Dodd-Jensen property of V. O

The following weaker version of induction hypotheses (v) and (vi) holds more
generally.

Claim 7. Let U = U, for some v, l. Suppose [0, 7]y does not drop in model or degree,
and let 4 = iff, ; then

(a) for any 8 < «p, Thﬁﬁl(i(ﬂ) Ui(q)) € M%’,

(b) supi“p(M) < p(M) < i(p(M)), and

(c) if ¢ # 7, then Tt (p(MY) Ui(q)) € MY.

Proof. Part (a) holds because i(Th;. , ;(5Ug)) can be used to compute ThM (i(B)U
i(q)). Part (b) is proved in Claim 5 of the proof of Theorem 6.2 of [23]. If ¢ # r,
then p < ag, and p(M,) < i, (p), so we get (c) by using (a) with 8 = p. ¢ O

Let us now fix v, as in Claim 6, and let S = S,;,, U = U,;, and T = T,;. Let
1h(S) = 0 + 1. We have that [rt(), 0]s does not drop in model or degree. If 0 <g 0,
this implies that [0, 0]s does not drop in model or degree.

Claim 8. For some unstable &, rt(0) = & + 1.
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Proof. 1f not, then 0 <g 6, and [0, 0]s does not drop. If S ended for reason 1(b),
then Mg < MY for some 6. But then MY = M3 and [0, 6]y does not drop, by weak
Dodd-Jensen. If S ended for reason (2), then again MY = M$ and [0, ]y does not
drop.

Standard weak Dodd-Jensen arguments give
S u

to,0 = 0,6
(This involves copying over to T in one direction.) But the extenders used in each of
these branches can be recovered from the embeddings, using the hull and definability
properties. So
o=
Now let 1 be least such that n is stable and n <g 6. Then sg = s5ly = 51,
for some . But there is 7 such that s = s§|y. Thus M5 = MY If 5 is a limit
ordinal, then by the rules in limit case 3, n was declared unstable, contradiction. If
S-pred(n) = p, then p is unstable, and our rules in the successor case declare 7 to

be unstable. So in any case, we have a contradiction. U

Fix € as in Claim 8. Since ¢ is unstable, we can fix 7 such that MY = M? Fix
also v > 7 such that M,,; < Mﬁ’, and hence M3 < ./\/lﬁ’ Set

= p(Mg,),
and

Claim 9. Either

(i) o= g, or

(ii) p < ag < crit(og), and crit(og) = (M+)M?+1.

MS

Proof. By induction hypothesis (vi), Thy {{'(ae Ut) ¢ Mg, and therefore

< .
MS
Suppose p < . We can then find some finite p C ag such that Th) 1" (uUpUt) ¢
M.S

M. Since max(p) < ag, we get from (vi) that R = Thy $ (nUp Ui (q)) € ME.
It R e ./\/l‘gﬂ, then we have a contradiction, so assume R ¢ /\/l‘gﬂ. Since R is
essentially a subset of u, we get (ii) of Claim 9. O

Claim 10. p = p(M3).
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Proof. This follows easily from the fact that all extenders used in [£ + 1,6]g are
close to the model to which they are applied, and crit(ifﬂﬂ) > . O

Claim 11.
(i) M§ = MY, and [0,7]y does not drop in model or degree.

(i) If 7 <5 <, then Ih(EY) > a..

Proof. We have by (vi) that

MS .
Thy $y (o Uige(q)) & M.
Suppose M35 < ./\/lljf . We have that [ + 1,0]s does drop in model or degree, and
crit (g, ) > ae, so we get

MS . Meiq
Thy, £ (0 Uige(q) = Thig$i (e Ut) € MY,
Set

R = Thy &' (ag U).

Note that if Ef, | exists (i.e. 6 # &+ 1), then Ih(Ef ;) > ae. This is because
otherwise )\‘g = )\‘gﬂ, so £+ 1is a dead node of S, and £ +1 <g # is impossible. So in
any case, M$ agrees with ./\/lf below ag. It follows that M%’ agrees with Mf below
¢, and hence with MY below ag. Thus all E/Lj for 7 < p < 7 have length > . But
R is essentially a subset of a¢, and R € M%’, so R € MY, contradiction.

Thus MY = Mg The argument also proved (ii).

To see that [0,7]y does not drop, suppose not, and let the last drop in [0,~]y
occur at 7+ 1. We must have n+ 1 < 7, as otherwise R € MY%. But then p(./\/l%’) <
crit(EY) < A(EY) < ag, which yields p(MF) = p(MY) < p, by Claim 9. This
contradicts Claim 10. O

Claim 12. 8, o(t) = 1 (q).

Proof. Let ( be the first (i.e. largest) element of ¢ such that i (3) # z'grw o

(75_1 o Z'Os’g(ﬁ). It
4, (B) <igiygoo:t oif(B),

then

oo () < 100151100 751 0 56(8) = ,(5).

The maps on the two sides above agree at all earlier elements of ¢, and € started out
with 7, so this contradicts the weak Dodd-Jensen property of ¥ relative to €. On
the other hand, suppose

i6,(B) > igi190 0" 0dge(B).
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Let B = 051 o i‘aé(ﬁ), and u =t — (B +1). Since ¢ is solid at 3, and i‘gﬂ’@(u) =
i (q—(6+1)), we get that
MS . > .
. Thkoi1(22§+1,9((5 +1)uU Zfig(“)) € Mj.
It follows that Thi'? (e Ui, 4(1)) ES M. But the theory is a subset of a,i, and

ko+1
. ME M . _
it is equal to Thy 1" (e Ut). So Thy §, (e Uige(q)) € Me, contradiction. O

Claim 13. Let n be such that n +1 <y v and n > 7; then a; < crit(E,%’).

Proof. Let E = Enu and = U-pred(n+1). Let x = crit(E), and suppose k < a.
We have 1h(E) > a¢ by Claim 11.

If p(MY) < k, then p(./\/l%"s) = p(MY) = p, and so we have p < ag, and thus (ii)
of Claim 9 holds, and (u*)™& > a.. Now if F is used in [0,€)s, then A\(F) < a,
and so A(F) < p < k. Thus if 8 < 7, then A(EY) < i < &, contradiction. So 3 = 7.
But then P(,u)Mg = P(u)M* = P(p)M = P(u)MF = P(p)M?H, which contradicts
(ii) of Claim 9.

Thus x < p(M%). But then

ag < supip“(k")MF < p(MY) = pu < ag,
so ag = p = lh(E). If ¢ # r, then (c) of Claim 7, applied with 1 = -, implies that
S

Thﬁﬁl(ag Uiy, (q)) € MY Hence ThMg“(ag Ut) € MZ,,, a contradiction. On the

ko+1
other hand, if ¢ = r, then a; = p(./\/l‘g) is a cardinal of M¢, so sup Z'E“(/{+)M% =

Ih(E) > g, contrary to the inequality displayed above. O
It follows from Claim 13 that 7 <y =, and either 7 = « or crit(i%,) > a¢. In

either case
(M8 = (M = ()Y = () = (),
and all models displayed agree to their common value ior pt. In particular,
ME| ()M = ME| () e
It follows then from Claim 9 that
H = C¢.
Claim 14. r is solid; that is, ¢ = r.

Proof. 1f not, then p(M) < ay. It follows by Claim 7 that
p(MY) <supiff “ag = supif ¢ “ap = ag = p = p(Mg) = p(M%).
However, crit(i,) > a¢ or v = 7, so p(M¥) = p(MY). This is a contradiction. [
By Claim 14, ag = p. It follows from (v) and (vi) that for all unstable 7,
ay = p(Mﬁ) Moreover, by the usual preservation of solid parameters, ig,n(r) is the
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standard parameter of /\/lg In particular, this is true when n = £. That tells us that

the parameter of Mf is universal:

Claim 15. z"g’g(r) is universal over M‘g; that is, /\/l‘g|77 = /\/lf+1|77, where n = (ag)Mg.
Proof. This follows from the fact that M§ = MY, and crit(i§,) > a¢ and

crit(iff ) > ¢ (and neither branch drops). O

If £ =0, we are done.

Claim 16. r is universal; that is, K|(p™)" = M|(p*)M.

Proof. Let us assume ky = 0 and 6(M) is a limit ordinal to simplify the fine
structure a bit. We may also assume £ > 0.

Suppose first that p is regular in M. Let N < M|(pT)M, p(N) = p, and B C p
code ThY (p(N)Up(N)) for n = k(N). We must show N < K, and that is equivalent
to

(*) For some ¥; formula ¢, some b < p, and some o < 6(M), there is a unique
(P,C') such that:

(a) P < M|o and C C p(P) codes Th (p(P) U p(P)) for n = k(P), and
(b) Mlo | ¢[P,C,b,r].

Moreover, for the unique such (P, C), we have C'Np = B.

We can express (*) as
M = 4[B, p, ],

where v is 1. Let i = 2'59’ ¢» and note that ¢: M — M? is elementary, that is, cofinal
and ¥;-elementary. Moreover, i(p) = supi“p = ag, because p is regular in M. By
Claim 15
ME | YLi(B),i(p), i(r)].

Thus M | ¢[B, p,r|, as desired.

Now assume that p is singular in M. It will then be enough to show that P(p)™ C
K. This is because if 7: K — M is the collapse map, then crit(m) > p, as otherwise
crit(m) = p is regular in K, and hence regular in M because P(p) C K. It follows
that crit(m) > (p7)% = (p™)M, which yields Claim 16.

Solet B C p, Be M, and B ¢ K. We show by induction on n <g £ that

B) ¢ MS_,. The case 7 is a limit ordinal is easy, so assume S-pred(n) = 3, let
n n+1 Ui

)
= E7 |, and let A =i§4(B) Nag. So A¢ M§,,. Let us write ig for i, and let

;S
107
E n
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s = i3 4(r). Suppose toward contradiction that ip(A) N a, € M3, ; then we have
some b < oy, some C, and some X formula ¢ such that
/\/lf = C is the unique D such that ¢(D,b,ig(s)),

and C'Nay, = ip(A)Nay,. Fix b,C, and ¢. There are cofinally many ordinals in M3
that are ¥; definable from parameters in ag U s, so we can find such an ordinal o
such that

M‘$|ZE(0) = C is the unique D such that ¢(D,b,ig(s)),
But now let

b=l 5"
For E, almost every u,

M‘g|a = there is a unique D such that ¢(D, f(u),s).
Let C, be the unique such D, when it exists. The function u — C, is definable over
M‘g\a from f and s. Since o, = sup i “og, we may assume that f € M‘g\ag. (ap is
a singular cardinal of M‘g in the present case.) Moreover, E, € Mg|065 by Claim 4.
Then for § < ag,

0e As for B, ae. u, 6 € C,.

This defines A over ./\/lg|a from f,s, and E,. That implies A € /\/lg 41, a contradic-
tion. ]

This completes the proof of Theorem 6.57, modulo Lemma 6.64. [l

Corollary 6.65 Assume AD", and let (M, F Y),¥*) be a coarse strategy pair. Let
C be an (F,X)-construction done in M; then for any (v, k) < 1h(C) such that k > 0,
(t)ux holds, that is, the standard parameter of Mffk 15 solid and universal.

Corollary 6.66 Assume IH, 5, and there are infinitely many Woodin cardinals below
k. Let w be a wellorder of Vs, and let C be a w-construction above k; then for any
(v, k) <1n(C) such that k >0, (1), holds, that is, the standard parameter of M,
15 solid and universal.

Proof. We can use Corollary 6.65, inside a model of AD" we get by the method
of Remark 6.41. That is, if 6.66 is false, then we have a countable M and 7: M —
Ml‘fk elementary such that the standard parameter of M is either non-solid or non-
universal. We have that (M,Q7) is a least branch hod pair by 6.13. Standard
arguments using unique iterability show that Q™ is < xk-homogeneously Suslin. Be-
cause we have assumed that there are infinitely many Woodin cardinals below k,
L(™ R) = AD". Thus the hypotheses of 6.57 are satisfied, and the standard pa-
rameter of M is solid and universal, a contradiction. ]

We can prove a condensation lemma for Ibr hod pairs by the same method. Rather
than attempt a general statement, we shall content ourselves with the following
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simple one, since it is what we need in the next section. The author and Nam Trang
have proved a stronger condensation theorem in [05], and used it to generalize the
Schimmerling-Zeman characterization of {x | M = O} to the case that M is a
least branch hod mouse. The proof in [65] is given in much greater detail than we
give here; moreover, it yields condensation for mouse pairs, not just condensation for
mice.

Theorem 6.67 (Condensation lemma) Let M be a countable lpm, and let U be
a complete iteration strateqy for M defined on all countable M -stacks by 3. Suppose
that whenever s is a countable M-stack by VU having last model N, then (N, V) is
a least branch hod pair. Suppose that W is coded by a set of reals that is Suslin and
co-Suslin in some L(I',R), where L(T',R) = AD". Let
T H—->M

be elementary, with crit(m) = p(H) < p(M), and H being k(H) + 1-sound. Suppose
also that p(H) is a limit cardinal of H; then H < M.

Proof.(Sketch.) We proceed as in the proof of 6.57. Let C be the construc-
tion of some W-Woodin model N*. We have (1, ko) such that (M, W) iterates to
(Mf% Ko Q% k). We may assume that W has the weak Dodd-Jensen property relative
to some €.

For (v,l) <iex (1o, ko) we define a psuedo iteration tree S,; which iterates the
phalanx (M, H, p(H)). S,, is defined exactly as it was in the proof of 6.57, with one
exception with regard to how we move phalanxes up. Note that because p(H) <
p(M), we have H € M .(The theory coding H is a bounded TE%M)_H subset of p(M),
hence in M. Since M|p(M) = KP, H € M|p(M).) Now suppose v + 1 is unstable,
and £ = S-pred(y 4+ 1). We have M$, | = Ult(MZ, E,) as before. We then set

M§+2 = Z.g,’y—i-l(H)a
and
0‘:9,+1 = ig,yﬂ(ﬂ(H))'
We have
Ty 41+ M:YSH - M§+1

determined by: o,41]05,, is the identity, and 0,41 (i ., (p(H)) = @5 41 (7(p(H)). I
H is not an initial segment of M, then /\/l;g 4o 1s not an initial segment of /\/l;g 415 SO
we have successfully moved the bad situation up.

There is a similar change at unstable limit ordinals 0. We set Mg, = i§,(H)
and o = i3 o(p(H)), etc.

The rest of the construction of §,;, and its conditions for termination, are the
same as in the proof of 6.57. Again, the key lemma is the counterpart of Lemma
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6.64, according to which no strategy disagreements show up, and least extender
disagreements involve only empty extenders on the MEI side. We shall prove this
lemma in the next section.

We argue as before that for some v, [, the construction of S,; terminates at a
stable 6 such that M§ < MY, where U = U,;. (We no longer have MY I M, as
the proof of that used that K ¢ M, whereas H € M.) Using weak Dodd-Jensen, We
get that for some unstable £, rt(0) = £ 4 1.

Let MY = Mg. We have that h(EY) > A ,, as otherwise £ + 1 would have
been dead. But in the present case, >“58+1 is a limit cardinal of M‘g = MY, so
Ih(EY) > )\fﬂ.

Now we simply follow the proofs of Claims 1-4 in the proof of Theorem 8.2 of
[23]. We get from that that M‘gﬂ is a proper initial segment of MZ This implies
there are no cardinals of MY strictly between )\‘g '+, and O(Mf 1). It follows that
Ih(EY) > o(Mg,,), so that Mg,; I MY¥ = MZ. But then, as we observed above,
H < M, as desired.

O

We get at once

Corollary 6.68 Assume AD™, and let (M, F %), ¥*) be a coarse strategy pair. Let
C be an (F,X)-construction done in M, and let M = M. Let

m H— M
be elementary, with crit(r) = p(H) < p(M), and H being k(H) + 1-sound. Suppose
also that p(H) is a limit cardinal of H; then H < M.

Corollary 6.69 Assume IH, 5, and there are infinitely many Woodin cardinals below
k. Let w be a wellorder of Vs, let C be a w-construction above k, and let M = Ml(fk.
Let

T H—-M

be elementary, with crit(r) = p(H) < p(M), and H being k(H) + 1-sound. Suppose
also that p(H) is a limit cardinal of H; then H < M.

6.7 Some successful background constructions

Let us assume Theorem 7.3, the Bicephalus Lemma, throughout this section.
In the AD™ context, we get that I-Woodin constructions do not break down.

Theorem 6.70 Assume ADY, let (N*,5,5,T,<,%*) be a coarse IT'-Woodin tuple,
and let C be a least branch <i-construction in L[N*,S, T, <] with all F€ € N*; then
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C is not pathological in LIN*,S,T,<|. In fact, letting M = Mffk, and letting € be
the canonical extension of Q7 to all M-stacks in HC; then

1. (M, Q) is a least branch hod pair, with scope HC,
2. (*)(M,Q), and

3. M has a core; that is, p(M) is solid and universal.

Proof. We have a coarse strategy pair ((NN, FC, %), ¥*) such that V¥ = V" so
by 6.37, 6.65, and the Bicephalus Lemma, C is not pathological in L[N*, S, T, <.

The canonical extension €2 of QS i 18 just the strategy for M induced by lifting to
N* and using ¥ there. Y acts on all stacks of trees in HC, not just those in N*, and
we don’t need that the stack is in N* to define its lift to N*.

Since ¥* witnesses that L[N*, S, T, < is strongly uniquely (wy,w;) iterable in V|
it has strong hull condensation, normalizes well, and moves to its tails under its own
iteration maps. (See 4.21 and 4.32.) By our work in Chapter 3 (see 4.41 and 4.49),
Q) has strong hull condensation and normalizes well. By the proof of 6.32, whenever
s is a stack by Q with last model @, then X9 C Q,. Thus (M, Q) is an Ibr hod pair.

That (1) implies (2) is Theorem 6.49. That (1) implies (3) is Theorem 6.57.

d

We have shown that least branch constructions done in a coarse I' Woodin model
do not break down, but we are missing a proof that such constructions go far enough;
that is, a proof of HPC. Borrowing 7.3 from the next chapter, we do get

Theorem 6.71 Assume AD™; then LEC implies HPC.

Proof. 1t is enough to show that whenever (P,Y) is a pure extender mouse pair
with scope HC, then there is an lbr hod pair (Q, ¥) with scope HC such that ¥ is
definable from parameters over (HC, €, V).

So fix (P, X)), and let (N*,6,5,T, <, ®) be a coarse I'-Woodin tuple, with P count-
able in N* and Code(X) in I'. Let C be the maximal <- construction of L[N*, S, T <,
with last pair

(Qa \II) = (Mfs?m QEO)

Note here that C does not break down, by 6.57 and 7.3. Since ¢ has scope all of

HC, it induces an extension of ¥ with scope HC. We call this extension ¥ as well.
Now let D be the pure extender L[E] construction of @), where nice extenders

from the ()-sequence are used as backgrounds. By 6.57 and 7.3, D never breaks
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down, and each (ME),C, Q]B)k) is a pure extender pair in (), and hence can be canon-
ically extended to such a pair in N*. Working in N*, we can compare (P,¥) with
each (M}, 2),). Because the background extenders of D are assigned background
extenders over N* by C, we can repeat the proof of (*)(P, %), so (P, X) iterates past
(M), €2),), provided it iterates strictly past all earlier levels of D.

