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Abstract

In this book, we shall prove a general comparison lemma for iteration strate-
gies. The comparison method involves iterating into a level of a background
construction, one that has been done in a universe that is uniquely iterable in
the appropriate sense. The proof that it succeeds relies heavily on an analysis
the normalization of a stack of normal iteration trees.

We then use this comparison method to develop the basic theory of hod
mice in the least branch hierarchy. Modulo the existence of iteration strategies,
our results yield a fine structural analysis of (HOD|θ)M , whenever M is a
model of ADR + V = L(P (R)) that has no iteration strategies for mice with
long extenders. In particular, HODM |= GCH, for such M .

1



Contents

1 Introduction 4
1.1 Large cardinals and the consistency strength hierarchy . . . . . . . . 4
1.2 Inner model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Mice and iteration strategies . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 HOD in models of determinacy . . . . . . . . . . . . . . . . . . . . . 9
1.5 Least branch hod pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Comparison and the mouse pair order . . . . . . . . . . . . . . . . . . 12
1.7 Hod pair capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Constructing mouse pairs . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 The comparison argument . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 21
2.1 Extenders and ultrapowers . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Pure extender premice . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Projecta and cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Elementarity of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Iteration trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Jensen normal genericity iterations . . . . . . . . . . . . . . . . . . . 35
2.7 Iteration strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Coarse structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Full background extender constructions . . . . . . . . . . . . . . . . . 46
2.10 Iterating into a background construction . . . . . . . . . . . . . . . . 57

3 Normalizing stacks of iteration trees 62
3.1 Normalizing trees of length 2 . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Normalizing T a〈F 〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 The extender tree Vext . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Tree embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Normalizing T aU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Normalization commutes with copying . . . . . . . . . . . . . . . . . 112
3.7 The branches of W (T ,U) . . . . . . . . . . . . . . . . . . . . . . . . 119
3.8 Normalizing longer stacks . . . . . . . . . . . . . . . . . . . . . . . . 130

4 Strategies that condense and normalize well 134
4.1 The definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2 Coarse Γ-Woodins and Γ-universality . . . . . . . . . . . . . . . . . . 142
4.3 Strong unique iterability from UBH . . . . . . . . . . . . . . . . . . . 148

2



4.4 Fine strategies that normalize well . . . . . . . . . . . . . . . . . . . 159
4.5 Fine strategies that condense well . . . . . . . . . . . . . . . . . . . . 174
4.6 Pure extender pairs and strategy coherence . . . . . . . . . . . . . . . 182

5 Comparing iteration strategies 189
5.1 Extending tree embeddings . . . . . . . . . . . . . . . . . . . . . . . . 190
5.2 Resurrection embeddings as branch embeddings . . . . . . . . . . . . 193
5.3 Iterating into a backgrounded strategy . . . . . . . . . . . . . . . . . 197

6 Fine structure for the least-branch hierarchy 232
6.1 Least branch premice . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.2 Least branch hod pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.3 Mouse pairs and the Dodd-Jensen Lemma . . . . . . . . . . . . . . . 240
6.4 Background constructions . . . . . . . . . . . . . . . . . . . . . . . . 245
6.5 Comparison and the hod pair order . . . . . . . . . . . . . . . . . . . 254
6.6 The existence of cores . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.7 Some successful background constructions . . . . . . . . . . . . . . . 276

7 Phalanx iteration into a backgrounded construction 282
7.1 The Bicephalus Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.2 Proof of Lemma 6.64 . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.3 UBH holds in hod mice . . . . . . . . . . . . . . . . . . . . . . . . . . 308

8 HOD in the derived model of a hod mouse 318
8.1 Generic interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . 318
8.2 Mouse limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.3 HOD as a mouse limit . . . . . . . . . . . . . . . . . . . . . . . . . . 323
8.4 HOD mice satisfy V = K . . . . . . . . . . . . . . . . . . . . . . . . . 334
8.5 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

3



1 Introduction

In this book we shall develop a general comparison process for iteration strategies,
and show how the process can be used to analyze ordinal definability in models of the
Axiom of Determinacy. In this introduction, we look at the context and motivation
for the technical results to come.

We begin with a broad overview of inner model theory, the subject to which this
book belongs. Eventually we reach an outline of the ideas and results that are new
here. The journey is organized so that the technical background needed to follow
along increases as we proceed.

1.1 Large cardinals and the consistency strength hierarchy

Strong axioms of infinity, or as they are more often called, large cardinal hypotheses,
play a central role in set theory. There are at least two reasons.

First, large cardinal hypotheses can be used to decide in a natural way many
questions which cannot be decided on the basis of ZFC (the commonly accepted
system of axioms for set theory, and hence all of mathematics). Many such questions
come from descriptive set theory , the theory of simply definable sets of real numbers.
For example, the hypothesis that there are infinitely many Woodin cardinals yields a
systematic and detailed theory of the projective sets of reals, those that are definable
in the language of second order arithmetic from real parameters. ZFC by itself yields
such a theory at only the simplest levels of second order definability.

Second, large cardinal hypotheses provide a way of organizing and surveying all
possible natural extensions of ZFC. This is due to the following remarkable phe-
nomenon: for any natural extension T of ZFC which set theorists have studied, there
seems to be an extension S of ZFC axiomatized by large cardinal hypotheses such
that the consistency of T is provably (in ZFC) equivalent to that of S. The consis-
tency strengths of the large cardinal hypotheses are linearly ordered, and usually easy
to compare. Thus all natural extensions of ZFC seem to fall in a hierarchy linearly
ordered by consistency strength, and calibrated by the large cardinal hypotheses.1

These two aspects of large cardinal hypotheses are connected, in that the consis-
tency strength order on natural theories corresponds to the inclusion order on the
set of their “sufficiently absolute” consequences. For example, if S and T are natural
theories extending ZFC, and S has consistency strength less than or equal to that of
T , then the arithmetic consequences of S are included in those of T . If in addition, S

1Let con(T ) be some natural formalization of the assertion that T is consistent. The consistency
strength order is given by: S ≤con T iff ZFC proves con(T )→ con(S).
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and T have consistency strength at least that of “there are infinitely many Woodin
cardinals”, then the consequences of S in the language of second order arithmetic
are included in those of T . This pattern persists at still higher consistency strengths,
with still more logically complicated consequences about reals and sets of reals being
brought into a uniform order. This beautiful and suggestive phenomenon has a prac-
tical dimension as well: one way to develop the absolute consequences of a strong
theory T is to compute a consistency strength lower bound S for T in terms of large
cardinal hypotheses, and then work in the theory S. For one of many examples,
the Proper Forcing Axiom (PFA) yields a canonical inner model with infinitely many
Woodin cardinals that is correct for statements in the language of second order arith-
metic, and therefore PFA implies all consequences of the existence of infinitely many
Woodin cardinals that can be stated in the language of second order arithmetic.

One can think of the consistency strength of a theory as the degree to which it
is committed to the existence of the higher infinite. Large cardinal hypotheses make
their commitments explicitly: they simply say outright that the infinities in question
exist. It is therefore usually easy to compare their consistency strengths. Other
natural theories often have their commitments to the existence of the infinite well
hidden. Nevertheless, set theorists have developed methods whereby these commit-
ments can be brought to the surface, and compared. These methods have revealed
the remarkable phenomenon described in the last paragraph, that natural theories
appear to be wellordered by the degrees to which they are committed to the infinite,
and that this degree of commitment corresponds exactly to the power of the theory
to decide questions about concrete objects, like natural numbers, real numbers, or
sets of real numbers.

We should emphasize that the paragraphs above describe a general pattern of
existing theorems. There are many examples of natural theories whose consistency
strengths have not yet been computed, and perhaps they, or some natural theory
yet to be found, will provide counterexamples to the pattern described above. The
pervasiveness of the pattern where we know how to compare consistency strengths
is evidence that this will not happen.2 The two methods whereby set theorists com-
pare consistency strengths, forcing and inner model theory, seem to lead inevitably
to the pattern. In particular, the wellorder of natural consistency strengths seems
to correspond to the inclusion order on canonical minimal inner models for large
cardinal hypotheses. Forcing and inner model theory seem sufficiently general to
compare all natural consistency strengths, but at the moment, this is just informed

2The pattern extends to weak subtheories of ZFC as well. This book is concerned only with
theories having very strong commitments to infinity, and so we shall ignore subtheories of ZFC, but
the linearity of the consistency strengths below that of ZFC is evidence of linearity higher up.
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speculation. So one reasonable approach to understanding the general pattern of con-
sistency strengths is to develop our comparison methods further. In particular, inner
model theory is in great need of further development, as there are quite important
consistency strengths that it does not yet reach.

1.2 Inner model theory

The inner model program attempts to associate to each large cardinal hypothesis H
a canonical minimal universe of sets MH (an inner model) in which H is true. The
stronger H is, the larger MH will be; that is, G ≤con H if and only if MG ⊆ MH .
Some of our deepest understanding of large cardinal hypotheses comes from the inner
model program.

The inner models we have so far constructed have an internal structure which
admits a systematic, detailed analysis, a fine structure theory of the sort pioneered by
Ronald Jensen around 1970 ([11]). Thus being able to construct MH gives us a very
good idea as to what a universe satisfying H might look like. Inner model theory
thereby provides evidence of the consistency of the large cardinal hypotheses to which
it applies. (The author believes that this will some day include all the large cardinal
hypotheses currently studied.) Since forcing seems to reduce any consistency question
to the consistency question for some large cardinal hypothesis, it is important to have
evidence that the large cardinal hypotheses themselves are consistent! No evidence
is more convincing than an inner model theory for the hypothesis in question.

The smallest of the canonical inner models is the universe L of constructible
sets, isolated by Kurt Gödel ([7]) in his 1937 proof that CH is consistent with ZFC.
It was not until the mid 1960’s that J. Silver and K. Kunen ([47],[16]) developed
the theory of a canonical inner model going properly beyond L, by constructing
MH for H = “there is a measurable cardinal”. Since then, progressively larger MH

for progressively stronger H have been constructed and studied in detail. (See for
example [8],[20], and [21].) At the moment, we have a good theory of canonical
inner models satisfying “there is a Woodin cardinal”, and even slightly stronger
hypotheses. (See [19],[23], and [49], for example.) One of the most important open
problems in set theory is to extend this theory significantly further, with perhaps the
most well-known target being models satisfying “there is a supercompact cardinal”.

Inner model theory is a crucial tool in calibrating consistency strengths: in order
to prove that H ≤con T , where H is a large cardinal hypothesis, one generally
constructs a canonical inner model of H inside an arbitrary model of T . Because
we do not have a full inner model theory very far past Woodin cardinals, we lack
the means to prove many well-known conjectures of the form H ≤con T , where H
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is significantly stronger than “there is a Woodin cardinal”. Broadly speaking, there
are great defects in our understanding of the consistency strength hierarchy beyond
Woodin cardinals.

Inner model theory is also a crucial tool in developing the consequences for real
numbers of large cardinal hypotheses. Indeed, the basics of inner model theory for
Woodin cardinals were discovered in 1985-86 by D. A. Martin and the author, at
roughly the same time they discovered their proof of Projective Determinacy, or PD.
(Martin, Moschovakis, and others had shown in the 1960’s and 70’s that PD decides
in a natural way all the classical questions about projective sets left undecided by
ZFC alone.) This simultaneous discovery was not an accident, as the fundamental
new tool in both contexts was the same: iteration trees, and the iteration strategies
which produce them. Since then, progress in inner model theory has given us a
deeper understanding of pure descriptive set theory, and the means to solve some
old problems in that field.

The fundamental open problem of inner model theory is to extend the theory
to models satisfying “There is a supercompact cardinal”. One very well known test
question here is whether (ZFC+“there is a supercompact cardinal”) ≤con ZFC+PFA.
The answer is almost certainly yes, and the proof almost certainly involves an inner
model theory that is firing on all cylinders. That kind of inner model theory we have
now only at the level of many Woodin cardinals, but significant parts of the theory
do exist already at much higher levels.

1.3 Mice and iteration strategies

The canonical inner models we seek are often called mice. There are two principal
varieties, the pure extender mice and the strategy mice.3

A pure extender premouse is a model of the form Lα[ ~E] where ~E is a coherent
sequence of extenders. Here an extender is a system of ultrafilters coding an elemen-
tary embedding, and coherence means roughly that the extenders appear in order
of strength, without leaving gaps. These notions were introduced by Mitchell in the
1970s4, and they have been a foundation for work in inner model theory since then.

In this book, we shall assume that our premice have no long extenders on their
coherent sequences.5 Such premice can model superstrong, and even subcompact,

3Strategy mice are sometimes called hod mice, because of their role in analyzing the hereditarily
ordinal definable sets in models of the Axiom of Determinacy.

4See [20] and [21].
5An extender is short if all its component ultrafilters concentrate on the critical point. Otherwise,

it is long.
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cardinals. They cannot model κ+-supercompactness. Long extenders lead to an
additional set of difficulties.

An iteration strategy is a winning strategy for player II in the iteration game. For
any premouse M , the iteration game on M is a two player game of length ω1 +1.6 In
this game, the players construct a tree of models such that each successive node on
the tree is obtained by an ultrapower of a model that already exists in the tree. I is
the player that describes how to construct this ultrapower. He takes the last model
that appeared in the tree and chooses an extender E from the extender sequence of
that model. He then chooses another model in the tree and takes the ultrapower by
E of this model. If the ultrapower is ill-founded then player I wins; otherwise the
resulting ultrapower is the next node on the tree. Player II moves at limit stages λ
by choosing a branch of the tree that has been visited cofinally often below λ, and is
such that the direct limit of the embeddings along the branch is well-founded. If he
fails to do so, he loses. If II manages to stay in the category of wellfounded models
through all ω1 + 1 moves, then he wins. A winning strategy for II in this game is
called an iteration strategy for M , and M is said to be iterable just in case there is
an iteration strategy for it. Iterable pure extender premice are called pure extender
mice.

Pure extender mice are canonical objects; for example, any real number belonging
to such a mouse is ordinal definable. Let us say that a premouse M is pointwise
definable if every element of M is definable over M . For any axiomatizable theory
T , the minimal mouse satisfying T is pointwise definable. The canonicity of pure
extender mice is due to their iterability, which, via the fundamental Comparison
Lemma, implies that the pointwise definable pure extender mice are wellordered
by inclusion. This is the mouse order on pointwise definable pure extender mice.
The consistency strength of T is determined by the minimal mouse M having a
generic extension satisfying T , and thus the consistency strength order on natural T
is mirrored in the mouse order. However, in the case of the mouse order, we have
proved that we have a wellorder; what we cannot yet do is tie natural T at high
consistency strengths to it. As we climb the mouse order, the mice become correct
(reflect what is true in the full universe of sets) at higher and higher levels of logical
complexity.

Iteration strategies for pointwise definable pure extender mice are also canonical
objects; for example, a pointwise definable mouse has exactly one iteration strategy.7

6Iteration games of other lengths are also important, but this length is crucial, so we shall focus
on it.

7This follows from Theorem 4.11 of [53], and the fact that any iteration strategy for a pointwise
definable M has the weak Dodd-Jensen property with respect to all enumerations of M .
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The existence of iteration strategies is at the heart of the fundamental problem of
inner model theory, and for a pointwise definable M , to prove the existence of an
iteration strategy is to define it. In practice, it seems necessary to give a definition
in the simplest possible logical form. As we go higher in the mouse order, the logical
complexity of iteration strategies must increase, in a way that keeps pace with the
correctness of the mice they identify.

Our most powerful, all-purpose method for constructing iteration strategies is the
core model induction method. Because iteration strategies must act on trees of length
ω1, they are not coded by sets of reals. Nevertheless, the fragment of the iteration
strategy for a countable mouse that acts on countable iteration trees is coded by
a set of reals. If this set happens to be absolutely definable (that is, Universally
Baire) then the strategy can be extended to act on uncountable iteration trees in a
unique way. There is no other way known to construct iteration strategies acting on
uncountable trees. Thus, having an absolutely definable iteration strategy for count-
able trees is tantamount to having a full iteration strategy. The key idea in the core
model induction is to use the concepts of descriptive set theory, under determinacy
hypotheses, to identify a next relevant level of correctness and definability for sets
of reals, a target level at which the next iteration strategy should be definable.

Absolute definability leads to determinacy. Thus at reasonably closed limit steps
in a core model induction, one has a model M of AD + V = L(P (R)) that contains
the restrictions to countable trees of the iteration strategies already constructed.
Understanding the structure of HODM is important for going further.

1.4 HOD in models of determinacy

HOD is the class of all hereditarily ordinal definable sets. It is a model of ZFC8,
but beyond that, ZFC does not decide its basic theory, and the same is true of ZFC
augmented by any of the known large cardinal hypotheses. The problem is that
the definitions one has allowed are not sufficiently absolute. In contrast, the theory
of HOD in determinacy models is well-determined, not subject to the vagaries of
forcing.9

The study of HOD in models of AD has a long history. The reader should see
[59] for a survey of this history. HOD was studied by purely descriptive set theoretic

8See [24].
9We mean here determinacy models of the form M = L(Γ,R), where Γ is a proper initial segment

of the universally Baire sets. If there are arbitrarily large Woodin cardinals, then for any sentence
ϕ, whether ϕ is true in all such HODM is absolute under set forcing. This follows easily from

Woodin’s theorem on the generic absoluteness of (Σ2
1)UB statements. See [52, Theorem 5.1].
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methods in the late 70s and 80s, and partial results on basic questions such as whether
HOD |= GCH were obtained then. It was known then that inner model theory, if
only one could develop it in sufficient generality, would be relevant to characterizing
the reals in HOD. It was known that HODM is close to M in various ways; for
example, if M |= AD+ + V = L(P (R))10, then M can be realized as a symmetric
forcing extension of HODM , so that the first order theory of M is part of the first
order theory of its HOD. 11

Just how relevant inner model theory is to the study of HOD in models of AD
became clear in 1994, when the author showed that if there are ω Woodin cardinals
with a measurable above them all, then HODL(R) up to θL(R) is a pure extender
mouse.12(See [50].) Shortly afterward, this result was improved by Hugh Woodin,
who reduced its hypothesis to ADL(R), and identified the full HODL(R) as a model of
the form L[M,Σ], where M is a pure extender premouse, and Σ is a partial iteration
strategy for M . HODL(R) is thus a new type of mouse, sometimes called a strategy
mouse, sometimes called a hod mouse. See [66] for an account of this work.

Since the mid-1990s, there has been a great deal of work devoted to extending
these results to models of determinacy beyond L(R). Woodin analyzed HOD in
models of AD+ below the minimal model of ADR fine structurally, and Sargsyan
pushed the analysis further, first to determinacy models below ADR + “θ is regular”
(see [30] and [31]), and more recently, to models of still stronger forms of determinacy.
13 Part of the motivation for this work is that it seems to be essential in the core
model induction: in general, the next iteration strategy seems to be a strategy for a
hod mouse, not for a pure extender mouse. This idea comes from work of Woodin
and Ketchersid around 2000. (See [14] and [40].)

1.5 Least branch hod pairs

The strategy mice used in the work just described have the form M = L[ ~E,Σ], where
~E is a coherent sequence of extenders, and Σ is an iteration strategy for M . The
strategy information is fed into the model M slowly, in a way that is dictated in
part by the determinacy model whose HOD is being analyzed. One says that the

10AD+ is a technical strengthening of AD. It is not known whether AD ⇒ AD+, but in every
model of AD constructed so far, AD+ also holds. In particular, the models of AD that are relevant
in the core model induction satisfy AD+.

11This is a theorem of Woodin from the early 1980s. Cf. [59].
12In a determinacy context, θ denotes the least ordinal that is not the surjective image of the

reals.
13See [32]. Part of this work was done in collaboration with the author; see [55],[56], and [57].

The determinacy principles dealt with here are all weaker than a Woodin limit of Woodin cardinals.
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hierarchy of M is rigidly layered, or extender-biased. The object (M,Σ) is called a
rigidly layered (extender biased) hod pair.

Perhaps the main motivation for the extender-biased hierarchy is that it makes
it possible to prove a comparison theorem. There is no inner model theory without
such a theorem. Comparing strategy mice necessarily involves comparing iteration
strategies, and comparing iteration strategies is significantly more difficult than com-
paring extender sequences. Rigid layering lets one avoid the difficulties inherent in
the general strategy comparison problem, while proving comparison for a class of
strategy mice adequate to analyze HOD in the minimal model of ADR + “θ is reg-
ular”, and somewhat beyond. The key is that in this region, HOD does not have
cardinals that are strong past a Woodin cardinal.

Unfortunately, rigid layering does not seem to help in comparing strategy mice
that have cardinals that are strong past a Woodin. Moreover, it has serious costs.
The definition of “hod premouse” becomes very complicated, and indeed it is not
clear how to extend the definition of rigidly layered hod pairs much past that given
in [32]. The definition of “rigidly layered hod premouse” is not uniform, in that
the extent of extender bias depends on the determinacy model whose HOD is being
analyzed. Fine structure, and in particular condensation, become more awkward.
For example, it is not true in general that the pointwise definable hull of a level of
M is a level of M . (The problem is that the hull will not generally be sufficiently
extender biased.)

The more naive notion of hod premouse would abandon extender bias, and simply
add the least missing piece of strategy information at essentially every stage. This
was originally suggested by Woodin.14 The focus of this book is a general comparison
theorem for iteration strategies that makes it possible to use this approach, at least
in the realm of short extenders. The resulting premice are called least branch pre-
mice (lpm’s), and the pairs (M,Σ) are called least branch hod pairs (lbr hod pairs).
Combining results of this book and [63], one has

Theorem 1.1 ([63]) Assume AD++ “there is an (ω1, ω1) iteration strategy for a
pure extender premouse with a long extender on its sequence”; then

(1) for any Γ ⊆ P (R) such that L(Γ,R) |= ADR+ “there is no (ω1, ω1) iteration
strategy for a pure extender premouse with a long extender on its sequence”,
HODL(Γ,R) is a least branch premouse, and

14There are some fine-structural problems with the precise method for inserting strategy infor-
mation originally suggested by Woodin. The method for strategy insertion that is correct in detail
is due to Schlutzenberg and Trang. Cf. [46].
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(2) there is a Γ ⊆ P (R) such that L(Γ,R) |= ADR+ “there is no (ω1, ω1) iteration
strategy for a pure extender premouse with a long extender on its sequence”,
and HODL(Γ,R) |= “there is a subcompact cardinal”.

Of course, one would like to remove the mouse existence hypothesis of 1.1, and
prove its conclusion under AD+ alone. Finding a way to do this is one manifestation
of the long standing iterability problem we have discussed above. Although we do
not yet know how to do this, the theorem does make it highly likely that in models
of ADR that have not reached an iteration strategy for a pure extender premouse
with a long extender, HOD is a least branch premouse. It also makes it very likely
that there are such HOD’s with subcompact cardinals. Subcompactness is one of the
strongest large cardinal properties that can be represented with short extenders.15

Although we shall not prove Theorem 1.1 here, we shall prove an approximation
to it that makes the same points. That approximation is Theorem 8.11 below.

Least branch premice have a fine structure much closer to that of pure extender
models than that of rigidly layered hod premice. In this book we develop the basics,
including the solidity and universality of standard parameters, and a form of conden-
sation. In [65], the author and N. Trang have proved a sharper condensation theorem,
whose pure extender version was used heavily in the Schimmerling-Zeman work ([37])
on � in pure extender mice. It seems likely that the rest of the Schimmerling-Zeman
work extends as well.

Thus least branch hod pairs give us a good theory of HOD in the short extender
realm, provided there are enough such pairs. Below, we formulate a conjecture that
we call Hod Pair Capturing, or HPC, that makes precise the statement that there
are enough least branch hod pairs. HPC is the main open problem in the theory to
which this book contributes.

1.6 Comparison and the mouse pair order

Let us first say more about the nature of least branch hod pairs (M,Σ). There are
some important requirements on Σ in the definition.

Recall that an iteration tree on a premouse M is normal iff the extenders EWα
used in W have lengths increasing with α, and each EWα is applied to the longest

possible initial segment of the earliest possible model in W . Suppose now ~T is a
finite stack of iteration trees, with T0 being a normal tree on M , and Ti+1 being a
normal tree on the last model of Ti. Let N be the last model of the last tree. There

15Until now, there was no very strong evidence that the HOD of a determinacy model could
satisfy that there are cardinals that are strong past a Woodin cardinal.
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is a natural attempt to construct a “minimal” normal iteration treeW on M having
last model N . This attempt may break down by reaching an illfounded model. If
it does not break down, it will in the end produce a model R and an elementary
π : N → R. We call W the embedding normalization of ~T .

The strategies in least branch hod pairs are defined on finite stacks of normal
trees.

Definition 1.2 Suppose Σ is an iteration strategy for a premouse P .

(1) (Tail strategy) If s is a stack by Σ with last model Q, then Σs is the strategy
for Q given by: Σs(t) = Σ(s_t).

(2) (Pullback strategy) If π : N → P is elementary, then Σπ is the strategy for N
given by: Σπ(s) = Σ(πs), where πs is the lift of s by π to a stack on P .

(3) (Normalizes well) Σ normalizes well iff whenever s is a stack by Σ with last
model Q, and W is the embedding normalization of s, with associated map
π : Q→ R, then

(i) W is by Σ, and

(ii) Σs = (Σ〈W〉)
π.

(4) (Strong hull condensation) Σ has strong hull condensation iff whenever T is a
normal tree by Σ, and U is a psuedo-hull of T , then U is by Σ.

Here elementarity must be understood fine structurally; our convention is that ev-
ery premouse P has a degree of soundness attached to it, and elementarity means el-
ementarity at that quantifier level. The notion of psuedo-hull is defined in Definition
3.29 below. Strong hull condensation is a stronger version of the hull condensation
property isolated by Sargsyan in [30].

If M is a pure extender premouse, and Σ is a strategy for M that normalizes well
and has strong hull condensation, then we call (M,Σ) a pure extender pair. If M is
a least branch premouse, and Σ is a strategy for M that normalizes well, has strong
hull condensation, and whose internal strategy predicate is consistent with Σ, then
we call (M,Σ) a least branch hod pair. A pair of one of the two types is a mouse
pair.

If (M,Σ) is a mouse pair, and s is a stack by Σ with last model N , then we call
(N,Σs) an iterate of (M,Σ). If the branch M -to-N of s does not drop, we call it a
non-dropping iterate. In that case, we have an iteration map is : M → N .
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We have no hope of showing anything about mouse pairs (M,Σ) unless we assume
absolute definabilty for the iteration strategy. Here we assume Σ has scope HC, i.e.
that M is countable and Σ is defined on countable stacks of countable trees, and we
assume that we are in a model of AD+. The following is the main new result of the
book.

Theorem 1.3 (Comparison theorem, 6.21) Assume AD+, and let (P,Σ) and
(Q,Ψ) be mouse pairs with scope HC that are of the same type; then they have a
common iterate (R,Ω) such that on at least one of the two sides, the iteration does
not drop.

Even for pure extender pairs, this theorem is new, because of the agreement
between tail strategies it requires. In fact, it is no easier to prove the theorem for
pure extender pairs than it is to prove it for least branch hod pairs. The proof in
both cases is the same, and it makes use of the properties of the iteration strategies
we have isolated in the definition of mouse pair.

Working in the category of mouse pairs enables us to state a general Dodd-Jensen
lemma. Let us say π : (P,Σ)→ (Q,Ψ) is elementary iff π is elementary from P to Q,
and Σ = Ψπ. The iteration maps associated to non-dropping iterations of a mouse
pair are elementary.16

Theorem 1.4 (Dodd-Jensen lemma) Let (P,Σ) be a mouse pair, and (Q,Ψ) be
an iterate of (P,Σ) via the stack s. Suppose π : (P,Σ)→ (Q,Ψ) is elementary; then
s does not drop, and for all ordinals η ∈ P , is(η) ≤ π(η).

The proof is just the usual Dodd-Jensen proof; the point is just that the language
of mouse pairs enables us to formulate the theorem in its proper generality. There
is no need to restrict to mice with unique iteration strategies, as is usually done.

Similarly, we can define the mouse order in its proper generality, without restrict-
ing to mice with unique iteration strategies. If (P,Σ) and (Q,Ψ) are pairs of the
same type, then (P,Σ) ≤∗ (Q,Ψ) iff (P,Σ) can be elementarily embedded into an
iterate of (Q,Ψ). The Comparison and Dodd-Jensen theorems imply that ≤∗ is a
prewellorder on each type.

1.7 Hod pair capturing

Least branch hod pairs can be used to analyze HOD in models of AD+, provided
that there are enough such pairs.

16This is actually not obvious; it is a property of the iteration strategy known as pullback con-
sistency. It follows from strong hull condensation.
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Definition 1.5 (AD+)

(a) Hod Pair Capturing (HPC) is the assertion: for every Suslin-co-Suslin set A,
there is a least branch hod pair (P,Σ) such that A is definable from parameters
over (HC,∈,Σ).

(b) L[E] capturing (LEC) is the assertion: for every Suslin-co-Suslin set A, there
is a pure extender pair (P,Σ) such that A is definable from parameters over
(HC,∈,Σ).

An equivalent (under AD+) formulation would be that the sets of reals coding strate-
gies of the type in question, under some natural map of the reals onto HC, are Wadge
cofinal in the Suslin-co-Suslin sets of reals. The restriction to Suslin-co-Suslin sets A
is necessary, for AD+ implies that if (P,Σ) is a pair of one of the two types, then the
codeset of Σ is Suslin and co-Suslin. This is the main result of [63], where it is also
shown that the Suslin representation constructed is of optimal logical complexity.

Remark 1.6 HPC is a cousin of Sargsyan’s Generation of Full Pointclasses. See
[30] and [31], §6.1.

Assuming AD+, LEC is equivalent to the well known Mouse Capturing: for reals
x and y, x is ordinal definable from y iff x is in a pure extender mouse over y. This
equivalence is shown in [54]. (See especially Theorem 16.6.) We show in Theorem
6.71 below that under AD+, LEC implies HPC. We do not know whether HPC implies
LEC.

Granted ADR and HPC, we have enough hod pairs to analyze HOD.

Theorem 1.7 ([63]) Assume ADR and HPC; then Vθ ∩ HOD is the universe of a
least branch premouse.

Some techniques developed in [48] and [63] are needed to prove the theorem, so we
shall not prove it here.

The natural conjecture is that LEC and HPC hold in all models of AD+ that have
not reached an iteration strategy for a premouse with a long extender. Because our
capturing mice have only short extenders on their sequences, LEC and HPC cannot
hold in larger models of AD+.

Definition 1.8 NLE (“No long extenders”) is the assertion: there is no countable,
ω1 + 1-iterable pure extender premouse M such that there is a long extender on the
M-sequence.
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Conjecture 1.9 Assume AD+ and NLE; then LEC.

Conjecture 1.10 Assume AD+ and NLE; then HPC.

As we remarked above, 1.9 implies 1.10. Conjecture 1.9 is equivalent to a slight
strengthening of the usual Mouse Set Conjecture MSC. (The hypothesis of MSC is
that there is no iteration strategy for a pure extender premouse with a superstrong,
which is slightly stronger than NLE.) MSC has been a central target for inner model
theorists for a long time.

1.8 Constructing mouse pairs

The basic source for mouse pairs is a background construction. In the simplest case,
such a construction C builds pairs (Mν,k,Ων,k) inductively, putting extenders on the
Mν,k-sequence that are restrictions of nice extenders in V . The iteration strategy
Ων,k is induced by an iteration strategy for V , and if we are constructing strategy
premice, the relevant information about Ων,k is inserted into Mν,k at the appropriate
points. Mν,k+1 is the core of Mν,k. The construction breaks down if the standard
parameter of Mν,k behaves poorly, so that there is no core.

There is of course more to say here, and we shall do so later in the book. For
now, let us note that the background universe for such a construction should be a
model of ZFC that has lots of extenders, and yet knows how to iterate itself. In the
AD+ context, the following theorem of Woodin applies.17

Theorem 1.11 (Woodin) Assume AD+, and let Γ be a good pointclass such that
all sets in Γ are Suslin and co-Suslin; then for any real x there is a coarse Γ-Woodin
pair (N,Σ) such that x ∈ N .

Here, roughly speaking, N is a countable transitive model of ZFC with a Woodin
cardinal and a term for a universal Γ set, and Σ is an iteration strategy for N that
moves this term correctly, and is such that Σ∩N is definable over N . See Definition
4.14.

The following is essentially Theorem 6.70 to follow. It too is one of the main new
results of the book.

Theorem 1.12 Assume AD+, and let (N,Σ) be a coarse Γ-Woodin pair. Let C be
a least branch construction in N ; then C does not break down. Moreover, each of its
levels (MC

ν,k,Ω
C
ν,k) is a least branch hod pair in N , and extends canonically to a least

branch hod pair in V .

17See [15], and [58, Lemma 3.13].
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Background constructions of the sort described in this theorem have an important
role to play in our comparison process. Assume AD+, and let (M,Ω) and (N,Σ) be
mouse pairs of the same type. We compare (M,Ω) with (N,Σ) by putting M and N
into a common Γ-Woodin universe N∗, where Σ and Ω are in Γ∩ Γ̌. We then iterate
(M,Σ) and (N,Ω) into levels of a full background construction (of the appropriate
type) of N∗. Here are some definitions encapsulating the method.

Definition 1.13 Let (M,Σ) and (N,Ω) be mouse pairs of the same type; then

(a) (M,Σ) iterates past (N,Ω) iff there is a normal iteration tree T by Σ on M
whose last pair is (N,Ω).

(b) (M,Σ) iterates to (N,Ω) iff there is a normal T as in (a) such that the branch
M-to-N of T does not drop.

(c) (M,Σ) iterates strictly past (N,Ω) iff it iterates past (N,Ω), but not to (N,Ω).

Definition 1.14 (AD+) Let (P,Σ) be a mouse pair; then (*)(P,Σ) is the following
assertion: Let (N,Ψ) be any coarse Γ-Woodin pair such that P ∈ HCN∗, and Σ ∈
Γ ∩ Γ̌. Let C be a background construction done in N∗ of the appropriate type, and
let (R,Φ) be a level of C. Suppose that (P,Σ) iterates strictly past all levels of C that
are strictly earlier than (R,Φ); then (P,Σ) iterates past (R,Φ).

If (M,Ω) is a mouse pair, and N is an initial segment of M , then we write ΩN

for the iteration strategy for trees on N that is induced by Ω. We can unpack the
conclusion of 1.14 as follows: suppose the comparison of P with R has produced a
normal tree T on P with last model Q, with T by Σ, and S is an initial segment
of bot Q and R; then (Σ〈T 〉)S = ΦS. Thus the least disagreement between Q and
R is an extender disagreement. Moreover, if E on Q and F on R are the extenders
involved in it, then F = ∅.

We shall show (cf. Theorem 5.11 below)

Theorem 1.15 Assume AD+; then (*)(P,Σ) holds, for all mouse pairs (P,Σ).

This theorem lets us compare two (or more) mouse pairs of the same type in-
directly, by comparing them to the levels of an appropriate construction, done in
a Γ-Woodin model, where both strategies are in Γ ∩ Γ̌. One can show using the
Woodinness that C reaches non-dropping iterates of both pairs18. This gives us a
stage (M,Ω) of C such that one of the pairs iterates to it, while the other iterates
past it.

18See 2.53.
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1.9 The comparison argument

In what follows, we shall give fairly complete proofs of the theorems above. The
book is long, partly because we wanted to make it as accessible as possible, and
partly because we are looking more closely at the construction of iteration strategies
in [23], and there are many details there. However, the main new idea behind our
strategy-comparison theorem is quite simple. We describe it now.

The first step is to focus on proving (*)(P,Σ). That is, rather than directly com-
paring two strategies, we iterate them both into a common background construction
and its strategy. In the comparison-of-mice context, this method goes back to Kunen
([16]), and was further developed by Mitchell and Baldwin ([2]). The first proof of
comparison for pure extender mice with Woodin cardinals had this form, and Woodin
and Sargsyan had used the method for strategy comparison in the hod mouse con-
text. All these comparisons could be replaced by direct comparisons of the two mice
or strategies involved, but in the general case of comparison of strategies, there are
serious advantages to the indirect approach. There is no need to decide what to do
if one encounters a strategy disagreement, because one is proving that that never
happens. The comparison process is just the usual one of comparing least extender
disagreements. Instead of the dual problems of designing a process and proving it
terminates, one has a given process, and knows why it should terminate: no strategy
disagreements show up. The problem is just to show this. These advantages led the
author to focus, since 2009, on trying to prove (*)(P,Σ).

The main new idea that makes this possible is motivated by Sargsyan’s proof in
[30] that if Σ has branch condensation, then (*)(P,Σ) holds. Branch condensation
is too strong to hold once P has extenders overlapping Woodin cardinals; we cannot
conclude that Σ(T ) = b from having merely realized MT

b into a Σ-iterate of P . We
need some kind of realization of the entire phalanx Φ(T ab) in order to conclude that
Σ(T ) = b. This leads to a weakening of branch condensation that one might call
“phalanx condensation”, in which one asks for a family of branch-condensation-like
realizations having some natural agreement with one another. Phalanx condensa-
tion is still strong enough to imply (*)(P,Σ), and might well be true in general for
background-induced strategies. Unfortunately, Sargsyan’s construction of strategies
with branch condensation does not seem to yield phalanx condensation in the more
general case. For one thing, it involves comparison arguments, and in the general
case, this looks like a vicious circle. It was during one of the author’s many attempts
to break into this circle that he realized that certain properties related to phalanx
condensation, namely normalizing well and strong hull condensation, could be ob-
tained directly for background-induced strategies, and that these properties suffice
for (*)(P,Σ).
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Let us explain this last part briefly. Suppose that we are in the context of
Theorem 1.15. We have a premouse P with iteration strategy Σ that normalizes
well and has strong hull condensation. We have N a premouse occuring in the fully
backgrounded construction of N∗, where P ∈ HCN∗ and N∗ captures Σ. We compare
P with N by iterating away the least extender disagreement. It has been known since
1985 that only P will move. We must prove that no strategy disagreement shows
up.

Suppose we have produced an iteration tree T on P with last model Q, and
that Q|α = N |α, and that U is a tree on R = Q|α = N |α played by both ΣT ,Q|α
(the tail of Σ) and Ω, the N∗-induced strategy for N . Let U have limit length, and
let b = Ω(U). We must see b = Σ(〈T ,U〉). For this, we look at the embedding
normalization W (T ,U) of 〈T ,U〉, which also has limit length. We shall see:

(1) b generates (modulo T ) a unique cofinal branch a of W (T ,U) (see §3.7).

(2) Letting i∗b : N∗ → N∗b come from lifting iUb to N∗ via the iteration-strategy
construction of [23], we have that W (T ,U)a〈a〉 is a pseudo-hull of i∗b(T ). This
is the key step in the proof. It is carried out in section 4.3.

(3) i∗b(Σ) ⊆ Σ because Σ was Suslin-co-Suslin captured by N∗, so i∗b(T ) is by Σ.

(4) Thus W (T ,U)a〈a〉 is by Σ, because Σ has strong hull condensation.

(5) Since a determines b (see §3.7), and Σ normalizes well, we must then have
Σ(〈T ,U〉) = b, as desired.

Here is a diagram of the situation:
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MU
b MWb

∞ i∗b(R) N∗b

R R N∗

P

T

Wb i∗b (T )

U i∗b i∗b

Figure 1.1: Proof of (*)(P,Σ). Wb is a psuedo-hull of i∗b(T ).

Historical note. The author proved the main comparison theorem of this book in
Spring 2015. Its proof was circulated as a handwritten manuscript in July 2015. A
preliminary form of the present book was circulated in April 2016, and has been
revised and expanded since then, with the last major expansion taking place in
March-October 2019. The papers [60], [61],[62], [65],[48], [63], and [64], written in
2016-2018, have extended the work reported here in various directions.
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2 Preliminaries

Inner model theory deals with canonical objects, but inner model theorists have
presented them in various ways. The conventions we use here are all fairly common.
For basic fine structural notions such as projecta, cores, standard parameters, fine
ultrapowers, and degrees of elementarity, we shall follow the paper [41] by Schindler
and Zeman. We shall use Jensen indexing for the sequences of extenders from which
premice are constructed; see for example Zeman’s book [69]. The construction of
premice using background extenders comes ultimately from Mitchell-Steel [23], but
the precise definitions and notation we use come from Neeman-Steel [29]. Here is
some further detail.

2.1 Extenders and ultrapowers

Our notation for extenders is standard.

Definition 2.1 Let M be transitive and rudimentarily closed; then E = 〈Ea | a ∈
[θ]<ω〉 is a (κ, θ)-extender over M with spaces 〈µa | a ∈ [θ]<ω〉 if and only if

(1) Each Ea is an (M,κ)-complete ultrafilter over P ([µa]
|a|)∩M , with µa being the

least µ such that [µ]|a| ∈ Ea.

(2) (Compatibility) For a ⊆ b and X ∈M , X ∈ Ea ⇔ Xab ∈ Eb.

(3) (Uniformity) µ{κ} = κ.

(4) (Normality) If f ∈ M and f(u) < max(u) for Ea a.e. u, then there is a
β < max(u) such that for Ea∪{β} a.e. u, fa,a∪{β}(u) = ua,a∪{β}.

The unexplained notation here can be found in [41, §8]. We shall often identify
E with the binary relation (a,X) ∈ E iff X ∈ Ea. One can also identify it with
the other section-function of this binary relation, which is essentially the function
X 7→ iME (X) ∩ θ. We call θ the length of E, and write θ = lh(E). The space of E is

sp(E) = sup{µa | a ∈ [lh(E)]<ω}.

The domain of E is the family of sets it measures, that is, dom(E) = {Y | ∃(a,X) ∈
E(Y = X ∨ Y = [µa]

|a| − X)}. If M is a premouse of some kind, we also write
M |η = dom(E), where η is least such that ∀(a,X) ∈ E(X ∈M |η). By acceptability,
η = sup({µ+,M

a | a ∈ [θ]<ω}). The critical point of a (κ, θ) extender is κ, and we

21



use either crit(E) or κE to denote it. Given an extender E over M , we form the Σ0

ultrapower
Ult0(M,E) = {[a, f ]ME | a ∈ [lh(E)]<ω and f ∈M},

as in [41, 8.4]. Our M will always be rudimentarily closed and satisfy the Axiom of
Choice, so we have Los’ theorem for Σ0 formulae, and the canonical embedding

iME : M → Ult0(M,E)

is cofinal and Σ0-elementary, and hence Σ1-elementary. By normality, a = [a, id]ME ,
so lh(E) is included in the (always transitivized) wellfounded part of Ult0(M,E).
More generally,

[a, f ]ME = iME (f)(a).

If X ⊆ lh(E), then E � X = {(a, Y ) ∈ E | a ⊆ X}. E � X has the properties of
an extender, except possibly normality, so we can form Ult0(M,E�X), and there is
a natural factor embedding τ : Ult0(M,E � X)→ Ult0(M,E) given by

τ([a, f ]ME�X) = [a, f ]ME .

In the case that X = ν > κE is an ordinal, E � ν is an extender, and τ � ν is
the identity. We say ν is a generator of E iff ν is the critical point of τ , that is,
ν 6= [a, f ]ME whenever f ∈M and a ⊆ ν. Let

ν(E) = sup({ν + 1 | ν is a generator of E }).

So ν(E) ≤ lh(E), and E is equivalent to E�ν(E), in that the two produce the same
ultrapower.

We write λ(E) or λE for iME (κE). Note that although E may be an extender over
more than one M , sp(E), κE, lh(E), dom(E), ν(E), and λ(E) depend only on E itself.
If N is another transitive, rudimentarily closed set, and P (µa)∩N = P (µa)∩M for
all a ∈ [lh(E)]<ω, then E is also an extender over N ; moreover iME agrees with iNE
on dom(E). However, iME and iNE may disagree beyond that. We say E is short iff
ν(E) ≤ λ(E). It is easy to see that E is short iff lh(E) ≤ sup(iME “((κ+

E)M)). If E is
short, then all its interesting measures concentrate on the critical point. When E is
short, iME is continuous at κ+,M , and if M is a premouse, then dom(E) = M |κ+,M

E .
In this paper, we shall deal almost exclusively with short extenders. If we start
with j : M → N with critical point κ, and an ordinal ν such that κ < ν ≤ o(N),
then for a ∈ [ν]<ω we let µa be the least µ such that a ⊆ j(µ), and for X ⊆ [µa]

|a| in
M , we put

(a,X) ∈ Ej ⇔ a ∈ j(X).
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Ej is an extender over M , called the (κ, ν) extender derived from j. We have the
diagram

M N

Ult(M,E)

j

k
iME

where i = iMEj , and
k(i(f)(a)) = j(f)(a).

k�ν is the identity. If E is an extender over M , then E is derived from iME .
The Jensen completion of a short extender E over some M is the (κE, i

M
E ((κ+

E)M))
extender derived from iME . E and its Jensen completion E∗ are equivalent, in that
ν(E) = ν(E∗), and E = E∗� lh(E).

2.2 Pure extender premice

Our main results apply to premice of various kinds, both strategy premice and pure
extender premice, with λ-indexing or ms-indexing for their extender sequences. The
comparison theorem for iteration strategies that is our first main goal holds in all
these contexts. Although the proof of this theorem requires a detailed fine-structural
analysis, the particulars of the fine structure don’t affect anything important. We
shall prove it first in the case of iteration strategies for pure extender premice with λ-
indexing. The essential equivalence of λ-indexing with ms-indexing has been carefully
demonstrated by Fuchs in [4] and [5].

The reader should see [1, Def. 2.4] for further details on the following definition.
A Jensen premouse is a pair

M = 〈M̂, k〉,

where
M̂ = 〈J ~E

α ,∈, ~E, γ, F 〉

is an acceptable structure with various properties, and k < ω. The language L0 of
M̂ has ∈, predicate symbols Ė and Ḟ , and a constant symbol γ̇. We call L0 the
language of (pure extender) premice. We write k = k(M); it marks the level of the
Levy hierarchy over M̂ at which we are considering this structure, and we demand
that M̂ be k(M)-sound. So what we are calling a premouse is just a premouse in
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the usual sense, paired with a degree of soundness that it has. We usually abuse
notation by identifying M with M̂ .

Abusing notation this way, we set o(M) = ORD ∩M , so that o(M) = ωα for M
as displayed. (The [41] convention differs slightly here.) We write ô(M) for α itself.
The index of M is

l(M) = 〈ô(M), k(M)〉.

If 〈ν, l〉 ≤lex l(M), then M |〈ν, l〉 is the initial segment N of M with index l(N) =
〈ν, l〉. (So ĖN = ĖM ∩ N, and ḞN = ĖM

ων .) If ν ≤ ô(M), then we write M |ν for
M |〈ν, 0〉. We write M ||ν, or sometimes M |〈ν,−1〉, for the structure that agrees
with M |ν except possibly on the interpretation of Ḟ , and satisfies ḞM ||ν = ∅. By
convention, k(M ||ν) = 0.

Remark 2.2 We may occasionally consider pairs of the form M = 〈M̂, ω〉, call them
premice if for all k < ω, 〈M̂, k〉 is a premouse, and write k(M) = ω. But in most
contexts, we are considering premice M such that k(M) < ω.

Definition 2.3 If P and Q are Jensen premice, then P � Q iff there are µ and l
such that P = Q|〈µ, l〉. Also, P �Q iff P �Q and P 6= Q.

Thus if P and Q have the same universe, but k(P ) < k(Q), then P � Q. Also,
if P is passive and Q is active at o(P ), then it is not the case that P � Q. So for
example, if Q is active, iit is not the case that Q||o(Q)�Q, where Q||o(Q) is Q with
its last extender predicate removed. Other conventions would be possible, but this
one works best here.

If M is a Jensen premouse, then ĖM is a sequence of extenders, and ḞM is
either empty, or codes a new extender being added to our model by M . The main
requirements are

(1) (λ-indexing) If F = ḞM is nonempty (i.e., M is active), then M |= crit(F )+

exists, and for µ = crit(F )+M , o(M) = iMF (µ) = lh(F ). ḞM is just the graph
of iMF �(M |µ).

(2) (Coherence) iMF (ĖM)�o(M) + 1 = ĖMa〈∅〉.

(3) (Initial segment condition, J-ISC) If G is a whole proper initial segment of F ,
then the Jensen completion of G must appear in ĖM . If there is a largest whole
proper initial segment, then γ̇M is the index of its Jensen completion in ĖM .
Otherwise, γ̇M = 0.

(4) If N is an initial segment of M , then N is k(N) sound.
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Here an initial segment G = F �η of F is whole iff η = λG. Since Jensen premice are
acceptable J-structures, the basic fine structural notions apply to them, so clause
(4) above makes sense.

Figure 2.1 illustrates a common situation, one that occurs at successor steps in
an iteration tree, for example.

M

Ult(M,E)

E

κ+

κ

λ
λ+

N

Ult(N,E)

iNE

iME

iE

Figure 2.1: E is on the coherent sequence of M , κ = crit(E), and λ = λ(E).
P (κ)M = P (κ)N = dom(E), so Ult(M,E) and Ult(N,E) make sense. The ultrapow-
ers agree with M below lh(E), and with each other below lh(E) + 1.

There is a significant strengthening of the Jensen initial segment condition (3)
above. If M is an active premouse, then we set

ν(M) = max(ν(ḞM), crit(ḞM)+,M).

ḞM�ν(M) is equivalent to ḞM , and so it is not in M . But

Definition 2.4 Let M be an active premouse with last extender F ; then M satisfies
the ms-ISC (or is ms-solid) iff for any η < ν(M), F �η ∈M .

25



Clearly the ms-ISC implies the weakening of J-ISC in which we only demand that
the whole proper initial segments of ḞM belong to M . But for iterable M , this then
implies the full J-ISC. ( See [42].)

Theorem 2.5 (ms-ISC) Let M be an active premouse with last extender F , and
suppose M is 1-sound and (1, ω, ω1 + 1)-iterable; then M is ms-solid.

This is essentially the initial segment condition of [23], but stated for Jensen
premice. [23] goes on to say that the trivial completion of F �η is either on the
M -sequence, or an ultrapower away. This is correct unless F �η is type Z. If F �η is
type Z, then it is the extender of F �ξ-then-U , where ξ is its largest generator, and
U is an ultrafilter on ξ, and we still get F �η ∈ M . (See [42]. Theorem 2.7 of [42] is
essentially 2.5 above.)

If M is active, we let its initial segment ordinal be

ι(M) = sup({η + 1 | ḞM�η ∈M}).

So M is ms-solid iff ι(M) = ν(M). Theorem 2.5 becomes false when its soundness
hypothesis is removed, since if N = Ult0(M,E) where ν(M) ≤ crit(E) < λF , then
ι(N) = ι(M) = ν(M), but crit(E) < ν(N).

We shall not use ms-premice, so henceforth we shall refer to Jensen premice as
premice, or later, when we need to distinguish them from hod premice, as pure
extender premice.

2.3 Projecta and cores

If M = (N, k) is a premouse, then N is a k-sound acceptable J-structure. Thus
the projecta ρi(N) and standard parameters pi(N) exist for all i ≤ k + 1, as do the
reducts ( “Σi mastercodes”) N i = N i,pi(N). As in [41], if i ≤ k, then

ρi+1(N) = ρ1(N i),

and
pi+1(N) = pi(N)_〈r〉,

where r is the lexicographically least descending sequence of ordinals from which a
new subset of ρ1(N i) can be Σ1 defined over N i. Clearly, ORD ∩ N i = ρi(N), and
r ⊆ [ρi+1(N), ρi(N)). If i < k, then r is solid, so each α ∈ r has a standard solidity

witness W
α,pi(N)

N i that belongs to N i.
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Definition 2.6 (a) If Q is an amenable J-structure, then h1
Q is its canonical Σ1

Skolem function.

(b) If M is a premouse and n ≤ k(M), then hn+1
M is the rΣn+1 Skolem function

obtained by iteratively composing Σ1 Skolem functions of reducts. (Cf. [41],
5.4.)

(c) Let M = (N, k) be a premouse and α < ρk(N) and r ∈ [ρk(M)]<ω; then

Wα,r
M = transitive collapse of hk+1

N “(α ∪ r ∪ pk(M)).

When α ∈ pk+1(M) and r = pk+1(M) − (α + 1), we call Wα,r
M the standard

solidity witness for α.

Abusing notation, we speak of ρi(M),M i, etc., instead of ρi(N), N i, etc. Finally,
if k < ω, we set

ρ(M) = ρk+1(M), p(M) = pk+1(M), and hM = hk+1
M ,

where k = k(M), and call them the projectum, parameter, and Skolem function of
M . Let

C(M) = Ck(M)+1(M) = transitive collapse of hM“(ρ(M) ∪ p(M)),

considered as an L0-structure. Let π : C(M) → M be the anticollapse, and t =
π−1(p(M)). We say that M is k + 1 solid, or M has a core, iff pk+1(M) is k + 1
universal over M , and t is k+1 solid over C(M). This implies that t is k+1 universal
over C(M), that pk+1(M) is k + 1-solid over M , and that t = pk+1(C(M)). If M is
k(M) + 1 solid, then C(M) is the core of M . We say that M is sound iff M = C(M).
When we wish to consider C(M) as a premouse with degree of soundness attached,
we set

k(C(M)) = k(M) + 1.