By the Q-filtered backgrounding again, (P, ¥) cannot iterate past (M, f;%, Q?O). It
follows that (P, ) iterates to some (M), Q). This is true in N*, but it is also
true in V' of (P,X) and the canonical extension (M, ) of (M}, Q),), because N*
is sufficiently correct. But then X is projective in €2, and €2 is projective in W, so we
are done. U

Remark 6.72 We do not see how to show that under AD", HPC implies LEC. That,
together with 6.71, suggests that one should try to prove HPC by proving the osten-
sibly stronger LEC.

We now look at constructions done in a model of the Axiom of Choice, under
strong large cardinal hypotheses. Here we must assume unique iterability. We shall
show that under such assumptions, least branch constructions can produce hod pairs
(M, Q) such that M = “there is a subcompact cardinal”.

Definition 6.73 A cardinal k is subcompact iff for all A C H,+, there are u, B,
and j such that

(a) p <k and B C H,+,
(b) j: (Hy+,€,B) = (Hy+, €, A) is elementary, and
(¢) p = crit(j).

Subcompactness was introduced by Jensen. It is interesting in part because it can
be represented by short extenders®®, but it is strong enough that if x is subcompact,
then =,. The main theorem of [37] is that in iterable pure extender models, -Ox
if and only if k is subcompact. If x is subcompact, then the set

S ={ig(u*) | E is a superstrong (i, x)-extender}
is stationary in x*.?° Jensen showed that in iterable pure extender models, the
stationarity of S is equivalent to subcompactness. (See [37].)

2Let E be the (i, k)-extender of j; then ip also satisfies (b) and (c) of 6.73.
%5To see this, let A be a given club, apply the definition to get j and g, and then let E = E; |x.

278



Subcompactness is close to the limit of the large cardinal properties that can be
represented by short extenders, and it is thus close to the limit of the large cardinal
properties exhibited in the strategy mice whose theory is developed in this book.

The large cardinal hypothesis of the following theorem is just beyond those that
can be captured by short extenders.

Theorem 6.74 Suppose
(i) 7: V — N is elementary, k = crit(j), and 6 = j(k),
(ii) Vs U{E;18} C N,

(111) 1H, 5 holds, where p < k, and

(iv) wy is a wellorder of V., w = j(wy), and C is a mazximal least branch w-
construction above L.

Then C is not pathological, and
(a) Mg, |= K is subcompact, and
(b) M gfo = there are arbitrarily large superstrong cardinals.

Proof. That C is not pathological follows from 6.66 and the Bicephalus Lemma.
Thus M = M, :s(,:o exists. We show first that x is subcompact in M

Let A C (k7)™ and A € M. Tt will be enough to show that § is j(A)-subcompact
in j(M).

Our choice of w guarantees that j(w)NVs = w. It follows then that j(C)[(4,0) =
C. Thus

But this implies that
M = j(M)[(0,0).

To see that, let us call n a S-closure point of C iff n = O(M o), n < pB,and nis a
cardinal of M £, Note that this implies M oI M go The set B/j of p-closure points
of Cis Closed in ﬁ If g is a cardinal of V| 1t is club in 8. But then
BE = j(BS)nw
= Bg(({:) Nk
= Bf Nk,
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sok € Bf,s00 € Bjj.'((gc)), or in other words, J is a closure point of j(C). That implies
M = j(M)[(,0).
Let
E={(a,X)]|ac[0]AXecP(x]lHY™AracjX)}

be the length § extender of j, restricted to M.

Claim. If n < § and E|n is whole, then the trivial completion of E[n is on the
j(M)-sequence.

Proof. We prove this by induction on 7. Suppose we know it for § < n, and let
F be the trivial completion of E|n, and v = i¥ (™M), Assume first that n < §. We
have that Ult(M, F') = Ult(M, E[n), and there is a natural factor embedding
o: Ult(M, F) — Ult(M, E)
such that on = id, and o(n) = §. Since 7 is a limit cardinal of Ult(M, F'), we have
that n is a limit cardinal of M. Using the Condensation lemma 6.69 applied to o,
we get that
Ult(M7 F>’<7> _1> = U1t<M7 E) f(% _1> = MR’Y) _1>'
Since 7 is a cardinal of M, there must be a stage of C at which we have M|(n,0) =
M,‘fo. After this stage, no projectum drops strictly below 7, and stages which project
to n are initial segments of M. Thus there is a v such that
(M=) = M]3, ~1).
But then (M<¥, F,() is an lpm. (Coherence we verified above, and the Jensen initial
segment condition holds by our induction hypothesis.) Moreover, F' has a background
certificate that shifts w to itself, namely F;[pu, for p the least inaccessible cardinal
strictly greater than 7. By the Bicephalus Lemma,
ME, = (M=, F,0).
Since 7 is a cardinal of M and ]\/[‘CO projects to 7, Myo < M. Thus F'is on the
M-sequence. Since n < 9, it is on the j(M)-sequence.
Now we take the case n = §, that is, F' = E. Again, let v = i} (x™M) = i%'a(/ﬁ’M
be the length of the Jensen completion of E. The factor embedding from Ult(M, E)
to j(M) has critical point > ~, and thus Ult(j(M)|y, E) agrees with j(M) strictly
below 7. FE satisfies the Jensen initial segment condition by the claim applied to
n < 6. To get a background certificate E* for E in N, simply take
E* = ji(E,18)]X,
where j; = j(j) and A is the least inaccessible of N above d. This clearly works, so
by the Bicephalus Lemma, E is on the sequence of j(M). O

Let ig: (M|s™M, A) — Ult((M|xTM A), E) = (j(M)||1h(E), B) be the canoni-
cal fully elementary embedding. Let o: Ult((M, A), E) — (j(M), j(A)) be the factor
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embedding. Since crit(o) = lh(F) and o is elementary, we see that (j(M)||1h(E), B) <
(F(M)|[6+7M) 5(A)). Thus E witnesses that § is j(A)-subcompact in N.

To see that ¢ is a limit of superstrong cardinals in M, it is enough to see that
M|k |= “there are arbitrarily large superstrong cardinals”, for then we can apply
j to this fact. But k is subcompact in M, and it is quite easy to see that if x is
subcompact, then V, = “there are arbitrarily large superstrong cardinals”.

g
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7 Phalanx iteration into a backgrounded construc-
tion

In this chapter we prove that there are no nontrivial iterable bicephali, and we
prove Lemma 6.64, thereby completing the proofs of theorems 6.70 and 6.74. Both
results involve showing that certain bicephali and phalanxes iterate into background
constructions in the same way that ordinary lbr hod pairs do.

We shall also use such a phalanx-comparison argument to show that if (M, €2) is an
Ibr hod-pair such that M = ZFC + “there are arbitrarily large Woodin cardinals”,
then whenever g is P-generic over M, MJ[g] = “ UBH holds for all nice, normal
iteration trees that use extenders from E™ with critical points strictly above |P|M”.
That implies that €2 determines itself on generic extensions of M. We shall use this
in the next section to show that if A\ is a limit of cutpoint Woodin cardinals in M,
and N is a derived model of M below A, then HODY is an Q-iterate of M.

7.1 The Bicephalus Lemma

Definition 7.1 An lpm-bicephalus is a structure B = (B, €, EB YB F G) such that
both (B, €, EB Y8 F,0) and (B, €, EB, %5, G, 0) are extender-active least branch pre-
mice. We say that B is nontrivial iff F' # G.

We shall usually drop “lpm” from “lpm-bicephalus”.
We think of B as a structure in the language with € and predicate symbols
S, E,F, and G. We let
B~ = (B,c,E5 %5 0,0)

be the Ipm obtained by removing both top extenders. (To be pedantic, 5 and 5~ have
different languages.) The degree of B is zero, i.e. k(B) = 0. For v < o(B) = 6(B),
we set B|(v,1) = B~|(v,1). The extender sequence of B is Ef together with F¥ and
GB ; it’s not actually a sequence.

A B-tree is a tuple (v, k,T) such that (v, k) <iex (6(B),0), and T is a weakly
normal tree on B|(v, k). That is, MJ = B|(v, k), the extenders used in T are length-
increasing and nonoverlapping along branches, and E/ must come from the sequence
of MT. If M7 is a bicephalus, this means that the extenders from EMe together
with FMe and GMe are eligible. A B-stack is a sequence (i, kiyi ) | i < n) such that
(1o, ko, ) is a B-tree, and (v 11, ki1, Tiv1) is a Moo (T;)-tree. A complete strategy for
B is a strategy {2 defined on all B-stacks s by €2 such that s € N, for some set N. N
is called the scope of (2.
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Definition 7.2 A bicephalus pair is a pair (B,€)) such that B is an lpm-bicephalus,
and 2 1s a complete strategy for B.

Tail strategies are given by €Q,(t) = (s7t). We use Q, x and Qy as before. We
write Q™ for (23—, the complete strategy for B~ induced by 2.

We can define the notions of normalizing well, having strong hull condensation,
and being self-consistent for bicephalus pairs just as we did before.

The main theorem about bicephali is that there aren’t any interesting ones.

Theorem 7.3 Let (B, V) be a bicephalus pair, where W has scope HC. Suppose
that L(U,R) = AD". Suppose also that ¥ normalizes well and has strong hull
condensation, and that (B, V) is self-consistent; then F8 = G,

Proof. Let us assume toward contradiction that F8 # GB.

We work in L(W¥,R). Fix an inductive-like pointclass [y with the scale property
such that W is coded by a set of reals in 'y N [y. We then fix a “coarse I'y-Woodin”
tuple (N*, X%, 6%, 7), as in theorem 10.1 of [51]. So N* |= §* is Woodin, and >*
is an (wp,w;) iteration strategy for N*|0*, and fixing a universal I'y set U, i(7)¢ =
UnNi(N*)[g] for all g on Col(w,i(6*)), whenever i is an iteration map by ¥*. We also
have that the restriction of 3* to trees that are definable over N*|§* is in N*. We
can assume that there is an F' such that

(a) N* |= F is coarsely coherent,
(b) 6% is Woodin in N* via extenders from F, and

(¢) N* = “I am strongly uniquely F-iterable for stacks of trees in Vj..”

Working now in N*, let C be the F-maximal least branch hod pair construction
done in N*. The construction lasts until we reach some (v, k) < (6*,0) such that
(t)u fails, or until we reach (v, k) = (5* 0). Let <770,l0> be this (v, k). We write

Ml,,l:MlandQ,,l Q vl

1%

for <l/ l> <770,lo>

We now compare (B, V) with itself, by comparing two versions of it with (M, ;,,,).
The result will be two trees S,; and 7,;, each on B and by ¥. We show that only
the two B sides move in our coiteration, and that no strategy disagreements show
up. This is done by induction on (v,[). It is not possible for our coiterations to
terminate because B is nontrivial, so we end up with B iterating past M;% 1, This
leads to a contradiction.

283



Let C be a premouse. For n < 6(C), we let ES = ES, and for n = o(C), we let
ES = FC. If C is a bicephalus, and 1 < 6(C), then we set Ef = Ef; If n = 6(C), we
leave Ef] undefined.

Fix (v, 1), and suppose we have defined S, and 7, for all (u, k) <jex (v,1). (The
trees are empty until C has gone well past 0°.) We define normal trees S = S,,; and
T =U,, on B by induction. At stage o, we have S* and 7 with last models

C=MSE and D= MT".
We do not assume 1h(S%) = 1h(7?).

Case 1. (Mu,la Qu,l) < C and (Mu,la Qu,l) < D.

In this case, we must have that either (M,,,2,;) <C, or the branch of S,; to C has
dropped, because C is a bicephalus and M,,; is not. Similarly on the D side. (Our
claim 0 below implies we never get “half” of a bicephalus lining up with an M,,;.)
We stop the construction of S,; and 7,,;, and go on to S,;41 and 7,,;4;.

Case 2. Otherwise.

Here the main claim is

Claim 0. There is a « such that
(a) M,,|(v,0) is extender-passive,

(b) MV,I|<770> - C|<7’_1> = D|</y7_1>7 and (QVJ)<’Y,0> - qua,(%—l) = WT“,(’Y,—U’
and

(c) at least one of C|(v,0) and D|(7,0) is extender-active.

We defer proof of Claim 0 for now.
Let v = () be the unique 7 as in Claim 0. We get S and 7% as follows.
Let n = o(M,,[(7,0)). Let
C= Mfa and D = MZQ.
Suppose 7 < o(C), or n = o(C) but C is not a bicephalus, because [0, {]s dropped.
We set »
EST = ES,

if EC # 0, with S**' then determined by normality. If ES = (), then So*! = §°.
Similarly, if 7 < o(D) or D is not a bicephalus, then we set
ET“+1 — E'D
T n )
if E’nD # (), with 7" then determined by normality. If E}; = (), then 7o+ = T<,
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If n = o(C) and C is a bicephalus, then if ET “™ has already been determined, we
let E5*"" be the first of F¢ and G that is different from EJ"". If also o(D) = 7

and D is a bicephalus, then we set Efuﬂ = FC, and
e _ JFP P £ RC
T | G?  otherwise.

Our definitions guarantee that if one of Eg and E7 is a top extender of a bi-
cephalus, then Eg #ET.

This finishes the definition of S and 72*!. The limit steps in the construction
of §,; and T, are determined by W. Note that o < § = () < v(f); that is, the
common lined up part keeps lengthening.

Eventually, we reach Case 1 above, and the construction of S,; and 7,; stops.
(B,¥) has iterated strictly past (M, ,€2,;), in two ways. As in the proof of 6.50,
this implies (f),;. (When [ = —1 as well.) It follows then that

no = 0" and [y = 0.
However, (B, V) cannot iterate past Ms« o, by the usual universality argument. Note
here that we have (f),—1 for all v < §*, so the extenders added to the M, _, are
unique, and the universality argument applies. This contradiction completes the
proof, modulo Claim 0.

Proof of Claim 0. (Sketch) We repeat the proof of Theorem 5.11. Virtually nothing
changes, so we shall just mention the main points here.

The main change is the following. We used many times in the proof of 5.11
that for premice Q and R, and X an iteration strategy for ), there is at most one
iteration tree 7 by X such that RAM,(T) for a+1 = 1h(T), and R 4 M whenever
a+ 1 < 1h(7). This uniqueness for normal iterations past a given R clearly fails for
bicephali; let Q = B and R = Ult(B, F B). What saves us is that in our siuation,
with @) = B and R some initial segment of M, ;, the trees S,; and 7,; are being
defined together in a way that completely specifies which extender to use at each
step on both sides, whether that extender is from the top pair of a bicephalus or not.
Moreover, this specification is absolute.

Definition 7.4 Let R be a premouse, and suppose S and T are normal iteration
trees on M of lengths a4+ 1 and 5 + 1 respectively such that

(a) o is the least & such that R << M,
(b) B is the least & such that R I M],
(¢) S and T are by ¥, and
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(d) the extenders used in S and T are chosen according to the rules above, with R
playing the role of M, .

Then we call (S,T) the (R, ¥)- coiteration.

Subclaim A.

(1) If Ry < Ry, and (S;,7T;) is the (R;, ¥)-coiteration, then Sy is an initial segment
of 8§ and 7y is an initial segment of 7;.

(2) If Sp and S; are transitive models of ZFC such that B, R € S; and ¥ N S; € S;
for i = 0,1, and Sy |= (S,7T) is the (R, ¥ N Sy)-coiteration, then S; = (S,T)
is the (R, ¥ N Sy)-coiteration.

Proof. This is obvious. U

Let us assume that Claim 0 is true for (n, k) <jex (v,1). Let (v*, k*) be least (v, k)
such that either (M, [ (v, k), (€.1) (v0)) 7 (CIY, KD, Wse ()5 08 (M| (7, ), (S20) () 7
(D|{v, k), Vra (k). We show first that we are not in the bad case for extender dis-
agreement.

Subclaim B. It is not the case that k* = 0 and FMvil(00) o£ ),

Proof. Suppose otherwise, and let F' = FMvi|(~v* 0).

We claim first that [ = 0. For suppose | = k + 1. F' cannot be on the sequence
of M, 1, since otherwise S, would agree with S,; on all extenders used with length
< 1h(F'), and similarly for 7, and U,;. But this would mean Claim 0 failed at (v, k),
contrary to our induction hypothesis. It follows that M, ; is not sound. That implies
that M,y is the last model of S, , along a branch that dropped to M,,;. Similarly,
M, . is the last model of 7, along a branch that dropped to M, ;. Let o be least

such that M,,; 9 Mﬁ”’k and £ be least such that M, ; < MZ;”’“ From Subclaim A(1),
we see that S,; = S, x[(a+ 1) and T,y = Tk [(8 + 1). Thus M, is the last model
of S,; and 7, contradiction.

But then F' must be the last extender of M, , for otherwise F' is on the sequence
of some M, with n < v, and Claim 0 would fail at (n, k), contrary to induction
hypothesis.

So suppose that M, is extender-active, with last extender F'. Suppose § = Sy
and T = T have last models C and D respectively, and

(MV,—la Qw—l) = (C|<V’ _1>7 qu,(Vﬁl)) = (D|<Va _1>7 WT,(Vﬁl))'
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So (S8,T) is the (M, 1, ¥)-coiteration. We want to show that F' is on the sequences

of C and D, and not as a top extender of a bicephalus in either case. For this, let
§: V — Ult(V, F)

be the canonical embedding, and k = crit(j). (V' = N* at this moment.) We have

that M, _1 < j(M, 1) by coherence. (Note j(M, _1)|v is extender passive.) j(S,T)

is the (j(M, 1), V) coiteration, because (V) C W. So by Subclaim A, S is an initial

segment of j(S) and T is an initial segment of j(7T).

We have that MS = M) and FIMS = ii(‘.s(ﬁ), so F' is compatible with the
)

J
first extender G used in [k, j(k)]j(s). My—1 < M;Ei), so G cannot be a proper initial

segment of F'. But F' is not on the sequence of /\/ljgf)) , so F' cannot be a proper initial

segment of G. Hence F = G. Since S = j(S)[(£ + 1), where C = M?, we have that
F' is on the sequence of C.

Similarly, F' is on the sequence of D, and used in j(7). But then applying our
observation above in j(V'), we see that it is not the case that C is a bicephalus and F'

is one of its top extenders, or that D is a bicephalus and F' is one of its top extenders.
O

By Subclaim B, we may assume that
MVJ|<7*’ k*> = C|<7*7 k*> = D|<7*’ k*>’
but there is a strategy disagreement. The situation is symmetric, so we may assume
() (y iy 7 Ve () -

M = M, |(v*, k).

We consider first the case that M = M,;, then we reduce to this case using the
pullback consistency of ¥. We derive a contradiction in the case M = M,; by
repeating the proof of Theorem 5.11. We shall try to keep the notation close to that
in the proof of 5.11.

Let (S, T) be the (M, ¥)-coiteration of B. So M is an initial segment of both last
models, but Q,; # ¥ ;. Note that M is an Ipm, not a bicephalus. We suppose for
simplicity that our strategies diverge on a single weakly normal tree &/ on M. That
is, letting

Let

Q = (1) (v k.
U is by both € and ¥y s, but
QW) £ V(T U)).
Let b= Q(U). For v < Ih(U) we have the embedding normalizations
W, =W(T,Ul(y+ 1)) and W, = W(T,U"D).
These are defined just as they were for trees on premice of the ordinary or least
branch variety. The fact that U is only weakly normal affects nothing. We adopt all
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the previous notation; for example, I, is the last model of W,, and o : Mif — R,
is the natural map.
Q) is defined by lifting to V. Let
W@, Mo (7" KD, ©) = U, (.1 | 7 < Tnld), (¥ | 7 < Thtd)).
Here (1o, lo) = (v,1) and ¥¥ = id . Let

Sy =ML,
and for (u, k) <jex (v, 1) let
( Vi Whi) = the (M, 1, ¥)-coiteration of B,
For v < 1h(U) or v = b, let

(V;’k’ W;> - ( ;v’lv’ W;v’l“/)sw'
So if [0,7]y does not drop in model or degree, (Vi, W) = ig (S, T)).
We define by induction tree embeddings @, from W, into W2, for v < 1h(U) or
v = b, just as before. Let
Dy = (7, (7 B < =), (257 | B < 2(1)) 7).
Let us just say a few words about how to obtain ®,,, because this is where the
main point lies.
We have t7: R, — N,, where N, is the last model of W2. Let F = o, (EY), and let
p = U-pred(y+1). (Sadly, we can’t use “v” for this ordinal. ) So W1 =WW,, F).
Let us assume for simplicity that (u,y + 1]U is not a drop in model or degree. Let
resy = (0777#/ [Mnmlw|<1h w2{<EZ4)a O>])va
and let
G = res, (t7(F)).
We have t7 0 0, = ¢¥, so G = res, (¥ (EY). Let G* be the background extender for
G provided by & (C), so that
Sy41 = Ult(S,, G7).
Since we are not dropping,

S
where ig« = zllf 4+1- The main thing we need to see is that G is used in W7
Let P N,|(Ih(t"(F),0), 0 be least such that P < M:’V, and 7 least such that

PaAMY. Let (VI*, W>*) be the (res,(P), ¥)-coiteration of B. By the counterpart
of Lemma 5.6,

(i) Wi extends WX (7 + 1),

(ii) letting £ = ThW>* — 1, G is on the /\/l W sequence, and not on the MZV**
sequence for any a < &,

(ili) 7 <w- €, and @ 2 [(lhﬂ(F) +1) =res, [(Iht"(F) + 1), and
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(iv) similarly for V;* vis-a-vis V7.

P res,(P), and N, all agree up to dom(G), so

ves, (P)](In(G), ~1) < ic- (V,),
and ig-(N,)|(Ih(G),0) is extender-passive, by coherence. We then get that VI* is
an initial segment of V7, WJ* is an initial segment of W}, and G is used in both
Vi, and Wi, . It matters here that res,(P) is a premouse, not a bicephalus, so
both trees are forced to use G by our rules.

Now let M = M, |{(v*,1*), where (v*,1*) <jex (6(M,,),1). Let
(10, lo) = Res, ;[M] and 7 = o,,;[M].

(Qu1)ns is defined by (2,0)p = QF By induction, the (M,

Tl olos V) coiteration is a
pair (V*, W*) such that M,,;, is the last model of W*, and $,,4, = ¥ s, , - By
the counterpart of Lemma 5.6, the last drop along the main branch of W* was to
M, and the branch embedding is the resurrection map 7, that is,

=100yt M — Myy,.

Here ¢ is least such that M < MY, so the (M, ¥) coiteration (S,T) of B is such
that

WIE+1) =T.
But then .
Uy = (‘I’W*,MVOJO)@EVYQ
= (Quo,lo)7r
= (Qu1) -

The first equality holds because ¥ normalizes well and has strong hull condensation,
and is therefore pullback consistent.

This finishes our proof of 7.3.
O

Corollary 7.5 Assume IH, 5, and there are infinitely many Woodin cardinals below
k. Let w be a wellorder of Vs, let C be a w-construction above k; then C gives rise
to mno nontrivial bicephali. That is, if (v,—1) < 1h(C), then C satisfies (), —1-

7.2 Proof of Lemma 6.64

Let us assume AD™T throughout this section. Our proof of 6.64 follows closely the
proof of Theorem 5.11. We begin by discussing tree embeddings and normalization

for psuedo-trees.
Let (M, A) be an lbr hod pair, and let
K = transitive collapse of hy; “(ap U q),
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where ¢ is a finite set of ordinals, and let

m: K — M
be the collapse map. So 7 is elementary, and g < crit(m). The assumptions of 6.64
imply that ap is a cardinal of K, so we assume this. We have a pullback iteration
strategy

3 — A(ld,ﬂ')

for (M, K, ovy), obtained by using id: M — M and 7: K — M to lift S on (M, K, ag)
to a tree T = (id, 7)S on M, then choosing the branch chosen by A. That is
X(S) = A((id, m)S).

Y is actually a strategy for a stronger iteration game than the usual game pro-
ducing a normal tree on a phalanx. Namely, ¥ wins Gy, where in Gy the opponent,
player I, plays not just the extenders Ef , but also decides whether nodes are unsta-
ble. We demand that if I declares # unstable, then he must have declared all 7 <g 6
unstable, and 0 <g #, and [0,60]s does not drop in model or degree. We then set
ag = supig 4 “ap and let Mg, be the transitive collapse of hos “(ag Uige(q)). T must
then declare 6 + 1 to be stable, and take his next extender from M3 . If I declares
0 to be stable, he must take his next extender from M$. The rest of Gy is as in the
normal iteration game. Let us call a play V of Gy in which no one has yet lost a
psuedo iteration tree on (M, K, ).

The psuedo-tree occurring in the proof of 6.57 was a play of Gy in which I followed
certain rules for picking his extenders and declaring nodes unstable. But for now,
we do not assume I is playing in any such special way.

Remark 7.6 We can generalize Gy much further, to a game in which I is allowed to
gratuitously drop to Skolem hulls whenever he pleases. With some minimal condi-
tions, ¥ will pull back to a strategy for this game. We don’t need that generality, so
we won't go into it.

Let us define strong hull condensation. The changes we need to make in order to
accomodate psuedo-trees are straightforward, but we may as well spell them out.
If T is a psuedo-tree on (M, K, ap), then we set
stab(T) = {8 <1h(T) | 5 is T-stable }.
We let Ext(7T) be the set of extenders used, and T** the extender tree of T. T is
determined by stab(7) and Ext(7). (Psuedo-trees are normal, and their last nodes
are stable, by definition.). If 8 is an unstable node of T, we write

a;— = sup(igjﬁ “ap).

Definition 7.7 For T a psuedo-tree, we put & <} n iff
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((I) 5 ST n, or
(b) there is a v <t n such that & and ~y are stable roots of T, and & — 1 <p v — 1.

In case (b), we let iZn: /\/l? — /\/lnT be given by
N 1T
ley =y, (T 0dg_y 54 00),

where 0: M¢ — My and 7: M, — M, _; are the maps from the Skolem hulls.

Notice that i/ = (77" 0i[_; . 00) is total in case (b), because i]__,(g) is in ran(r).
Recall here that for 6 unstable,
o) = oy = sup ig:e “a
and
M1 = collapse of h, “(cg Uioe(q)).

So in case (b), we also get that 4¢_q 411 = i¢,[e_1. Here is a diagram:

—-1,7-1 e,y

B,e—1 B¢

MJ ——— MT

Thus the stable roots of 7 have a branch structure themselves, with 1 at its root.

As before, a tree embedding will have u,v,t, and s maps. The u maps connect
exit extenders, but we shall also define them at unstable a such that E,; exists.
v(a) is the least ¢ on the branch in <. to u(«a) such that M is naturally embedded
into ./\/l? The t and s maps are the corresponding maps on models.

Definition 7.8 Let T and U be (normal) psuedo-iteration trees on (M, K, ap). A

tree embedding of T into U is a system
(u,(sg | B<ILT),(ts | B+1<IhT Ap € stab(T)),p)
such that
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~

.o € dom(u) iff o € stab(T) and a+1 < Ih(T) or a ¢ stab(T) and a + 2 <

IW(T). For any o, 3, a < 5 = u(a) < u(f), and for a € dom(u),

(a) a € stab(T) < u(a) € stab(U), and
(b) if a & stab(T), then u(a) = rt(u(a + 1)) — 1.
p : Ext(T) — Ext(U) is such that E is used before F' on the same branch
of T iff p(E) is used before p(F) on the same branch of U. Thus p induces
]5 : Text N uext'
Letv :1hT — 1ThUd be given by v(0) =
u(@)
)

v(a

0, v(A) = sup, .y v(a) for X a limit, and
f o € stab
o(a+1) = +1 ifa s.a(T)
+1  otherwise.
Then v preserves <., and

(1) a € stab(T) < v(«) € stab(U), and
(ii) o € dom(u) = v(a) <* u(a).

For any 3,
. T U
is total and elementary. Moreover, for a < 3,

AT U
58 0 Ya,p = Lo(a)u(p) © Sa
In particular, the two sides have the same domain. Further, if 5 is unstable,
then

SB(QﬁT) = aﬁ’(m
For a € dom(u),
ta = iz{){(a),u(a) O Sq;
and if o € stab(T), then
p(EZ;) = toz<EZ;)
_ U
= Byfa)-
If B ¢ stab(T),

Sgy1 = o lo SgoT,

where 7: M}, — M7 and o: Mg’(ﬁ)ﬂ — Mg’(ﬁ) are the Skolem hull maps.
(Note v(B + 1) = v(5) + 1 when [ is unstable, by 3 above.) In other words,
Sg+1 agrees with sg on ozg, and maps the collapse of iOT’ﬁ(q) to the collapse of

ig’,u(ﬁ) (Q)
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7. If B = T-pred(a + 1) (and hence o € stab(T) N dom(u)) , then letting B* =
U-pred(u(a) + 1),
v(B) <p 87 < u(B),
and
sar1(la; flgg) = [ta(a), &5 - © 35(F)]7u

u(a)
where P < MBT is what E] is applied to, and P* < Mg’ s what Eff(a) s applied
to.

Here is a diagram that goes with the last clause of the definition, in the case that
a + 1 and 8 are both T-unstable.

S
a+2 U

T
Ma+2 M’U a+2)

Sa+1

T u
ML, — M
7:1/{
B*+1,v(a+2)

U u
ule) Mg+

T
1501 aro ET /

B* B*+1
U
KGN
5B
, u U
Mg Mv(ﬂ Yo(p+1),8% +1
/ Sﬁ+1
T u
Mﬁ+1 Mv(ﬁ-ﬂ)

Remark 7.9 The slightly new feature is the following. If W: 7 — U is a tree
embedding of psuedo-trees, and N is a stable root of 7, and P is a stable root
immediately above it in 7, then we want W to lift the process whereby we got the
embedding from N to P of 7. This embedding came from an ultrapower of the
backup model M for N. To make it possible to copy such ultrapowers, ¥ must have
associated (M, N) to (M*, N*), where N* is a stable root of U, and M* is its backup
model. This leads to clause 7 in the definition.
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The agreement of maps in a tree embedding is given by

Lemma 7.10 Let (u,(sg | 3 <1hT),(ts [ B+1<IhT AB € stab(T)),p) be a tree
embedding of T into U; then for & < 8 < 1h(T)

(a) if € € stab(T), then szl h(El) +1 = te[Th(E]) 4 1.

(b) if€ & stab(T) and {41 < 3, then sg| inf(o ,Ih(E],|)+1) = t¢[inf(a , Ih(E] )+
1).

The proof is an easy induction that we omit here. Part (a) comes from the fact
that sg agrees with the map from Ih(E7 ) +1 to lh(Eg’(g)) + 1 that is an input for the
Shift Lemma. In case (a), that map is t¢. In case (b) the same proof shows that sg
agrees with t¢4; on lh(EgCrl) + 1. But it is easy to see that ¢, agrees with ¢,y on ozZ

when ¢ is unstable. (They may disagree at a?.) This gives us (b).

Definition 7.11 Let ¥ be a winning strategy for 11 in Gy; then X has strong hull
condensation iff whenever U is a psuedo-tree according to 3, and there is a tree
embedding from T into U, then T is according to 3.

Lemma 7.12 Let (M, A) be an lbr hod pair, let m: K — M with crit(7) > « and

K = hx“(aUq) for some finite set q of ordinals. Let ¥ = AL e the pullback
strategy for 11 in the game Gy on (M, K, «); then ¥ has strong hull condensation.

Proof.(Sketch.) This is like the proof of 4.10. If U is a play by X, and T is a
psuedo-hull of U, then (id, 7)T is a psuedo-hull of (id, 7)U. O
Definition 7.11 does not have the clause on pullback strategies that is part of the
definition of strong hull condensation for ordinary strategies. This is just because we
don’t have a use for it. We believe that Lemma 7.12 holds for the stronger property.

We turn now to normalization.

Let G be the game in which I and II play G, until someone loses, or I decides that
they should play the game G (N, w,w;) for producing finite stacks of weakly normal
trees on the last model N of their play of Gy. Clearly, we can pull back A via (id, 7)
to a winning strategy for II in this game. We again call this strategy >, and write

5 = Aldm
for it.

Let M, K, g, q, and w be as above. Let V be a psuedo-tree on (M, K, ap) with
last model N, and s = ((v;, ki, U;)|i < n) an N-stack. We can define the embedding
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normalization W = W (V, s) in essentially the same way that we did when no psuedo-
trees were involved. For example, suppose that s consists of just one normal tree
on N. Being the last model, N has been declared stable in V. We define
Wy = WV,UIG + 1))
by induction on . Each W, is a psuedo-tree with last model R,, and we have
Oy MZ:/’ — R,. We also have tree embeddings
v, oW, = W,,
defined when v <y v. ¥, , is partial iff (v,v]y drops somewhere. We call its u-map
¢u, and its t-maps are ;7.
We set Wy = W. The successor step is given by
W1 =W, (0 +1)(F)ip“(W;7),
where F' = 0, (EY), § = ap is the least stable node of W, such that F is on the
Mgv”—sequence,and v =U-pred(y+1). Let
least 77 such that crit(F) < A\)"  if there is such an 7

Ihiw,) — 1 otherwise.
Set f = W, W,, F). It is easy to see that 5 < 6, and
WIB+1=W,[B8+1=W,16+1.
This is because between v and v, all the W, used the same extenders F such that
A(E) < Ih(F,).
Let us assume for simplicity that (v, v+ 1]y does not drop. We have ¢: 1h(W,) —
Ih(W, 1) given by, for £ € stab(W,),

B(Ww W’ya F) =

(0+1)+(&—p) otherwise.

For n <y v, we let ¢, ,+1 = ¢ o ¢,,. A node n of W, is stable just in case n < 0
and 7 is stable as a node of W,, or n = ¢(§), where £ is stable as a node of W,. (The
stable nodes are just those having exit extenders, so there is no other reasonable

choice here.) For £ < f3, ﬂg’wl is the identity. We define by induction on £ > 3 the

models /\/llv(gl and maps ¢ MZV” — MZV(Z;“I as before.

For example, suppose £ = 5. We let
MZY&JA = Ult<M1ﬁ/vy7 F)J
and let m3 be the canonical embedding, so that

T =ipgii.
If B is stable in W, then Egi"l“ = Wg(EgV”), and
MY = ULt(P, By,
where P is the appropriate initial segment of some M. We determine 75, using

the Shift Lemma as before. (Le., ms11([a, f]) = [mos1(a), 7-(f)] if 7 # 5, or if
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7 = f and crit(F) < crit(E;/h“). Otherwise, mg41([a, f]) = [mp+1(a), f].) So nothing
changes.
On the other hand, if 3 is unstable in W, then 6 + 1 is unstable in W, ;. We
set
(g41)""7+! = sup lmﬁ “(a),

and as we must,

W,
/\/lgivzﬂ = collapse of HullMo+1 (atp41 U Zmﬁ(q»

Let o be the uncollapse map. Let 7: Mg‘i”l — MZV” be the uncollapse map. Note
that W, [(8 4+ 2) = W, [(B8 + 2) = W,41[(8 + 2) in the present case. We set

Mgyl = o lo T3 O T.
If 8+2 = lh(W,) then we are done defining W, ; and ¥, ,4;. If not, we set
Egi”;l = 775+1(EEV+”1). We have )\EV” = inf(agv”, )\(Eg\jr”l)), and we set

A = inf(ap it ME) ).

It is easy to see that MZY:QH |Aot1 = Mg\fflp\gﬂ. (We are ignoring the anomalous
case here.)? We also have
)\WV — )\W,,
77[ B8 7T,8+1f B

which is the agreement we need to continue defining W, and ¥, ;.

Let us check that ¥, ., satisfies the clauses in Definition 7.8 that are relevant
so far. These involve the behavior of its maps at o < § if 3 is stable in W,, and at
a < B+ 1 otherwise.

Clause (1) is clear. The v-map of ¥, 1, is given by

(€)= 3 HeE<p
vie) = (0+1)+(£—pP) otherwise.

We can then see that (3) of 7.8 holds. The case to check here is (3) at 5 and possibly
4+ 1. But v(f8) = B, and g € stab(W,) iff 8 € stab(W, 1), so (i) holds. (ii) holds
at B because v(f) = 8 <wyt1 0+ 1= ¢(B). If B ¢ stab(WV,), then v(f+1) = +1,
and 8 +1<j,  0+2=¢(f+1), so (i) holds at 3+ 1.

Clause (4) is trivial at this stage, because s, = id for a < g, and for « = 4+ 1
if 5 is unstable. Clause (5) is also trivial at o < 3, because all maps are then the
identity. At f, it only applies if 3 is stable, and then it amounts to 73 = zgvgﬂ,
which is indeed how we defined mg. If 5 is unstable in W,, then clause (5) requires
that 7541 = i;ﬁi;w 055.1. But s5,; = id, and 15,y =0 ' o i;vgﬁ oT = iﬁﬁﬁﬁ?
so (5) is satisfied.

26)%Y¢ is an agreement ordinal. It corresponds to MET) = Al in normal trees 7.
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The rest of the definition proceeds as above, defining MZV” — M;‘;g; ' using
the Shift Lemma and the appropriate earlier 7. If ¢ is unstable in W,, we then go
on to define ey : MU — MZV”“ as we did above. At limit steps, we take direct
limits.

This gives us Wy41 and ¥, 1 1: W, — W, 4. At limit ordinals A, we let W, be
the direct limit of the W, for v <y A, under the ¥, ,. Finally, W(V,U) = W,, where
v+ 1=1h(U).

If V is a psuedo-tree and s~ (U) is a maximal normal stack on the last model of
V, then

(&+1)

WW,s™(U)) =WW(V,s),old),

where ¢ is the natural embedding from the last model of V to the last model of
W(V,s) that we get from the normalization process. That is, we normalize stacks
“bottom up”.

Remark 7.13 One might look at normalizing stacks of psuedo-trees, but we are not
doing that. W(V, s) is defined only when s is a stack of ordinary trees.

This finishes our discussion of the normalization W (V, s), for V a psuedo-tree on
(M, K,«), and s a maximal stack on the last model of V. We say that strategy X
for the game G normalizes well iff whenever (V, s) is according to ¥, then W (V, s)
is according to X.

Lemma 7.14 Let (M,A) be an lbr hod pair, and K, m,q,ay be as above. Let 3 =
Alid.m) ; then X normalizes well.