We may occasionally say that M is k + 1 solid for some k > k(M). This just
means that Mk+1 exists, that is, that the process of starting with M and iteratively
taking cores, setting Ck(M)(M) = M and Ci+1(M) = C(Ci(M)), does not break down
by reaching some non-solid Ci(M) with i ≤ k. Mk+1 is the reduct which codes
Ck+1(M). We say that M is k + 1 sound if M is k + 1 solid, and M = Ck+1(M). (If
we ignore the distinguished soundness degrees, that is.)

For the notion of generalized solidity witness, see [41]. Roughly speaking, a gener-
alized solidity witness for α ∈ p1(M) is a transitive structure whose theory includes
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ThM1 (α ∪ p1(M)− (α + 1)). Being a generalized witness for an α ∈ pk(M) is a rΠk

condition, hence preserved by rΣk embeddings. Such embeddings may not preserve
being a standard witness.

The extension-of-embeddings lemmas relate reducts to the structures they code.
The downward extension of embeddings lemma tells us that if S is amenable and
π : S → Nn is Σ0, then there is a (unique) M such that S = Mn. The upward
extension lemma tells us that if π : Mn → S is Σ1 and preserves the wellfoundedness
of certain relations (the important one being ∈M as it is described in the predicate
of Mn), then there is a unique N such that S = Nn. See 5.10 and 5.11 of [41].

Remark 2.7 We have defined cores here as they are defined in [41]. In [23] they
are defined in slightly different fashion. First, [23] works directly with the Ck+1(M),
rather than with the reducts which code them. The translations indicated above
show that is not a real difference; see [23], page 40. Second, if k ≥ 1, then [23] puts
the standard solidity witnesses for pk(M) into the hull collapsing to Ck+1(M), and if
k ≥ 2, it also puts ρk−1(M) into this hull if ρk−1(M) < o(M). The definition from
[41] used above does not do this directly. We are grateful to Schindler and Zeman for
pointing out that nevertheless these objects do get into the cores as defined in [41],
and therefore the two definitions of Ck+1(M) are equivalent. [ For example, let k = 2
and let M be 1-sound, with α ∈ p1(M). Let r = p1(M)\(α+1). Let π : C2(M)→M
be the anticore map, and π(β) = α and π(s) = r. The relation “W is a generalized
solidity witness for α, r” is Π1 over M . (It is important to add generalized here.
Being a standard witness is only Π2.) Since π is Σ2 elementary, there is a generalized
solidity witness for β, s over C2(M) in C2(M). But any generalized witness generates
the standard one ([41], 7.4), so the standard solidity witness U for β, s is in C2(M).
Being the standard witness is Π2, so π(U) is the standard witness for α, r, and this
witness is in ran(π), as desired.]

2.4 Elementarity of maps

Given n-sound acceptable J-structures M and N , and π : Mn → Nn a Σ0 elementary
embedding on their n-th reducts, then by decoding the reducts we get a unique
π̂ : M → N that is Σn elementary and is such that π ⊆ π̂. If π is Σ1 elementary, then
π̂ is Σn+1 elementary. The decoding is done iteratively, and yields that for k < n,
π̂ : Mk → Nk is Σn−k or Σn−k+1, respectively. π̂ is called the n-completion of π. See
lemmas 5.8 and 5.9 of [41]. These lemmas record additional elementarity properties
of π̂, codified in definition 5.12 as rΣn+1-elementarity if π is Σ1, and weak rΣn+1-
elementarity if π is only Σ0. Such maps are cardinal preserving , in that M |= “γ is
a cardinal” iff N |= “π(γ) is a cardinal”, except possibly the weakly rΣ0 maps. In
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this case, we shall always just add cardinal preservation as an additional hypothesis.
This leads us to:

Definition 2.8 Let M and N be Jensen premice with n = k(M) = k(N), and
π : M → N ; then

(a) π is weakly elementary iff π is the n-completion of π �Mn, and π �Mn : Mn →
Nn is Σ0 and cardinal preserving.

(b) π is elementary iff π is the n-completion of π � Mn, and π � Mn : Mn → Nn

is Σ1.

(c) π is cofinal iff sup π“ρn(M) = ρn(N).

(d) π is an n-embedding iff π is cofinal and elementary.

The elementary maps correspond to those which are near n-embeddings in the
sense of [36]. The cofinal elementary maps correspond to the n-embeddings of [23].
When n ≥ 1, the weakly elementary embeddings correspond to those that are n-apt
in the sense of [36], Σ

(n)
0 in the sense of [69], or n-lifting in the sense of [43]. There are

many other levels of elementarity isolated in these references, but for our purposes
this is enough.

In particular, we shall not use the notion of weak n-embedding defined in [23]. In
the end, that notion is not very natural, and in a number of places it does not do the
work that the authors of [23] thought that it did. In particular, there are problems
with how it was used in the Shift Lemma, the copying construction, and the Weak
Dodd-Jensen Lemma. These problems are discussed in [43], and a variety of ways to
repair the earlier proofs are given. The simplest of these is to use weakly elementary
maps instead of of weak n-embeddings at the appropriate places.

The following is clear from the definition:

Proposition 2.9 Let M and N be Jensen premice with n = k(M) = k(N), and
π : M → N be weakly elementary; then

(1) π is Σn elementary,

(2) π(pk(M)) = pk(N) for all k ≤ n, and

(3) π(ρk(M)) = ρk(N) for k < n− 1, and sup π“ρn(M) ≤ ρn(N), and

(4) for any α < ρn(M), π(ThMn (α ∪ pn(M))) = ThNn (π(α) ∪ pn(N)).
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Note that we do not necessarily have that ρn(N) ≤ π(ρn(M)), or that π is Σn+1-
elementary on a set cofinal in ρn(M), which are the additional requirements from
[23] on weak n-embeddings.

It is easy to see that if π is (weakly) elementary as a map from (M,n) to (N, n),
and k < n, then π is (weakly) elementary as a map from (M,k) → (N, k). Indeed,
π �Mk is a stage in the decoding of π �Mn. If k(M) 6= k(N), then we say π : M → N
is (weakly) elementary iff it is (weakly) elementary as a map from (M,n) to (N, n),
where n = inf(k(M), k(N)).

Note that if π : M → N is weakly elementary, and k = inf k(M), k(N), then π
moves generalized solidity witnesses for pk(M) to generalized solidity witnesses for
pk(N). For example, being a generalized witness for p1(M) is a Π1 fact, so preserved
by Σ1 embeddings. Even cofinal elementary maps may fail to move standard solidity
witnesses to standard solidity witnesses.

Here are some natural contexts in which the levels of elementarity play a role.

(i) The natural map from the core of M to M is elementary and cofinal, that is,
a full n-embedding for n = k(M).

(ii) The maps îTα,β along branches of iteration trees are elementary and cofinal (see
below).

(iii) If π : M → N is weakly elementary, and T is a weakly normal tree on M ,
then πT is weakly normal, and the copy maps πα : MT

α → MπT
α are weakly

elementary. The Dodd-Jensen and weak Dodd-Jensen lemmas hold in the
category of weakly elementary maps.

(iv) If π,M,N, and T are as in (iii), and in addition, ρk(N) ≤ π(ρk(M)) for k =
k(M), then all the πα satisfy the corresponding condition, and if T is normal,
then so is πT . (See Remark 2.26 below.)

(v) By Lemma 1.3 of [36]), if π : M → N is elementary, and T is a weakly normal
tree on M , then the copy maps πα : MT

α → MπT
α are elementary. (They are

not necessarily cofinal.)

(vi) The maps πν,γτ occuring in an embedding normalization are elementary. The
maps σγ are weakly elementary, but may not be elementary, so far as we can
see. See Chapter 3.

(vii) The lifting maps that occur in the proof of iterability are only weakly elemen-
tary. They are not in general elementary. (See below.)
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2.5 Iteration trees

If M is a premouse with n = k(M), and E is a short extender over M with κE <
ρn(M) and P (κE)M ⊆ dom(E), then we set

Ult(M,E) = Ultn(M,E)

= decoding of Ult0(Mn, E).

The canonical embedding of Mn into Ult(Mn, E) is Σ1 and cofinal. Its n-completion
iME : M → Ultn(M,E) is therefore an n-embedding. (We assume here that Ultn(M,E)
is wellfounded, though one could make sense of these statements even if it is not.)
By convention,

k(M) = k(Ult(M,E)).

Rather than coding and decoding, one can define Ult(M,E) directly, as in [23]:

Ult(M,E) = {[a, fτ,q]ME | a ∈ [λ]<ω ∧ q ∈M ∧ τ ∈ SKn},

where n = k(M) and SKn is the set of rΣn Skolem terms.
If in addition ρ(M) ≤ κE, p(M) is solid, and E is close to M , then ρ(M) =

ρ(Ult(M,E)), and iME (p(M)) = p(Ult(M,E)), and p(Ult(M,E)) is also solid.
Our notation and terminology regarding iteration trees is essentially that of [53].

If T is a tree on M , then MT
α is its α-th model, and ETα is the exit extender taken

from the sequence of MT
α and used to form

MT
α+1 = Ult(M∗,T

α+1, E
T
α ).

where
M∗,T

α+1 =MT
β |〈ξ, k〉

for some β = T -pred(α + 1), and some 〈ξ, k〉 ≤ l(MT
β ) such that crit(ETα ) <

ρk(MT
β |ξ). We put α + 1 ∈ DT iff M∗,T

α+1 �MT
β iff l(M∗,T

α+1) < l(MT
β ), and we

say T drops at α + 1 in this case. So unlike [53], drops in degree yield elements of
DT too. If α ≤T β and (α, β]T ∩DT = ∅, then the canonical embedding

iTα,β : MT
α →MT

β

is cofinal and elementary; that is, it is an n-embedding, where n = k(MT
α ) = k(MT

β ).
All extenders in T are close to the models to which they are applied, so if crit(iTα,β) ≥
ρ(MT

α ), then ρ(MT
α ) = ρ(MT

β ) and iTα,β(p(MT
α )) = p(MT

β ).
We shall also have a use for the natural partial embeddings that exist along

branches that have dropped.
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Definition 2.10 Let U be an iteration tree, and α <U β. Then ı̂Uα,β is the natural
map from a (perhaps proper!) initial segment of MU

α into MU
β . More precisely,

i∗,Uβ+1 : M∗,U
β+1 → Ult(M∗,U

β+1, E
U
β )

is the canonical embedding,

ı̂Uα,β+1 = i∗Uβ+1 ◦ ı̂Uα,γ
if γ = U-pred(β + 1), and

ı̂Uα,λ(x) = iUβ,λ(̂ıα,β(x))

if λ is a limit ordinal, and β is past the last drop in [0, λ)U .

It would have been more natural to have originally defined iUα,β the way we just
defined ı̂Uα,β, but it is too late for that now. The difference between “ı̂” and “i” is
barely visible anyway.

If T is an iteration tree, then lh(T ) is the domain of its tree order, that is,
lh(T ) = {α | MT

α exists }. So if lh(T ) = α + 1, then MT
α exists, but ETα does not.

T �β is the initial segment U of T such that lh(U) = β. SoMT �α+1
α exists, but there

is no exit extender ET �α+1
α .

Remark 2.11 We allow iteration trees of length 1. Such a degenerate tree has no
extenders, and thus consists of only its base model. This convention plays some role
in the definitions of tree embeddings and strong hull condensation.

By normal we shall mean “Jensen normal”.

Definition 2.12 Let T be an iteration tree on a premouse M ; then T is normal iff

(1) if β + 1 < lh(T ) and α < β, then lh(ETα ) < lh(ETβ ), and

(2) if α+1 < lh(T ), then T -pred(α+1) is the least β such that crit(ETα ) < λ(ETβ ),
and

(3) M∗,T
α+1 = MT

β |〈η, k〉, where 〈η, k〉 ≤ l(MT
β ) is largest so that crit(ETα ) <

ρk(MT
β |η).

Definition 2.13 Let T be a normal iteration tree on a Jensen premouse; then for
any β < lh(T ),

λTβ = sup{λF | ∃η < β(F = ETη )}
= sup{λF | ∃η(η + 1 ≤T β ∧ F = ETη )}
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So λTβ is the sup of the “Jensen generators” of extenders used to produce MT
β . For

k = k(MT
β ), MT

β = hk+1“(ran(̂ı0,β) ∪ λTβ ).
If T is normal, then T -pred(β + 1) is the largest α such that λTα ≤ crit(ETβ ).

Another useful characterization is the following. Let θ be crit(ETβ )+, as computed in
MT

β | lh(ETβ ). Then

T -pred(β + 1) = least α such that MT
α |θ =MT

β |θ.

Note here that θ is passive inMT
β , so for α as on the right, θ is passive inMT

α . The
formula may fail if we replace the | by ||, for when λETα = crit(ETβ ), T -pred(β + 1) is
α + 1, not α.

Figure 2.2 shows how the agreement of models in a normal iteration tree is prop-
agated when the tree is augmented by one new extender. (Figures like this were first
drawn by Itay Neeman.)

0 β α α + 1

µ

λ(Eβ)

µ

F
lh(Eβ)

T

Figure 2.2: A normal tree T , extended normally by F . The vertical lines represent
the models, and the horizontal ones represent their levels of agreement. crit(F ) = µ,
and β is least such that µ < λ(ETβ ). The arrow at the bottom represents the
ultrapower embedding generated by F .

If one replaces the condition crit(ETα ) < λ(ETβ ) by the condition crit(ETα ) <
ν(ETβ ) in the definition of (Jensen) normality, one obtains a definition of ms-normality.
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(This is called s-normality in [5, §5].) In fact, there are some advantages to working
with ms-normal trees, even in the context of Jensen premice. One is that full back-
ground constructions of Jensen-normally iterable M seem to require superstrong
extenders in V ( but see [29]). On the other hand, one can show granted only a
Woodin with a measurable above that there is a ms-normally iterable Jensen mouse
with a Woodin cardinal, granted that there is in V a Woodin with a measurable
above it. ( [23] yields an ms-iterable ms-mouse with a Woodin, and [4] and [5] then
translates it to an ms-normally iterable Jensen mouse with a Woodin.) Neverthe-
less, 2.12 is the more common notion of normality in the setting of Jensen premice,
and it will serve our purposes. We believe that there are elementary simulations of
Jensen normal trees by ms-normal trees, and vice-versa, but we have not verified this
carefully.

Remark 2.14 ms-normal iterations preserve ms-solidity. As we remarked earlier,
Jensen normal iterations may not.

We also need stacks of normal trees.

Definition 2.15 Let M be a premouse; then s is a normalM -stack iff s = 〈(να, kα, Tα) |
α < β〉, and there are premice Mα for α < β such that

(1) Tα is a normal tree on Mα|〈να, kα〉,

(2) M0 = M ,

(3) if α < β and α is a limit ordinal, then Mα is the direct limit of the Mβ for
β < α, and

(4) if γ + 1 = α < β, then Mα is the last model of Tγ

The definition allows a gratuitous drop at the beginning of each normal tree Tα.
If 〈να, kα〉 = l(Mα) for all α, then we say s is maximal. We allow kα = −1, with the
convention that P |〈ν,−1〉 = P ||ν as above.

In (3), the direct limit is under the obvious partial maps ı̂sξ,γ : Mξ →Mγ, for ξ <
γ < α. We demand that for α < β a limit, there are only finitely many drops along
the branches producing these maps, and that the direct limit is wellfounded. We
write Mξ(s) and Tξ(s) for Mξ and Tξ. If dom(s) = α+ 1, then we write U(s) = Tα(s)
for the last tree in the stack. U(s) could have no last model.
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2.6 Jensen normal genericity iterations

Jensen normal genericity iterations must be allowed to drop, unless our identities are
generated by superstrong extenders. However, this dropping will not occur along the
main branch, so it is harmless. We explain this briefly now. The reader should see
[53, §7] for more detail on the extender algebra and genericity iterations.

Let M be a premouse, and µ < δ cardinals of M . We let B = BMµ,δ be the ω-
generator extender algebra determined by the extenders on the M |δ-sequence with
critical point > µ. . B is the Lindenbaum algebra of a certain infinitary theory T
in the propositional language Lδ,0 generated by the sentence symbols An, for n < ω.
For x ⊂ ω, x |= An iff n ∈ x, and then x |= ϕ for ϕ an arbitrary sentence of L0 has
the natural meaning. The axioms of T are those sentences of the form∨

α<κ

ϕα ←→
∨
α<λ

iE(〈ϕξ : ξ < κ〉) � λ,

whenever E is on the M |δ-sequence, crit(E) = κ > µ, iE(〈ϕξ : ξ < κ〉) � λ ∈ M |η,
for some cardinal η of M such that η < λE. Let us write T = T (M |δ, µ).

The usual argument shows that if δ is Woodin in M , then M |= “B is δ-c.c.”. It
is also clear that if M comes from a background construction in V , then every x ∈ V
satisfies all axioms of T . This is because if E generates an axiom as above, and E∗

is its background extender, then E � η = E∗ � η ∩M , for all M -cardinals η.
Given an iterable M as above, and an x ⊂ ω, we form a Jensen normal tree T

on M as follows: ETα is the first extender on the sequence ofMT
α with critical point

above µ that induces an axiom of T (MT
α | sup ı̂T0,α“δ, µ) not satisfied by x. The rest

is determined by the rules of Jensen normal trees. Note the hat above the i in the
formula! [0, α)T may have dropped. ı̂0,α(µ) = µ, but it may happen that ı̂0,α(δ) is
undefined.

As usual, the construction of T terminates with a last model MT
α such that x

satisfies all the axioms of T (MT
α | sup ı̂T0,α“δ, µ). We must see that in this case, [0, α)T

has not dropped. Suppose that it has, and let ξ+1 ≤T α be the site of the last drop,
and T -pred(ξ + 1) = γ. Let E = ETγ , and let

ψ =
∨
α<κ

ϕα ←→
∨
α<λ

iE(〈ϕν : ν < κ〉) � λ

be the bad axiom induced by E, and η a cardinal ofMT
γ such that ψ ∈MT

γ |η. Since
we dropped when applying ETξ , η ≤ crit(ETξ ), so ı̂Tγ,α � η is the identity. But also,
MT

γ | lh(E) �M∗
ξ+1, so ı̂Tγ,α(E) exists. Clearly, ı̂Tγ,α(E) still induces ψ as an axiom

of T (MT
α | sup ı̂T0,α“δ, µ). Since x does not satisfy ψ, the genericity iteration did not

terminate at α, contradiction.
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2.7 Iteration strategies

Let M be a premouse. G(M, θ) is the game of length θ in which I and II cooperate
to produce a normal tree on M , with II picking branches at limit steps, and being
obliged to stay in the category of wellfounded models. See [53], where the game is
called Gk(M, θ), for k = k(M). A θ-iteration strategy for M is a winning strategy
for II in G(M, θ).

If λ is a limit ordinal, then G(M,λ, θ) is the game in which the players play λ
rounds, the α-th round being a play of G(N, θ), where N has been produced by
the prior rounds. Thus a postion in G(M,λ, θ) that is not yet a loss for II is a
normal M -stack of length < λ whose component normal trees each have length < θ.
I extends the stack at successor stages, including starting a new normal tree if he
wishes. II picks branches at limit stages, and his obligation is just to insure all models
are wellfounded, including the direct limit of the base models in the final stack. A
(λ, θ)-iteration strategy for M is a winning strategy for II in G(M,λ, θ). See [53].

In order to unify the notation, let us set G(M, 1, θ) = G(M, θ).
It is natural to generalize these standard iteration games so that player I has

the freedom to “drop gratuitously” on any of his moves. For example, if M is
a premouse, we let G+(M, θ) be the variant of G(M, θ) in which player II must
pick cofinal wellfounded branches at limit steps as before, and given that T with
lh(T ) = α+ 1 is the play so far, I must pick Eα from the Mα =MT

α sequence such
that lh(Eβ) < lh(Eα) for all β < α. (Here M0 = M .) As before, we set

ξ = T -pred(α + 1) = least β s.t. crit(Eα) < λ(Eβ).

Let 〈ν, k〉 be least such that ρ(MT
ξ |〈ν, k〉) ≤ crit(Eα), or 〈ν, k〉 = l(Mξ). Let γ =

crit(Eα)+ in the sense of Mα| lh(Eα), or equivalently, in the sense of Mξ|〈ν, k〉. We
now allow I to pick any 〈η, l〉 such that

〈γ, 0〉 ≤ 〈η, l〉 ≤ 〈ν, k〉,

and we set
Mα+1 = Ult(Mξ|〈η, l〉, Eα).

We write Mξ|〈η, l〉 = T -pred(α + 1).

Definition 2.16 A weakly normal tree on an lpm M is a play of some G+(M, θ) in
which player II has not yet lost.

In older terminology, a weakly normal tree is just one that is length-increasing
and nonoverlapping.

36



Remark 2.17 Again, we allow degenerate weakly normal trees that use no exten-
ders. If M is the base model of some such T , then T may drop to some N �M ,
then end.

For λ a limit ordinal or λ = 1, we let G+(M,λ, θ) be the variant of G(M,λ, θ) in
which I is allowed gratuitous dropping within each of the λ rounds. (SoG+(M, 1, θ) =
G+(M, θ).) For notational reasons, we’ll allow I to drop in the base model for the
beginning of a round as well, though this is no extra generality in fact. II wins iff all
models reached are wellfounded, and if λ > 1, there are finitely many drops along
the sequence of base models, and their direct limit is wellfounded. We call a position
in some G+(M,λ, θ) in which II has not yet lost an M-stack.

Definition 2.18 An M -stack is a sequence s = 〈(να, kα, Tα) | α < β〉 with all the
properties of normal M-stacks, save that the Tα may be only weakly normal.

We allow some or all of the weakly normal trees in our M -stack to be empty.
Given an an M -stack s as above, we write (νi(s), ki(s), Ti(s)) for s(i), M0(s) = M ,
and Mi+1(s) for the last model of Ti(s), when i < dom(s) − 1. We write U(s) for
Tdom(s)−1(s), the last normal tree in s. We write M∞(s) for the last model of U(s), if
it has one. If s is a maximal M -stack, then we identify s with its sequence of trees
Ti(s), the νi(s) and ki(s) being determined by maximality. If s is merely normal, we
must specify the base models of the Ti(s) as well.

Tail strategies are defined by

Definition 2.19 Let Ω be a winning strategy for II in G+(M,λ, θ), and let s be an
M-stack according to Ω with lh(s) < λ such that M∞(s) exists; then Ωs is the strategy
for G+(M∞(s), λ− lh(s), θ) given by:

Ωs(t) = Ω(sat),

for all M∞(s)-stacks t.

The following notation will be useful:

Definition 2.20 Let Ω be a winning strategy for II in G+(M,λ, θ), and let s be
an M-stack according to Ω such that lh(s) < λ and M∞(s) exists, and let N =
M∞(s)|〈ν, k〉; then Ωs,N = Ωsa〈ν,k,∅〉. We also write Ωs,〈ν,k〉 for Ωs,N .
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When N = M |〈ν, k〉, we write ΩN or Ω〈ν,k〉 for Ω∅,N . Clearly, ΩN is a complete
strategy for N . Our definitions so far allow the tails of a iteration strategy to be
inconsistent with the strategy itself; for example, one could have a strategy Ω for
G+(M,λ, θ), and P �N �M such that (ΩN)P 6= ΩP . One could even have ΩM 6= Ω.
We shall eventually completely rule out such internal inconsistencies for the iteration
strategies we care about. The following definitions make a start on that.

Definition 2.21 Let Ω be a winning strategy for II in G+(M,λ, θ); then Ω is posi-
tional iff whenever s and t are M-stacks by Ω of length < λ, and N �M∞(s) and
N �M∞(t), then Ωs,N = Ωt,N .

The iteration strategies that are our focus are positional, but it is beyond the
scope of this book to show that. We shall instead use some approximations to
positionality here.

Let T be a weakly normal tree on Q, and Q�R. We can think of T as a weakly
normal tree T0 on R that always drops at least as far as Q when it applies an extender
to the base model. T0 uses the same extenders and has the same models as T , except
that the base model of T0 is R. Let us say that T0 is the R-equivalent of T .

Definition 2.22 Let Ω be a winning strategy for II in G+(M,λ, θ), where λ > 1.
We say that Ω is mildly positional iff whenever s is a M-stack by Ω with lh(s) < λ,
then

(a) Ωs,M∞(s) = Ωs,

(b) whenever P �N �M∞(s), then (Ωs,N)P = Ωs,P , and

(c) whenever P � N �M∞(s), T is a weakly normal tree by Ωs,P , and T0 is the
N-equivalent of T , then T0 is by Ωs,N .

The iteration strategies that are our focus in this book have two much stronger
internal consistency properties: they normalize well, and have strong hull condensa-
tion.

Definition 2.23 Let λ be a limit ordinal, or λ = 1. An complete (λ, θ)-iteration
strategy for M is a mildly positional winning strategy for player II in G+(M,λ, θ).
We say Σ is a complete strategy for M iff it is a complete (λ, θ)-iteration strategy,
for some ordinal λ and some θ.
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In Lemma 4.59 we show that complete strategies that normalize well and have
strong hull condensation have a property that we call strategy coherence. One clause
in strategy coherence is positionality, but restricted to stacks s and t consisting of
a single normal tree. In [48], we show that complete strategies that normalize well
and have strong hull condensation are fully positional.

We shall be especially interested in strategies defined on M -stacks of finite length.

Definition 2.24 Let θ be regular; then Σ is a complete iteration strategy with scope
Hθ iff Σ is a complete (ω, θ)-iteration strategy.

Remark 2.25 Here we have isolated (ω, θ)-strategies, rather than (θ, θ)-strategies,
because we wish to avoid the theory of normalizing infinite stacks. In order to
compare complete (ω1, ω1)-strategies one would have to normalize stacks of arbitrary
countable length. This can be done, (see [44] and [48]), but we have chosen not to
go into the process here. Complete (ω, ω1)-strategies are adequate for the theory of
HOD in models of ADR that we develop in Chapters 5-7.

The background constructions in Chapter 3 do produce complete (ω1, ω1)-strategies
that normalize well for countable stacks. These strategies are determined by their
action on normal trees. Once that has been shown, our strategy comparison process
becomes applicable.

Although a complete strategy with scope Hθ is only be required to act on fi-
nite stacks, it is part of player II’s winning condition that whenever s is a run of
G+(M,ω, θ) by Σ, then the direct limit Mω(s) of the Mi(s) for i < ω sufficiently
large exists, and is wellfounded. This requirement on Σ is crucial in the proof of the
Dodd-Jensen Lemma, 6.19.

The complete iteration strategies for premice that we consider in this book are
entirely determined by their action on normal trees ( see 4.60 ), but we do need to
consider how the strategies act on finite, non-maximal stacks of normal trees. We
have allowed them to act on non-maximal stacks of weakly normal trees because it
seemed natural to do so.

Given π : M → N weakly elementary, we can copy an M -stack s to an N -stack
πs, until we reach an illfounded model on the πs side. Thus if Ω is a complete
strategy for N , we have the complete pullback strategy Ωπ for M .

Remark 2.26 It is possible that π : M → N is weakly elementary, T is normal
on M , and πT is not normal. For example, we might have k(M) = 1, and E on
the M -sequence such that ρ1(M) ≤ crit(E), but π(crit(E))) < ρ1(N). If T starts

39



normally with E, will drop to M−, that is, to M with its degree reduced by one,
and form Ult(M−, E). Our copying process then requires πT to start by forming
Ult(N−, π(E)), which is for it a gratuitous drop.

Nevertheless, if T is weakly normal and π is weakly elementary, then πT will be
weakly normal. In §5.2 we describe the natural normal tree on N into which πT
embeds; this tree is called (πT )+.

Definition 2.27 [Pullback strategies] If Σ is a strategy for N , and π : M → N is
weakly elementary, then Ωπ is the pullback strategy for M , given by

Ωπ(s) = Ω(πs),

for all s such that πs ∈ dom(Ω).

The copy maps are all weakly elementary, and if π is fully elementary, then the copy
maps are all fully elementary. (Cf. 1.3 of [36].)

It is also useful to have a notation for a join of strategies:

Definition 2.28 Let Ω be a complete strategy for M , and s an M-stack by Ω; then
Ωs,<ν = 〈Ωs,〈η,k〉 | η < ν ∧ k ≤ ω〉.

Note that in general, Ωs,<ν is strictly weaker than Ωs,〈ν,0〉.
We shall often be working with a countable premouseM , and an iteration strategy

Σ for M that is defined on countable trees of some sort, with AD+ as our background
assumption. We can then extend Σ so that it acts on trees of length ω1, because
under AD+, ω1 is measurable. Here is a simple proposition along these lines.

Proposition 2.29 . Assume AD, and let Σ be an ω1-iteration strategy for a count-
able premouse M ; then Σ can be extended to an ω1 + 1 strategy for M .

Proof. Let T be a normal tree of length ω1 on M that is played by Σ. It will suffice
to show T has a cofinal, wellfounded branch. But let j : V → N with crit(j) = ω1

witness the measurability of ω1. The pair 〈T ,M〉 can be coded by a set of ordinals
A, and Los’s Theorem holds for ultrapowers of wellordered structures, so j : L[A]→
L[j(A)] is elementary. It follows that j(T ) is an iteration tree on M , T = j(T ) � ω1,
and ω1 < lh(j(T )). But this implies that [0, ω1)j(T ) is a cofinal, wellfounded branch
of T . �

Although it is quite easy to prove, this proposition stands at a key junction in inner
model theory. The direct proofs of iterability only produce branches for countable
iteration trees, even in the realm of linear iterations. Yet ω1 + 1-iterability is the
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minimal useful kind of iterability; for example, it is the kind needed to compare
countable premice. All known proofs of ω1 + 1-iterability involve at some point
producing an ω1-strategy Σ, and showing that Σ is sufficiently absolutely definable
that one can extend it to an ω1 + 1 strategy. In the proposition above, the absolute
definability of Σ is evidenced by its membership in a model of AD. In contexts where
one’s goal is more ambitious than analyzing HOD in models of AD, the absolute
definability of Σ has to be more finely calibrated, and a model of some fragment
of AD that contains Σ constructed along with Σ. This leads into the core model
induction method, our most all-purpose method for constructing iteration strategies.

Proposition 2.29, simple as it is, is one important reason that inner model theory
and descriptive set theory have become so entangled in recent years.

When calibrating definablity in terms of pointclasses, the standard procedure
is to code elements of HC (e.g. premice) by reals, and subsets of HC (e.g. ω1-
iteration strategies) by sets of reals. Of course, any reasonable way of doing this
is fine, but we may as well spell one out. For x ∈ R = ωω, we say Cd(x) iff
Ex =df {〈n,m〉 | x(2n3m) = 0} is a wellfounded, extensional relation on ω. If Cd(x),
then

πx : (ω,Ex) ∼= (M,∈)

is the transitive collapse map, and

set(x) = M and set0(x) = πx(0).

So Cd is Π1
1, and set0 maps Cd onto HC. For A ⊆ HC, we let

Code(A) = {x ∈ R | Cd(x) ∧ set0(x) ∈ A}.

If Σ is an iteration strategy with scope HC for a countable M , and Γ is a pointclass,
then we sometimes say “Σ ∈ Γ” when we mean Code(Σ) ∈ Γ.

Recall that a set A ⊆ R is κ-Universally Baire (κ-UB) iff there are trees T and
U on some ω × Z such that p[T ] = R \ p[U ] holds in V [g] whenever g is V -generic
for a poset of size < κ, and p[T ] = A holds in V . We call such a pair (T, U) a κ-UB
code of A.19 If κ is a limit of Woodin cardinals, then the κ-UB are the same as the
< κ-homogeneously Suslin sets; moreover, if A is κ-UB, as witnessed by the pair of
trees (T, U), then the theory of (HC,∈, p[T ]) is absolute for forcing of size < κ (cf.
[52]). This enables us to extend ω1-iteration strategies that are κ-UB to κ-iteration
strategies. As is well known, the extension is independent of the partucular UB code
chosen. In fact, with a little care, we do not need the Woodin cardinals to make it.

19The concept was first isolated and studied for its own sake by Q. Feng, M. Magidor, and W.H.
Woodin. See [3]. There are earlier related results due to K. Schilling and R. Vaught in [33].
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Proposition 2.30 Let A ⊆ HC, and suppose (T, U) is a κ-UB code of Code(A).
For b ∈ Hκ, put

b ∈ B iff Col(ω,< κ) 
 ∃x ∈ p[T ](set0(x) = b).

Then (HC,∈, A) ≺Σ1 (Hκ,∈, B).

Proof.(Sketch.) Note that p[T ] and p[U ] remain invariant in V Col(ω,κ), in that if
set0(x) = set0(y), then x ∈ p[T ] iff y ∈ p[T ], and similarly for U . Also, whether
x ∈ p[T ] for any and all x such that set0(x) = b is decided by the empty condition.
Suppose (Hκ,∈, B) |= ϕ[a], where ϕ is Σ1 and a ∈ HC. Let π : N → Vθ with N
countable and transitive, and π(〈T̄, Ū〉) = 〈T, U〉. Let π(M) = Hκ and π(B̄) = B.
We have π(a) = a, and (M,∈, B̄) |= ϕ[a]. Using T̄ and Ū and a simple absoluteness
argument, we see that B̄ = A ∩ M . So (M,∈, A ∩ M) |= ϕ[a]. But ϕ is Σ1, so
(HC,∈, A) |= ϕ[a], as desired. �

In order to apply the proposition to iteration strategies, we have to be careful
about how we present them. Given an ω1 strategy Σ, let AΣ be the set of all pairs
(T , α) such that T is a tree of limit length by Σ, and α ∈ Σ(T ).

Corollary 2.31 Let Σ be an ω1-iteration strategy for a countable premouse P , and
suppose that Code(AΣ) is κ-UB; then there is a κ-iteration strategy Ψ extending Σ.

Proof. Let B ⊆ Hκ be such that (HC,∈, AΣ) ≺Σ1 (Hκ,∈, B). It is not hard to see
that B = AΨ, where Ψ is the desired extension of Σ. �

Clearly, the extension Ψ to Hκ is independent of the particular κ-UB code of AΣ

chosen. We call Ψ the canonical κ-extension of Σ. Abusing language somewhat, we
may say that a κ-iteration strategy is κ-UB when it is the canonical κ-extension of
an ω1-strategy. The extension process works equally well for (λ, ω1)-strategies.

The following simple fact about such strategies is useful.

Proposition 2.32 Let Σ be a κ-UB κ-iteration strategy for some countable P , and
j : V →M with M transitive; then j(Σ) ∩Hκ ⊆ Σ.

Proof. Let (T, U) be a κ-UB code for Code(AΣ). Suppose T ∈ Hκ is by both Σ and
j(Σ), and has limit length λ. If α < λ, and α ∈ j(Σ)(T ), then letting set0(x) = 〈T , α〉
with x in V Col(ω,<κ), we get x ∈ p[j(T )]. As usual, this implies x /∈ p[U ], and hence
x ∈ p[T ]. Thus α ∈ Σ(T ), as desired. �

We shall show in 4.55 below that the conclusion j(Σ)∩Σ also follows from strong
hull condensation for Σ.
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2.8 Coarse structure

One must consider also iteration trees on transitive models M that are not equipped
with any distinguished fine structural hierarchy. In that case, we shall always assume
M |= ZFC, for simplicity. In general, V M

α plays the role that M |α would in the fine
structural case. All extenders are total on the models to which they are applied, and
all embeddings are fully elementary in the ∈-language. We shall sometimes call such
M , and associated objects like iteration trees or embeddings acting on them, coarse,
in order to distinguish them from their fine-structural cousins.

Definition 2.33 Let E be an extender over V ; then E is nice iff

(a) E is strictly short, that is, lh(E) < λ(E),

(b) lh(E) is strongly inaccessible, but not a measurable cardinal,

(c) Vlh(E) ⊆ Ult(V,E).

Nice E can be used to background extenders in a Jensen premouse, even though
lh(E) < λ(E). In practice, our background extenders will be such that lh(E) is
the least strongly inaccessible strictly above η, for some η, so that (b) holds. The
requirements of (b) enable us to avoid a counterexample to UBH for stacks of normal
trees due to Woodin. See 4.40 below.

Definition 2.34 Let T be an iteration tree on a coarse M ; then

(a) T is nice iff whenever α + 1 < lh(T ), then MT
α |= “ETα is nice”.

(b) T is normal iff

(i) if α < β and β + 1 < lh(T ), then lh(ETα ) < lh(ETβ ), and

(ii) if α + 1 < lh(T ), then T -pred(α + 1) is the least β such that crit(ETα ) <
lh(ETβ ).

This definition of normality is only appropriate for nice trees, but all our coarse
iteration trees will be nice, so that is ok. It would be possible to allow gratuitous
dropping, but we shall not do that. Nice iteration trees do not drop anywhere.
Moreover, we shall often restrict the choice of extenders in T even further.

Definition 2.35 Let T be an iteration tree on a coarse M , and F a set or class of
M ; then
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(a) T is an F -tree iff whenever α + 1 < lh(T ), then ETα ∈ iT0,α(F).

(b) T is above κ iff T is an F-tree, where F = {E | crit(E) > κ}.

(c) T is based on V M
δ iff T is an F-tree, where F = V M

δ .

(d) A putative F -tree on M is a system having all the properties of an F-tree on
M , except that its last model may be illfounded.

In Definition 2.35 we are not assuming that T is normal. It may be a stack of
normal trees, in which case we may call it an F -stack, or a putative F -stack. The
non-normal iteration trees that we consider will always be stacks of normal trees.
One could venture further into the wilds, but we shall not do that.

Definition 2.36 Let M |= ZFC be transitive, and F be a set or class of M ; then

(a) G(M, η, θ,F) is the variant of G(M, η, θ) in which I must choose his exit ex-
tenders from the current image of F , and

(b) an (η, θ,F)-iteration strategy for M is a winning strategy for II in G(M, η, θ,F).

By convention, these strategies are complete.
In general, the iteration strategies for coarse M that we consider choose branches

that, when allowed to act on the largest possible base model, become the unique
cofinal wellfounded branch.

Definition 2.37 Let M |= ZFC be transitive, let F be a set or class of M , and let
λ, θ ∈ OR; then

(a) M is strongly uniquely (λ, θ,F)-iterable iff there is a (λ, θ,F)-iteration strategy
Σ for M such that whenever T is a tree by Σ of limit length, then Σ(T ) is the
unique cofinal, wellfounded branch of T .

(b) M is strongly uniquely θ,F -iterable for normal trees iff M is strongly uniquely
(1, θ,F)-iterable.

We say that M is strongly uniquely (λ, θ)-iterable above κ, or for trees based on
V M
δ , iff M is strongly uniquely (λ, θ,F)-iterable for the associated F . Notice that

strong unique iterability is more than just having a unique iteration strategy; that
strategy must be to choose the unique cofinal, wellfounded branch.

Often, our F will be the class of extenders occuring in some coarsely coherent
sequence.
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Definition 2.38 A sequence ~F = 〈Fα | α < µ〉 is coarsely coherent iff each Fα is a
nice extender over V , and

(1) α < β ⇒ lh(Fα) < lh(Fβ), and

(2) if i : V → Ult(V, Fα) is the canonical embedding, and ~E = i(~F ), then ~E�α =
~F �α, and lh(Fα) < lh(Eα).

Definition 2.39 A coarse extender premouse is a structure M = (|M |,∈, ~F ) such

that |M | is transitive, ~F ∈ |M |, and (|M |,∈) |= ZFC + “~F is coarsely coherent”.

We sometimes identify M with its universe |M |. We write ~FM for the distinguished
coarsely coherent sequence of M .

Given a coarsely coherent ~F , an ~F -iteration tree is a {Fα | α < lh(~F )} -iteration

tree. That is, all extenders used must be taken from ~F and its images. Similarly for
~F -stacks of normal trees. So the trees in an ~F -stack are nice. In the coarse case,
iteration trees do not have any necessary drops, and we prohibit gratuitous dropping
just to keep things simple. Thus all ~F -stacks are maximal, by convention, and a
complete (λ, θ, ~F )-strategy is just a (λ, θ) strategy for ~F -trees in the usual sense.

The following simple lemma uses only clause (1) of coarse coherence.

Lemma 2.40 Let (M, ~F ) be a coarse premouse, and let Σ be an ~F -iteration strategy

for M ; then for any N , there is at most one normal ~F -iteration tree played according
to Σ whose last model is N .

Proof. Let T and U be distinct such trees. Because both are played by Σ and normal,
there must be a β such that T �β + 1 = U�β + 1, but G 6= H, where G = ETβ and

H = EUβ . Both G and H are taken from i(~F ), where i = iT0,β = iU0,β. Say G occurs

before H in i(~F ). Then G ∈ N because U is normal. But G /∈ N because T is
normal. �

Assuming AD+, we get coarse extender premice (M, ~F ) via the Γ-Woodin con-
struction. (See [58][§3] and [54][§10].) These M can have a Woodin cardinal δ, and
yet be correct for predicates in some complicated pointclass Γ. We shall have that
δ is countable in V , and M is strongly uniquely (ω1, ω1)-iterable for trees based on
V M
δ . The same construction also produces coarse strategy premice, although these

do not have Woodin cardinals. We say more about this in section 3.2.
Woodin has shown that if κ is supercompact, ~F is coarsely coherent and such

that κ < crit(E) for all E on ~F , and UBH holds in V Col(ω,<κ) for normal ~F -trees on

V , then V is strongly uniquely ~F -iterable for normal trees. See Theorem 4.31. We
show in 4.40 below that this implies that V is strongly uniquely (ω, θ, ~F )-iterable,
for all θ.
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2.9 Full background extender constructions

In this book, we shall be looking very carefully at full background extender construc-
tions, and in particular at how an iteration strategy Σ∗ for the background universe
induces iteration strategies for the premice occurring in such a construction. In
our applications, the background universes will satisfy “I am strongly uniquely ~F -
iterable”, where ~F is the sequence of background extenders used in the construction,
and Σ∗ will be the corresponding ~F -iteration strategy. In this section we look at the
well known construction of pure extender premice. Section 5.5 lays out the obvious
generalization to strategy mice.

We shall use the notation of [29] in this context. The reader should look at [29],
and at [1] on which it relies, for full definitions.

Definition 2.41 Let w be a wellorder of Vδ, and κ < δ. A w-construction above κ
is a full background construction in which the background extenders are nice, have
critical points > κ, cohere with w, have strictly increasing strengths, and are minimal
(first in Mitchell order, then in w).

More precisely, such a construction C consists of premice MC
ν,k, with k(Mν,k) = k,

and extenders FCν obtained as follows. (In the notation of [23], Mν,k = Ck(Nν), and
FCν is a choice of background extender for the last extender of Mν,0 = Nν .) We let
M0,0 be the passive premouse with universe Vω. For any k, ν,

Mν,k+1 = core(Mν,k) =def C(Mν,k).

We have an anti-core embedding π : Mν,k+1 → Mν,k with crit(π) ≥ ρ(Mν,k). For
k < ω sufficiently large, Mν,k = Mν,k+1, except of course that its associated k has

changed. That is, M̂ν,k is eventually constant as k → ω. We set

M̂ν,ω = eventual value of M̂ν,k as k → ω,

and

M̂ν+1,0 = rud closure of M̂ν,ω ∪ {M̂ν,ω},
arranged as a passive premouse,

and

Mν+1,0 = (M̂ν+1,0, 0).

Finally, if ν is a limit, put

M<ν = unique passive P such that for all premice N ,

N � P iff N �Mα,0 for all sufficiently large α < ν.
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There are two possibilities now: we may add a new extender to the sequence, or
not.

Case 1. For some F such that (M<ν , F ) is a Jensen premouse, and F is certifiable,
in the sense of Definition 2.1 of [29], we set

Mν,0 = (M<ν , F ).

A bicephalus argument shows that, under a natural iterability hypothesis, there is
at most one certifiable F such that (M<ν , F ) is a premouse.

Case 2. Otherwise.

Then we set
Mν,0 = M<ν .

(Again, our convention is that in case 1, M<ν is not an initial segment of Mν,0.) A
w-construction need not add an extender whenever possible. We say C is maximal iff
it does so, that is, iff case 1 occurs whenever there is an F meeting its requirements.
.

A certificate for F in the sense of 2.1 of [29] is a short extender F ∗. Let us write
κF = crit(F ) and λF = iF (κF ). F ∗ must have strength some inaccessible cardinal
η > λF , and satisfy

F ∗�λF ∩M<ν = F �λF .

Since F ∗ is short, iF ∗(κF ) ≥ η > λF , so we cannot replace λF by λF + 1 in this
equation. We add here to the demands on certificates that

(i) F ∗ is nice (so lhF ∗ = η),

(ii) ∀τ < ν (lhFCτ < η),

(iii) iF ∗(w) ∩ Vη = w ∩ Vη,

(iv) F ∗ ∈ Vδ, and crit(F ∗) > κ.

We then choose FCν to be the unique certificate for F such that

(∗) FCν is a certificate for F , minimal in the Mitchell order among all certificates
for F , and w-least among all Mitchell order minimal certificates for F .
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This has the consequence that lh(FCν ) is the least strongly inaccessible η such that
λF < η and ∀τ < ν (lhFCτ < η). We also get that FCν “coheres with C”. That is,
letting C�γ = 〈(Mτ,k, Fτ ) | τ < γ ∧ k ≤ ω〉 and F ∗ = FCν ,

1. iF ∗(C)�ν = C�ν,

2. M
iF∗ (C)
ν,0 is passive.

Thus the sequence ~FC of all FCν is coarsely coherent, and (V, ~FC) is a coarse extender
premouse.

We may want to start with some coarsely coherent ~F given in advance. An ~F -
construction is then a C with the properties above, except that in case 1 we require
that F have a certificate in ~F , and we let FCν be the first such certificate in ~F . Of

course, if C is a w-construction, then it is a ~FC-construction. It is an easy exercise to
show that if C is an ~F -construction, then it is a w-construction, for some wellorder
w.

Definition 2.42 A background construction (for pure extender mice) is a sequence
C = 〈MC

ν,k, F
C
ν 〉 with the properties listed above. We say that C is maximal iff it adds

an extender whenever there is one that meets the requirements of Case 1.

Of course, maximality is relative to the requirements for adding extenders. Any
construction C is maximal as an ~FC-construction.

The background constructions described above extract pure extender premice
from coarse extender premice. In Chapter 5 we shall describe background construc-
tions that extract fine-structural strategy mice from coarse strategy mice.

Let C be a background construction. By a C-iteration, we mean a ~FC-iteration
in the sense explained above. The length of C is the lexicographically least 〈µ, l〉
such that MC

µ,l does not exist.

Lemma 2.43 Let C be a background construction; then for any premouse N , there
is at most one 〈ν, k〉 such that N = MC

ν,k.

The proof is easy and well known. Notice that N = Mν,k implies by convention
that k = k(N). Without this convention, the lemma would fail.

Associated to a construction C we have resurrection maps Resν,k acting on initial
segments N of Mν,k, with Resν,k[N ] = 〈η, l〉 for some 〈η, l〉 ≤lex 〈ν, k〉. The idea is
that N traces back to Mη,l by following anti-core maps. σν,k[N ] is the associated
elementary (at level l) embedding of N into Mη,l. For example, suppose Resν,k and
σν,k are defined. We define Resν,k+1, σν,k+1 by
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A. If N = Mν,k+1, then Resν,k+1[N ] = 〈ν, k + 1〉 and σν,k+1[N ] = identity.

B. If N �Mν,k+1|(ρ+)Mν,k+1 , where ρ = ρ(Mν,k), then Resν,k+1[N ] = Resν,k[N ] and
σν,k+1[N ] = σν,k[N ].

C. Otherwise, letting π : Mν,k+1 → Mν,k be the anti-core map, Resν,k+1[N ] =
Resν,k[π(N)] and σν,k+1[N ] = σν,k[π(N)] ◦ π.

The reader should see [1] for the remainder of the definition. Two points on
agreeement of resurrection maps:

1. if N �Mν,k and ∀N ′ (N �N ′�Mν,k ⇒ ρ(N ′) ≥ γ), then σν,k[N ]�γ = identity.

2. if N � N∗ �Mν,k, and ∀N ′ (N � N ′ � N∗ ⇒ ρ(N ′) ≥ γ), then σν,k[N ]�γ =
σν,k[N

∗]�γ.

These of course just come from the fact that the anti-core map π : C(M) → M is
the identity on ρ(M).

Now let C = 〈(Mν,k, F
∗
ν ) | 〈ν, k〉 <lex 〈µ, l〉〉 be a construction above κ. Take

κ = 0 to save notation. Let Σ∗ be a (λ, θ)-iteration strategy for (V, ~FC). We wish to
describe the induced complete strategy Σ for Mν,k. For T a weakly normal iteration
tree played by Σ, we shall have a conversion system for T in the sense of Definition
2.2 of [29]. Such a conversion system converts trees on Mν,k to trees on V . The
particular conversion system we construct we call lift(T ,Mν,k,C). In general, a C-
conversion system for a weakly normal tree T consists of

(i) an iteration tree T ∗ on V ,

(ii) indices 〈ηξ, lξ〉 for ξ < lh T ,

(iii) maps πξ for ξ < lh T ,

so that, using Pξ, iξ,ν , Fξ, P
∗
ξ , i∗ξ,ν , F

∗
ξ for the models, embeddings, and exit extenders

of T and T ∗

1. πξ : Pξ →M
P ∗ξ
ηξ,lξ

is weakly elementary (where M
P ∗ξ
ηξ,lξ

is Mηξ,lξ in i∗0,ξ(C)),

2. T and T ∗ have the same tree order,

3. if ξ <T ν and (ξ, ν]T does not drop in model or degree, then 〈ην , lν〉 =
i∗ξ,ν(〈ηξ, lξ〉) and πν ◦ iξ,ν = i∗ξ,ν ◦ πξ.
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4. if ξ = T -pred(ν + 1) and this is a drop in model or degree to P̄ � Pξ, then

〈ην+1, lν+1〉 = i∗ξ,ν+1(Res
P ∗ξ
ηξ,lξ

[πξ(P̄ )]).

5. Let λξ = iFξ(crit(Fξ)), and αξ = lhFξ be the index of Fξ in Pξ, and σξ be the

resurrection map σ
i∗0,ξ(C)

ηξ,lξ
[πξ(Pξ ‖ αξ)]. Then for ξ < ν,

πν�λξ = σξ ◦ πξ�λξ
and

P ∗ξ | supσξ ◦ πξ“λξ = P ∗ν | supσξ ◦ πξ“λξ.

The particular conversion system lift(T ,Mν,k,C) is determined by these condi-
tions and the fact that

(a) 〈η0, l0〉 = 〈ν, k〉 and π0 = identity,

(b) let ξ = T -pred(ν + 1), and αν = lhFν , so that Fν is the last extender of Pν |αν .
Let

G = last extender of Res
P ∗ν
ην ,lν

[πν(Pν |〈αν , 0〉)];
then

F ∗ν = background extender for G provided by i∗0,ν(C).

(c) let ξ, ν etc. be as in (b). If (ξ, ν + 1]T is not a drop in model or degree, then

πν+1([a, f ]
Pξ
Fν

) = [σ ◦ πν(a), πξ(f)]
P ∗ξ
F ∗ν
,

where σ = σην ,lν [πν(Pν |αν)]. If it is a drop, to P̄ � Pξ, then

πν+1([a, f ]P̄Fν ) = [σ ◦ πν(a), τ ◦ πξ(f)]
P ∗ξ
F ∗ν
,

where σ is as above, and τ = σηξ,lξ [πξ(P̄ )]P
∗
ξ .

In clauses (4) and (c), we treat a gratuitous drop to P̄ in exactly the same way
as a necessary one, by resurrecting P̄ .

Definition 2.44 Let C be a background construction, let M = MC
ν,k be a model of

C, and let T be a weakly normal iteration tree on Mν,k; then

lift(T ,M,C) = 〈T ∗, 〈(ηξ, lξ) | ξ < lh(T )〉, 〈πξ | ξ < lh(T )〉〉,
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is the unique conversion system satisfying (1)-(5) and (a),(b) above. We write

T ∗ = lift(T ,M,C)0

for its tree component.

We can take Mν,k to be the input for the lift function, rather than 〈ν, k〉, because
of 2.43. lift(T ,M,C) is defined so long as its tree component T ∗ is a putative iteration
tree, that is, all models of T ∗ except possibly the last are wellfounded. We are most
interested in the case that the background universe is iterable. If Σ∗ is a strategy for
the background universe, or even just a partial strategy defined on all trees of the
form lift(T ,M,C), then Σ∗ induces a strategy Σ for M : for T weakly normal on M ,

T is by Σ⇔ lift(T ,M,C)0 is by Σ∗.