Proof.(Sketch.) If V is a psuedo-tree, and U is a normal tree on the last model
of V, let us write

(id, m)(V,U) = ((id, 7))V, old),

where o is the copy map acting on the last model of V. Just for the space of this proof,
to keep things straight, let’s write W for the embedding normalization operation on
psuedo-trees defined above.
A itself normalizes well. But normalizing commutes with copying in this context,
as it did in the case of ordinary iteration trees. That is
(id, )W (V, 1) = W ((id, ) (V,U)).
So
WW,U)is by & < (id, 7)W(V,U) is by A
< W((id, m)V,old) is by A
& (id, )V, oU) is by A

< (V,U) is by X,
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as desired. See the proof of Theorem 4.4. O

Let us turn now to the proof of Lemma 6.64. We were given an lbr hod pair
(M,¥), but it works better with the current notation to call that pair (M,A), so
let’s make that switch. We are also given K, ag, 7, and ¢ as above. We have the
pullback strategy

3 — A(ld,ﬂ')

for G on (M, K, o), and ¥ normalizes well and has strong hull condensation. We have
a coarse I'-Woodin tuple (N*, 0, ..., <, ¥*) such that Code((M,A)) € I', and Cis a <-
construction in N* such that (M, A) iterates to (M. . Q- ). For (n,7) < (no, jo),
we set 27

V,,; = tree of minimal length whereby (M, A) iterates past (M, ;, 2, ;).
We also had psuedo-trees S, ; on (M, K, o) formed by certain rules.

Definition 7.15 For an lpm R, we say that (T,V) is the (X, A, R)-coiteration ( of
(M, K, ay) with M) iff

(a) T is a psuedo-tree by ¥ on (M, K, «) with last model P,
(b) V is a normal tree by A on M with last model Q,

(c) RIP and RLQ, and T and V are of minimal length such that this is true,
and

(d) stability (and hence the next model) in T is determined by the rules we have
given: 0 is unstable iff [0,0]r does not drop, and e] = €Y for some 7.

We remark that the internal strategy 37 is relevant in (c), but no external strat-
egy agreement is relevant. (c) tells us that V and W proceed by hitting the least
extender disagreement with R, and that the corresponding R-extenders are all empty.

We had fixed (vo, ko) <iex (M0,J0) such that for each (n,j) <jex (v0,ko), the
(2, A, M, j)-coiteration (M, K, ap) with M exists, and moreover, the last model on
both sides is strictly longer than M, ;, and no external strategy disagreements show
up on either side.”® We are trying to show that the (X, A, M, x, )-coiteration exists,
and that no external strategy disagreements show up on the (M, K, ag) side. That
is,

Lemma 7.16 Let T be an initial segment of S,, , with stable last node, and let Ny

be the last model of T ; then either

0,k0

2"We called it U, ; before, but V), ; works better now. jo was formerly ko.
Z8We called this pair (v, 1) before, but we want to free up those letters for other use below.
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(-Z) (N07 ET) S] (Myo,koa Quo,ko>7 or
(2) (Ml/o,km Qvo,ko> < (N07 ET); or

(3) there is a nonempty extender E on the Ny sequence such that, setting T = 1h(E),

(1) EXoM = 0, and
(1) (E7)r—-1) = (Quo ko) (7,0)-

Proof. Suppose T and N, are a counterexample. Since (1) and (2) fail, there is
a least disagreement between (N, X7) and (Mo, ky, ek ), and since (3) fails, the
least disagreement either involves a nonempty extender from M, x,, or is a strategy
disagreement.

Suppose first that (3) fails because there is a nonempty extender on the M, x,
side at the least disagreement between (No, X7) with (M, xy» Qug.k,)- As in the proof
of the Bicephalus Lemma, we can reduce to the case that kg = 0, and the least
disagreement involves F = FMwo_ with F # (. Letting V = V.00, we then have that
(T,V) is the (X,A, M,, _1)- coiteration. Let P and ) be the last models of 7 and
V. So

(Mo, 1, Q1) = (P{v0, =1), X7 00,-1)) = (@5 Ay ., -1))-
Let
j: N* — Ult(N*, F,)

be the canonical embedding, and x = crit(j). We have that M,, 1 <9 j(M,, 1) by
coherence. (Note j(M,, —1)|vo is extender passive.) j(T,V) is the (X, A, j(M,,—1))
coiteration, because j(A) C A, and hence j(3) C ¥. So V is an initial segment of
J(V). But then T is an initial segment of j(7), because the relevant conditions for
declaring stability are the same in N* and j(N*).

We have that M7 = MIT) and FIMT = 27 so Fis compatible with the first

.,J (1)’
extender G used in [k, j(K)]jr). Myy,—1 < M;EZ—)), so G cannot be a proper initial
segment of F. But F' is not on the sequence of M;EQ, so I' cannot be a proper
initial segment of G. Hence ' = G, and F is used in j(7). Since T = j(T)[(£ + 1),
where P = M, we have that F is on the sequence of P, contradiction.
So we may assume that we have J < M, j, such that
J < Ny,
but there is a strategy disagreement, that is
(oo ko) g # 270

Note that (J, (Quk,)s) and (J, 37 ;) are lbr hod pairs. (In the case of (J, X7 ), this
is because the pair is elementarily embedded, as a mouse pair, into some iterate of
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(M,A).) Thus the two strategies are determined by their actions on normal trees,
and we can fix a single normal tree U on J of limit length such that (€, x,)s(U) #
Yr.s(U). Again we consider first the case that J = M, x,, then we reduce to this
case using the pullback consistency of X. Let Q2 = €, 1, and

b=QU).

We derive a contradiction in the case J = M, x, by repeating the proof of The-
orem 5.11. Large stretches of that proof can be simply copied, and that is basically
what we are going to do. We shall try to condense things enough that the new points
stand out. We have set up the notation to mimic that in the proof of 5.11. To make
the correspondence better, let us now set

Wi = Snis
and forget about our prior S notation.
Let
lift (U, My ko, C) = U*, (y, 1 | 7 < Thld), (WY | 7 < Thid)).

Remembering to forget our previous use of “S”, for v < Ih(U) or v = b, let

_ u-

S, = MY,
NO = M5, = M ©
Y Nyl Nyly

so that
U . AqU 0
¢7 'Mv — Nw

is elementary. For v 4+ 1 < 1h/, let res, be the map resurrecting ¢/ (EY) inside S,,
namely

res, = (Unw,lw [Mnmlﬂh W(Eg), O>])Sw-

We have M, x, = M{ = Ny, and ¢ff = identity. For (1, j) <iex - ((10, ko)), we
let Wp )% = 4 ((u, 1) = Wi )y and (V)% = 4 ((u, 1) = V,ui)y;. Note that
zz({;(A) NS, =ANS,, so that the Vi; and (VV:;J-)S7 are by A and X, respectively.

Set

(W:>Vv) = ( ;mlyavnwlﬂswa
for v <ThU or v =b. Let z*(y) + 1 = 1h(W;), and put
Ny = M:\*)?v)'

So W§ = T is our psuedo-tree on (M, K, ap) by . Its last model is Ny, and

Mk = J = NJ < Ny. We want to normalize (T,U), but it may not be a maximal

stack, so we replace U with ™. This yields a maximal normal stack, so our theory
of embedding normalization applies to it. Set

W, = WOV, UT (7 +1))
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for v < 1hid, and
Wy = W(W;, (UT)D).

So Wy =W} = T. The W,’s are all by X, because ¥ normalizes well and U™ [(y+1)
is by X7 n,. Since X normalizes well, it is enough to show that W is by ¥, for then
YN (UT) = b, 50 X7 5(U) = b, as desired. Since ¥ has strong hull condensation, it
is enough to show

Sublemma 7.16.1 W, is pseudo-hull of Wy .

Proof. As before, we define by induction on =, for v < Ih(U) or v = b, tree embed-
dings
oW, = W

Let

Oy = (u, (s | B<2() (t5 | B <z(7)),p7)
®., can be extended, in that v7(z(7)) <iv: 2*(7), and we let

_ M v
P =l (e () © S20) W
be the final t-map of the extended tree embedding. Letting R, = ./\/lz(;) we have
that
t": R, — N,.

Again, the rest of @, is actually determined by ¢7. It is also determined by u”, and
by p7.
The embedding normalization process gives us extended tree embeddings
U, W, =W,

defined when v <y 7. We use ¢, for the u-map of ¥, ., so that ¢,.: lh(V,) —
1h(W,), the map being total if (v,v]y does not drop in model or degree. We let w27
be the t-map tgl””, so that

™ MY /\/lg\:7 ()
elementarily, for v <y v and 7 € dom ¢, 5. Let also:

o ol ./\/lz;]’+ — R, be the embedding normalization map,

1
n

o 0y My — M be the copy map,”

0
n

_ 1,0
® 0y=0,00,,

*90) may only be elementary as a map into some proper initial segment of R,).
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o F,=0,(EY), and

e ¢, = least o such that F, is on the MU sequence.®

Thus W, 11 = W(W,, W,, F,), where v = U-pred(y + 1).
We also have an extended tree embedding W7 _: W) — W defined when v <y v

and (v,7]y does not drop. The maps of W} _ are all restrictions of zﬁ’v, so we don’t

give them special names. As before, we maintain by induction that the diagram
o

W, ———— s W

*
Puy Uy

d,
W, ————— W

commutes, in the appropriate sense.
Our induction hypothesis is

Induction Hypothesis (7).

(1) (a) Forv <y <y &0 +1) = &, 1(E +1).
(b) For all n <, t" is well defined; that is, v"(z(n)) <y 2" (n).
(c) Forv<n<v, sl [(IhF, +1) =res, ot”[(Ih F, +1).
(2) Let v < n < =, and v <y 7, and suppose that (v,n]y does not drop; then
e, 0V, = \Il;n od,.
(3) For € <, ol = o 0.

(4) Forallv <+, N; agrees with IV, strictly below IhG,,.. G, is on the N;-sequence,
but IhG, is a cardinal of N,. W)™ is an initial segment of W3[(v7(§,) +1).

Let us check that the embeddings in clause (3) fit together plausibly. t¢: Re — N,
and 7,0?: /\/lzg — Ng < Ne. But og: /\/lzg — K¢ < Ry, so indeed the embeddings fit
together plausibly.

30We called this ordinal ay, before, but that would clash with our notation for exchange ordinals
in psuedo-trees.
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We shall explain the terms in clause (4) shortly. The precise meaning of clause
(2) can be given by writing it out in terms of the component maps, as we did in (d)
in the proof of 5.11. We leave it to the reader to do that.

We now describe how to obtain ®,, from the &, for av <.

We have {7: R, — N, where N, is the last model of W7. Let I' = F,, and let
v = U-pred(y +1). So Wy41 = WOV, W,, F). Let us assume for simplicity that
(v, + 1]y is not a drop in model or degree. Let

e H=H, =1(F),

o Q= N,|(In(H),0),

e G=G,=res, (H), and

e G* = background extender for G in ig (C).

We have t7 0 0, = ¢, so G = res, (Y (EY)), so
Sy41 = Ult(S,, G7).
Since we are not dropping, W, = ig-(W};), where ig- = %", ,. The first thing we
need to see is that G is used in W7 ;.
Lemma 5.6 on capturing resurrection embeddings works also for our system of
psuedo-trees:

Claim 0. Let 7 be least in stab(W;") such that Q < MZV;, and 0 least such that

Q< Mgv. Let (W, V>*) be the (X, A, res, (Q))-coiteration of (M, K, ag) with M;
then

(i) Wr* extends Wi[(T + 1),

(ii) letting & = Ih(W2*) — 1, G is on the M?’?* sequence, and not on the My

sequence for any a < &,
(iii) 7 <ws- & and iLg [(I(O(F)) + 1) = res, [(Ih(t7(F)) + 1), and
(iv) similarly for V* vis-a-vis V,.

Proof. (Sketch.) Part (iv) literally follows from Lemma 5.6 *', because the V, ; do

not depend on the Wy ;. For parts (i)-(iii), one simply repeats the proof of 5.6.
Item (i) includes the agreement on stability declarations and next models. The

point is that the (2, A, res, (Q))-coiteration reaches models extending () on both sides

31 Apart from the fact that we are now dealing with a least branch construction.
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by the proof of Lemma 5.6. Let 7 be least such that n <w.. { and @ < ./\/an” We
have that from the proo*f* of 5.6 that
iy ¢ [ (F) + 1) = res, |(Iht7(F) + 1).
The proof also shows that either n = &, or the first ultrapower taken in (n,g]m*
involves a drop in model or degree. In either case, n is stable in WJ*. Let also o
be least such that @ < M;};*. We then have that (W>*[(n + 1),V [(d + 1)) is the
(X,A, Q) coiteration. But @ < N,, so this is an initial segment of the (2, A, N,)
coiteration, that is, of (W3,V,). This implies n = 7 and § = 6. O
Let

o & =Ih(W) —1

e 7, = least 7 such that ) < ./\/ll/v g and 7 is stable in W;k , and
% . W**
* N'Y - Mgww '

With these definitions, clause (4) of (f), now makes sense. Note Wi[7, + 1 =
Wir [Ty + 1, and &, is the least stable o of WJ* such that G is on the sequence of
MY

Q,res,(Q), and N, all agree up to dom(G), so

ves, (Q)(IN(G), —1) < i+ (V) = Ny,

and ig-(N,)[(Ih(G), 0) is extender-passive, by coherence. (WJ*,V>*) is the res,(Q)
coiteration, so GG is on the sequence of the last model on both sides. We then get
that V7" is an initial segment of V41, WJ* is an initial segment of W7, and G is
used in both V,;; and W7, ;.

We define

(I)'H—l [gv +1= (1)7 ffv +1,

and this is ok because W, [(§,+1) = Wy [(§,+1) and W2 07 (E,41) = W2 o7 (&, +
1). We set B
u7+1(£’7) = g’ya

so that
pHF) =G
Let us set £ =&, and € = &,.
Let B
B = B(WV7 W’W F) = W’Y-l—l_pred(f + 1)a
and

B = W3, -pred(§ + 1).

Y
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Let us verify that 5* is located where it should be in W7, according to Definition
7.8. Basically, we just run through the proof of Sublemma 5.15.1, taking into account
the stability structure now present. So let

o &= crit(EY), and P = MY|&+ = MY|R* = dom(EY),
o xk=crit(F), and P = MEV”M* = /\/lgv”|/f+ = /\/lgv”“hir = dom(F'), and

o k" = crit(G), and P* = dom(G).

In these formulae, the successor cardinals are evaluated in the corresponding models,
of course. Recall here that W, [8+1=W,[8+1=W, |8+ 1.

Claim 1. o, agrees with o, on lh(EY), and o,(P) = o,(P) = P.

Proof. We have that o0 agrees with ag on Th(EY) by the agreement of copy maps, and
o, agrees with ! on Ih(c(EY)) by the agreement of the embedding normalization
maps in W(7,U"). (Cf. 3.49.) This proves the first part. But P < MY|\(EY), so

0,(P) = 0,(P), and 0, (EY) = F, so 0,(P) = P. d

Claim 2. t*(P) = t'(P) = P*, and | P = ¢ P.

Proof. Because [,y + 1)y does not drop, whenever MY|Ih(EY) < X <1 MY, then
p(X) > k. This implies that whenever R,|1h(F,) < X < R,, then p(X) > k. It
follows that
res, [(t"(P)U{t"(P)}) = id.
If v < v, we also get for the same reason
res, [(t7(P)U{t"(P)}) = id.
This implies
t7(P) = res, ot’(P) = dom(res, ot” (F)) = dom(G) = P*.
But also @Dg’ IANEY) = res, oY IA(EY) by the properties of conversion systems. So
we get -
t'(P) =t" o0, (P)
= ¢Y(P)
= res, oY (P)
= res, ot” o 0,,(P)
= t"(P).
The same calculation shows that t7"[P = t"[P. [l
Claim 3. If B is stable in W, and 8 < z(v), then v"(8) <jy. 8* <jy. u"().

Consider the diagram
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W*
M

u”(B)

Inuv(B)
tl/
B Wi
M,
v (8),m
W, wy
_—
M 5 = MUV( 5)

By 7.10, t agrees with tj on MEV”M(EEV”), and P < MEV”M(E};V”), SO
t5(P) = P".
Let n € [v"(8),u”(B)]w, be least such that either n = w”(83) or crit(i, () > K*
Thus
bov(8)m © S5(P) = P~,

and all extenders used in W) |n + 1 have length < £*.
We claim that A(E)"”) > x*. If n = u”(f), this holds because x < )\(EEV”), and

ti preserves that fact. If n < u”(f), then x* < crit(i, ur(s) < A(E)*), so again our
claim is correct. The claim tells us that g* < n.

On the other hand, if @ < 1 and « is stable in W}, then lh(EZV”) < k*. This is
true by definition for those a such that av+1 <jy. 7, but the lengths of these special

E, are cofinal in {Ih(EX") | a < A a € stab(W;)}. This tells us that if o < 7 and
« is stable, then a < (.

We claim n = g*. What is left to rule out is that * is unstable, and * + 1 = n.
Supposing this holds, we get that § = 6 + 1, where 6 is unstable in W,. We have
agvi <K bec?use F ii applied to M};V”. Thus sj(k) < shlap™) = az,‘,/@). But
Ozg\f” = sup(z'z\j’f@) ge “az\:@)). It follows that

ol < W osp(k) = K"
pr = Tor(0),8* T 70 -
But then G is not applied to ./\/l?i” in WJ,, contradiction. O

Claim 4. If B = z(v), then v"(8) <jy. B* <jy. 2*(v).

Proof. 1If = z(v), then § must be stable. The proof of Claim 3 then works with
small changes. U

Note that Claims (3) and (4) imply that if 8 is stable in W,, then §* is stable in
W;.
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Claim 5. 1If B is unstable in W, and § + 1 < z(v), then g* is unstable in W, and
v (B) <* B <Fu¥(B) in W
Proof. Let A\ = )\EV” = inf(agv”,)\(E;i”l)). By 7.10, # agrees with ¢} on MEV”])\.
Since P < MEV”M, we have again
ts(P) = P,

Let n € [v7(6+1),u”(B+1)]w, be least such that either n = u”(8+1) or crit(iyuw(a4+1)) >
k*. Thus

bov(g41), © Spya (P) = P,
and all extenders used in W} |n + 1 have length < £*.

Note that s [agv” = Sg\jr“l, and K < agv”. All extenders used in [v"(5 + 1), n]w:
have critical point below the current image of 7, (k), hence below the current image
of sg(agv”). Thus all these extenders are moving up the current image of the phalanx
indexed at (v”(8),v"(8 + 1)). It follows that n = v + 1, where v is unstable in W},
and v”(8) <"y <" uw’(B).

It is now easy to see that v = 5%, so that Claim 5 holds. O

Claim 6. If B is unstable in W, and f + 1 = z(v), then * is unstable in W, and

v (B) Sy B gy 2*(v) — 1

Proof. The proof of Claim 5 works here. U
We let v 1€+ 1) = £ + 1. We need to see

Claim 7. € +1 € stab(W., ;) if and only if £ + 1 € stah( ey

Proof. We have that
£+1 € stabW, 1) & B € stab(W,)

& B € stab(W))

& {+ 1 estabWy,,).
The first line holds because ®, 41 is a tree embedding. The second line was proved
in Claims (3)-(6). Toward the last line, suppose first that 5* € stab(WW?). Since
WiIB*+1 =W, [8"+1, and V, uses the same extenders of length < o(P*) as V.,
does, we get that 8* € stab(W7 ). But * <* £+ 11in Wi, 50 {+1 € stab(WVz,).