We write
Σ = Ω(C,M,Σ∗)

for this induced strategy. We may occasionally use the notation lift(T ,M,C,Σ∗)
for the largest initial segment of lift(T ,M,C) that is by Σ∗. So T is by Ω(C,M,Σ∗)
iff lift(T ,M,C) = lift(T ,M,C,Σ∗).

We need to see that the lifted tree T ∗ is normal. (This is true even if T itself is
only weakly normal.)

Lemma 2.45 Let T be weakly normal, and let lift(T ,Mν,k,C,Σ∗) = 〈T ∗, 〈(ηξ, lξ) |
ξ < lh T 〉, 〈πξ | ξ < lh T 〉〉; then T ∗ is normal.

Proof. Let Pξ, iξ,ν , Fξ, P
∗
ξ , i∗ξ,ν , F

∗
ξ be the models, embeddings, and extenders of T

and T ∗. Set

κξ = critFξ, λξ = iFξ(κξ),

κ∗ξ = critF ∗ξ , λ∗ξ = iF ∗ξ (κ∗ξ).

Normality for T ∗ is determined by its agreement ordinals, which are the lhF ∗α, not
the λ∗α. So what we want to show is that for all α, β, α < β implies lhF ∗α < lhF ∗β ,
and for all β, T ∗-pred(β + 1) is the least ξ such that κ∗β < lhF ∗ξ . Let

σξ = σ
i∗0,ξ(C)

ηξ,lξ
[πξ(Pξ ‖ 〈αξ, 0〉)]

be the resurrection embedding, so that

F ∗ξ = background extender for σξ ◦ πξ(Fξ) provided by i∗0,ξ(C).

Recall that in Jensen indexing, F is indexed at lhF = (λ+
F )Ult(M,F ).
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Sublemma 2.45.1 Let ξ + 1 < lh T ; then

(a) σξ ◦ πξ(λξ) < λ∗ξ = πξ+1(λξ),

(b) σβ�πξ+1(lhFξ) = identity, for all β ≥ ξ + 1,

(c) πβ�(lhFξ + 1) = πξ+1�(lhFξ + 1), for all β ≥ ξ + 1.

Proof. For (a): let G = σξ ◦ πξ(Fξ). Since F ∗ξ is the background in i∗0,ξ(C) for G,
λ∗ξ > λG = σξ ◦ πξ(λξ). But

πξ+1(λξ) = πξ+1([∅, constant κξ function]P̄τFξ )

= [∅, constant κ∗ξ function]
P̄ ∗τ
Fξ

= λ∗ξ ,

where τ = T -pred(ξ + 1) and P̄τ � Pτ is appropriate.
For (b), we have since T is weakly normal that for all β ≥ ξ+1, lhFξ is a cardinal

in Pβ, and ρk(Pβ)(Pβ) ≥ lhFξ. We then get by induction on β that ρlβ(M
i∗0,β(C)

ηβ ,lβ
) ≥

πξ+1(lhFξ), and πξ+1(lhFξ) is a cardinal in M
i∗0,β(C)

ηβ ,lβ
, for all β ≥ ξ+ 1. This gives (b).

For (c), we have λξ+1 > lhFξ, so

πβ�(lhFξ + 1) = σξ+1 ◦ πξ+1�(lhFξ + 1),

= πξ+1�(lhFξ + 1),

for all β > ξ + 1. �

Now we show T ∗ is normal. First, let α < β, with β + 1 < lh T ∗. Then

lhF ∗α < λ∗α = πα+1(λα) = πβ(λα)

= σβ ◦ πβ(λα) < σβ ◦ πβ(λβ) < lhF ∗β ,

as desired.
For the rest, it is enough to show that whenever α < β, then

κβ < λα iff κ∗β < lhF ∗α.

Suppose first κβ < λα. Then

κ∗β = σβ ◦ πβ(κβ) = πβ(κβ) = σα ◦ πα(κβ)

< supσα ◦ πα“λα < lhF ∗α.
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Suppose next κβ ≥ λα. Then

κ∗β = σβ ◦ πβ(κβ) ≥ σβ ◦ πβ(λα) = πβ(λα) = λ∗α.

But λ∗α > lhF ∗α, so κ∗β > lhF ∗α. �

If Σ∗ is defined on stacks of normal trees, of any length, then we can extend the
lifting process and the induced strategy Σ for Mν,k so that it is defined on stacks
of weakly normal trees if the same length. For example, if 〈T ,U〉 is a stack on
M = MC

ν,k, and Pξ =MT
ξ is the last model of T , and lift(T ,M,C)0 = T ∗ by Σ∗ with

last model P ∗ξ , then we have

πξ : Pξ →M
P ∗ξ
ηξ,lξ

from this lift. But Σ∗T ∗,P ∗ξ is a strategy for P ∗ξ on normal trees and by what we just

said, it induces a strategy Ω on N = M
iT
∗

0,ξ (C)

ηξ,lξ
. (We did not need that the background

universe was V .) We let

ΣT ,Pξ = Ωπξ

= πξ-pullback of Ω.

Similarly, we let

lift(〈T ,U〉,M,C〉 = 〈lift(T ,Mν,k,C), lift(πξU , N, iT
∗

0,ξ(C))〉.

In this way we can define lift(s,M,C) for any M -stack s. We let lift(s,M,C)0 be
the stack of normal trees in lift(s,M,C). The trees in s may be only weakly normal,
but those in lift(s,M,C)0 have no drops.

Definition 2.46 Let C be a background construction, and let Σ∗ be a (λ, θ)-iteration

strategy for (V, ~FC); then for any M = MC
ν,k, Ω(C,M,Σ∗) is the complete (λ, θ)-

strategy for M given by

s is by Ω(C,M,Σ∗)⇔ lift(T ,M,C)0 is by Σ∗.

.
If we fix a construction C and a strategy Σ∗ that witnesses the strong unique

~FC-iterability of its background universe, then the induced strategies Ω(C,M,Σ∗)
are all strategy coherent. We prove this in Lemma 4.59 below, but it should be
plausible. The strategies and their tails are all derived from the same strategy Σ∗,
and Σ∗ is itself coherent because it picks unique wellfounded branches. Here we show
the induced strategies are mildly positional.
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Lemma 2.47 Let C be a background construction, let Σ∗ be a (λ, θ)-iteration strategy

for (V, ~FC), and let M = MC
ν,k. Let N�M , and let 〈η, l〉 = Resν,k[N ] and σ = σν,k[N ];

then
Ω(C,M,Σ∗)N = Ω(C,MC

η,l,Σ
∗)σ.

Proof. This is immediate from the definitions. Letting Σ = Ω(C,M,Σ∗), ΣN =
Σ〈∅,N〉 is the tail of Σ after the empty normal tree followed by a gratuitous drop
to N . But then if T is the first normal tree in a stack on N and lift(T ,M,C) =
〈T ∗, 〈(νξ, kξ) | ξ < lh(T )〉, 〈ϕξ | ξ < lh(T )〉, we see from the way dropping is handled
in conversion systems that 〈ν0, k0〉 = 〈η, l〉 and ϕ0 = σ. This is what we need. �

Corollary 2.48 Let C be a background construction, let Σ∗ be a (λ, θ)-iteration

strategy for (V, ~FC), and let M = MC
ν,k; then Ω(C,M,Σ∗) is a complete strategy.

Proof. Let Σ = Ω(C,M,Σ∗). We must show that Σ is mildly positional.
ΣM comes from lifting the empty tree on M to the empty tree on V , then resur-

recting M to itself. So ΣM = Σ. Similarly, Σs,M∞(s) = Σs for all s by Σ.
Let P � N � M ; we show that (ΣN)P = ΣP . For let 〈η, l〉 = Resν,k[N ] and

σ = σν,k[N ]. Let 〈θ, j〉 = Resη,l[σ(P )] and τ = ση,l[σ(P )]. It is not hard to see that
〈θ, j〉 = Resν,k[P ] and τ ◦ σ = σν,k[P ]. We have then that both ΣP and (ΣN)P (the
tail of Σ after two empty trees and two drops) are both equal to Ω(C,Mθ,j,Σ

∗)τ◦σ.
The proof of the last paragraph applies also to tails Σs of Σ, so we have clause

(b) of mild positionality.
For clause (c), letQ�M , let T be weakly normal onQ and by ΣQ, and let U be the

M -equivalent of T . Using Lemma 2.47, it is easy to see that lift(〈〈∅, Q〉, T 〉,M,C)0

is the same as lift(U ,M,C)0, except that the first of these normal trees has one step
of padding at the beginning. When T applies an extender to some initial segment
of its base model Q, lift(〈〈∅, Q〉, T 〉,M,C) resurrects in C the image of P from the
resurrection of Q. At the corresponding step in U , lift(U ,M,C) will resurrect P in
C. Lemma 2.47 tells us we get the same lifting map both ways. �

Another elementary fact we need later is that lifting to a background universe
commutes with the copying construction. The proof is completely routine, but it
has the structure of somewhat less routine inductions we shall do later, so we run
through it here.

Lemma 2.49 Let R and S be transitive models of ZFC, R |= “C is a background
construction”, and let π : R → S be elementary with π(C) = D. Let M be a model
of C, N = π(M), and let s be an M-stack; then π lift(s,M,C)0 = lift(πs,N,D)0.
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Proof. We assume for simplicity that s consists of one weakly normal tree T
on M . The general case is quite similar. Let U = πT , T ∗ = lift(T ,M,C)0 and
U∗ = lift(U , N,D)0. We must see that U∗ = πT ∗.

Let πξ : MT
ξ →MU

ξ be the copy map. Let

lift(T ,M,C) = 〈T ∗, 〈(νξ, kξ) | ξ < lh(T )〉, 〈ϕξ | ξ < lh(T )〉

and
lift(U , N,D) = 〈U∗, 〈(ηξ, lξ) | ξ < lh(U)〉, 〈ψξ | ξ < lh(U)〉〉.

Let us write Cξ = iT
∗

0,ξ(C) and Dξ = iU
∗

0,ξ(D). Set Pξ = M
Cξ
νξ,kξ

and Qξ = M
Dξ
ηξ,lξ

. The

map that resurrects ϕξ(E
T
ξ ) inside Cξ is

ρξ = σνξ,lξ [M
Cξ
νξ,lξ
|〈lh(ϕξ(E

T
ξ )), 0〉].

Similarly, the resurrection map for ψα(EUα ) is

τξ = σηξ,lξ [M
Dξ
ηξ,lξ
|〈lh(ψξ(E

U
ξ )), 0〉].

For any construction D and G the last extender of MD
ν,0, we write BD(G) = FDν for

the background extender of G given by D. Thus

ET
∗

ξ = BCξ ◦ ρξ ◦ ϕξ(ETξ ),

and
EU

∗

ξ = BDξ ◦ τξ ◦ ψξ(EUξ ).

We define σξ : MT ∗
ξ →MU∗

ξ by induction on ξ, maintaining by induction on ξ

(a) U∗�ξ + 1 = πT ∗�ξ + 1, and for all α ≤ ξ, σα is the associated copy map,

(b) σξ(Pξ) = Qξ, and

(c) σξ ◦ ϕξ = ψξ ◦ πξ.

Let (†)ξ be the conjunction of (a) and (b), and assume that it holds. Let

E = ETξ and F = EUξ .

Thus πξ(E) = F . Let E∗ = ET
∗

ξ and F ∗ = EU
∗

ξ . So

σξ(E
∗) = σξ(B

Cξ ◦ ρξ ◦ ϕξ(E))

= BDξ ◦ τξ(σξ(ϕξ(E)))

= BDξ ◦ τξ ◦ ψξ ◦ πξ(F )

= F ∗.
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Line 2 comes from the fact that σξ(ρξ) = τξ by (b), and line 3 comes from (c).
Since σξ(E

∗) = F ∗, we get that F ∗ is the next extender used in πT ∗, and thus
πT ∗�ξ + 2 = U∗�ξ + 2. We let σξ+1 be the copy map,

σξ+1([a, f ]
MT ∗β
E∗ ) = [σξ(a), σβ(f)]

MU∗β
F ∗ ,

where β = T -pred(ξ + 1) is the predeccessor of ξ + 1 in all our trees.
We must verify (b) and (c) of (†)ξ+1. Suppose first that ξ + 1 is not a drop in T

(gratuitous or otherwise). It is then not a drop in U either, so Pξ+1 = iT
∗

β,ξ+1(Pβ) and

Qξ+1 = iU
∗

β,ξ+1(Qβ). But then

σξ+1(Pξ+1) = σξ+1 ◦ iT
∗

β,ξ+1(Pβ)

= iU
∗

β,ξ+1 ◦ σβ(Pβ)

= iU
∗

β,ξ+1(Qβ)

= Qξ+1,

so we have (b). For (c), let us consider the diagram

MU
ξ+1 Qξ+1 MU∗

ξ+1

Mξ+1T Pξ+1 MT ∗
ξ+1

MU
β Qβ MU∗

β

MT
β Pβ MT ∗

β

E

ϕβ

πβ

πξ

ϕξ+1

ψξ+1

σξ+1

F

ψβ

F ∗

E∗

σβ

E∗

σβ

σξ+1

F ∗

We are asked to show that σξ+1 ◦ ϕξ+1 = ψξ+1 ◦ πξ+1, that is, that the rectangle on
the top face of the cube commutes. We are given that all other faces of the cube
commute, so we have that σξ+1 ◦ ϕξ+1 agrees with ψξ+1 ◦ πξ+1 on ran(iTβ,ξ+1). Since
MT

ξ+1 is generated by ran(iTβ,ξ+1)∪λ(E), it is enough to show that σξ+1 ◦ϕξ+1 agrees
with ψξ+1◦πξ+1 on λ(E). But on λ(E), σξ+1◦ϕξ+1 agrees with σξ ◦ϕξ and ψξ+1◦πξ+1
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agrees with ψξ ◦ πξ, by the Shift Lemma. Hence our induction hypothesis (†)ξ (c)
gives us what we want.

The case that T drops at ξ + 1 is similar. Suppose the drop is to J �MT
β .

Let K = πβ(J) be what U drops to at ξ + 1, and let L = ϕβ(J) and N = ψβ(K).

To get to Pξ+1 and Qξ+1 we must resurrect our drop. Let 〈ν, k〉 = Res
Cξ
νβ ,lβ

[L]) and

Y = M
Cβ
ν,k . Let t : L → Y be the resurrection map, that is, t = σνβ ,kβ [L]. Similarly,

let Z be the resurrection of N is Dβ from stage 〈ηβ, lβ〉, and let u : N → Z be the
resurrection map. From the definition of a conversion system, we see that

Pξ+1 = iT
∗

β,ξ+1(Y )

and
Qξ+1 = iU

∗

β,ξ+1(Z).

But σβ(L) = N by (†)β, so σβ(Y ) = Z by elementarity, so σξ+1(Pξ+1) = Qξ+1. This
gives us (b) of (†)ξ+1. The reader can easily check (c) using a diagram like the one
above. Note here that σβ(t) = u. �

We get at once

Corollary 2.50 Let R and S be transitive models of ZFC, R |= “C is a background
construction”, and let π : R → S be elementary with π(C) = D. Let M be a model
of C, N = π(M), and let Σ be a complete strategy for S; then

Ω(C,M,Σπ) = Ω(D, N,Σ)π.

2.10 Iterating into a background construction

The idea that if one compares a countable mouse P with some level MC
ν,k of a back-

ground construction, then only the P side moves, goes back to Baldwin and Mitchell,
and in some sense even to Kunen. The proof is very much like the proof one learns
now that least disagreement comparisons terminate. The Skolem-hull-of-V embed-
ding is replaced by by some background extender embedding, and one gets thereby
that no backgrounded extender ever particpates in a disagreement.

The argument has been used many times at the level of Woodin cardinals (cf.
[35, Theorem 2.5] for example), but we know of no exposition in print of the very
simple form we need in this book. So we give one here.

Definition 2.51 Let M and P be premice, and let Σ be an iteration strategy for P ;
then
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(a) (P,Σ) iterates past M iff there is a normal iteration tree T by Σ on P with
last model Q such that M �Q,

(b) (P,Σ) iterates to M iff there are T and Q as in (a), and moreover, M = Q,
and the branch P -to-Q of T does not drop.

(c) (P,Σ) iterates strictly past M iff it iterates past M , but not to M .

Lemma 2.52 (Only the mouse moves.) Let C be a background construction above
κ such that each FCν is in Vδ, where δ is inaccessible. Let P be a premouse such that
|P | < κ, and let Σ be a δ-iteration strategy for P . Suppose that whenever E∗ = FCν
for some ν, we have

iE∗(Σ) ⊆ Σ.

Let M = MC
ν,k, and suppose that (P,Σ) iterates strictly past MC

η,j for all 〈η, j〉 <lex

〈ν, k〉; then (P,Σ) iterates past MC
ν,k.

Proof. Suppose not. Let E be the first extender used on the Mν,k-side in its com-
parison with P .

Claim 1. If (P,Σ) iterates strictly past Mν,n, then (P,Σ) iterates past Mν,n+1.

Proof. Let T with last model Q witness that (P,Σ) iterates strictly past Mν,n. If
Mν,n and Mν,n+1 are the same except for their distinguished soundness degrees n
and n + 1, then T witnesses that (P,Σ) iterates past Mν,n+1 (perhaps not strictly),
as desired. Otherwise Mν,n is not sound, so it must be equal to Q. But then

Mν,n+1 = core(Mν,n) =M∗,T
ξ for some ξ on the main branch of T . This implies that

T �ξ + 1 witnesses that (P,Σ) iterates past Mν,n+1.
�

Claim 2. Suppose (P,Σ) iterates strictly past Mν,k for all k < ω; then (P,Σ) iterates
past Mν+1,0.

Proof. The literal premouse M̂ν,k is eventually constant as k → ω. Thus there is a
fixed normal tree T of minimal length witnessing that (P,Σ) iterates strictly past
Mν,k for all k < ω. Letting Q be the last model of T , we have Mν,k � Q for all
sufficiently large k, and thus Mν+1,0 �Q. �

Claim 3. Let ν be a limit ordinal, and suppose that (P,Σ) iterates strictly past Mη,j

for all η < ν, and that Mν,0 is passive; then (P,Σ) iterates past Mν,0.

Proof. This is immediate. �
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Now suppose the lemma fails at ν, k. By the claims, k = 0, Mν,0 is active, and
(P,Σ) iterates past M<ν . Let E be the last extender of Mν,0, and let E∗ = FCν be
the background extender for E, and let T be the tree by Σ on P of minimal length
iterating it past Mν,0|| lh(E) = M<ν . Since the lemma is failing, E gets used in the
comparison of P with Mν,0. So setting α + 1 = lh(T ), we have that

(i) M || lh(E) =MT
α || lh(E),

(ii) M | lh(E) 6=MT
α | lh(E), and

(iii) for all ξ < α, lh(ETξ ) < lh(E).

Let κ = crit(E), let iE∗ : V → N be the canonical embedding, and let U = iE∗(T ).
Note that because P is countable and κ is a (measurable) cardinal, κ ≤ α. Let
λ = iE∗(κ).

Claim 4. κ <U λ, [κ, λ)U does not drop, and iE∗�MT
κ = iUκ,λ.

Proof. If β <T κ, then β = iE∗(β) <U λ. Since [0, λ)U is a closed set of ordinals,
κ ≤U λ. Since [0, κ)T has only finitely many drops, these are the same as the drops
of [0, λ)U , so [κ, λ)U does not drop. Finally, if x ∈ MT

κ , then we have β <T κ and x̄
such that iTβ,κ(x̄) = x. But then

iE∗(x) = iE∗(i
T
β,κ(x̄))

= iE∗(i
T
β,κ)(x̄)

= iUβ,λ(x̄)

= iUκ,λ(i
U
β,κ(x̄))

= iUκ,λ(x),

as desired. �

Claim 5. U is by Σ, and U�α + 1 = T .

Proof. U is by iE∗(Σ). But iE∗(Σ) ⊆ Σ, so U is by Σ. So in N , U is obtained
by iterating P , using Σ, so as to remove least disagreements with iE∗(M). Since
E∗ ceritifies E, we have iE∗(M)|| lh(E) = Ult(M | lh(E), E)|| lh(E) = M || lh(E).
Thus the process that produces U is the same as the process that produced T , until
extenders with length ≥ lh(E) are used, so T = U�α + 1. �

Now let G = EUξ , where κ = U -pred(ξ+1) and ξ+1 <U λ. G is an initial segment
of the extender of iUκ,λ, so by Claim 4, G is compatible with E. If G is a proper initial

59



segment of E, then G is on the M || lh(E)-sequence, so G is on the MU
λ -sequence

because MU
α || lh(E) = iE∗(M)|| lh(E). But then lh(G) is not a cardinal in MU

λ ,
contrary to its having been used in U . If E is an initial segment of G, we get that E
is on the sequence ofMU

ξ , and hence on the sequence ofMU
α =MT

α . But this means
that E was not part of the least disagreement between MT

α and M , contradiction.
�

We can use this to show that the output of a maximal construction done below
a Woodin cardinal is universal for mice of size strictly less than its additivity. This
argument has probably been known since the late 1980s, but we can find no ap-
propriate reference. A stronger version involving partial background extenders and
universality with respect to weasels traces back to the paper [22] by Mitchell and
Schindler. The author adapted the stronger version to full background constructions,
where the Woodin cardinal becomes necessary. See [54, Lemma 11.1] and [29].

Theorem 2.53 (Universality at a Woodin cardinal) Suppose that ~F be coarsely co-

herent, ~F ⊆ Vδ, and δ is Woodin as witnessed by extenders on ~F . Let C be a
maximal ~F -construction. Let P be a premouse, |P | < crit(Fν) for all ν, and let Σ be

a δ + 1-iteration strategy for P . Suppose that whenever E∗ is on ~F , we have

iE∗(Σ) ⊆ Σ.

Then there is a ν < δ and k < ω such that MC
ν,k exists, and (P,Σ) iterates to MC

ν,k.

Proof. The proof would be a bit easier if we assumed that C never breaks down,
but we do not need to do that. Here we say that C breaks down at 〈ν, k〉 iff MC

ν,k

exists, and either

(i) the standard parameter of Mν,k is either not solid, or not universal, or

(ii) ν is a limit ordinal, k = 0, and the Bicephalus Lemma fails, in that there are
background certified F and G such that (M<ν , F ) and M<ν , G) are premice,
and F 6= G.

Claim 1. Suppose C breaks down at 〈ν, k〉; then there is an 〈η, j〉 <lex 〈ν, k〉 such
that (P,Σ) iterates to MC

η,j.

Proof. Suppose first that there is an 〈η, j〉 <lex 〈ν, k〉 such that (P,Σ) does not iterate
strictly past Mη,j. Then for the lexicographically least such 〈η, j〉, (P,Σ) iterates to
Mη,j, by 2.52, so we are done. Thus we may assume (P,Σ) iterates strictly past Mη,j

for all 〈η, j〉 <lex 〈ν, k〉. By Lemma 2.52, we get that (P,Σ) iterates past Mν,k.
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P is iterable, so the standard parameters of its iterates are solid and universal.
So (i) does not hold at 〈ν, k〉, and it must be (ii) that holds. Let F and G witness
this, and let F ∗ and G∗ be background certificates for them. Let T be the shortest
tree by which (P,Σ) iterates past Mν,0|| lh(F ) = Mν,0|| lh(G), and let α+ 1 = lh(T ).
We now simply apply the proof of Lemma 2.52 to both F and G, and it shows that
both of them are on the sequence of MT

α . Thus F = G, contradiction. �
Thus we may assume that C never breaks down, and that (P,Σ) iterates past

Mν,k for all ν < δ and k ≤ ω. Let

M = (M<δ)C

be the unique passive premouse such that o(M) = δ and for all ξ < δ, M |ξ �MC
α,0

for all sufficiently large α < δ. Clearly, (P,Σ) iterates past M . Let T on P be the
normal tree by Σ that witnesses this. We have that lh(T ) = δ + 1, δ(T ) = δ, and

M �MT
δ ,

because δ is inaccessible. Let b = [0, δ)T , and for β < δ, let f(β) = min(b− (β + 1)).
Since δ is Woodin, we can find a nice extender F ∗ with critical point α and length η
such that for j = iF ∗

(1) f“α ⊆ α, and j(f)(α) < η,

(2) M ||η = j(M)||η, and

(3) j(b) ∩ η = b ∩ η.

Let τ + 1 <T δ be such that α = T -pred(τ + 1), and let F = ETτ . By (1) and (3),
τ + 1 = j(f)(α) is the first point in j(b) above α. Letting U = j(T ) and λ = j(α),
we have as usual that MT

α =MU
α , and

j �MT
α = iUα,λ.

But in fact T � η = U � η by (2) and the fact that j(Σ) ⊆ Σ. So F = EUτ , where
α <U τ + 1 <U λ ∈ j(b), which implies that F ∗ is a background certificate for F .

Let ν be the least stage of C such that M || lh(F ) �M<ν . Because lh(F ) is a
cardinal of M , we must have M<ν = M || lh(F ). But then Mν,0 = (M<ν , F ), because
our construction is maximal. After 〈ν, 0〉 the levels of C do not project strictly below
λF , because M �MT

δ . This implies that F is on the M -sequence, contrary to its
being used in T . �
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3 Normalizing stacks of iteration trees

In this chapter, we shall show how one can re-order the use of extenders in a finite
stack s of normal iteration trees, so as to produce a single normal tree W (s) such
that the last model of s embeds into the last model of W (s). We call this process
embedding normalization. Our goal here is to give some basic definitions and prove
some elementary theorems that help one deal with the complexities of this process.
In Chapter 4 we shall apply the resulting theory to the comparison of iteration
strategies.

We shall focus throughout the chapter on finite, maximal M -stacks, that is,
on finite stacks of normal trees on M that involve no gratuitous dropping at the
beginning of a round. Everything we prove generalizes easily to arbitrary finite M -
stacks, but rather than complicate the notation further, we shall just make some
occasional remarks on how the generalization goes.

The results of this chapter have the pleasant feature that one need only under-
stand the basic facts about iteration trees and premice in order to follow their proofs.
Indeed, it seems to us that this is a place where someone with minimal background
knowledge could get a feel for iteration tree combinatorics. With that in mind, we
have gone more slowly, including more examples and variant proofs than a more
advanced reader would require.