Conversely, suppose * is unstable in W). The agreement noted in the last
paragraph shows that $* is unstable in WJ,,. Now recall that (W:*,V2*) is the
(X, A, res,(Q)) coiteration. Letting p + 1 = 1h(V*x,), we have that G is on the
sequence of MZ:*, but not on the sequence of any earlier model. It follows that
Vonl(p+1) = V2,
and
Ey =G
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Since 8" is unstable in W}, we have 7 such that
MV’V“ _ M;V:vk-ﬁ-l
T * :

But then G must be applied to MY V.11, leading to

MIT = M,
so that £ + 1 is unstable in Wy, as desired. g
The map sgj_rll of @, is given by the Shift Lemma, as clause (7) in the definition

y+1

of tree embeddings requires. If € 4+ 1 is unstable in W, 41, this also determines s fio

The rest of ®,,, is determined by

W Guqr1(n) = i (u”(n)).
u'*! preserves stability, because u” and ¢, 41 do, and ig- is elementary. One must
check that the associated 17! also preserves stability. Here we use proposition 6.63.
Let ¢ = ¢, 41 In general, v (é(n)) = supig- “v”(n). However, if ¢(n) is a stable
limit ordinal in W, 44, then n is stable in W,, so cof(n) = cof(¢(n)) = w. But then
cof (v¥(n)) = w, so ig~ is continuous at v”(n). Thus v’ (¢p(n)) = ig+(v*(n)), hence
vt (¢(n)) is stable in Wi, by the elementarity of ig-.

This proves Sublemma 7.16.1. O
That in turn proves Lemma 7.16, or what is the same, Lemma 6.64 of Chapter
5. O

7.3 UBH holds in hod mice

In this section, we adapt the proof in [71] that a form of UBH is true in pure extender
models. We show thereby that whenever (M, ) is an lbr hod pair with scope HC,
and € is Suslin-co-Suslin in some model of AD™, then UBH for nice, normal iteration
trees holds in M. As in the pure extender case, the proof involves a comparison of
phalanxes of the form ®(77b) and ®(7 ¢).

We shall use this theorem to show that if (M, 2) is as above, and A is a limit of
Woodin cardinals in M, then for each & < A there is a term 7 € M such that for all
g generic over M for a poset belonging to M|\,

77 = Qae N (MA)[g].
This generic interpretability result is important in showing that the HOD of the
derived model of M below A is an iterate of M|A. It has other uses as well.

Definition 7.17 Let M be a premouse such that M = ZFC™; then an M-nice tree
is a normal iteration tree T on M such that for all o < 1h(T),

(1) MT &= “ET is a nice extender”, and

308



(2) ET = F[h(ET), for some F on the sequence of M.

Notice here that if T is M-nice, then E7 cannot be on the sequence of M7, be-
cause in Jensen-indexed premice, the extenders of the sequence are never nice. Nev-
ertheless, if (M, ) is a mouse pair and 7T is an M-nice tree on M, ), then the pairs
in 7 have the extender and strategy agreement properties that a tree using exten-
ders from the sequences would have. That is, is @ < 3, then (Mg, S71041)| 1W(E]) =
(Mg, Brip41) | Ih(ET). *

Theorem 7.18 Assume AD™, and let (M,Q) be a least branch hod pair with scope
HC. Suppose M |= ZFC™, and Q) is coded by a Suslin-co-Suslin set of reals. Let § be
a cutpoint of M, u > 6 a regular cardinal of M, and let T be an M -nice tree such
that

(a) T has all critical points > 6, and
(b) T € (M|u)|g], for some g that is M -generic over Col(w,d);

then
Mlg] =T has at most one cofinal, wellfounded branch.

Remark 7.19 Our proof of this theorem can be extended without much more work
to cover plus two trees T, as does the theorem of [51] it generalizes. We don’t see
how to make it work for arbitrary non-dropping trees.

Proof. Suppose not. Let T € M | be the M-least name such that 1 forces T
to be a counterexample. Let g be M-generic over Col(w,d), and 7 = T9. T is
countable in M |u[g]. Let

m: N — M|p

be elementary, and such that crit(r) > ¢, and N is pointwise definable from ordinals
<. Thus T € ran(m). Let

2 Nlg] = (M]p)]g]
be the canonical extension of 7, and let
7(S)="T.
By assumption, 7 has distinct, cofinal, wellfounded branches in (M|u)[g], so we have
b, ¢ such that
Nlg] E b and c are distinct cofinal, wellfounded branches of S.

321h(ET) is inaccessible in M7, so it is not an index.
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Let ®(S7b) be the phalanx ((M$ | a < 1h(S))" (M), (Ih(ES) | a < 1h(S))). We
get an iteration strategy for ®(S7b) by finding maps with sufficient agreement that
embed its models into M.

Claim 0. There are m,,7, for a < 1h(S), and 7, such that m, and the 7w, are the
identity on ¢ + 1, and for all «,

(1) mp: M5 — M|u,
(2) To: ME — M|y, and
(3) malIh(E7) = m[ Th(E7).

Proof. The proof is given, under slightly different strength hypotheses on the E7 | in
[51, §3]. See especially the proof of Theorem 3.3.% 0

Our iteration strategy for ®(S7b) is then just the pullback of © under the 7, for
a < 1h(S) or a = b. Call this strategy V.
Similarly, we have

Claim 1. There are 0,,&, for @ < 1h(S), and o, such that o. and the o, are the
identity on ¢ + 1, and for all o,

(1) o0 ME — M|p,
(2) 00: ME — MIE,, and
(3) oallh(E7) = oc[h(ET).

We then get an iteration strategy for the phalanx ®(S7¢) by pulling back 2 under
the maps o, for @ < Ih(S) or a = ¢. Call this iteration strategy .

Let (N*,X*,0%) be a coarse I' Woodin model, where €2 is coded by a I'N T set of
reals. We assume that the various countable objects we have encountered so far are
countable in N*. In particular, M|g|, ®(S7b), ®(S7¢), and the maps from claims (1)
and (2) are countable in N*. Let C be a maximal w-construction below §* in N*. We

33Here is a sketch. The copy maps ¥4 : MS — M7 |u are all restrictions of 7, as is the copy
map ¥p: My — M] |u. (p is fixed by the maps of T.) Letting v, = supt, “1h(ES), we have
Vo < 1h(E,)7. Using Condensation inside M7, we then get &, < Ih(E]) and ¢o: MS — M] &,
such that ¢, agrees with 1,, and hence 7, on lh(ES). The ¢, are in M. An absoluteness
argument done in the wellfounded model MbT then gives us the Claim, but with MbT replacing M.
Pulling back under i[, we get the Claim itself.
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compare ®(87b) with ®(S7¢) by defining, for each v, 1, the (U, X, MS))-coiteration
(of &(S7b) with &(S"¢)). This is a pair of psuedo trees (U, ;" W,1, U1~ V1) according
to W and X respectively, obtained by iterating away least disagreements with Ml‘fl,
as in the proof of Theorem 6.57. The process of moving a phalanx up is a little
different, so let us look at it briefly.

The first phase in the coiteration consists in moving ®(S°b) and ®(S7b) up by an
ordinary normal iteration tree on M|§ = N|d. Note d is a cutpoint of of N = M5, and
U and ¥ both agree with € for trees on N|0. We let Y = U,,; be the unique normal
tree on N|§ that is by 50 and has last model P = M,,;|(do,0), with the strategy
agreement (), p = (Qﬁl)@mm. There is such a U by Theorem 6.45. We assume here
that (v,[) is large enough that (N6, 2s50)) does not iterate past (M,,, 2,;). We wish
now to define W=W,; and V =V,,.

Thinking of U as a tree on NV, its last model is

Q= M% =My =M.
P = Q|dp is a cutpoint initial segment of @), and @ is pointwise definable from the
ordinals < dy. (In most cases, 7o = do.) Letting E be the branch extender of &
we move up our two phalanxes by setting, for a < 6,

o MYV = MY =TUlt(MS E),
o po =ip(I0(ES)),

e M)V =Ult(M, E), and

e M) =Ult(MS E).

The rest of W and V will be psuedo-trees on the phalanxes (M | & < 6), (pe |
£ < 0))and (MY | € <0),(pe | £ <8)). A rootof WorV is an ordinal & < 6.
If £ = 6, the root is stable, and if & < 6 the root is unstable. At any stage, the
current last models of W and V are stable. If /\/lz‘) is the current last model of W
at some stage, then we let E;/V be the first extender on its sequence that is part of
a disagreement with M;(fl. Similarly on the V side. We show that the corresponding
extender on Mffl is empty, and no strategy disagreements ever show up. If there is
no disagreement, the construction of W, is complete, and similarly on the V side.

We shall also have ordinals \YY and \Y that tell us what model in W or V we
should apply a given extender to.* If « is stable in W and E) exists (that is, the

construction of W is not finished), then
A= ME).

34 Again, these correspond to A, when 7 is normal.
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If o is unstable in W, then there is a least stable v > «a. Suppose again E;/V exists, as
otherwise the construction of W is done. Since « is unstable, we will have a unique
unstable root n < 0 such that n <y «, and [, ]y will not drop. We then set then
we set

A = nf(iy%, (), N(EYY)).
Similarly for Y. The extenders used in W have increasing \’s, so if a < 3, then
MY = MY, 5

Now let us look at the general successor step. Suppose M‘W/V is the current last

model of W, and hence is stable. Let
E=EY

be the least disagreement between MKV and M,;. Again, we are assuming such
an agreement exists, it is not a strategy disagreement, and it does not involve an
extender on the M, ; sequence. Set

AV = A(E),
and for unstable a such that + is the least stable above «, let )Y be defined as above.
Let x = crit(E), and « be least such that x < \YY. We set a = W-pred( + 1). If
« is stable we just proceed as usual, creating one new model Mml, which is stable.
Similarly, if « is unstable but Ult(M,, E') does not occur in V, we create only one
new model, and it is stable.*® So suppose « is unstable, and Ult(M}Y, E) does occur
in V.

Let § be least such that o < 8 and S is stable. (E.g. if & < 6, then g =6.) For

0<¢<(B—a), we set

ME{‘Y}+1)+£ — Ult(./\/lmg, E)
If £ < (B—a), we declare that v+ 14¢ is unstable, and we declare that v+14 (8 —«)
is stable. v+ 1+ (8 — «) is the new last node of W, from which we shall take the
next extender.

By induction, we have that for every node £ of W, there is a unique root 7 < 6
such that 7 <y, &. If £ is unstable, then so is 7; that is, 7 < 6. Moreover, if £ is
unstable, then [7,&)w does not drop in model or degree, and )\ZV < z'g’vg(pf).

At limit steps in the construction of W, we use ¥ to pick a branch a of the form
[T,7)w, where 7 < 0 is a root. We take 7 to be stable unless every £ € a is unstable
( so a does not drop), and MKV is a model of V. (Equivalently, exv = eg, for some
n.) In this case, we declare v to be unstable. For £ such that 7+ £ < 6, we set

MY e = UMD, E),

35For example, suppose there is a ¢ such that )\(E(}/V) < pe, and let £ be the least such. Then
/\(E(}/V) < pe, and E(}/V is actually on the M%/V sequence. If £ < a < 6, then \)Y = /\}E/V, and the net
effect of our definition of the \’s is that no extender will ever be applied later to MY .

36 At this point, we already know what extenders with length < 1h(E) are used in V.
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where E is the branch extender of a. If 7+ ¢ < ), then v + £ is unstable, and
v+ (0 — 1) is stable. We take the next extender from Mm(eﬁ)-

The construction of V proceeds in completely parallel fashion; indeed, nothing in
our situation has distinguished b from c. Although the constructions of W and V
determine stability by looking at each other, the reader can check that there is no
circularity: when it comes time to determine whether « is stable in W, the relevant
part of V is already determined.

As in §6.2, the maps 7, for o < Ih(S) or a = b, yield a pullback strategy for a
more general iteration game on ®(S7b). We also call this strategy ¥. In the more
general game, I makes stability declarations and creates new models according to the
rules above. Of course, there are no M,; and V in the setting of the general game.
I picks the next extender E freely (subject to normality), and if E is to be applied
to an unstable M,,, I may decide whether Ult(M,, E) is stable as he pleases. If he
decides against stability, he must create new models as above. At limit v such that
the branch to + II has chosen consists of unstable nodes, I is again free to decide
whether ~ is stable. If he decides for unstability, he must create new models in the
way we have described.

Similarly, the o, for a < 1h(S) or a = ¢ yield a pullback strategy > for the more
general game on ®(S7¢).

Remark 7.20 Our process of moving phalanxes up amounts to a step of full nor-
malization. We could have used a step of embedding normalization instead, and
thereby arranged that our W and V are actually normal iteration trees on N. W
and V would then be meta-iterates of S™b and S ¢, in the sense of [18]. That paper
contains a proof of Theorem 7.18 that rests on the theory of meta-iteration trees.

Let us consider how the coiteration can terminate. Let
Z = Th™(6),
and
Zo = ThO(6,) = & (2).

Q) is pointwise definable from ordinals < g, so it is completely determined by Z,.
All critical points in S are above §, so Z = ThMg(é) for all @ < 1h(S), and also for
a=>bor a=c Thus for all £ <6,
Zo = ThME (89) = ThME (6).
Moreover, for all 7, the critical points of E:;V or ET‘; (if they exist) are > d.
Motivated by this, let us call (v, 1) relevant iff

(a) (Q|507 QU,<5070)) = (Mr(jc,l|<50’ 0>7 (QSZ)(&),O))’
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(b) & is a cardinal cutpoint of M, and
(c) for no proper initial segment R of MEI do we have Zy = Th®(5).

Let us call (v,1) ezact iff it is relevant, and Z, = ThMEl(&)).

If (v,1) is relevant, then neither W,; nor V,,; can reach a last model that is a
proper initial segment of M, ;. Let us state explicitly the lemma on stationarity of
background constructions we have been using

Lemma 7.21 If (v,l) is relevant, then in the (\II,E,M;CJ) coiteration, no strategy
disagreements show up, and no nonempty extender on the MEI side is part of a least
disagreement.

Proof. (Sketch.) This proof is like the proofs of 5.11 and 7.16 we gave earlier. We
show that the strategies W and ¥ normalize well and have strong hull condensation,
in the appropriate senses. We then show there are no strategy disagreements by
taking a candidate disagreement at some U on some stable model MKV, letting
b= (,;)s(U), and showing that the normalization of (W[y + 1,U{"b) tree-embeds
into a psuedo-tree by W. This involves an inductive construction like that in the
proofs of 5.15.1 and 7.16.1. O

Claim 2. There is an exact (v, 1) <jex (0%, 0).

Proof. Otherwise (0*,0) is relevant, so the (¥,%, M§. ;) coiteration produces
(W, V) with last models extending M;‘ijo. This contradicts the universality of M%O.
O

Now let (v, ) be the unique exact pair. Z; contains statements which collectively
assert that p, = OR, and Th**!(8y) = Zy, so | = 0. We have also that M, o = ZFC™.
Zy is Xy over My 41, S0 p(M,41,0) = do.

Let W =W, and V =V, o have lengths 7, and ;.

Claim 3. M‘V/X = /\/l‘j1 = M, ; moreover, the branches of W and V to v and v; do
not drop.

Proof. Neither side can iterate to a proper initial segment of M, o because (v, 0)
is relevant. Neither side can iterate strictly past M, o because (v, 0) is exact. U

Let n9 <w 70 and 1; <y 71 be the roots of the two trees below vy and ~,. Let
io: @ = MY and iy: Q — M),
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be the embeddings given by the fact that Z, = ThM’yi‘é((So) = Th™n (09). These are
just the lifts under z'%’m of the branch embeddings z"& o and i‘& 5+ We have that
W v

ZT]O:'YO ©% = Zm,’h ©1,

since both embeddings are the embedding given by () being the transitive collapse
of Hull™°(¢).

We now get a contradiction using the hull and definability properties in M, as
usual.

Definition 7.22 For M an lpm, we say that M has the definability property at a iff
a is first order definable over M from some ordinals b € [o]<, and write Def(M, «)
in this case. We say that M has the hull property at a iff whenever A C « and
A€ M, thereis a B € M such that B is definable over M from some b € [a]<“, and
Bna=A. We write Hp(M, ) in this case.

Claim 4. no = n;.

Proof. Suppose otherwise. Let

jo: M5 — Ult(MS  E) = M),
and

ji: MS = UM E) = M,
be the canonical embeddings. Suppose first that ny and 7, are incomparable in S,
and let ' = ES and G = Ef, where a +1 <g no, 8+ 1 <g m, a # 3, and
S-pred(a+ 1) = S-pred(8 + 1) = £. We may assume 1h(F) < Ih(G), or equivalently,
a < B. Let A =sup{\(ES) | v+ 1 <5 &}. Letting ro = crit(F), we have

ko = least u > A such that ﬂDef(/\/lgo, ).
Because the generators of jy (i.e. the generators of F) are contained in &y, we get
Jo(ko) = least pu > jo(A) such that ﬁDef(MZX,u)

= least u > jo(A) such that —Def(M,,, ).
To see the first line, note that —Def(/\/iﬁo, Ko) because F' was used on the branch to 7,
and jo is fully elementary so it preserves this. On the other hand, and u < jo(ko) is
of the form jo(f)(a), where f is definable over Mg from ordinals < A, and a € [do]<“.
The second line comes from using 7" . to move up to MY = M, 4. Note for this
that jo(ko) < jo(Ih(F)) = pa, and p, < crit(i)Y ) because a < 1. Similarly, letting
k1 = crit(G), we get
J1(k1) = least p > ji(A) such that —'Def(./\/lyl,u)

= least p > j1(A) such that —=Def (M, o, p).
So jo(ko) = ji(k1). But ko,x1 < Ih(F), and jo[(Ih(F) 4+ 1) = 51 [(Ih(F) + 1), so
Ro = R1.
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It is not hard to see that
Ih(F) = least cardinal ju > kg such that Hp(/\/lgo,,u),
and
Ih(G) = least cardinal > kg such that Hp(Mﬁl,u).

Here cardinals are in the sense of My and M3, of course.”” Using i}¥_ "o jo and
i¥ _ 071 to move up to M, o, and considering the hull property there, we get as above

71,71

that Jo(Ih(F)) = j1(1h(G)). But jo(Ih(F) = 51 (Ih(F)), so 1h(F) = 1h(G). However,
G was used strictly after F'in S, so 1h(F) < 1h(G), contradiction.”

We are left to consider the case 1y <g 1. Let G be the extender used in [0,7;)s
and applied to M$ . Let x; = crit(G), and let A = sup{A(EJ) | a+1 <g 1o} be the
set of generators of M‘go. Then again,

j1(k1) = least p > ji(A) such that —=Def(M) , )

= least pu > ji()) such that —Def(MY , ).

Note that 7, is stable, and 7y is unstable, so 19 <w 7. Let I’ be the extender used
in [0, v0)w and applied to M). Let

Ko = crit(F).
If kg < j1(A), then kg < p, for some a < 1y, so F' should have been applied to an
earlier model of W. Thus j;(\) < kg, and since MZ;X has the definability property
everywhere above j;(\), using in‘/{‘jﬁo we see that kg is the least p > j;(\) such that
—Def (M, 0, r). Thus

Ro = jl(Kfl)-
But F = E),/V for some n > 6, so

J1(h(G)) < SUP o < A(F).

An easy induction shows that ./\/an does not project strictly below sup, < 0p,, so
we get that F'[j;(Ih(G)) € Ult(M)Y, F), so the hull property fails in Ult(M)Y, F) at
71(Ih(G)). Moving up by %)Y _ . the hull property fails in M, at ji(Ih(G)).