In that spirit, we begin in §2.1 by considering the simplest possible case, normal-
izing a stack of length two in which each component tree uses only one extender.
The results of this section are not used later, but they do help give a feel for what’s
going on. We also show in §2.1 that these simple stacks can be fully normalized, in
that, granted an iterability assumption, one can find a normal tree X(s) whose last
model is equal to the last model of s.

In §2.2 we consider the special case of stacks 〈T ,U〉 in which U uses only one
extender, and in §2.5 we define W (〈T ,U〉) = W (T ,U) for the general maximal stack
of length two. We do use some of the definitions of §2.2 in §2.5.

In §2.3 we introduce extender trees, which are simple re-packagings of iteration
trees that are sometimes helpful. In §2.4 we introduce something much more im-
portant, the notion of a tree embedding.20 This notion is absolutely central to our
work here. What makes an iteration strategy Σ comparable with other strategies is
that if U is by Σ, and T is tree-embeddable into U , then T is by Σ. We call this
property of Σ strong hull condensation. Tree embeddings play an important role in
the definition of W (T ,U), as we shall see.

§2.6 and §2.7 are devoted to elementary facts about W (T ,U). The most sub-

20Tree embeddings were isolated independently by Schlutzenberg and the author. See [44].
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stantial result here concerns the way branches of W (T ,U) correspond in one-one
fashion with pairs consisting of a branch of T and a branch of U . Finally, in §2.8 we
describe the normalization of stacks of arbitrary finite length, and say a few words
about normalizing stacks of infinite length.

In general, there are two sorts of base models M for the iteration trees we deal
with in this book: coarse premice, and fine-structural premice. Both sorts divide
further into pure extender and strategy premice. The definition of W (T ,U) will
make sense in both cases. In this chapter we shall focus on the case that M is a fine
structural, pure extender premouse, with Jensen indexing for its extender sequence.
Until we get to Chapter 5, this is what we shall mean by the unqualified premouse.
We do also need to define W (T ,U) in the coarse structural case as well, and we shall
indicate how to do so as we proceed. But then we are just talking about ultrapowers
of models of ZFC by nice extenders, so various things simplify.

One useful consequence of our definitions is:

Lemma 3.0 Let M and N be premice, coarse or fine, and let Σ an iteration strategy
for M ; then there is at most one normal iteration tree T according to Σ having last
model N .

In the coarse structural case, this is not clear, even if Σ chooses unique cofinal
wellfounded branches, unless we restrict our iterations to ~F -trees, for some fixed
coarsely coherent ~F . In that case, we have proved in in Lemma 2.40. That proof
works also in the fine structural case. We shall use Lemma 3.0 in an important way
in the proof of Lemma 3.67 below.

The construction of W (T ,U) does not require that any iteration strategy for M
be fixed; however, it may break down by reaching illfounded models, even if the
models of T aU are wellfounded. In the case we care about, M has an iteration
strategy Σ , 〈T ,U〉 is played according to Σ, and the initial segment of W (T ,U) up
to our point of interest is also played by Σ. We can then invoke Fact 3.0, relative to
Σ, for the models in W (T ,U) up to our point of interest. We shall eventually show
that if Σ has strong hull condensation, then W (T ,U) is also by Σ, and hence the
construction of W (T ,U) does not break down.

3.1 Normalizing trees of length 2

We begin by looking closely at stacks of the form 〈〈E〉, 〈F 〉〉.
Let M be a premouse, E on the sequence of M , crit(E) < ρk(M)(M), and N =

Ult(M,E). Let F be on the sequence of N , and crit(F ) < λ(E). It follows that
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Ult(N,F ) makes sense; let Q = Ult(N,F ). So k(M) = k(N), and both ultrapowers
are k(M)-ultrapowers.

Let
κ = crit(E), µ = crit(F ).

Let T be the iteration tree such that ET0 = E, ET1 = F , MT
0 = M , MT

1 = N , and
MT

2 = Q. Since µ < λ(E), T is not normal. We show how to normalize it. There
are two cases.

Case 1. crit(F ) ≤ crit(E).

Since µ ≤ κ and E is an extender over M (that is, over the reduct Mn, for n = k(M)),
F is also an extender over M . Let P = Ult(M,F ), and iMF : M → P be the canonical
embedding. We have the diagram

N Q iMF (N) = Ult(P, iMF (E))

M P

F

E

F

τ

i
M
F
(E

)

Suppose first that M |= ZFC; then N is definable over M from E, and iMF moves
the fact that N = Ult(M,E) over to the fact that iMF (N) = Ult(P, iMF (E)). τ is the
natural embedding from iNF (N) to iMF (N). That is,

τ([a, g]NF ) = [a, g]MF

for g : [µ]|a| → N , with g ∈ N . The tree U with models

MU
0 = M, MU

1 = N, MU
2 = P, MU

3 = Ult0(P , iMF (E))

and extenders
EU0 = E, EU1 = F, EU2 = iMF (E),

is normal. We call U the embedding normalization of T .

Remark 3.1 This implicitly assumes lhE < lhF . If lhF < lhE, then F is already
on the M -sequence, and the extenders of U would be EU0 = F , EU1 = iMF (E). The
diagrams and calculations above don’t change, however.
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The proof just given was based on N being definable over M as its E-ultrapower
and iMF acting elementarily on this definition. But of course, ORN > ORM is possible,
and anyway, we need to know iMF has enough elementarity. If M |= ZFC, all is fine.
We now give a more careful proof that works in general.

We assume k(M) = k(N) = 0 so that we can avoid the details of ultrapowers of
reducts and their decodings. The general case is similar. So every x ∈ Q has the
form iNF (g)(b) for g ∈ N and b ∈ [ν(F )]<ω. We can write g = iME (h)(a), where h ∈M
and a ∈ [ν(E)]<ω. So

x = iNF (iME (h)(a))(b)

= iNF ◦ iME (h)(iNF (a))(b),

with b, iNF (a) ∈ [sup iNF “ ν(E)]<ω. Let

G = (extender of iNF ◦ iME )� sup iNF “ ν(E),

so that
Q = Ult(M,G).

The space of G is κ, and its critical point is µ. Let us write

R = Ult0(P, iMF (E))

H = (extender of iPiMF (E) ◦ i
M
F )� sup iMF “ν(E).

It is easy to see that
R = Ult(M,H).

But then we can calculate that G is a subextender of H. For let b ∈ [ν(F )]<ω and
g : [µ]|b| → [ν(E)]l with g ∈ N . Let A ⊆ [crit(E)]l with A ∈ N . (Equivalently,
A ∈M .) We have

([b, g]NF , A) ∈ G iff [b, g]NF ∈ iNF ◦ iME (A)

iff for Fb a.e. µ̄, g(µ̄) ∈ iME (A)

iff for Fb a.e. µ̄, (g(µ̄), A) ∈ E
iff ([b, g]MF , i

M
F (A)) ∈ iMF (E)

iff [b, g]MF ∈ iPiMF (E) ◦ i
M
F (A)

iff ([b, g]MF , A) ∈ H.
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So letting σ : lhG→ lhH be given by

σ([b, g]NF ) = [b, g]MF ,

we have
(a,A) ∈ G iff (σ(a), A) ∈ H,

so G is a subextender of H under σ. We can therefore define τ from Q into R by

τ([a, f ]MG ) = [σ(a), f ]MH .

Note τ� lh(F ) = σ� lh(F ) = identity. One can easily show that in the case M |= ZFC,
our current definition of τ coincides with the earlier one.

Here is another way to obtain τ , one that is closer to the way we shall handle
the general case below. Let ψ : Ult(M,E) → Ult(P,E∗) be the Shift Lemma map,
where E∗ = iMF (E). That is,

ψ([a, f ]ME ) = [iMF (a), iMF (f)]PE∗ .

By the Shift Lemma, ψ agrees with iMF on λ(E). It follows that F is an initial
segment of Eψ, the extender of ψ. Let θ be the factor embedding from Ult(N,F ) to
Ult(N,Eψ), given by

θ([a, g]NF ) = [a, g]NEψ = ψ(g)(a),

for all a ∈ [ν(F )]<ω. We claim that θ = τ .
To see this, note that θ is the unique map π from Q to Ult(P,E∗) such that

ψ = π ◦ iNF and π � ν(F ) is the identity. Clearly τ � ν(F ) = σ � ν(F ) = identity, so
we must see that ψ = τ ◦ iNF . Now both θ and τ make the diagram

N Q iMF (N) = Ult(P, iMF (E))

M P

F

E

F
i
M
F
(E

)

commute, so ψ agrees with τ ◦ iNF on ran(iME ). Thus it is enough to see that ψ agrees
with τ ◦ iNF on the generators of E, that is, on ν(E). But for a ∈ [ν(E)]<ω,

ψ(a) = iMF (a) = τ(iNF (a)),

by the definitions of ψ and τ . This completes our proof that τ = θ.
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Before we move on to the case that crit(E) < crit(F ), let us look at the problem
of full normalization when crit(F ) ≤ crit(E). That is, we seek a normal tree on M
whose last model is literally equal to Q. Full normalization is not important in this
monograph, but it is very useful in its sequels, for example [63] and [61]. The paper
[48] proves a general theorem on the existence of full normalizations for stacks of
normal trees on premice. The argument we are about to give contains one of the
main ideas in that proof.

Clearly, a full normalization of T must start with E and then F . We are now
at the model P , and to get to Q, we must replace iMF (E) by a subextender of itself.
One can see from the analysis above that the appropriate subextender is iMF (E) �
σ“iNF (ν(E)). What we need to see is that the transitive collapse of this subextender
is on the P -sequence. Here we must use the condensation properties of mice, and
hence we are assuming that P has these condensation properties. Of course our true
interest is in iterable P , which do have them.

We shall apply condensation iteratively. Let 〈(βi, ki) | 0 ≤ i < n〉 be the lh(E)-
dropdown sequence of M . That is

(β0, k0) = (lhE, 0)

and

(βi+1, ki+1) = lexicographically least (α, l) such that

〈α, l〉 <lex l(M) and ρ(M |〈α, l〉) < ρ(M |〈βi, ki〉).

So long as they are defined, the ordinals

ρ∗i = ρ(M |〈βi, ki〉)

are strictly decreasing as i increases. The 〈βi, ki〉 increase, lexicographically. Note
that ρ∗i is a cardinal of M |βi+1 with respect to rΣki+1

functions, and 〈βi+1, ki+1〉 is
lex-largest such that this is true.

Let n be least such that (βn, kn) cannot be defined this way, and set

(βn, kn) = l(M) = 〈ô(M), k(M)〉.

Notice that E was total on the reduct Mk(M), so that crit(E) < ρ(M |〈βi, ki〉) for all
i < n, so by our case hypothesis, crit(F ) < ρ(M |〈βi, ki〉) for all i < n. Thus we have

πi : M |〈βi, ki〉 → Ult(M |〈βi, ki〉, F )

for all i ≤ n. We have
πn = iMF
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and Ult(M |〈βn, kn〉, F ) = Ult0(M,F ) = P . So R = Ult(P, πn(E)) was the last model
of our embedding normalization.

Claim 3.2 Q = Ult(P, π0(E)).

Proof. lh(E) is a regular cardinal in N . So

π0 = i
M‖lh(E)
F = iNF �N || lh(E),

and thus
π0(ν(E)) = iNF (ν(E)).

Let
L = (extender of iPπ0(E) ◦ iMF )�iNF (ν(E)),

then it is easy to see that

Ult(P, π0(E)) = Ult(M,L).

Recall that G was the extender of length iNF (ν(E)) given by iNF ◦ iME . As before, we
get σ̄ : lh(G)→ lh(L) by

σ̄([b, g]NF ) = [b, g]
M || lh(E)
F ,

defined for b ∈ [ν(E)]<ω and g : [µ]|b| → ν(E) with g ∈ N . (We assume here
k(M) = k(N) = 0; otherwise replace M and N by their k(M)-reducts.) But all such
g are in M || lh(E), so

σ̄ = identity.

As before, we get that G is a subextender of L under σ̄, but this just means that
G = L, proving Claim 3.2. �

Claim 3.3 For 0 ≤ i ≤ n, Ult(M |〈βi, ki〉, F ) is an initial segment of P .

Proof. Ult(M |〈βn, kn〉, F ) = P . Now suppose Ult(M |〈βi+1, ki+1〉, F ) is an initial
segment of P . So then πi+1(M |〈βi, ki〉) is an initial segment of P . It will suffice to
show Ult(M |〈βi, ki〉, F ) � πi+1(M |〈βi, ki〉). But consider the factor map

ψ : Ult(M |〈βi, ki〉, F )→ πi+1(M |〈βi, ki〉)

given by

ψ([a, f ]
M |βi
F ) = [a, f ]

M |βi+1

F
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for f a function given by a rΣki-Skolem term interpreted over M |βi. For simplicity,
let us assume ki = ki+1 = 0, so this just amounts to f ∈ M |βi. Let ρ = ρ∗i ; that is,
assuming ki = 0, let

ρ = ρ1(M |βi),
p = p1(M |βi),
S = Ult(M |βi, F ).

So ψ : S → πi+1(M |βi). Now ρ is still a cardinal in M |βi+1. So (µα)M |βi = (µα)M |βi+1

for all α < ρ. So
crit(ψ) ≥ supπi“ ρ.

Also,
S = HullS1 (sup πi“ ρ ∪ {πi(p)}),

as is easily checked. So ρ1(S) ≤ supπi“ ρ. Using the solidity witnesses, it is easy to
see that

ρ1(S) = sup πi“ ρ and p1(S) = πi(p).

We can apply condensation to ψ to see that S � πi+1(M |βi) once we show that
supπi“ ρ is not an index of an extender on the πi+1(M |βi)-sequence.

Suppose it were. Then sup πi“ ρ is not a cardinal of πi+1(M |βi), so crit(ψ) =
sup πi“ ρ. This implies that πi+1 is discontinuous at ρ and that

M |βi+1 |= cof(ρ) = µ.

But then
Ult(M |βi+1, F ) |= cof(sup πi“ ρ) = µ.

But indices of extenders have successor cardinal cofinalities, and µ is a limit cardinal
in Ult(M |βi+1, F ), so sup πi“ ρ is not an index in Ult(M |βi+1, F )-sequence. Therefore
it is not an index in the πi+1(M |βi)-sequence. �

By Claim 3.3, π0(E) is on the sequence of P . Thus our full normalization of T
is the tree S, where

MS
0 = M, MS

1 = N, MS
2 = P, MS

3 = Q,

and
ES0 = E, ES1 = F, ES2 = π0(E).

Again, this assumes lh(F ) ≥ lh(E). Otherwise it is ES0 = F and ES1 = π0(E).
The following diagram summarizes Case 1.
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N Q R

M P

iNF

E

iMF

τ

iNF (E)

i
M
F
(E

)

Here iNF (E) = π0(E). The notation is justified because (N | lh(E), E) = M | lh(E),
so iNF moves E as an amenable predicate, and produces thereby what we called π0(E).
The construction in Claim 3.3 shows that in fact iNF (E) is a subextender of iMF (E)
under the map σ : iNF (ν(E)) → iMF (ν(E)) we identified earlier, σ([b, g]NF ) = [b, g]MF
for g : [µ]|b| → ν(E) with g in N .

Remark 3.4 All embeddings in the diagram above are all elementary and cofinal.
All but τ are ultrapower embeddings. τ is easily seen to be weakly elementary, and
it is cofinal because all the other embeddings are cofinal.

Remark 3.5 If G is the extender of iNF ◦ iME , then in fact ν(G) = sup iNF “ ν(E), as
shown by our earlier calculation. So ν(iNF (E)) = sup iNF “ ν(E).

Remark 3.6 Let us consider the case that ν(E) is a cardinal in M . Then (µα)M =
(µα)N for all α < ν(E), so for σ as above, σ� sup iNF “ ν(E) = identity. Thus
iNF (E) is the trivial completion of iMF (E)� sup iMF “ ν(E). If iMF is continuous at ν(E)
(i.e. cofM(ν(E)) 6= µ), then iNF (E) = iMF (E) and Q = R. If iMF is discontinuous at
ν(E) (i.e. cofM(ν(E)) = µ), then Q 6= R, and in fact crit(τ) = sup iMF “ ν(E).

So in this case, the embedding normalization of T uses iMF (E) to continue from
P , while the full normalization may use a proper initial segment of iMF (E) to continue
from P .

Case 2. crit(E) < crit(F ).

Let µ = crit(F ) and κ = crit(E). We have assumed µ < λ(E), as otherwise T is
already normal. Let

P = Ult(M |〈ξ, k〉, F )

where 〈ξ, k〉 is lexicographically least such that ρ(M |〈ξ, k〉) ≤ µ. Let

i : M |〈ξ, k〉 → P

be the canonical embedding, i = i
M |〈ξ,k〉
F . As in Case 1, N = Ult(M,E) and Q =

Ult(N,F ). The embedding normalization of T continues from M , N (assuming
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lh(E) < lh(F )), and then P by using i(E) now. Note i(E) should be applied to M ,
not P , in a normal tree. So let

R = Ult(M, i(E)).

Let G be the extender of iNF ◦iME , and notice that G is short, with λ(G) = iNF (λ(E)) =
sup iNF “λ(E). Let

σ : iNF (λ(E))→ i
M |〈ξ,k〉
F (λ(E))

be given by
σ([b, g]NF ) = [b, g]

M |〈ξ,k〉
F ,

for g : [µ]|b| → λ(E) with g ∈ N . (Note that for n = k(M) = k(N), we have
κ < ρn(M), so λ(E) < ρn(N), so every rΣN

n such function g belongs to N .) We
claim that

Claim 3.7 G is a subextender of i(E) under σ.

Remark 3.8 In this case, G and i(E)are short, and σ is the identity on their com-
mon domain.

Proof. Let a ⊆ sup iNF “λ(E) be finite, and let A ⊆ [κ]|a| be in M . Let a = [b, g]NF ,
where g ∈ N and g : [µ]|b| → [ν(E)]|a|. Then

(a,A) ∈ G iff ([b, g]NF , A) ∈ G
iff [b, g]NF ∈ iNF ◦ iME (A)

iff for Fb a.e. µ̄, g(µ̄) ∈ iME (A)

iff for Fb a.e. µ̄, (g(µ̄), A) ∈ E
iff ([b, g]

M |ξ
F , A) ∈ i(E)

iff (σ(a), A) ∈ i(E).

�

Thus we have a factor map τ : Q → R from Q = Ult(M,G) to Ult(M, i(E))
given by

τ([a, f ]MG ) = [σ(a), f ]Mi(E).

Assuming lh(E) < lh(F ), the embedding normalization of T is then U , where

EU0 = E, EU1 = F, EU2 = i(E).
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If lh(F ) < lh(E), it is EU0 = F , EU1 = i(E).
The full normalization is obtained as in Case 1. Let

π0 : M || lh(E)→ Ult(M || lh(E), F )

be the canonical embedding. Letting σ̄([b, g]NF ) = [b, g]
M || lh(E)
F for b, g as above, we

have σ̄ = identity, which yields G = π0(E). One can show that π0(E) is on the
P -sequence by considering the lh(E)-dropdown sequence of M |ξ and using conden-
sation, as in Case 1.

The situation in Case 2 is summarized by the diagram

N Q R

M

M |ξ P

iNF τ

E

�

i
M|ξ
F

i
N
F
(E

)

i
M
|ξ

F

(E
)

We have assumed here k = 0 to remove some clutter. Again, all the embeddings in
the diagram are cofinal and elementary. In the case of τ , this is because it is weakly
elementary, and it is cofinal because all the other embeddings are cofinal.

Remark 3.9 If 〈ξ, k〉 = 〈lh(E), 0〉, then i
M |ξ
F = iNF �N | lh(E), so iNF (E) = i

M |ξ
F (E),

and Q = R. This is what happens if ν(E) ≤ crit(F ) < λ(E). The original T is
ms-normal but not Jensen normal. Its embedding normalization is Jensen normal,
and has the same last model as T .

If 〈ξ, k〉 = l(M), then the diagram simplifies to

N Q R

M P

iNF τ

E

iMF

i
N
F
(E

)

iMF
(E)
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If µ < ν(E) and ν(E) is a cardinal of M and 〈ξ, k〉 = l(M), then iNF (E) is the trivial
completion of iMF (E)� sup iNF “ ν(E). In this case, Q = R iff cofM(ν(E)) 6= µ, and if
Q 6= R, then crit(τ) = sup iNF “ ν(E).

Remark 3.10 In both cases, the embedding normalization of 〈〈E〉, 〈F 〉〉 may break
down by reaching an illfounded model. Similarly for full normalization. (There we
also used condensation, hence indirectly iterability.)

Again we are interested in the case M has an iteration strategy Σ. In that case,
the models are all wellfounded, and things work out as above. It doesn’t yet matter
what Σ is, since the trees are finite.

3.2 Normalizing T a〈F 〉
Let M be a premouse, let T a normal tree on M having last model N , and let F be
on the N -sequence. Let Q be the longest initial segment of N such that Ult(Q,F )
makes sense, that is, such that F is total on Q and crit(F ) < ρk(Q)(Q). We construct
a normal tree W on M such that Ult(Q,F ) embeds into the last model of W via
a weakly elementary map. We call W the embedding normalization of T a〈F 〉, and
write

W = W (T , F ).

The reader can find some diagrams which may help visualize the construction of W
at the end of this section.

Let α be least such that F is on the MT
α -sequence. Then MT

α agrees with Q up
to lh(F ) + 1, and Q agrees with Ult(Q,F ) up to lh(F ), but not lh(F ) + 1. By Fact
3.0,W must start out with T �(α+1), if it is being played by some iteration strategy
Σ for M such that T �(α + 1) is played by Σ. This is the context that is motivating
our definition of W , so we set

W�(α + 1) = T �(α + 1).

(This does not imply EWα = ETα , just MW
α =MT

α .)
Now let µ = crit(F ), and let β ≤ α be least such that either µ < λ(ETβ ), or

β = α. F must be applied to an initial segment of MW
β =MT

β in W . That is

EWα = F,

and the rest is dictated by normality:

W -pred(α + 1) = β,
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and
M∗,W

α+1 =MT
β |〈ξ0, k0〉

where 〈ξ0, k0〉 is least such that ρ(Mβ|〈ξ0, k0〉) ≤ µ or 〈ξ0, k0〉 = l(MW
β ), and

MW
α+1 = Ult(M∗,W

α+1, F ).

This gives us W�(α + 2).

Case 1. Q 6= N .

If β + 1 < lh(T ), then Q is a proper initial segment ofMT
β | lh(ETβ ), by the following

claim.

Claim 3.11 Let T be a normal iteration tree, β + 1 < lh(T ), and MT
β | lh(ETβ ) �

R�MT
θ for some θ ≥ β + 1; then lh(ETβ ) ≤ ρk(R)(R).

Proof. Let S = MT
θ . It is easy to see that ρk(S)(S) ≥ lh(G) for all extenders G

used in the branch [0, θ)T . Since some G with lh(G) ≥ lh(ETβ ) was used in [0, θ)T ,
we are done if R = S. If ô(R) = ô(S) but k(R) < k(S), then ρk(S)(S) ≤ ρk(R)(R), so
again we are done. Finally, if ô(R) < ô(S), then R ∈ S, so ρk(R)(R) < lh(ETβ ) ≤ o(R)
implies that lh(ETβ ) is not a cardinal in S. This is a contradiction. �

Let N = MT
θ and Q = N |〈ξ, k〉. If β < θ, then we apply the claim to R =

N |〈ξ, k + 1〉. We have Q�N , so this makes sense. We have ρ(Q) = ρk(R)(R) ≤ µ <
lh(ETβ ). It follows from the claim that R �MT

β | lh(ETβ ). But Q � R. Thus Q is a
proper initial segment of MT

β | lh(ETβ ).
So if β+1 < lh(T ), then Q =Mβ|〈ξ0, k0〉�MT

β , α = β, andMW
α+1 = Ult(Q,F ).

These conclusions hold trivially if β + 1 = lh(T ), so in either case we set

W (T , F ) =W�(α + 2)

= T �(β + 1)_〈F 〉.

We call this the dropping case in the definition of W (T , F ). In this case, Ult(Q,F )
is actually equal to the last model of W (T , F ).

Case 2. Q = N , and lh(T ) = β + 1.

Since lh(T ) = β + 1, then Q = N =MT
β . Thus α = β, and again

W (T , F ) =W�(α + 2)

= T �(β + 1)_〈F 〉.
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Again, Ult(Q,F ) is actually equal to the last model of W (T , F ). The difference
between this and the previous case is just that we did not drop when we applied F
to T .

Case 3. Q = N , and lh(T ) > β + 1.

In this case, Ult(N,F ) makes sense, so 〈lh(ETβ ), 0〉 ≤ 〈ξ0, k0〉, and in fact Ult(MT
η , F )

makes sense for all η such that β < η < lh(T ).
For η < lh(T ), set

φ(η) =

{
η, if η < β;

(α + 1) + (η − β), if η ≥ β.

So φ : [0, lh(T )) ∼= [0, β)∪ [α+1, (α+1)+(lh(T )−β)) order-preservingly. We define
MW

φ(η), and

πη :MT
η →MW

φ(η).

For η < β, φ(η) = η and MT
η =MW

η and πη = identity. We let

πβ = canonical embedding of MT
β |〈ξ0, k0〉 into Ult(MT

β |〈ξ0, k0〉, F ).

(So the display above is a bit off; for η = β, πη may not act on all ofMT
η . For η 6= β,

πη will act on all of MT
η .) Note that F is close to MT

β |〈ξ0, k0〉 because it arose in a
later model of T , so that πβ is cofinal and elementary.

We define πη and MW
φ(η) for η ≥ β + 1 by induction.

For η = β + 1, we let
EWφ(β) = πβ(ETβ ),

and let τ ≤ β be least such that crit(EWφ(β)) < λ(EWτ ), and 〈γ, k〉 be least such that

crit(EWφ(β)) ≥ ρk+1(MW
τ |γ), and set

MW
φ(β+1) = Ult(MW

τ |〈γ, k〉, EWφ(β)),

as required by normality. We get πβ+1 from the Shift Lemma. There are two cases.

Case A. crit(ETβ ) ≥ µ.