However, /\/lf1 does have the hull property at lh(G). This gives Hp(MQI/1 ,71(Ih(@))),
and thus Hp(M,, g, 71 (Ih(G)), noting here that crit(s¥ ) > j;(1h(G)). This is a con-

7

3TProof: for u a cardinal such that ko < p < Ih(F), F[u yields a subset of x4 that is not definable
in M5, = Ult(ME, F) from ordinals < j, as otherwise the factor embedding would show F |y is
in its own ultrapower. On the other hand, every point in M$; is definable from ordinals < lh(F).
Since crit (i +1.0) > Ih(F), we get the first line displayed. The second is proved in parallel fashion.

38We could also identify 1h(F') as the least ordinal > ko definable in Mﬁg from ordinals < ko.
This uses that Ih(F) is not a critical point in 7, which follows from niceness. That would let
us avoid the hull property in proving 7.18. The hull property seems to be needed in proving the
plus-two version of 7.18.
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tradiction. O

Claim 5. ng < 6.

Proof. Otherwise 19 = 1, = 6. Let F' be the first extender used in b — ¢ and G
the first extender used in ¢ —b. We get a contradiction just as we did in the proof of
Claim 4, in the case 1y and n; were S-incomparable. O

Now let s be the increasing enumeration of the extenders used in (g, yo)w and ¢
the increasing enumeration of the extenders used in (1g,71)y. We show by induction
on ¢ that s(§) = #(§). For given that s[¢{ = t[¢, we have that Ult(M)Y,s[¢) is
pointwise definable from sup,_, A(s(a)), so s5(§) is the least whole initial segment of
the extender of the natural embedding from Ult(M)Y,s[€) to M. t(§) is the least
whole initial segment of the same extender, so s(§) = t(§).

Thus s = ¢. But this implies that 7y and v, are unstable, a contradiction. That

completes the proof of Theorem 7.18. O
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8 HOD in the derived model of a hod mouse

In this chapter, we show that if D is the derived determinacy model associated to a
hod pair (M, ), then HODP is a least branch premouse. This is Theorem 8.8 below.
The proof also shows that HOD® is an initial segment of an iterate of M. This implies
that, under an iterability hypothesis, there are determinacy models whose HOD has
a fine structure, and yet is rich enough to satisfy “there is a subcompact cardinal”.
This is Theorem 8.11 below.

We must assume here some of the basic facts about universally Baire sets, homo-
geneously Suslin sets, and derived determinacy models. The material covered in [52]
is more than sufficient. See also [17].

We show in section 5 that reasonably closed hod mice satisfy V = K, in a certain
natural sense. We then close the chapter with a short survey of further results on
the structure of HOD in determinacy models that have been proved by the methods
of this book.

8.1 Generic interpretability

We shall need the following generic interpretability theorem. Its proof follows the

same basic outline as Sargsyan’s proof of the corresponding fact for rigidly layered
hod pairs below LSA.( See [30] and [32].) *

Theorem 8.1 (Generic interpretability) Assume AD, and let (P,%) be an Ibr hod
pair with scope HC, and such that ¥ is coded by a Suslin-co-Suslin set of reals. Let
P = ZFC™ + 6 is Woodin;
then there is a term T € P such that whenever i: P — () is the iteration map
associated to a non-dropping P-stack s by X3, and g is Col(w, < i(0))-generic over Q,

then
(7)9 = Sy i) [HC]

Proof. For £ <n < ¢ and k < w, we shall define a term 7¢ 5, , such that whenever g is
P-generic over Col(w,n), then Tgkm = Yie k) THCP, We then take 7 to be the join

of the 7¢ . Clearly then 79 = X_; THCT whenever ¢ is Col(w, < §) generic over
P. 1t will be clear that this property of 7 is preserved by X-iteration.

39The main difference is that our mice have extenders overlapping Woodin cardinals, which means
we can’t use @-structures to determine ¥ on small generic extensions of (M, X)) in the way Sargsyan
did. It is at this point that we use Theorem 7.18 on UBH in M[g]. The proof of that theorem used
a phalanx comparison, as any proof of generic interpretability at the level of extenders overlapping
Woodin cardinals would probably need to do.

318



So fix £ <n < dand k < w. Let g be P-generic over Col(w,n). We shall define
e k) THCPW from ¢, k, P|d and g. The definition will be uniform in g, giving us the
desired term.

Let u = (n*)”. We may assume that p is a cutpoint of P. For if not, let
E be the first extender on the P-sequence such that crit(F) < p < lh(F), and
set @ = Ult(P, E). Then p is a cutpoint of @, HCP = HCPY and by strategy
coherence, Xgy ¢k = Sek). A definition of g ¢ ) 'HC?Y from Qlip(d),&, k, and
g will then give the desired definition of X THCPY! So we assume [ is a cutpoint
of P.

Let w be the canonical wellorder of P|j, and working in P, let C be a w-
construction of length ¢ that is above pu, and such that

(i) Each FF is a P-nice extender, and
(ii) C adds extenders whenever possible, subject to (i).

Our background condition has the consequence that for any 7 on Mfk, the
iteration tree 7* on P that is part of lift(7, M, x, C) is a P-nice tree. So by 7.18, if
T € Plg|, then UBH holds for 7*.

We also have CBH for P-nice trees S on P such that § € P. This is because S
induces naturally a tree ST with the same tree order that uses extenders from the
P-sequence. We have that b = % (ST) is defined, in P, and wellfounded as a branch
of S*. But then b is wellfounded as a branch of §.*° Thus in P, the QSJ are total.

In P, they are induced by ©F, but ¥ C ¥, and ¥ is total on V. So ¥ induces a
total-on-V strategy Q, for M, such that QF, C ;. The 2, are Suslin-co-Suslin
in V because ¥ is. Since they are induced by ¥, they have strong hull condensation
and normalize well. In fact, each (MEZ,Q’;J) is an lbr hod pair in V. Moreover,

V |= AD", so in V we can carry out the comparisons needed to see each (M,, €2,
has a core. Thus (M,,2,;) has a core in P, and C does not break down in P.

Claim 1. In P, there is a v < § such that (P|(&, k), 2@’@) iterates to (M, Q5,).

Proof. Suppose not. Working in P, we claim that for all (v,{) such that v <
5, (P, k>,2@k)) iterates strictly past (M,,,2,,;). This almost follows from the
comparison theorem 6.45. However, to simply quote 6.45, we would need to know
that 2274) is < ¢ universally Baire in P. That is part of the theorem we are proving
now. Nevertheless, the proof of 6.45 works here. The consequence of universal

40With very little work, one can show that the trivial completion of ES is on the sequence of
MS | so that we can take ST = S.
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Baireness we need is just that if 7 is a normal tree by 2@1@’ and i: P — (@ is an
iteration map by ¥ with crit(z) > &, then i(7T) is by EZ’@. This much is true by the
strategy coherence of 3.
But then (P|(&, k), 2@,@) iterates past Mso in P. This contradicts universality
at Woodin cardinals, Theorem 2.53. O
Let 7 be the normal tree by Eém whose last model is M;C’k given by claim 1,
and let i: P|({, k) — M, be its canonical embedding.

Claim 2. Y7, = 0 -

Proof. The proof that the two strategies agree on all trees in P actually shows
that they agree on all trees in V. [ Let U be by both strategies, and b = (7).
Let U* be the tree according to ¥ that is part of lift(U, M, x, C); again, we do not
need U € P to make sense of lifting. Then W (T,U"b) is a psuedo-hull of i¥ (T
by our previous calculations. However, & (T) is by Y ek by strategy coherence, so
W(T,Ub) is by X xy because ¥ r) normalizes well, so b = X7y, (U).] O

Now let ¢ be a normal tree on P|({, k) of limit length that is according to X¢ xy,
and such that ¢ is countable in P[g]. We wish to find 3 (i) in P[g], and define
it from the relevant parameters. But ¥ ;) is pullback consistent, so

Sieky(U) = b iff Xy g, (iU) = b
iff Q2 . (ild) = 0.
So it will be enough to show

Claim 3. If S is countable in P[g], of limit length, and by Q7 ,, and b = Q3 ,(S),
then b € P[g]. Moreover, b is uniformly definable over P[g] from S and C.

Proof. Let 8* be the P-nice tree on P that it part of lift(S, M, ;, C). It is enough
to show b € P[g|, and to define there from the relevant parameters, uniformly.

We know from 7.18 that in P[g], S* has at most one cofinal, wellfounded branch.
Since all critical points in §* are strictly above p, we can think of &* as a P-nice
tree on P[g]. Then by [19], since S* is countable in P[g], it has exactly one cofinal
wellfounded branch b in P[g]. Moreover, again by [19], §* is continuously illfounded
off b. It follows that b = 3(S*), and therefore b = Q7 ,(S), as desired. O

This completes the proof of Lemma 8.1. U

8.2 Mouse limits

Assume AD™, and let (M, Q) be a mouse pair with scope HC. Suppose s and t are
stacks by €2 on M with last models P and () such that M-to-P and M-to-() do
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not drop. By 6.54 and Dodd-Jensen, we can then find stacks v and v by {2, and
Q; with a common last model such that neither stack drops getting to /N, and such
that Q,~, = Q,~,. By Dodd-Jensen, for any such s, t¢,u, and v, i, o iy = 7, 0 i;, where
these are the the iteration maps in question. Thus we have a well-defined direct limit
system.

Definition 8.2 Let (P, X) be a mouse pair; then

(1) F(P,X) is the collection of all (Q, V) such that there is an P-stack s by X with
last model QQ, such that P-to-Q) does not drop, and ¥ = 3.

(2) For (Q,¥) € F(P,X), mpx),@uw): P — Q is the unique iteration map given
by any and all stacks by .

(3) M (P, %) is the direct limit of F(P,¥) under the mq.w) (r,a)-
(4) Tpx)oo: P — M (P, X) is the direct limit map.

Of course, Moo (P, %) = My (Q,¥) for all (Q, V) € F(P,X). Clearly, if (P, X) =*
(Q,¥), then M (P,Y) = M, (Q,¥)."" Thus M, (P,X) € HOD, being definable
from the rank of (P,Y) in the mouse order. In fact, this is true uniformly, in the
sense that letting

(1) me(a) = X iff there is a pure extender pair (P, X) of mouse rank « such that
X = Mo (P,¥), and

(2) mp(a) = X iff here is a least branch hod pair (P, X) of mouse rank « such that
X =M (P,%),

we have
me, my, € HOD.

Assuming ADg+HPC, one can show that HOD = L[my]. This is not a very useful
representation however, as it does not seem to lead to a fine structure for HOD. We
do not know whether L[m.| has any natural identity, assuming say ADg + LEC.

Another simple fact worth noting is

Proposition 8.3 (AD"Y) Let (P, X) and (P, V) be mouse pairs with scope HC such
that (P, X) is mouse-equivalent to (P, V) and T(px)cc = T(Pw),00; then X =W,

41 The converse is also true; see [(3][Proposition 2.2].
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Proof. By our comparison theorems, the two pairs have a common iterate (@, 2).
Let i: (P,Y) = (Q,9) and j: (P,¥) — (Q, ) be the two iteration maps. Then
T(Q.Q),00 O = T(PX),00

= T(P,¥),c0

= T(Q,Q),0 © j ' '
This implies that « = 5. But then by pullback consistency, ¥ = Q' = ¥ = U as
desired. [l

Thus assuming ADT, every mouse pair with scope HC is ordinal definable from
a countable sequence of ordinals. On the other hand, a mouse pair (P, ) such that
Oy < o( M (P,>)) cannot be ordinal definable from a real.

In order to compute HOD, we must relate different mouse limits. The concept of
fullness helps do that.

Definition 8.4 Assume AD", and let (P,X) be a mouse pair with scope HC. We
say that (P,%) is full iff ¥ is Suslin-co-Suslin, and

(a) P = ZFC™, P has a largest cardinal §, and k(P) =0, and

(b) whenever s is a P-stack by X with last model Q, and the branch P-to-Q of s
does not drop, and i,: P — Q) is the iteration map, then there is no mouse pair
(R, ®) such that ® is Suslin-co-Suslin, Q <°* R, p(R) < i4(0), and ®g = 3.

This notion is sometimes called mouse-fullness.*> ** The following lemma ex-
plains its importance in relating mouse limits to one another.

Lemma 8.5 Let (P,X) and (N, V) be mouse pairs of the same type such that (P, ¥) <*
(N, V), and suppose that (P,%) is full; then letting v = o( M (P, X))

M.o(P,5) = Mo(N, D),
and v is a successor cardinal cutpoint of Mo (N, V).

Proof. Let (P, %) be full, and suppose that (P,>) <* (N, ¥). Comparing the two
leads to (@, A) a nondropping, normal iterate of (P, %) and (R, ®) a normal iterate
of (N, V) such that (Q,A) < (R, ®). By perhaps taking one additional ultrapower
on the N side, we can arrange that @ is a cutpoint of R. But then o(Q) < p(R),

421t is customary to define fullness for P itself, and then say that ¥ is fullness-preserving iff (P, Y)
is full in the sense of our definition.
430D-fullness is the intensionally stronger requirement that whenever (Q, ¥ g) is as in (b) of

8.4, and A is a bounded subset of o(Q) that is ordinal definable from (Q, ¥ g), then A € . Under
an appropriate mouse capturing hypothesis, the two are equivalent.
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and consequently N-to-R does not drop in . Because the iterations did not drop,
we have My (P, Y) = My (Q,A) and Mo (N, V) = M (R, D).

But o(Q) is a successor cardinal cutpoint of R, and o(Q) < p(R). Also, A = @q.
It follows then that M, (Q,A) is a successor cardinal cutpoint of M. (R,®), and
that o(M.(Q,A) < p(My (R, P). O

Corollary 8.6 (AD") Let (P,X) and (N, V) be full mouse pairs; then

iff Moo(P, X)) Q€0 M (N, T).

8.3 HOD as a mouse limit

We shall show that in the derived model of a hod mouse, HOD can be represented
as a mouse limit.

We shall need the following notions associated to derived models. Working in
ZFC, suppose that A is a limit of Woodin cardinals. Let g be Col(w, < \)-generic
over V. We set

Ry = RN V[g(lw x a)] | @ < A},

and
Homj = {p[T] "R | Ja < A(V[g](w x a)] = T' is < A-absolutely complemented }.

The symmetry of the forcing tells us that Ry = RNL(R}, Homy). The sets in Homj
are those that have < A\-homogeneously Suslin representations in some intermediate
collapse, which is is equivalent to having a < A-universally Baire representation in
some intermediate collapse because A is a limit of Woodin cardinals. Homogeneous
Suslinity implies determinacy for sets in Homy, and with more work, that every set
in Homj has a scale in Hom,. Stationary tower forcing helps us pass from absolute
definitions to absolutely complementing trees. In the end, we get

Theorem 8.7 (Woodin) (ZFC) Suppose X is a limit of Woodin cardinals, and let
g be Col(w, < \)-generic over V; then
L(R;, Homj) }= AD™,
and
A € Homy < (L(R}, Homy) = A is Suslin and co-Suslin),

Jor all A CRY.
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The theorem was proved by Woodin in the late 1980s, as part of a more general
theorem known as the Derived Model Theorem. See for example [52].

We want to look at the derived model construction in the case that our ground
model is a least branch hod mouse. What we get is

Theorem 8.8 Assume AD", and let (M, V) be an lbr hod pair with scope HC, and
such that U is coded by a Suslin-co-Suslin set of reals. Suppose
M = ZFC + X is a limit of Woodin cardinals.
Let g be Col(w, < X)-generic over M; then
L(R}, Hom,) = ADg.
and

(a) if X is a limit of cutpoints in M, then then there is an iteration map i: M —
My (s) coming from a stack s on M|\ by ¥ such that
HOD"®s:foms) — LM (s)]i(N)],

and

(b) if K < X is least so that o(k) > X\ in M, then there is an iteration map i: M —
M (s) coming from a stack s on M|\ by ¥ such that
HODF®s:Homg) — [N (s)]i(k)].

Proof. The techniques here are pretty well known. Let (M, ¥) and g be as in the
hypotheses. For v < A, let
\p?u,m = Wik THCM ),
Fixing a coding of elements of HC by reals, we can identify \Il?Mm with a subset of
Ry, Our first two claims say that the U7, ,, witness that HPC holds in L(Ry, Homy).

Claim 1. If v < A, then \II?W,€> € Homj.

Proof. Let h = gN Col(w, < v"). In M[h] we have, for each u < A, a term 7 such
that for all [ that are Col(w, u)-generic over M |h],
=W, THCMM,
For the specific such term 7 given to us by Theorem 8.1, it is not hard to see that
for all sufficiently large ~,
MI[h] |= there are club many generically 7-correct hulls of V.
That is, in M[h], whenever N is countable and transitive, and
mi N[ = (M|y)[A]
is elementary, and everything relevant is in ran(r), and
(T, ) = (7 1),
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then for any [ that is Col(w, fi)-generic over N,
7l = \If<,,’k) NnHCNW,
The proof of this is similar to the proof of Theorem 5.1 of [51]. Working in M, let C
be the background construction and
it M[(v, k) = M,
be the iteration map by W, sy that is described in 7. Let C = 77'(C) and ¢ = 7 '(i),
etc. So these are described in 7. Suppose U is according to 7. Let
W = 1ift" (i)
be the nice tree on N that is given to us by 7. W is countable and nice in Nh,I],
so by 7.18, it picks unique cofinal wellfounded branches there. This implies that W
is continuously illfounded off the branches it chooses. But then 7}V is continuously
illfounded off the branches it chooses, so 7V is by ¥. But lifting commutes with
copying, so
W = mlift" (itd)
= lift™ (7 0 )U)
= lift™ (itd).
Note here that 7 is the identity on the base model of U, so 7 o agrees with (i) =4
on the base model of Y. This gives the last equality.

So lift™ (i) is by W, and hence ilf is by (€25 ,)"". But we saw in the proof of 8.1
that this means i/ is by the tail strategy (¥, x))7. ME, s where 7 is the tree giving
rise to 7. Since Uy, 1 is pullback consistent, U is by \I]k%)’ as desired.

It is easy to go from a club of < A-generically 7-correct hulls to a < A-absoutely
complemented tree projecting to 7" whenever h is < A-generic. (See [52].) This
proves Claim 1. O

Claim 2. The \IJ“Z’MM, for v < A\ are Wadge-cofinal in Homy.

Proof. Let n < A and
Mlgl(wxn)] E T and T™ are < A-absolute complements.
Let n <0 < A\, and M | § is Woodin. Let p = (677)M. Put m € Z iff there is a
non-dropping, normal iteration tree & on M |u such that

(i) U is by ¥{, ), with last model N,

)
(ii) all critical points in U are strictly above 7, and
(iii) m: Mg[(w x n)] = N[g[(w x n)] is the lift of the iteration map.
Standard arguments show that for z € Ry,

v € p[T) < Ir € I(z € p[r(T N (w x §M)))).
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This shows that p[T] is projective in \II?’M o~ This easily implies the claim. O
Claim 3. Let n be a successor cardinal of M, and n < A; then (M|n, \If‘an) is a full
Ibr hod pair in L(R}, Homy).

Proof. (M|n, ¥ ) is an lbr hod pair in V', so (M|n, ¥, ) is an Ibr hod pair in
L(Homy, R?). We must see that (M|n, W, ) is full. In short, this is true because
non-dropping iterations of M|n carry the rest of M along on top, and the resulting
iterates of M can compute truth in the derived model of M by consulting their own
derived models.*

Let us fill in our sketch. Suppose toward contradiction that in L(R}, Hom}) we
have

(i) an M|n-stack s by W, with last model @), such that the branch M|n-to-Q of
s does not drop, and

(i) an lbr hod pair (R, ®) such that ® is Suslin-co-Suslin, @ < R, p(R) < o(Q),
and (I)Q = \IIS7Q.

Let (R, ®) be the minimal such pair in the mouse order, and let
Tr = Thil,, (p(R) Up(R)),
where k = k(R), be the theory coding the core of R.

Since 7 is a cardinal of M, s is in fact an M-stack, and regarding it this way,
it has a last model S such that ) <.S, and the branch M-to-S of s does not drop.
Since o(Q) is a cardinal of S and p(R) < o(Q), if Tg € S then T € Q). But then
p(R)T® < 0(Q) because Tx collapses it, and p™F(R) is not a cardinal of @ for the
same reason. But Q <9 R, contradiction. We conclude that Tg ¢ S.

However, working in V' now, we can find an R}-genericity iteration of S|\ by W,
so that all its critical points are strictly above o(Q). Let W be the final model of
this genericity iteration; then we have h being Col(w, < A) generic over W so that

R}, = R;.
Moreover, as in Claim 2, the strategies (\Ifs)?yj€> for v < X\ are Wadge cofinal in Homy,,
and clearly (W,), = (W)}, - It follows that
Homj, = Homy.
Thus we realized our derived model of M as a derived model of its iterate WW.

We show that T is ordinal definable in L(R}, Hom?) from Q and (¥q)". But

by generic interpretability, (¥g)" is definable in W (R;) from parameters in W. By

44We are showing that (M|n, W, 0y) is not just mouse-full, but OD-full. But we are in the derived
model of a mouse, where the two are equivalent, so that is not surprising.
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the homogeniety of the forcing, we then get that T € W, and hence Ty € S5,
contradiction.

So working in L(IR}, Homy), let (P,X) be an lbr hod pair of minimal mouse rank
such that Q <t P, Yo = U, q, and p(P) < o(Q). Let Tp = Thy.,(p(P) Up(P)).
The following claim finishes our proof.

Subclaim 3.1. Tp = Tg.

Proof. We work in L(R}, Homy). Since (R, ®) and (P,Y) are mouse minimal with
respect to the same property, they have a common iterate (N, A), via normal trees
T and U that do not drop along their main branches. Because neither side drops,
we have

k(R) = k(N) = k(P).

Let k be the common value. Let i = 7 and j = i be the two main branch
embeddings. Because @) is a cutpoint on both sides, and o(Q) is Xx-regular on both
sides?, we get that

ilo(Q) = jlo(Q).
But then p(R) = least a such that i(a) > p(IN) = least a such that j(a) > p(N).
So p(R) = p(P). Also
i(p(R)) = p(N) = j(p(P)).
Since i and j are elementary (hence 3,1 elementary), we get that i “Tr = Ty = j“Tp,
soTpr = Tp. O

This proves Claim 3. U
We define in L(R}, Homy):
F={(P,%) | (P,X)is a full Ibr hod pair.}
For (P, Y),(Q,¥) € F,
(P,Y) <" (Q,9) iff IR, P)[(R,®) < (Q, V) A (P,X) iterates to (R, ®)].
If (P,X) <*(Q,¥), then
T(Px),(Q,T) " P—R ﬁCt Q

is the iteration map. By Dodd-Jensen, it is well-defined, that is, independent of the
choice of stack witnessing that (P,Y) iterates to some (R, ®) <% (Q, V). The 7’s
commute, and <* is directed by Lemma 8.5, so we have a direct limit system. Set
My = direct limit of (F, <*) under the m(py5) @ w),
and let
T(P5),00 - P — My

45 0therwise pi.(R) < o(Q) or pr(P) < o(Q), contrary to minimality.
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be the direct limit map. Another way to characterize M, is that it is the lpm N of
minimal height such that for all (P,X) € F, M (P, X) <% M. Our two definitions
of m(py) 0 are consistent with one another..
Let us write
© = o(Homy)
= sup{|W| | W is a prewellorder of R} in Hom; }.
© is also the Wadge ordinal of Homy.

Claim 4. o(My) < ©.

Proof. This follows immediately from Claim 1. g
Clearly © < gL®gHomg) T fact

Claim 5. o(My) =0 = gL (RgHomg)

Proof. We need only show that §®aHoms) < (M), The proof is essentially due
to G. Hjorth. (See [10].)

Let 7 < @L®gHomg) “and let f: R} — 7 be a surjection. [ is ordinal definable in
L(R},Hom}) from some B € Homy, and by Claim 2, we can take our B to be of the
form (\P?n,o)’ z) for some cardinal n of M and some real z € R}. By amalagamating
the f, associated to all possible z, we can eliminate z from the definition.

So we can fix

— g
B =W
where 7 is a cardinal of M, and
fiR, =T

a surjection, and a formula ¢(u,v,w) and ordinal « such that
f(x) = € iff Lo(R;, Hom) b= pla, &, B,
Let My = Ult(M, E), for E the first extender on M overlapping 7, if there is one.
Let My = M otherwise. Let
dp = least § > n such that My = ¢ is Woodin.
So 1 and 4y are cutpoints of M. Letting N = Mo|(65 )M and & = WUy y or & = Uy
as appropriate, we have that (N, ®) € F. We shall show that
T(N,®),00(00) > T.

Remark 8.9 Let 0(B) be the sup of the lengths of OD(B) prewellorders of R, in
L(R},Hom}) of course. Since o and ¢ are arbitrary so far, we are showing that
T(N,®),00(00) > 0(B). We believe that a little more work shows that m(n.¢).c0(d0) =
0(B). See [63] for more along these lines.
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To see this, it is more convenient to consider the relativised direct limit system
F1(N,®), in which all iterations must be strictly above 7. It is not hard to see that
FI(N,®) is directed. Let MZ(N,®) be its direct limit, and m/y 4 . be the direct
limit map. We shall show

7 < WE’N@)W(%).

Since F(N, ®) is a subsystem of the full F(N, ®), this is enough.
Working in V', let
Ry = {z; | i <w},

and let s be a run of G*(N,w,w;) by ® that is cofinal in F7(N, ®), so that
Nw = Mgo(N’ @)a

where N,, is the direct limit along s, and i§ , = W?N’q))’oo. Let Ng = N, and N, be
the last model of s[k, for k > 0. Let 0x = i, (do). We can arrange that whenever
i < k, then z; € Ny[H], for some H that is generic over N}, for the extender algebra
at 5k

We have Ny < M. The stack s is according to Wy, so thinking of s as a stack
on My, and letting M, be the last model of s[k in this context, we have

Ny, < M,
and
ik7li M, — M,

the iteration map given by s, for k, ] < w.

Now we do the usual dovetailed R?- genericity iterations, iterating each (Mp, ¥k a1, ),
strictly above 0y to (Qk, ), and arranging that L(Homy, R?) is also a derived model
of Q). Let

Tkt My — Qy
be the map of the R} genericity iteration, and let
okt Qr — @

be the copy map, which exists because we dovetailed the genericity iterations to-
gether. ( See for example the proof of Theorem 6.29 of [06] for the details of this
well-known construction.) Here is a diagram.
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00,k Ok,w

Qo Qk Qu
jO Jk jw
10,k Ihw
M, M, M,
id id id
10,k Tk,w
Ny Ny, N,

We have for each k < w a Qy-generic hy, such that R; =R} and Hom;, = Homy,.
The latter holds because for each ¢ < A, the critical points in j are eventually above
Jr(€), and the initial segment of the iteration that gets us to this point acts only
on some M|y for v < A. This tells us that (Qk) ' (6).0) 1S projective in \Il< op- That
implies Hom;, C Homy. The reverse inclusion comes from the fact that each Yy 0
is a pullback of some Q (£,0)-

Note that we have for each k£ < w a term Bk € i such that

BQk[l] - B
for all I that are Col(w, < A) generic over @} and such that R} = R?. Moreover,
O n(Bk) Bn

for k < n < w. This follows from 8.1, the fact that all embeddings in the diagram
above have critical point > 7, and strategy coherence. Let W, be the extender
algebra of () at 0, and put

£ €Y, iff Q=3b e Wilb Ik (Col(w, < A) I € is the

least 7 such that Ls(Homg, Rp,) = o, 7, By))]

Because W, has the d;-chain condition in Q,

Now we define an order preserving map
PiT = Ty a).00(00) = 0w (d0)-
Let € < 7, and pick any x such that f(z) = &. Let k < w be sufficiently large that

(i) = z; for some i < k, and

(ii) for k <m <n <w, opmnp(a) =a and 0,,,(§) = &.
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Since @,, is wellfounded, we can find such a k. By (i), z is Wy-generic over Q. It
follows that & € Yy; say that
& = the v-th element of Y}
in its increasing enumeration. We then set
P(§) = tkw(V) = orw(7).

We must check that p(§) is independent of the choice of x, and that p is order
preserving. For this, let f(y) = 7. Let k¢ and k, . be as in (i) and (ii) above,
for (x,€) and (y, 7) respectively. Let ~,¢ and 7, , be the corresponding v‘s. Taking
n > max(ky ¢, ky,), we have §,7 € Y,,, and

§ = the oy, n(7ee)-th element of Yy,
This is because oy, , ,(§) = £. Similarly,
7 = the o, , n(7y,r)-th element of Y,,.

So
E<riff ikm,n(%;,g) < iky,T,n(’Yy,T>
iff ikl,,g,w(’)’x,f) < iky,r,w<7y,T)7
as desired. This proves Claim 5. -

From the fact that © = #L®sHomy) wwe get at once that L(R;,Homy) N P(R}) =
Homy. Thus in L(R}, Homy), all sets are Suslin, and therefore we get
Claim 6. L(R}, Hom,) = ADg.

Suppose that (P,X) € F, and let 7 = o(My(P,X)). The proof of Claim 5
showed that for some v < A, (M[y,¥{ ) € F and 7 < o(Mo(M|y, V7 ()). But
this implies that (P, X) <* (M|, ¥, ). It follows then that the iterates of proper
initial segments of (M|, Wy5) are <*-cofinal in F.

This gives

Claim 7. There is a stack s on M|\ of length w that does not drop along its main
branch, with canonical embedding is: M — My (s), such that

(a) for n < w, s|n € (HC)HRsHomg)

(b) Moo < Mio(s), and

(c) if A is a limit of cutpoints in M, then is(\) = o(My,), and
)

(d) if & is the least < A-strong of M, then is(k) = o(My).
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Proof. Let ((P;,A\;) | i < w) be <*-increasing and cofinal in F. Let (M,¥) =
(Qo, D). Given s|i with last model (Q;, ®;), let s(i) be a normal tree on @; that
comes from comparing (P;, A;) with some cardinal initial segment below A of (Q;, ®;)
that is strictly greater that than (P;, A;) in the mouse order. There is such an initial
segment by the remarks above. Let (Q;y1, ®;11) be the last pair of s(7).

We do the comparison in such a way that (P;, A;) iterates to a cutpoint (N, Q)
of (Qit1, Pit1). It follows that igi41,0 agrees with the iteration map m(y o) on V.
This tells us that

T(P;,Aq),00 “O(Pi> C iSFi+1,OO(0(N))'

This implies that M., < My (s). Also, N is a cutpoint, so o(N) is below the least
< A-strong of Q;41, if there is one. Thus o(My) < is000(k), Where £ is the least
< A-strong, if there is one.

The cutpoint successor cardinal initial segments (N, Q) of (Q;, ®;) below A are all
in F, and 80 0o(Mu)(N, Q) = isi00(0(N)) < 0(My) for such (IV, Q). It follows that
0(Mso) = sup{isiioc(0(N)) | i < w A N <V Qi|A}.

So if A is a limit of cutpoints in M, and hence in each @;, then we get i5(\) = o(M,).
If k is the least strong to A in M, we get is(k) = o(Mx). O

Claim 8. HODL®sHoms) — ripf ).

Proof. Let us write HOD for HOD*®aHoms) - and 6 for 9E®:Hom)) Tt ig clear that
M, € HOD, so what we must show is that HOD C L[M].
We use here

Lemma 8.10 (Woodin) Assume ADg +V = L(P(R); then there is a definable
(from no parameters) set A C 0 such that HOD = L[A].

Fix A as in the lemma, and let ¢(v) be such that

§ € Aiff L(RY, Homy) |= ¢[¢].
It is enough to show that A € L[M.]. For that, let s be a stack as in Claim 7, and
let (Q;, ®;) be the last model of sli. Let x; be the least < A-strong of Q; if there is
one, and otherwise let k; = A\. We define A; C k; by

e A iff iy 0(€) € A

We claim that A; is definable over L[Q;|r;], uniformly in i. The definition is displayed
in the following equivalence: for any &,

§e
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if and only if
L[Q;|k:] EVYa, h[(h is Col(w, < k;)-generic and « is a cardinal cutpoint of Q;|kappa;)
= L(Rj,, Homy,) |= ¢[m(€)], where

L(R; Hom}) Ok
T= W(Qi&/\)vog , for A = (ZQ )Qi\a']

Let us write the display above as L[Q;|ki] E wol€]-
We give the well-known proof of the equivalence. Let o > £ be a cutpoint of Q;.
Via an Rj-genericity iteration of (); above o, we can find
o:Q; — S
and h generic over S for Col(w, < o(k;)) such that
L(R}, Hom}) = L(R;, Homy,).
The only slight wrinkle here is that if k; < A, out genericity iteration must weave in
infinitely many steps at which we move the image of x; up by an extender with that
critical point. Note S|a = Q;|a, and the two are assigned the same strategy in their
respective pairs. Call that strategy A.
We then get that
L[Qilri] = eol€] i LS|o (k)] |= wol€]
iff (@il 0).00(€) € A
iff £ € A,
as desired.
Since gk, is elementary, we get that i s (Ax) = A; whenever & < [. This
implies that iy, 00 (Ar) = A for all k. But then A is definable over L[ M. (s)|is10,00 (K0)]
by the same formula that defined Ay over L{Qo|ko]. So A € L[M], as desired. [

Claim 8 completes the proof of Theorem 8.8.
O

By combining Theorem 8.8 with our earlier results on the existence of hod pairs
with large cardinals, we get

Theorem 8.11 Suppose there is j: V. — M with crit(j) = s and Vi1 € M.
Suppose IH,, i) hold for some p < k, and that there are X < v < K such that X is
a limit of Woodin cardinals, and v is measurable. Then there is a Wadge cut I' in
Hom_y such that L(T',R) = ADg, and

HODMUR) = GCH + there is a subcompact cardinal.

Proof. Under the hypotheses of 8.11, we have shown in Theorem 6.74 that there
is an lbr hod pair (M, V) with scope HC such that for some A, M |= “\ is a limit of
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cutpoint Woodins, and there is a subcompact < A.” Moreover, we have that Code(V)
is Hom.),. So we can apply 8.8, and we get that the HOD of the derived model
D(M, < )X) is an iterate of M, and satisfies “there is a subcompact cardinal”. But
then via an R-genericity iteration M-to-M*, we can realize D(M*, < ) as L(I',R),
for some I' C Hom_ . This proves the theorem.

O

8.4 HOD mice satisfy V = K

We shall show that if (H,€) is an lbr hod pair such that H = ZFC+ “there are
arbitrarily large Woodin cardinals”, then in a certain natural sense, H =V = K.
This sense derives from the definition of K below one Woodin cardinal that uses
thick sets at a regular cardinal, as in [13]. The definition has a generically absolute
version, so that in a certain sense, H = K79 whenever g is set-generic over H.
Pure extender mice do not in general satisfy even V' = HOD, much less V = K.
The basic problem is that they may not know how to iterate themselves.*® In this
respect, strategy mice are more natural; they know who they are, so to speak.

Definition 8.12 Let a be a reqular cardinal, and P be a premouse; then we say P
is a-universal iff

(1) P = “ « is the largest cardinal’,
(2) o(P) =at, and
(3) {n | EF # 0} is not stationary in o

Of course, P determines «, so we write @ = of. We say that P is universal iff P
is ot -universal, where o = a. One could make these definitions in the case « is

singular, or « is subcompact, but then some complicating cases arise.

Lemma 8.13 Let (P, X)) be a mouse pair with scope Hy, where X is a limit of Woodin
cardinals, and suppose that whenever w: () — P is elementary, and Q) is countable,
then Y™ is < A\-universally Baire. Suppose also that P is o™ -universal, where o™ < \;

then (P, %) is full.

46See [35], [39], and [15] for results on the extent to which V = K and V = HOD hold in pure
extender mice.
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Proof. Suppose not, and let (), A) be a nondropping iterate of (P,¥), and let
(Q,A\) <Y (R, W), where (R, ¥) is a mouse pair with scope Hy such that p(R) < o(Q).
Let

. P—Q

be the iteration map, so that i(«) is the largest cardinal of @, and ran(7) is a-club in
0(Q). Our plan is to use i to pull back R to a mouse that collapses o(P), as one does
in the arguments that show [ fails when one has sufficiently strong embeddings.

For this, we need the condensation results of [65]. Those results were proved
under AD™ for mouse pairs with scope HC. They apply here because they are first
order requirements on P, so it is enough to see that they hold for countable ) such
that there is an elementary 7: @) — P. But then our hypotheses imply that (Q,%™)
is extends to a mouse pair with scope HC in the derived model of V' below A, so we
can apply [65] in that derived model.

Assume first that k£(R) = 0 and R is passive, and let p = p;(R). For £ < o(Q) let
e be least such that hp, “(i(e) Up) N [€,0(Q)) # 0. Let

N¢ = transitive collapse of hp,, “(i(a) U p),
and let
me: Ne — Rl

be the anticollapse. Letting 7 = crit(m¢), it is easy to see that m¢(7¢) = o(P), and
Ne € Q. In fact, if 7¢ is not an index on the P-sequence, then by [67],
Ne Q.
By the non-subcompactness clause of universality, we have an a-club C' C ran(i)
such that for all £ € C, £ = 7¢ and £ € ran(i). For £ € C, p(Ne) = p1(Ne) = i(a),
and
p(Ne) = 75 ().

For £ < n with both in C', we have a natural
O¢n: Ne = Ny,
determined by o¢,[7¢ = id , and o¢,(p(Ne)) = p(N,;). The full R is just the direct
limit of the N, for £ € C, under the oy .
Now we pull back to P. Let D be an a-club in o(P) such that :“D C C. For
§ €D, let M < P be such that
i((Mg) = Nigg),
and let
Pen: Mg — M,

be given by ¢¢, = i~ 0 0¢,, 0 i. Note here that N is definable from i(€) as the
first level of @) collapsing i(€) to i(), so Ny € ran(i), and M is the first level of P
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collapsing ¢ to a. Note also that

Pen(p(Me)) = p(My).
Letting M be the direct limit of the M and r be the common value of ¢  (p(Me)),
for € in D, we see that hy “(aUr) contains o™, which is a contradiction.

If k(R) = 0 but R is active, the proof is similar. The important point is that
crit(F7) > o(Q), because @ is a cutpoint of R. Thus we do not get involved with
protomice, and the condensation result of [65] applies. If k(R) > 0, then again
the proof is similar, again using the condensation result of [65]. We use the fact
that 73,1 over R is the same as ¥; over the mastercode structure R* to find our

approximations N¢ to R.
O

Definition 8.14 Let P be universal, and o = a’. Then
(1) T is thick iff there is an a-club set C C o such that C C T.
(2) P has the definability property at 3 iff for all thick sets T, § € Hull”(I'U ).