Since πβ = i
Mβ |〈ξ0,k0〉
F , crit(πβ(ETβ )) > lh(F ). But F = EWα . Thus πβ(ETβ ) = EWφ(β) is

applied to MW
α+1 =MW

φ(β), or an initial segment of it. That is

τ = φ(β) = α + 1
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in this case. In T , we must have

T -pred(β + 1) = β,

because β was least such that µ < ν(ETβ ). Similarily, the case hypothesis implies
that

MT
β+1 = Ult(MT

β |〈ξ1, k1〉, ETβ )

where 〈ξ1, k1〉 ≤lex 〈ξ0, k0〉. We have that πβ : MT
β |〈ξ1, k1〉 → πβ(MT

β |〈ξ1, k1〉) is
elementary, so when k1 = 0 we can set

πβ+1([a, f ]
MTβ |ξ1
ETβ

) = [πβ(a), πβ(f)]
MW

φ(β)
|πβ(ξ1)

EW
φ(β)

as in the Shift Lemma. (If k1 > 0, the ultrapowers are decoded from ultrapowers

of reducts, but the Shift Lemma still applies. In the notation of [23], πβ(f
MTβ |ξ1
τ,q ) =

f
MW

φ(β)
|πβ(ξ1)

τ,πβ(q) .) We have that πβ+1 is elementary ( a near k1-embedding) by [36], and

πβ+1� lh(ETβ ) + 1 = πβ� lh(ETβ ).

Case B. crit(ETβ ) < µ.

Then crit(πβ(ETβ )) = crit(ETβ ), so τ = T -pred(β+ 1) = W -pred(φ(β+ 1)). It is clear
that ETβ and πβ(ETβ ) are applied to the same initial segment ofMT

τ =MW
τ . Letting

this be MT
τ |〈γ, k〉, we get

πβ+1 : Ult(MT
τ |〈γ, k〉, ETβ )→ Ult(MW

τ |〈γ, k〉, πβ(ETβ ))

from
πβ+1([a, f ]

MTτ |γ
ETβ

) = [πβ(a), f ]
MTτ |γ
EW
φ(β)

.

Again, πβ+1 is elementary, and πβ+1 agrees with πβ on lh(ETβ ) + 1.

Remark 3.12 In Case A, φ(T -pred(β + 1)) = W -pred(φ(β + 1)), while in Case B,
this fails, and in fact T -pred(β + 1) = W -pred(β + 1). It is because φ may not
preserve point-of-application for extenders that T may not be a hull of W , under
φ and the πη’s, in the sense of Sargsyan’s thesis [30]. In fact, T will be such a
hull iff crit(ETη ) ≥ µ for all η ≥T β. For example, this happens when T factors as
T �(β + 1)aS, where S is a tree on MT

β with all critical points ≥ µ.

The successor case when η > β is similar. Suppose by induction that whenever
ξ, δ ≤ η:
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(1) EWφ(δ) = πδ(E
T
δ ).

(2) if δ 6= β, then πδ is an elementary embedding fromMT
δ toMW

φ(δ). (πβ is cofinal

elementary from MT
β |〈ξ0, k0〉 to MW

φ(β).)

(3) if ξ < δ, then πδ agrees with πξ on lh(ETξ ) + 1.

(4) (a) if T -pred(δ) 6= β then φ(T -pred(δ)) = W -pred(φ(δ))

(b) if T -pred(δ) = β, then

i. crit(ETδ−1) ≥ µ⇒ φ(T -pred(δ)) = W -pred(φ(δ))

ii. crit(ETδ−1) < µ⇒ W -pred(φ(δ)) = β

(c) i. if δ 6= β, then (δ T ξ iff φ(δ)W φ(ξ))

ii. β T ξ ⇒ φ(β)W φ(ξ) iff the first extender used in (β, ξ]T has critical
point ≥ µ.

(5) (a) if δ 6= β, then δ ∈ DT iff φ(δ) ∈ DW , and degT (δ) = degW(φ(δ))

(b) if δ 6= β, δ T ξ, and DT ∩ (ξ, δ]T = ∅, then πξ ◦ iTδ,ξ = iWφ(δ),φ(ξ) ◦ πδ

we then define πη+1 :MT
η+1 →MW

φ(η+1) so as to maintain those conditions. Namely,

EWφ(η) = πη(E
T
η ),

and letting τ be least such that crit(EWφ(η)) < λ(EWτ ), and 〈γ, k〉 be appropriate for
normal trees,

MW
φ(η+1) = Ult(MW

τ |〈γ, k〉, EWφ(η)).

We get πη+1 from the Shift Lemma, with two cases, as before.

Case A. crit(ETη ) ≥ µ.

Let σ = T -pred(η + 1), i.e. σ is least such that crit(ETη ) < λ(ETσ ). Clauses (1) and
(3) above tell us that φ(σ) is the least θ in ran(φ) such that crit(EWφ(η)) < λ(EWθ ).

But τ ≥ φ(β) by our case hypotheses, so τ ∈ ran(φ), so τ = φ(σ). We leave it to the
reader to show that if

MT
η+1 = Ult(MT

σ |〈λ, i〉, ETη ),

then in fact i = k, and πσ(λ) = γ. Thus we set

πη+1([a, f ]
MTσ |λ
ETη

) = [πη(a), πσ(f)]
MWτ |γ
EW
φ(η)

,
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and everything works out so that (1)-(5) still hold.

Case B. crit(ETη ) < µ.

Again, let σ = T -pred(η + 1). So σ ≤ β. Since πη� lh(ETβ ) = πβ� lh(ETβ ), πη�µ =
identity, so crit(ETη ) = crit(EWφ(η)). Thus σ = τ . One can show that ETη and EWφ(η)

are applied to the same initial segment of MT
τ =MW

τ , via ultrapowers of the same
degree. So we have

πη+1 : Ult(MT
τ |〈γ, k〉, ETη )→ Ult(MW

τ |〈γ, k〉, EWφ(η))

given by

πη+1([a, f ]
MTτ |γ
ETη

) = [πη(a), f ]
MWτ |γ
EW
φ(η)

.

The reader can check (1)-(5) still hold.
This finishes the definition of πη+1. For λ a limit, MW

φ(λ) and πλ :MT
λ →MW

φ(λ)

are defined by

MW
φ(λ) = dirlim of MW

φ(α) for α T λ sufficiently large,

πλ(i
T
αλ(x)) = iWφ(α),φ(λ)(πα(x)), for α T λ sufficiently large.

(1)-(5) imply this makes sense, and that (1)-(5) continue to hold. This completes
our description of the embedding-normalization of T a〈F 〉.

We must see that for N the last model of T and R the last model ofW , Ult(N,F )
embeds elementarily into R. But

Lemma 3.13 For any γ ≥ β, F is an initial segment of the extender of πγ.

Proof. F is the extender of πβ. Since πβ�(µ+)M
T
β |ξ = πγ�(µ+)M

T
β |ξ (because

(µ+)M
T
β |ξ < lh(ETβ )), we are done. �

Thus there is a natural factor embedding τ from Ult(N,F ) into R, given by
τ([a, f ]NF ) = πγ(f)(a), where N =MT

γ .

Lemma 3.14 τ is weakly elementary.

Proof. Let n = k(N). Let G be the shortest initial segment of the extender
of πγ such that πγ(N

n) = Ult0(Nn, G). Then F is an initial segment of G, and
τ�Ult0(Nn, F ) is Σ0 elementary from Ult0(Nn, F ) to Ult0(Nn, G), and Σ1 elementary
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on ran(iN
n

F ), which is cofinal in Ult0(Nn, F ). This implies that τ is rΣn elementary,
and rΣn+1 elementary on a set cofinal in ρn(Ult(N,F )).

The remaining clauses in definition 2.8, concerning the preservation of parameters
and projecta, follow from the fact that iNF and πγ are weakly elementary, and τ ◦iNF =
πγ.

�

Remark 3.15 We do not know whether τ must be fully elementary. The problem
is that πγ“ρn(N) may not be cofinal in ρn(R). If M -to-N does not drop in T , then
M -to-R does not drop inW , and therefore πγ is cofinal and elementary, so τ is cofinal
and elementary. When M -to-N drops, τ may fail to be elementary, so far as we can
see.

Remark 3.16 The definition of W (T , F ) needs no change at all in the case that T
is only weakly normal. In this case, W (T , F ) will only be weakly normal itself, in
general.

In a sufficiently coarse case, W is also the full normalization of 〈T , F 〉.

Remark 3.17 There is an analogous construction that starts with an ms-normal
tree T on M , and an extender F on the sequence of its last model N , and produces
an ms-normal tree Wms(T , F ) such that Ult(N,F ) embeds into its last model.

We shall write X(T , F ) for the full normalization of 〈T , F 〉. In a sufficiently
coarse case, X(T , F ) = W (T , F ).

Proposition 3.18 Let M , T , F , and β be as above. Suppose also that T is ms-
normal, and that k(M) = ω and ρω(M) = o(M). Let µ = crit(F ), and suppose that
for all γ + 1 < lh(T ),

MT
γ |= ν(ETγ ) is a cardinal of cof 6= µ.

(So T does not drop anywhere, and all models have degree ω.) Then for all γ < lh T
such that γ ≥ β

MW
φ(γ) = Ultω(MT

γ , F ),

and the embedding normalization map πγ is the same as the F -ultrapower map.

Remark 3.19 A Jensen-normal tree that does not drop is ms-normal. We have
stated the proposition using the weaker hypothesis of ms-normality because its
greater generality may be useful, and anyway is natural in the coarse case.
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Proof. We show this by induction on γ. For γ = β, this is the definition ofMW
φ(β)

and πβ. Suppose it holds for all γ ≤ η, we must show it holds at η + 1. Let E = ETη
and E∗ = πη(E) = EWφ(η). Let σ = T -pred(η + 1).

Case 1. µ ≤ crit(E).

Then σ ≥ β, and φ(σ) = W -pred(φ(η + 1)). Let S = Ultω(MT
η+1, F ), and let i

MTη+1

F

be the canonical embedding. We have the diagram

MT
η+1 S MW

φ(η+1)

MT
σ MW

φ(σ)

i
MTη+1

F

E

i
MTσ
F = πσ

τ

E∗

Here τ comes from the argument in Case 1 of two-step normalization. Namely,

let G be the extender of i
MTη+1

F ◦ iM
T
σ

E , and H be the extender of i
MW

φ(σ)

E∗ ◦ iM
T
σ

F . Note

ν(G) = sup i
MTη+1

F “ ν(E) and ν(H) = sup i
MTη
F “ ν(E), by our cofinality assumption.

Claim 3.20 G is a subextender of H under the map ψ, where

ψ([b, g]
MTη+1

F ) = [b, g]
MTη
F ,

for b ∈ [ν(F )]<ω and g : [µ]|b| → ν(E), g ∈MT
η+1.

Proof. We calculate as before: for b, g as above and A ⊆ [crit(E)]<ω with
A ∈MT

σ ,

([b, g]
MTη+1

F , A) ∈ G iff [b, g]
MTη+1

F ∈ iM
T
η+1

F ◦ iM
T
σ

E (A)

iff for Fb a.e.u, g(u) ∈ iM
T
σ

E (A)

(by  Los for Ult(MT
η+1, F ))

iff for Fb a.e.u, (g(u), A) ∈ E

iff ([b, g]
MTη
F , i

MTη
F (A)) ∈ E∗

(by  Los for Ult(MT
η , F ))

iff [b, g]
MTη
F ∈ i

MT
φ(σ)

E∗ (i
MTη
F (A))
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(since i
MT

φ(σ)

E∗ and i
MTη
E∗ agree on subsets of crit(E∗))

iff [b, g]
MTη
F ∈ i

MT
φ(σ)

E∗ (i
MTσ
F (A))

(since i
MTη
F agrees with πη, hence πγ, hence i

MTσ
F on subsets of crit(E))

iff ([b, g]
MTη
F , A) ∈ H.

�

But now MT
η and MT

η+1 have the same functions g : [µ]<ω → ν(E), by our
“coarseness” assumptions. So ψ = identity, and G = H, and S = MW

φ(η+1). So our
diagram is

MT
η+1 MW

φ(η+1)

MT
σ MW

φ(σ)

i
MTη+1

F

πη+1

E

πσ = i
MTσ
F

E∗

It remains to show i
MTη+1

F = πη+1. Since both maps make the diagram commute,

it is enough to show i
MTη+1

F �ν(E) = πη+1�ν(E). But πη+1�ν(E) = πη�ν(E) by the

Shift Lemma, and πη�ν(E) = i
MTη
F �ν(E) by induction, and i

MTη
F �ν(E) = i

MTη+1

F �ν(E)
because MT

η and MT
η+1 have the same functions g : [µ]<ω → ν(E).

Case 2. crit(E) < µ.

Let σ = T -pred(η+1). Then in this case, σ = W -pred(η+1). Let S = Ult(MT
η+1, F ).

We have the diagram

MT
η+1 S MW

φ(η+1)

MT
σ =MW

σ

i
MTη+1

F τ

E
E∗

We show that S = MW
φ(η+1) and i

MTη+1

F = πη+1 by the calculations in Case 2 of
two-step normalization. �
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Definition 3.21 For U a normal iteration tree on M , let

U<γ = U�(α + 1), where α is least such that lhEUα ≥ γ,

and U<γ = U if there is no such α. Let

U>γ = 〈MU
η | EUη exists ∧ γ < λ(EUη )〉.

Definition 3.22 Let M , T , F and W be as above, then we write

W (T , F ) = T < lhFa〈F 〉aiF“ T > crit(F )

for the embedding normalization of T a〈F 〉 just defined. We write αT ,F , βT ,F , φT ,F ,
and πT ,Fξ for the auxiliary objects α, β, φ, πξ that we defined above.

The full normalization X(T , F ) of T a〈F 〉 can be obtained as follows. We assume
that T is normal on M , N is the last model of T , F is on the N sequence, and
crit(F ) < ρn(N), for n = k(N). Let

W = T < lhFa〈F 〉aiF“ T > crit(F )

be the embedding normalization. Let T < lhF = T �(α + 1), β = W -pred(α + 1), and
φ : lh T → lhW be as above. The full normalization is X , where

X �(α + 2) =W�(α + 2)

and
MX

φ(η) = Ult(MT
η , F ) for η > β.

(Note that if η > β, then some G such that crit(F ) = µ < λ(G) was used on the
branch to MT

η , so for k = k(MT
η ), µ < ρk(MT

η ).) The tree order of X is the same
as that of W . We have

MT
η MX

φ(η) MW
φ(η)

i
MTη
F

πη

τ
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where τ is the natural factor map. What remains is to find the extenders EXφ(η) that

make X into a normal iteration tree. For this, let E = ETη , and

π :MT
η |〈lh(E), 0〉 → Ult(MT

η |〈lh(E), 0〉, F )

be the canonical embedding. One can show using condensation that π(E) is on the
sequence of MX

φ(η). Moreover, for σ = W -pred(η + 1),

MX
φ(η+1) = Ult(MW

σ |〈ξ, n〉, π(E)),

where n = k(MW
η+1) = k(MT

η+1) and ξ is appropriate. The details here are like those
in the two-step case. Since we don’t actually need full normalization in comparing
iteration strategies, we give no further detail here. There is a much more careful
discussion in [48]. Here is a diagram of the situation.

N Ult(N,F ) R

M

iNF τ

ı̂T

ı̂X ı̂W

Each MT
η is mapped into MX

φ(η), and that in turn is mapped into MW
φ(η).

Returning to W (T , F ), here are a few illustrations that the reader may or may
not find helpful. Let T be normal on M of length θ + 1, F on the sequence of MT

θ ,
µ = crit(F ), β least such that µ < λ(ETβ ), and α least such that F is on the sequence
of MT

α , as above. We assume in the diagram that β < θ, and that Ult(MT
θ , F )

makes sense. Let φ : θ ∼= [0, β) ∪ [α+ 1, (α+ 1) + (θ− β)] be the order-isomorphism
as above.

We illustrate first the embedding of T into W(T , F ), as it appears in the agree-
ment diagrams. We draw them as if β < α, although β = α is possible.
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0 β α θ

µ

λ(Eβ)

µ

F

lhETα

F lh Eβ

T

φ, πγ for γ ≥ β

0 β α + 1 (α + 1) + (θ − β)

W

µ

λ(Eβ)

µ

F

We have

T �(α + 1) =W�(α + 1),

F = EWα ,

and

iF“T >µ = remainder of W .

The next diagram shows how φ may fail to preserve tree order. By (4)(c) above,
we can have δ ≤T ξ but φ(δ) �W φ(ξ) iff δ = β, and the first extender G used in
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(0, ξ)T such that G is applied to an initial segment ofMT
β satisfies crit(G) < µ. Let

S<µ be the set of such ξ >T β, and S≥µ the remaining ξ >T β. The picture is

T

β

S≥µ S<µ

W

β

F

α + 1

φ“S≥µ φ“S<µ

Finally, we illustrate the relationship between the branch extenders of [0, ξ)T and
[0, φ(ξ))W . If ξ < β, they are equal. For ξ = β, the picture is

extender of [0, β)T

K

L

extender of [0, φ(β))W

K

L

F
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because [0, β)T ⊆ [0, φ(β))W , and just the one additional extender F is used.
For ξ > β, let G be the first extender used in [0, ξ)T such that λ(G) ≥ λ(ETβ ).

The picture depends on whether µ ≤ crit(G). If µ ≤ crit(G), it is

extender of [0, β)T

K

L

µ

G

H

extender of [0, φ(β))W

K

L

F

F (G)

F (H)

In this case, F is used on [0, φ(ξ))W , and the remaining extender used are the images
of old ones under copy maps.

If crit(G) < µ < λ(G), the picture is
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extender of [0, β)T

K

L

G
µ

H

extender of [0, φ(β))W

K

L

F (G)

F (H)

µ

λ(F )

In this case, the two branches use the same extenders until G is used on [0, ξ)T . At
that point and after, [0, φ(ξ))W uses the images of extenders under the copy maps.

Notice that in either case, there is an L used in [0, φ(ξ))W such that crit(L) ≤
crit(F ) < λ(F ) ≤ λ(L). This will be important later.

Remark 3.23 There is nothing guaranteeing that the models of W (T , F ) are well-
founded. In our context of interest, T is played according to an iteration strategy
Σ. Part of “normalizing well” for Σ will then be that W (T , F ) is according to Σ.

3.3 The extender tree Vext

The fact that φT ,F does not fully preserve tree order or tree predecessor is awkward.
Here is another way to visualize our embedding of T into W (T , F ) given by φT ,F

and the πT ,Fξ ’s.
For V a normal tree, let

Ext(V) = {EVα | α + 1 < lhV}

be the set of extenders used. Note Ext(V) determines V modulo a strategy Σ for the
base model of V , by normality. For γ < lh(V),

eVγ = increasing enumeration of {EVα | α + 1 ≤V γ},
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increasing in order of use (index, length).
Note that each of eVγ ,MV

γ and V�(γ+1) determines the others, by normality. Set

Vext = {eVγ | γ < lhV}.

Vext determines V . The structure (Vext,⊆) is the extender-tree of V .
If F andG are extenders, then F andG overlap iff [crit(F ), λ(F ))∩[crit(G), λ(G)) 6=

∅. We say F and G are compatible iff ∃α(F = G�α or G = F �α). Here are two
elementary facts:

Proposition 3.24 Let V be a normal iteration tree; then

(1) if sa〈F 〉 ∈ Vext and sa〈G〉 ∈ Vext, then F and G overlap, and

(2) if s, t ∈ Vext and s(i) is compatible with t(k), then i = k and s�(i+1) = t�(i+1).

Now let T be normal on M , and W = W (T , F ). Let φ = φT ,F , πξ = πT ,Fξ , etc.
We define a partial map

pT ,F : Ext(T )→ Ext(W)

by
pT ,F (ETξ ) = πξ(E

T
ξ ) = EWφ(ξ).

So pT ,F (ETξ )↓ iff ξ ∈ domφ, and either ξ 6= β, or ξ = β and MT
β | lh(ETβ ) �M∗,W

α+1.
We can view p as acting on branch extenders. For s ∈ T ext, let

iFs = is =

{
least i such that crit(F ) < λ(s(i)), if this exists;

undefined, otherwise.

Let ξ ∈ domφ and s = eTξ . Then if dom(φ) = β + 1, we have

eWφ(ξ) =

{
s, if ξ < β;

sa〈F 〉, if ξ = β.

If dom(φ) > β + 1, then is exists precisely when s = eTξ for some ξ ≥ β + 1, and

eWφ(ξ) =


s, if ξ < β;

sa〈F 〉, if ξ = β;

s�isa〈F 〉a〈ψT ,F (s(i)) | i ≥ is〉, if crit(F ) ≤ crit(s(is));

s�isa〈pT ,F (s(i)) | i ≥ is〉, if crit(s(is)) < crit(F ).

So if E is used before H in eTξ , then pT ,F (E) is used before pT ,F (H) in eWφ(ξ).
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Definition 3.25 Let W = W (T , F ), and suppose s ∈ T ext is such that ∀µ ∈
dom(s), pT ,F (s(µ))↓; then

p̂T ,F (s) = unique shortest t ∈ Wext such that

∀µ ∈ dom(s), pT ,F (s(µ)) ∈ ran(t).

For p̂ = p̂T ,F , we have that p̂(eTξ ) = eWφ(ξ), except when ξ = β. At β, we have

eWφ(β) = p̂(eTβ )_〈F 〉. The map p̂ : T ext → W (T , F )ext does preserve ⊆.

Proposition 3.26 Let s, t ∈ dom(p̂T ,F ); then

(1) s ⊆ t⇒ p̂(s) ⊆ p̂(t), and

(2) s ⊥ t⇒ p̂(s) ⊥ p̂(t).

3.4 Tree embeddings

An iteration strategy Σ for M condenses well iff whenever U is by Σ, and π is a
sufficiently elementary embedding from T into U such that π�(M ∪ {M}) is the
identity, then T is by Σ. By weakening the elementarity required of π, we obtain
stronger condensation properties.

In the Hull Condensation property of [30], one is given an embedding σ : lh(T )→
lh(U) and embeddings τα :MT

α →MU
σ(α). σ preserves tree order and tree-predecessor.

The τα’s have the agreement one would get from a copying construction, and they
commute with the branch embeddings of T and U . Moreover, τα(ETα ) = EUσ(α). A

simple example in the way T = πW sits inside U = π(W), in the case π : H → V is
elementary and π�(M ∪ {M}) = id .

A hull embedding (σ, ~τ) as above induces a map p : Ext(T )→ Ext(U) by

p(ETα ) = τα(ETα ).

We then get p̂ : T ext → U ext from p as in 3.25.. p̂ preserves ⊆ and incompatibility in
the extender trees. p̂ is related to σ by

p̂(eTα+1) = eUσ(α+1).

But for λ a limit, p̂(eTλ ) may be a proper initial segment of eUσ(λ).
We now define the notion of a tree embedding from T into U . This will be a tuple

with most of the properties of σ, ~τ , ψ above. The pair (σ, ~τ) is resolved into two pairs:
the pair (v, ~s), which embeds the models of T into models of U in a minimal way,
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and the pair (u,~t), which connects the exit extenders of T to exit extenders in U .
The the requirement that σ preserves tree predecessors is relaxed to the requirement
that if β = T -pred(γ+1), then U -pred(u(γ)+1) ∈ [v(β), u(β)]U . We shall also allow
the tα’s to be partial, in a controlled way. Recall here the partial branch embeddings
ı̂Uα,β. (Cf. 2.10.)

Definition 3.27 Let T and U be normal iteration trees on a premouse M , with
lh(T ) > 1. A tree embedding of T into U is a system

〈u, 〈sβ | β < lh(T )〉, 〈tβ | β + 1 < lh(T )〉, p〉

such that

(a) u : {α | α + 1 < lh(T )} → {α | α + 1 < lh(U)}, and α < β ⇒ u(α) < u(β).

(b) p : Ext(T ) → Ext(U) is such that E is used before F on the same branch
of T iff p(E) is used before p(F ) on the same branch of U . Thus p induces
p̂ : T ext → U ext as in Definition 3.25.

(c) Let v : lh(T )→ lh(U) be given by

eUv(β) = p̂(eTβ )

Then
sβ :MT

β →MU
v(β)

is total and elementary. Moreover, for α <T β,

sβ ◦ ı̂Tα,β = ı̂Uv(α),v(β) ◦ sα.

In particular, the two sides have the same domain.

(d) For α + 1 < lh(T ), v(α) ≤U u(α), and

tα = ı̂Uv(α),u(α) ◦ sα.

Moreover,

p(ETα ) = tα(ETα )

= EUu(α).

Moreover, for α < β < lh(T ),

sβ� lh(ETα ) + 1 = tα� lh(ETα ) + 1.
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(e) If β = T -pred(α + 1), then U-pred(u(α) + 1) ∈ [v(β), u(β)]U , and setting
β∗ = U-pred(u(α) + 1),

sα+1([a, f ]PETα ) = [tα(a), ı̂Uv(β),β∗ ◦ sβ(f)]P
∗

EU
u(α)

,

where P �MT
β is what ETα is applied to, and P ∗�MU

β∗ is what EUu(α) is applied
to.

The appropriate diagram to go with (e) of Definition 3.27 (for the non-dropping
case is)

MT
α+1 MU

v(α+1)

MU
u(β)

MU
β∗

MT
β MU

v(β)

MT
α MU

u(α)

sα+1

ETα

tβ

ρ

sβ

EU
u(α)

tα

Here ı̂Uv(β),β∗ ◦ sβ = ρ is a possibly partial map, defined and elementary on P .
Definition 3.27 is not quite right in the case that T is only weakly normal.

Definition 3.28 If T and U are weakly normal trees on M , with lh(T ) > 1, then a
tree embedding from T to U is a system

〈u, 〈sβ | β < lh(T )〉, 〈tβ | β + 1 < lh(T )〉, p〉

satisfying all the clauses of 3.27, except that in clause (c), we demand that

sβ : MT
β → Nβ

elementarily, where Nβ �MU
v(β). The Nξ must be given by
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(i) N0 = M ,

(ii) Nα+1 = iUβ∗,α+1◦ ı̂Uv(β),β∗ ◦sβ(P ), where P �Nβ is such thatMT
α+1 = Ult(P,ETα ),

and

(iii) if λ is a limit, then Nλ = iUξ,λ(Nξ), for all sufficiently large ξ <U λ.

We need theNβ’s because we want to allow T to drop gratuitously along the branch to
β, while at the corresponding step along the branch of U to v(β), U has not dropped,
or not dropped as far. The Shift Lemma formula in clause (e) needs no change, but
now what it may be giving us is an elementary embedding of Ult(P,ETα ) into a proper
initial segment Nα+1 of Ult(P ∗, EUu(α)). Note that Φ completely determines the Nβ,

so we can write Nβ = NΦ
β .

One can easily see that if T is normal, then U must also be normal, and Nβ =
MU

v(β) for all β. So the two definitions of tree embedding are consistent with each
other. Only occasionally do we actually need to consider the case that T is weakly
normal, but not normal. We don’t need to consider the case that U is not normal at
all, but we have allowed it for the sake of completeness. The notion of tree embedding
we have defined doesn’t seem to make much sense if T fails to be weakly normal.