(3) P has the hull property at § iff for all thick sets ', letting N be the transitive
collapse of Hull” (T U B), P(B)" = P(B)V.

(4) Def” = N{Hull” (') | T is thick }.
(5) P is very sound iff P = Def”.

It is easy to see that P has the definability property at all 8 < ~ iff v C Def”. Thus
P is very sound iff P has the definability property at all 8 < a'. Every a'-universal
P has the definability property at all 5 € [«, a™), because the critical point of any
m: N — Pis a cardinal of P. Thus P is very sound iff P has the definability property
at all 8 < a.

The following is a uniqueness lemma for very sound hod pairs. We shall formulate
it as a first order fact about least branch hod mice. One could abstract the first order
properties of such mice that we shall use in its proof, but we are not going to do
that.

Lemma 8.15 (AD") For any Ibr hod pair (W, V) with scope HC, the following is
true in W: whenever (P,%) and (Q,A) be lbr hod pairs with scope Hy, where X\ is

a limit of Woodin cardinals, and P and QQ are o™ -universal and very sound, where
a <A\, then (P,X) = (Q,A).
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Proof. We work inside W. Let ¥y and Ag be the restrictions of ¥ and A to Vj, where
a < § < Aand 0 is Woodin. We show that (P, ¥g) = (Q, Ap), and since 0 is arbitrary,
this is enough. Let w be a wellorder of Vj, and let C be the maximal w-construction.
C does not break down before it has reached non-dropping iterates of (P, ¥y) and
(Q,A). Let (M,Q) be the first pair in C that is a non-dropping iterate of one of
these two, and assume without loss of generality that it is (P, Y,) that iterates to
(M, Q), while (Q, Ag) iterates past (M, 2), perhaps not strictly.
Let 7 be the normal tree on P with last model M, and

i: P—> M
the canonical embedding. i is given by an extender all of whose measures concentrate
on bounded subsets of «, so ¢ is continuous at points of cofinality «. It follows that
ran(z) is a-club in o(M). Let U be the tree whereby @ iterates past M, with last
model R such that

M <UR,

By 8.13, (P, X) is full, so branch Q-to-R of U does not drop, and we have an iteration
map
J:Q — R.

Note that the generators of j are contained in i(«), because i(a) is the largest
cardinal of M. (In the worst case, the branch Q-to-R uses a last extender F' such
that 1h(F') = o(M), but even then, A(F') = o(M).) Note also that j is continuous at
«, because « is regular but not measurable in Q.

We claim that M = R. For if not, j(a) > o(M). But j(a) has cofinality (in V)
a, while o(M) has cofinality a". Thus we have some < « such that o(M) < j(3).
But

JB) € {i(NHla) | f € Qlanacfi(a)™}.
For each f € Q|a, let
v =sup{j(f)(a) | a € [i(a)]™ Aj(f)(a) < o(M)}.
Since o(M) is regular in R, 74 < o(M). Since o(M) is the sup over f of the 7, the
V' cofinality of o(M) is < . This is a contradiction.

So M = R, and thus i(a) = j(a). By the continuity of ¢ and j at points of
cofinality o, we have an a-club set C' C o such that i(§) = j(§) for all £ € C. This
implies that Hull”(C) is isomorphic to Hull?(C). By very soundness, P = Hull”(C)
and Q = Hull%(C). So P = @Q, and then i = j because the two agree on the
generating set C'. But then Yy = Q' = (¥ = A,.

U
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Lemma 8.16 (AD") Let (W, W) be an lbr hod pair with scope HC, and suppose W |=
“there are no 1-extendible cardinals”. Working inside W, let o be reqular but not
subcompact, and o < A\, where X is a limit of Woodin cardinals. Let P =W |a™ and
Y = Up; then (P,X) is very sound.

Proof. We work in W. It is enough to see that P has the definability property at
all § < a. So suppose [ is least such that P does not have the definability property

at .

Claim 1. P has the hull property at all v < 5.

Proof. Let v < 8, and let C' C o(P) such that letting H be the transitive collapse of
Hull” (C'U~), P(y) # P(y)?. Equivalently,
FHH AP o

Let m: H — P be the anticollapse, and note that crit(w) > 7 by the definability
property at . Both (H,X™) and (P, ) are a-universal. Letting § > o be Woodin,
and C be a a construction of length o that uses nice background extenders from
the W-sequence having critical points above «, the proof of Lemma 8.15 shows that
there is a pair (M, ) of C such that both (P, X) and H,X") iterate to (M, ).

Let 7 and j be the two iteration maps. There is an a-club D in at such that
il|D = j|D. We can find ¢ € D<¥ such that 77!(¢) = ¢, and a Skolem term 7 such
that 77[c] = 4. But then 7] = ~, so i(y) = i(tF[]) = ™][i(c)] = ™ [j(c)] =
J(T ) = §(7):

It follows that i(y") = j(y™). But i is continuous at 4™ and j is continuous at

~HH so v H must have cofinality v+, contradiction. O

Claim 2. P has the hull property at [.

Proof. By Claim 1, 8 is a cardinal of P. Again, suppose toward contradiction that
we have
. H—> P

with ran(7) thick and crit(n) > B and gH# < gHF = . We want to use the

comparison argument in the first claim, but there is a problem if 5 has measurable

cofinality in H or P. To deal with this, we simply take an ultrapower. Namely, set
H if H |= cof(3) is not measurable,

B Ult(H,U) if H = U is the order 0 measure on cof(f),
and
Q= {P if P |= cof(B) is not measurable,

Ult(P,U) if P = U is the order 0 measure on cof(f3).
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(We mean to take ultrapowers here if § is itself measurable.) Let ip: P — @ and
jo: G — H be the canonical embeddings (possibly the identity, of course). Let
¢ =Yg and let A = (X7)g be the strategies for () and G.

Again, we have a construction C, and a level (M, ) of C such that both (Q, ®)
and (G, A) iterate into (M,Q). Let ¢;: Q@ — M and j1: G — M be the iteration
maps. Let ¢ =7, 07p and j = j; 0 jp. So ¢ is an iteration map from P to M, and j is
an iteration map from H to M.

There is an a-club D in at such that :]D = j[D, and w[D is the identity. Since
P has the definability property at all £ < 3, we have i[5 = j[5.

If $ has non-measurable cofinality in P and H, then ¢ and j are continuous at
B, so i(B) = j(B). This implies i(8%) = j(BH), which gives the same cofinality
mismatch as before.

But more generally, let us just note that ¢; is continuous at 5 = sup(ip“/) and
J1 is continuous at § = sup(jo“f). So

i1(8) = i1(sup(io“B))
= sup(iy 04 “f)
= sup(j1 © jo“f)
= Ji(sup(jo“B))
= j1(8))-

So i1 (BT9) = 71(BTY), and i; and j; are continuous at successor cardinals, so 7%
has the same V-cofinality as 87¢. But 8¢ < 8+ so it has V-cofinality < 8. On
the other hand, 3¢ = 8+, since the map A + iz(A) N B is one-to-one on P(B) N P,
and 8t = BT. So we still have our cofinality mismatch, contradiction. O

Now since P does not have the definability property at £, we have 7: H — P
such that ran(7) is thick, and 8 = crit(r). But H|f™ = P|S7, and m € P because we
are working in W, and P = W|at. Thus W | “m is a 1-extendibility embedding”.
This is contrary to our hypotheses on W. O

Remark 8.17 It seems likely that no lbr hod mouse can satisfy “there is a 1-
extendible cardinal”, but we have not proved this.

The following definition is meant to be employed inside hod mice satisfying ZFC
and having arbitrarily large Woodin cardinals.

Definition 8.18 Let P be a least branch premouse and « be a cardinal; then we say
P is K-like at « iff P is o™ -universal and very sound, and for ¢ the least Woodin
cardinal > «, there is a ¥ such that (P, X) is an lbr hod pair with scope Hgs+.
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Theorem 8.19 (AD") Let (H,Q) be an lbr hod pair with scope HC, and suppose
H = ZFC+ “there are arbitrarily large Woodin cardinals, and there are no 1-
extendible cardinals”. Let g be generic over H for a poset of size < v in H, and
let a be a successor cardinal of H above v; then in H|g], the following are equivalent:

(1) P is K-like at a,
(2) P=Hl|a".

Proof. Lemmas 8.15 and 8.16 show that the equivalence is true in H itself. In
H|g] we must work above the size of the forcing.’” We leave it to the reader to think
through that case. O

Definition 8.20 We say that K" exists iff

(1) for every successor cardinal o > v, there is a unique lpm K"(«) such that
KY(«) is K-like at o, and

(2) if v < a < B and «, f are successor cardinals, then K" (a) < KY(f).
If KV exists, then we set K¥ =, K"(a).

So a hod mouse H as in the theorem satisfies V = K° = K" for all v. It
follows that H satisfies V' = HOD. In set generic extensions of H, H = K" for all
sufficiently large v, so H C HOD#. Thus H is the generic HOD, or gHOD, of its
generic multiverse.”® Tt follows that P =V = HOD.

This should be compared with

Theorem 8.21 (Woodin [68]) Assume ADg + V = L(P(R)); then HOD =V =
HOD, and HODI|O is the generic HOD of its own generic multiverse.

This result is significantly more general than what we have proved, in that it
applies to ADg models that have iteration strategies for mice with long extenders,
and are therefore beyond the HOD analysis we have developed here. Our proof that
HOD [= V = HOD does have extra information in it, in the short-extender region to
which it applies.

47This is provably necessary, because of the local nature of “K-like at o”. If §y < §; are Woodin
cardinals, and if j: H — M C Hlg] comes from a Ps,-stationary tower ultrapower, it will be initial
segments of M that are K-like at o < j(dp) in the sense of H][g].

48Gee [1].
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8.5 Further results

Our analysis of HOD in the derived model D of a HOD mouse was based on the fact
that D = HPC. (This was the content of the first two claims in the proof of Theorem
8.8.) We used further facts about the way we had derived D, but with more work,
one can avoid an appeal to them. Thus we get

Theorem 8.22 ([63]) Assume ADg and HPC; then Vy N HOD is the universe of a
least branch premouse.

Concerning the mouse capturing hypothesis of this theorem, we have

Theorem 8.23 ([63]) Assume AD™; then
(a) if HPC holds, then for any I' C P(R), L(I',R) = HPC, and
(b) if LEC holds, then for any T C P(R), L(T',R) &= LEC, and

(c) if there is an wy iteration strategy for a countable pure extender premouse with a
long extender on its sequence, then for any ' C P(R) such that L(T',R) = NLE,
we have L(I',R) = LEC, and hence L(I',R) = HPC.

Part (c) is pretty strong evidence that AD" + NLE implies LEC, and hence HPC.
Whether this is in fact true is perhaps the main open problem in the theory to which
this book contributes. Parts (a) and (b) suggest that one ought to try to prove
this via an induction on the Wadge hierarchy, and that is a natural thing to try on
other counts, too. There are partial results in this direction, but the situation is in
sufficient flux that it seems wisest not to attempt a discussion of them.

The proof of 8.22 gives a characterization of the Solovay sequence in terms of the
Woodin cardinals in HOD.

Definition 8.24 For any set X, 0(X) is the least ordinal o such that there is no
ordinal definable surjection of X onto «.

If there is an ordinal definable map from X onto X x X, then §(X) is the supremum
of the surjective images of X under maps that are ordinal definable from some
parameter in X. This is our case of interest.

Definition 8.25 (AD"'.) The Solovay sequence (0, | o < Q) is given by
6y = O(R),
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and if 6, < 0, then
Oor1 =O0(RU{A}), for any (all) A of Wadge rank 6,,

@:U%

a<<

2 is the least B such that 0g = 0.

Assuming AD™, if §, < 6, then

Oav1 = 0(P(0a)).
This is easy to see, using the Coding Lemma and the fact that every set of reals of
Wadge rank 6, is 0,-Suslin. The Solovay sequence is an important feature of any
model AD™, one that is tied to the pattern of scales in the model. It is definable, so
it is in HOD. In fact, it has a natural identity within HOD.

Assume ADgr + HPC. The proof of 8.22 then gives a canonical least branch
premouse H whose universe is V,1°P. We have shown in the last section that in fact
H is definable over (VIOP €), as the union of all universal, very sound premice. Let
us say that § is a cutpoint of HOD iff § is a cutpoint of H, in the sense that there
is no extender £ on the H-sequence such that crit(E) < § < 1h(E)." Tt is east to
see that if ¢ is Woodin and a cutpoint of HOD, then there are no extenders on the
‘H-sequence with critical point 4.

Theorem 8.26 ([63]) Assume ADg +V = L(P(R)) + HPC; then the following are
equivalent:

(1) ¢ is a cutpoint Woodin cardinal of HOD,
(2) 0 =0y, or 0 = 0,41 for some c.

In particular, 6y is the least Woodin cardinal in HOD.

That 6y and the 6,1 are Woodin in HOD is due to Woodin, cf. [15]. Woodin
also proved an approximation to the statement that they are cutpoints of HOD
(unpublished). The rest of (2) — (1), and all of (1) — (2), comes from [63].

One can characterize the next Woodin cardinal of HOD in terms of a modified
Solovay sequence. The following definition is due to Grigor Sargsyan.’”

YPresumably, every extender in HOD that coheres with the H-sequence is actually on that
sequence, but no one has actually proved this, so far as we know.
°00ne might call this the Sargsyan sequence.
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Definition 8.27 Assume AD'. We set
no = 0(*w) = b,
+,HOD

Nat1 = 0(“K), where k = (1) ,

M = Unow

a<

One can show

Theorem 8.28 ([63]) Assume ADg + HPC; then for any 6 < 0, § is a successor
Woodin cardinal of HOD iff 6 = ne.1 for some a.

Of course, “successor Woodin” means “least Woodin above some ordinal”. The
Sargsyan sequence may grow more slowly than the Solovay sequence. Assuming
ADg+HPC, Theorem 8.28 implies that this happens if and only if HOD has extenders
overlapping Woodin cardinals.

It is also interesting to see what strong determinacy theories are true in the
derived models of Ibr hod pairs (P, ¥) such that P reaches reasonably large cardinals.
There are some results in this direction in [63].

The key to the theorems above is an analysis of optimal Suslin representations for
mouse pairs. That in turn rests on a strengthening of strong hull condensation that
[18] calls very strong hull condensation. Roughly speaking, this property amounts
to condensation under weak tree embeddings, a more general kind of tree embedding
than the kind we have defined in 3.27.°" [18] shows

Theorem 8.29 ([48]) Assume AD™, and let (P,X) be a mouse pair with scope HC;
then ¥ has very strong hull condensation.

Given a stack (7,U) on P with last model @, there is a natural attempt X (7,U)
at a normal tree on P with last model Q. We say that ¥ fully normalizes well iff
whenever (7,U) is by ¥, then X (7,U) exists and is by X, and X7y = Xx (7). (See
[18].) The construction of X (7,U produces a weak tree embedding from X (7 ,U)
into W(T,U). Thus Theorem 8.29 yields

Corollary 8.30 ([48]) Assume AD*, and let (P,X) be a mouse pair with scope HC;
then

Tn a weak tree embedding, the connection between exit extenders required by 3.27(d) is loosened.
Rather than require that t,(E) = Eff(a), we require that t,(E7) be connected to Ezl(a) inside

./\/lzj(a) via a sequence of fine structural hulls. This sequence of hulls is an abstract version of the

sequence that occurred in Claim 3.3 of our proof of full normalizability of trees of length two.
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(a) ¥ fully normalizes well, and
(b) ¥ is positional.

From the proof of Corollary 8.30 we obtain a normal tree U (P, ¥) on P that has
last model M (P,Y), and is such that all its countable weak hulls are by . This
then gives us a Suslin representation for the fragment of ¥ that is actually used in
forming M (P, X): to justify a countable tree 7 on P, we search for a weak tree
embedding of T into U (P, ).

Not all of ¥ is actually used in forming M (P, ). Let us call a normal tree T
relevant iff T is by X, and there is a normal & by 3 such that 7 C &, and S has
a last model ), and the branch P-to-() does not drop. Call a P-stack s relevant
if for ¢ +1 < dom(s), the branch of T;(s) to My (Ti(s)) does not drop, and for
i+ 1= dom(s), 7;(s) is relevant. Let stel be the restriction of 3 to relevant trees.
The Y-iterations that go into forming M. (P,¥) are all relevant, so srel i what
we need to construct Mo (P, %) and U(P, ). Moreover, U(P, %) acts as a kind of
universal tree by S in that all countable trees by X! can be weakly embedded
into it. This leads to

Theorem 8.31 ([63]) Assume AD™, and let (P,X) be a mouse pair with scope HC.
Let k be the cardinality of o( My (P,)), and let C’ode(ETel) be the set of reals coding
stacks by XT¢: then

(a) C’ode(Zrel) and its complement are k-Suslin, and
(b) Code(X) is not a-Suslin, for any o < k.

In particular, k is a Suslin cardinal.

Part (b) of the Theorem 8.31 follows at once from the Kunen-Martin theorem,
and the fact that there is a wellfounded relation W on R of rank at least o( M (P, X))
such that W is arithmetic in Code(X). [Let (¢t,0)W (s,a) iff s and ¢ are stacks by
with last models M and N, s C ¢, P-to-N does not drop, and i}, y(a) > b.]

The one can show the irrelevant part of X is also Suslin, but perhaps not o( M., (P, X))-
Suslin. (It is possible that M. (P,X) = P, because there are no non-dropping itera-
tions of P!) So one gets

Theorem 8.32 ([63]) Assume AD™, and let (P,X) be a mouse pair with scope HC.
and let Code(3) be the set of reals coding stacks by X; then Code(¥) and its comple-
ment are Suslin.
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Note here that since X is total on stacks by ¥, if Code(X) is 5-Suslin, then so is
its complement.

Theorem 8.31 implies that |o( My (P,Y))| is a Suslin cardinal.”* With more work
along the same lines, one can show that for any cutpoint 7 of M, (P,Y), |7| is a
Suslin cardinal. In recent unpublished work, S. Jackson and G. Sargsyan have shown
that all Suslin cardinals arise below o(M (P, X)) arise this way. So we have

Theorem 8.33 (Jackson, Sargsyan, S.) AssumeAD™, let (P,¥) be a mouse pair,
and let k < o( My (P, X)). The following are equivalent:

(a) K is a Suslin cardinal,
(b) k= ||, where T is a cutpoint of My (P, %) or 7 = o(Muy(P,X)).

The proof that (a) implies (b) by Jackson and Sargsyan shows that if x is a
regular Suslin cardinal, then k itself is a cutpoint of M, (P,3). It is open whether
that is also true for the other Suslin cardinals, the problematic case being when & is
the next Suslin cardinal after some regular Suslin cardinal.

The correspondence between iteration strategies and definable scales is central to
descriptive inner model theory. Theorem 7?7 captures one aspect of it.
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nice, 43
short, 22
whole, 22
extender algebra, 35
extender tree

PP, PT,F, 88
eV, VXt 88
F(P¥), 321

full mouse pair, 322

full normalization, 67
X(T,U), 343

fullness-preserving, 322

generic interpretability, 318
genericity iteration, 35

HPC (hod pair capturing), 15
h%, (r3, Skolem function), 27
hod pair

least branch, 238

self consistent, 238
hull condensation, 89
hull property, 315
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