Definition 3.29 For weakly normal iteration trees T and U ,

(a) Φ: T → U iff Φ is a tree embedding of T into U ,

(b) if Φ: T → U , then uΦ, vΦ, sΦ
α , t

Φ
α , and pΦ are the component maps of Φ, and

(c) T is a psuedo-hull of U iff there is a tree embedding of T into U .

Remark 3.30 It is easy to see that Φ: T → U if and only if Φ: T → U � γ, where
γ = sup({vΦ(α) + 1 | α < lh(T )}).

Definition 3.31 A tree embedding Φ: T → U is cofinal iff lh(U) = sup({vΦ(α)+1 |
α < lh(T )}).

Remark 3.32 By clause (c), v(0) = 0 and s0 = id. It is possible that u(0) > 0.
By clause (d), v(α + 1) = u(α) + 1. Clause (b) implies that α + 1 ≤T β + 1 iff
v(α+1) ≤U v(β+1). If λ < lh(T ) is a limit ordinal, then v(λ) = sup{v(ξ) | ξ <T λ}.
So v preserves tree order, and is continuous at limits. The map u may not preserve
tree order.
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Remark 3.33 Given u(α) and tα, we can characterize v(α) as the least ξ ≤U u(α)
such that ran(tα) ⊆ ran(̂ıUξ,u(α)).

If Φ: T → U is a tree embedding, then T and U have the same base model,
and sΦ

0 is the identity map. One might ask whether there is a natural more general
concept, one that allows MT

0 6= MU
0 . Indeed there is, but it reduces to the notion

above. Namely, one can have an elementary π : MT
0 → MU

0 , together with a tree
embedding from the copied tree πT into U . This seems to be the natural way to
relate trees on different base models.

Any tree embedding induces an embedding of extender trees:

Proposition 3.34 Let Φ: T → U be a tree embedding, let p = pΦ, and let p̂ : T ext →
U ext be the induced map on extender trees; then Let s, t ∈ dom(p̂T ,F ); then

(1) s ⊆ t⇒ p̂(s) ⊆ p̂(t), and

(2) s ⊥ t⇒ p̂(s) ⊥ p̂(t).

Let us record the agreement properties of the maps in a tree embedding. In the
context of Jensen premice, embeddings that agree on lh(E) will generally be forced
to agree on lh(E) + 1. For example, in clause (e) of 3.27, sα+1 agrees with tα on
lh(ETα ) + 1, because the Shift Lemma produces this kind of agreement. One does
encounter embeddings that agree on λE, but not on λE + 1. With this in mind, we
see that

Lemma 3.35 Let 〈u, 〈sβ | β < lh T 〉, 〈tβ | β + 1 < lh T 〉, p〉 be a tree embedding of
T into U ; then

(a) if α + 1 < lh(T ), then tα agrees with sα on λTα ,

(b) if β < α < lh(T ), then sα agrees with tβ on lh(ETβ ) + 1, and

(b) if β < α < lh(T ), then sα agrees with sβ on λTβ

Proof. For (a), notice that if F is used in eTα , then p(F ) is used in eUv(α), and so

λp(F ) ≤ crit(̂ıUv(α),u(α)). Thus sup sα“λTα ≤ crit(̂ıUv(α),u(α)). But tα = ı̂Uv(α),u(α) ◦ sα, so

we have (a).
Part (b) is just a clause in the definition. Part (c) follows at once from (a) and

(b). �

One could not replace λTα by sup{lh(F ) | F ∈ ran(eTα )} in the lemma above.
The reason is that there could be a last extender F used in eTα . (So F = ETβ
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where α = β + 1.) Then p(F ) is the last extender used in eUv(α). It could be that

crit(̂ıUv(α),u(α)) = λp(F ), and thus tα and sα+1 both disagree with sα at λF . (This is

the only way the stronger agreement lemma can fail.)

Remark 3.36 The proof of 5.3 in Chapter 4 gives a formula for the point of appli-
cation of EUu(α) under a tree embedding of T into U , namely

U -pred(u(α) + 1) = least η ∈ [v(β), u(β)]U such that crit ı̂Uη,u(β) > ı̂Uv(β),η ◦ sβ(µ),

where
β = T -pred(α + 1) and µ = crit(ETα ).

Remark 3.37 It is easy to see that T ,U , and u determine the rest of the tree
embedding. For p is given by p(ETα ) = EUu(α), and p determines p̂ and v. We then
determine the copy maps sα and tα by induction on α. tα is determined by sα by
tα = ı̂Uv(α),u(α) ◦ sα. If α is a limit, we easily get sα from v(α) and the fact that

sα ◦ ı̂Tβ,α = ı̂Uv(β),v(α) ◦ sβ holds whenever β <T α. Clause (e) determines sα+1 from
earlier s and t values.

p determines u, hence p determines the whole of the tree embedding as well.

Remark 3.38 Suppose that lh(T ) = α+ 1 and Φ: T → U is a tree embedding. Let
s = sΦ, u = uΦ, etc., so that sα : MT

α →MU
v(α) is our enlargement of the last model

of T . Then for all β < α,
sα(lh(ETβ )) = lh(EUu(β)),

by 3.35. Thus sα, T , and U � v(α) + 1 determine u, and hence the whole of Φ. As
far as Φ is concerned, MU

v(α) is the last relevant model of U . So we can say that if T
has successor length, then a tree embedding from T to U is just a map from the last
model of T into some model of U that is elementary in a certain strong sense.

The reader might wonder why the u-map and t-maps of Φ: T → U are undefined
at α, where α + 1 = lh(T ). In general, forcing Φ to include a value for u(α) is
wrong, because u is being used to connect exit extenders, and T has not yet chosen
an exit extender at α. If we demand Φ include a value for u(α), then what we would
like to call extensions of Φ may have to revise this value. That is awkward. (See
Lemma 5.3 for a characterization of when it is possible to extend Φ: T → U to
Ψ: (T _〈F 〉)→ U .)

In the case U = W (T , F ), there is a natural way to define u and ~t at α = lh(T )−1,
namely, u(α) = lh(U)− 1, and tα = ı̂Uv(α),u(α) ◦ sα. It helps to make a definition here.
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Definition 3.39 Let T and U be weakly normal iteration trees of lengths α+ 1 > 1
and β+ 1, and let Φ: T → U be a tree embedding, with Φ = 〈u, 〈sξ | ξ ≤ α〉, 〈tξ | ξ <
α〉, p〉. Suppose that v(α) ≤ β; then we define

Ψ(Φ,U) = 〈u ∪ {〈α, β〉}, 〈sξ | ξ ≤ α〉, 〈tξ | ξ < α〉_〈̂ıUv(α),u(α) ◦ sα〉, p〉.

We say that Ψ is an extended tree embedding iff Ψ = Ψ(Φ,U) for some Φ and U ,
and write Φ = c(Ψ) and U = r(Ψ) for the unique such Φ and U .

Extended tree embeddings are not tree embeddings, they are tree embeddings that
have been extended in a small way. If Φ: T → U is a cofinal tree embedding, then
its extension Ψ(Φ,U) is completely trivial. In general, an extended tree embedding
from T into U is completely determined by T , U , and its last s-map.

Remark 3.40 T is a pseudo-hull of W (T , F ), and in fact, there is an extended tree
embedding Ψ = 〈u,~s,~t, p〉 from T into W (T , F ). In our embedding normalization

notation, u = φT ,F , tβ = πT ,Fβ , and p(ETξ ) = E
W (T ,F )
u(ξ) for ξ + 1 < lh(T ). This

determines p̂ and v. u agrees with v except at β = βT ,F , where we have v(β) = β
and u(β) = αT ,F + 1.

Letting Φ = c(Ψ) be the associated tree embedding, it is easy to see that Φ is
cofinal iff T _〈F 〉 is not normal.

Definition 3.41 Let Φ be a tree embedding from T into U , and Ψ be a tree embedding
from U into V; then Ψ◦Φ is the tree embedding from T into V obtained by composing
the corresponding component maps of Φ and Ψ. Similarly, if Φ and Ψ are extended
tree embeddings, then Ψ ◦ Φ is the extended tree embedding obtained by composing
corresponding maps.

It is easy to check that composing corresponding maps does indeed produce a
tree embedding or extended tree embedding, as the case may be.

3.5 Normalizing T aU
In this section we define the embedding normalization W (T ,U) of a maximal M -
stack 〈T ,U〉 of length 2. It is not hard to extend our definitions so that they apply to
arbitrary M -stacks of length 2, but the additional notation introduced by gratuitous
dropping would be a burden. So rather than deal with arbitrary finite stacks here,
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we shall show later that in our context of interest, they can be reduced to maximal
stacks. (See 4.60.)

To begin with, note that W (T , F ) makes sense in somewhat greater generality.
Let T be a normal tree on the premouse M . Let S be another normal tree on M ,
and F be on the sequence of the last model of S. Let α be least such that F is on the
sequence ofMS

α, so that S�(α+ 1) = S< lh(F ). Let β be such that β = S-pred(α+ 1)
would hold in any normal S ′ extending S�(α + 1) such that F = ES

′
α . That is,

S�β + 1 = S< crit(F ). Suppose that

T �β + 1 = S�β + 1.

Suppose also that if β+ 1 < lh(T ), then dom(F ) =MT
β |η for some η < λ(ETβ ), that

is, assume that
T �β + 1 = T < crit(F ).

We define a normal tree W (T ,S, F ).

Remark 3.42 The last supposition holds if either α = β and lh(F ) < lh(ETβ ), or
α > β, and lh(ESβ ) ≤ lh(ETβ ). This will be the case when we use W (T ,S, F ) to
define W (T ,U).

Let Q�N =MT
θ , where θ + 1 = lh(T ), and let

µ = crit(F ).

Suppose that Ult(Q,F ) makes sense, that is, dom(F ) ≤ ρk(Q)(Q). Suppose also that
Q is the longest initial segment of N to which F applies, that is, either Q = N ,
or ρ(Q) ≤ µ < ρk(Q)(Q). We want to define W (T ,S, F ) so that Ult(Q,F ) embeds
weakly elementarily into the last model of W (T ,S, F ).

There are three cases.

Case 1. Q 6= N .

In this case Q is a proper initial segment of MT
β | lh(ETβ ), by the argument given in

the dropping case of the definition of W (T , F ).

W (T ,S, F ) = S�(α + 1)a〈F 〉

is the unique normal continuationW of S�(α+1) of length α+2 such that EWα = F .
Note here that MT

β = MS
β , and Q is what F would be applied to in a normal

continuation of S�α + 1. (Unlike the case T = S we discussed before, it is possible
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that Q 6= N and α > β.) In this dropping case, the last model of W (T ,S, F ) is
equal to Ult(Q,F ), and doesn’t just embed it.

Case 2. Q = N , and lh(T ) = β + 1.

Again
W (T ,S, F ) = S�(α + 1)a〈F 〉

is the unique normal S ′ of length α + 2 extending S such that ES
′

α = F . Q = N =
MT

β , and so Ult(Q,F ) is equal to the last model of W (T ,S, F ).

Case 3. lh T > β + 1, and Q = N .

In this case, we construct W = W (T ,S, F ) just as before. We set

W�(α + 1) = S�(α + 1),

and
MW

α+1 = Ult(MT
β |〈γ, k〉, F ),

where k, γ are appropriate for normality. (Note MT
β = MS

β = MW
β .) Let φ(ξ) = ξ

for ξ < β, and φ(ξ) = (α + 1) + (ξ − β) for ξ ≥ β. Let πξ = id for ξ < β,
and πβ : MT

β |〈γ, k〉 → MW
α+1 be the canonical embedding. Note that by our case

hypothesis, F applies to MT
θ , and hence to MT

β | lh(ETβ ), so 〈lh(ETβ ), 0〉 ≤ 〈γ, k〉.
Thus πβ moves ETβ . So we can use the Shift lemma to lift the rest of T , defining an
elementary

πξ :MT
ξ →MW

φ(ξ)

for ξ > β, by induction on ξ. If σ = T -pred(ξ), then φ(σ) = W -pred(φ(ξ)), unless σ =
β and crit(ETξ−1) < µ. In this case, crit(EW

φ(ξ)−1) = crit(ETξ−1) < µ, soW -pred(φ(ξ)) =

β, rather than φ(β). We write

W (T ,S, F ) = S< lhFa〈F 〉aiF“ T > crit(F )

in this case.

Remark 3.43 Recall that T and S were normal on M . Let Σ be an iteration
strategy according to which both T and S are played. F and Σ determine S�(α+1),
because F determines MS

α| lhF , and thus S�(α + 1) as the unique normal tree on
M by Σ leading to a model having F on its sequence, and using only extenders of
length less than lhF . S�(α + 1) is all we need of S to determine W (T ,S, F ). So
we could write W (T ,Σ, F ) for W (T ,S, F ), or if Σ is understood, write W (T , F ) =
W (T ,S, F ).
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Notation 3.43.1 Let αT ,S,F and βT ,S,F be the α and β described above. In Case 3,
let φT ,S,F and πT ,S,Fξ for ξ < lh T be the maps φ and πξ described there. In Cases 1

and 2, let dom(φT ,S,F ) = β + 1, with φT ,S,F (ξ) = ξ if ξ < β, and φT ,S,F (β) = α + 1.
(Where α = αT ,S,F and β = βT ,S,F .) Let πT ,S,Fξ = id if ξ < β, and πT ,S,Fβ :M∗,W

α+1 =

MT
β |ξ →MW

α+1 be the canonical embedding in those cases.

In cases 2 and 3, we have an extended tree embedding

ΦT ,S,F = 〈u, 〈sξ | ξ < lh T 〉, 〈tξ | ξ + 1 < lh(T )〉, p〉

from T into W (T ,S, F ). It is determined by setting

u = φT ,S,F .

Some of its other maps are given by

tξ = πT ,S,Fξ

and
p(ETξ ) = πT ,S,Fξ (ETξ ).

In case 1, these objects determine a partial extended tree embedding from T �β+1 into
W(T ,S, F ). This is a system with all the properties of an extended tree embedding,
except that its last map tβ may only be defined on some Q�MT

β . We call it ΦT ,S,F
as well.

The illustrations associated to W (T ,S, F ) are pretty much the same as before,
allowing for the possibility that S 6= T . In particular, if ξ ≥ βT ,S,F , then F either
appears directly as one of the extenders used in [0, φ(ξ))W , or appears indirectly via
some extender F (G) used in [0, φ(ξ))W , where crit(G) < µ < λ(G) and G is used in
[0, ξ)T .

Now let T be a normal tree on a premouse M , with last model Q, and let U be
a normal tree on Q. We do not assume that U has a last model. We shall define
W (T ,U) =W , the embedding normalization of T aU . For this, we define

Wγ = W (T ,U|(γ + 1)),

the embedding normalization of T aU|(γ + 1), by induction on γ. Let us write

Qγ =MU
γ = last model of U|(γ + 1).

We shall maintain that each Wγ successor length, with last model
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Rγ = last model of Wγ

=MWγ

z(γ),

and that there is an elementary embedding

σγ : Qγ → Rγ.

As we go we construct extended tree embeddings Φη,γ, for η <U γ, from an appro-
priate initial segment of Wη to Wγ. Φη,γ is determined by its u-map φη,γ acting on
an initial segment of lh(Wη), and its t-maps we call

πη,γτ : MWη
τ →MWγ

φη,γ(τ),

defined when τ ∈ dom(φη,γ). (There is the possibility that πη,γτ acts only on some

proper initial segment of MWη
τ . That happens iff (η, γ]U has a drop.) Roughly, the

system (〈Wγ | γ < lh(U)〉, 〈Φη,γ | η <U γ〉) is an iteration tree of iteration trees,
whose base node is W0 = T , and whose overall structure is induced by U . The Φη,γ

are the branch embeddings of this tree.
We set

W0 = T ,

and let σ0 be the identity. Now suppose everything is given up to γ. We let

Fγ = σγ(E
U
γ ).

Let αγ be the least ξ such that Fγ is on the sequence of MWγ

ξ . So Fγ is on the

sequence of MWγ

ξ for all ξ such that αγ ≤ ξ ≤ z(γ). We assume the following
agreement hypotheses:

(∗)γ

(i) For η ≤ ξ ≤ γ, ση�(lh(EUη ) + 1) = σξ�(lh(EUη ) + 1).

(ii) For η < ξ < γ, αη < αξ and lh(Fη) < lh(Fξ).

(iii) For η < ξ ≤ γ, Rη agrees with Rξ up to lh(Fη), but lh(Fη) is a cardinal of Rξ,
so they disagree at lh(Fη).

(iv) For η < ξ ≤ γ, Wη�(αη + 1) =Wξ�(αη + 1), and E
Wξ
αη = Fη.
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(v) For η < γ,

(a) for all ξ < αη, lh(E
Wη

ξ ) < lh(Fη), and

(b) if αη < z(η), then lh(Fη) < lh(E
Wη
αη ).

Claim 3.44 (ii) and (v) of (∗)γ+1 hold.

Proof. For (ii), if η < γ, then lh(EUη ) < lh(EUγ ), so lh(Fη) < lh(Fγ) by (i) at γ.

Moreover, if αγ ≤ αη, then by (iv), Fγ is on the sequence of MWγ
αη =MWη

αη . But Fη
is also on the MWγ

αη sequence, by (iv). Since lh(Fη) < lh(Fγ) and Fγ is on the Rγ

sequence, we get that Fη is on the Rγ sequence. However, Fη is used in Wγ by (iv)
at γ, and thus Fη is not on the Rγ sequence.

(v)(a) holds because otherwise Fγ would be on the sequence of some MWγ

ξ for

ξ < αγ. For (v)(b), suppose αγ < z(γ). Since Fγ is on the sequences ofMWγ
αγ and of

MWγ

αγ+1, we must have lh(Fγ) < lh(E
Wγ
αγ ). �

Now suppose η = U -pred(γ + 1). We set

Wγ+1 = W (Wη,Wγ, Fγ).

Let us check that this makes sense. Let us write F = Fγ and α = αγ. Clearly
α = αWη ,Wγ ,F . Let

µ̄ = crit(EUγ ),

and
µ = σγ(µ̄) = crit(F ).

Let

β = βWη ,Wγ ,F

= least ξ such that µ < λ(E
Wγ

ξ ) or ξ = z(γ)

be the tree predecessor of α + 1 in any normal continuation S of Wγ�(α + 1) that
uses F . Since η is the least ξ such that µ̄ < λ(EUξ ), we have by (i) of (∗)γ that

η = the least ξ such that µ < λ(Fη).

ButWη�(αη+1) =Wγ�(αη+1), and E
Wγ
αη = Fη or else η = γ. In either case, β ≤ αη,

so
Wη�(β + 1) =Wγ�(β + 1).
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Moreover, since β ≤ αη, if β < z(η) then

lh(E
Wγ

β ) ≤ lh(E
Wη

β ),

with equality holding iff β < αη. These are the conditions we needed to check, so
W (Wη,Wγ, F ) makes sense.

Let Φη,γ+1 be the (possibly partial) extended tree embedding ΦWη ,Wγ ,F . Its u-map
is

φη,γ+1 = φWη ,Wγ ,F ,

and its t maps are
πη,γ+1
τ = πWη ,Wγ ,F

τ .

For δ <U η,
Φδ,γ+1 = Φη,γ+1 ◦ Φδ,η.

This of course means that φδ,γ+1 = φη,γ+1 ◦ φδ,η, and πδ,γ+1
τ = πη,γ+1

φδ,η(τ) ◦ πδ,ητ . Here the

compositions are considered as defined wherever they make sense.
Note that Φη,γ+1 is partial iff γ+1 ∈ DU . If γ+1 ∈ DU , then dom(φη,γ+1) = β+1,

and πη,γ+1
β acts on a proper initial segment of MWη

β .
σγ+1 is determined as follows. Let

Qγ+1 = Ult(Q∗, EUγ ),

where Q∗ �Qη.
Let R∗ = Rη if Q∗ = Qη, and R∗ = ση(Q

∗) otherwise. ση�Q∗ is elementary from
Q∗ to R∗.

Suppose first that we drop in U , i.e. Q∗ 6= Qη. Then ρ(Q∗) ≤ µ̄, and ση is a near
k(Q∗) + 1 embedding, so

µ = σγ(µ̄) = ση(µ̄) ≤ ρ(R∗),

while ρk(R∗)(R
∗) = ση(ρk(Q)(Q)) > µ. So R∗ is what we would apply F to in a normal

continuation of Wγ�(α + 1). Moreover,

Wγ+1 =W< lhF
γ

a〈F 〉aUlt(R∗, F )

because we are in case 1 of the definition of W (Wη,Wγ, F ). So Rγ+1 = Ult(R∗, F ),
and we can take σγ+1 to be the Shift Lemma map.

Suppose next that Q∗ = Qη, so that we are in case 2 or case 3, and

Wγ+1 =W< lhF
γ

a〈F 〉aiF“W> crit(F )
η .
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For τ ≤ z(η), we have an elementary πη,γ+1
τ :MWη

τ →MWγ+1

φη,γ+1(τ). Since we are not
dropping in U ,

QUγ+1 = Ult(QUη , E
U
γ ).

and
φη,γ+1(z(η)) = z(γ + 1).

We have then the diagram

Qγ+1 Ult(Rη, F ) Rγ+1 =MWγ+1

z(γ+1)

Qη Rη =MWη

z(η)

θ

iUη,γ+1

ση

ψ

πη,γ+1
z(η)

Here θ is given by the Shift Lemma, and ψ comes from the fact that F is an initial
segment of the extender of πη,γ+1

z(η) , as we remarked before. (So ψ� lhF = id.) We
then set

σγ+1 = ψ ◦ θ.

So when γ + 1 /∈ DU , we have the diagram

MU
γ+1 Rγ+1

MU
η Rη

σγ+1

iUη,γ+1

ση

πη,γ+1
z(η)

When γ + 1 ∈ DU , we have the diagram

MU
γ+1 Rγ+1

M∗,U
γ+1 ση(M∗,U

γ+1)

σγ+1

i∗,Uγ+1

ση

πη,γ+1
β

where β = βWη ,Wγ ,F .

Claim 3.45 (∗)γ+1 holds.
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Proof. Left to the reader. �

We have completed the definition of Wγ+1.
If λ < lh(U) is a limit ordinal, then

Wλ = lim
α<Uλ

Wα,

where we make sense of the direct limit using the tree embeddings Φη,γ for η <U

γ <U λ. We give a little more detail on this below.
In our context of interest, 〈T ,U〉 is played by a background-induced iteration

strategy Σ for M , and we shall show that all Wα are by Σ. So in our context of
interest, all models above are wellfounded.

Here are a couple illustrations that the reader may or may not find helpful. Let
γ0U γ1U γ2U γ3 be successive elements of a branch of U . Write φi = φγi,γi+1

. Let βi =
βWγi ,Wτi ,Fi , where τi = γi+1 − 1 and Fi = στi(E

U
τi

). Thus Wγi+1
= W (Wγi ,Wτi , Fi),

and βi = crit(φi). The φi might look like:

β0 β0

β1 β1

β2

φ0 φ1 φ2

The last step pictured involves a drop. Notice that βi+1 ≥ φi(βi). (equality is

possible.) This is because U is normal. In Wγi+1
, MWγi+1

φi(βi)
is immediately above

MWγi+1

βi
via an Fi-ultrapower. Moreover,Wγi+1

�(α+1) =Wτi�(α+1), where α+1 =

φi(βi). By our choice of α, λ(E
Wτi
ξ ) ≤ λ(Fi) for all ξ < α. But λ(Fi) ≤ crit(Fi+1),

since U is normal, so Fi+1 cannot be applied to any MWγi+1

ξ for ξ < φi(βi).
Because βi+1 ≥ φi(βi), and above φi(βi), ran(φi) is an initial segment of ORD−

φ(βi), we see that along any branch b of U , the direct limit of the φγ,η for γ, η ∈ b is
wellfounded.
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In fact, the direct limit has order type λ + θ, where λ = supη∈b crit(φη,b), and
θ = lh T − β, where β is least such that φ0,b(β) ≥ λ.

In addition to the φ-maps on indices of models, we have the π-maps on the
models. Let µi = crit(Fi), and let lh(Wγ1) = θ + 1. Let η be the level of Rγ2 , or

equivalently MWγ2
β2

, that we drop to when we apply F2. The picture is

Rγ1 Rγ2 Rγ3

µ1

µ2

η

µ1

F1

µ2

F2

MWγ1
β1

MWγ1
ξ

MWγ2

φ1(β1)

MWγ2

φ1(ξ)

πγ1,γ2

θ
πγ2,γ3

β2

πγ1,γ2

θ

πγ2,γ3

β2

πγ1,γ2

ξ

πγ1,γ2

β1

One can look at Φη,γ, for η <U γ, as a map on the extender trees. Let pη,γ be the
p-map of Φη,γ, that is

pη,γ : Ext(Wη)→ Ext(Wγ)

and
pη,γ(E

Wη

ξ ) = πη,γξ (E
Wη

ξ ) = E
Wγ

φη,γ(ξ).

So pη,γ(E
Wη

ξ )↓ iff ξ ∈ domφη,γ. Let

p̂(s) = least t ∈ Wext
γ such that p“ ran(s) ⊆ ran(t).

By Proposition 3.34, p̂η,γ preserves extender tree order and incompatibility; that
is s ⊆ t⇒ p̂η,γ(s) ⊆ p̂η,γ(t), and s ⊥ t⇒ p̂η,γ(s) ⊥ p̂η,γ(t). Moreover
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Proposition 3.46 Let η <U γ and φη,γ(α)↓, and suppose whenever η ≤U ξ <U γ,

then φη,ξ(α) ≥ crit(φξ,γ). Then for s = e
Wη
α ,

e
Wγ

φη,γ(α) = p̂η,γ(s)
a〈Fτ | τ + 1 ≤U γ and for all i ∈ dom p̂η,γ(s),

λ(p̂η,γ(s)(i)) ≤ crit(Fτ )〉

We omit the simple proof. The proposition says that the branch extender to
MWγ

φη,γ(α) consists of blow-ups by pη,γ of extenders used in the branch to MWη
α , to-

gether with certain Fτ ’s used in U from η to γ. It generalizes our pictures on page
86 and before.

Suppose now that λ ≤ lh(U) is a limit ordinal, and we have defined Wγ, σγ, and
the Φη,γ for η, γ < λ. We let W (T ,U�λ) be the lim inf of the Wγ for γ < lhU . More
precisely, let

Fγ = σγ(E
U
γ )

and

αγ = least α such that Fγ is on the sequence of MWγ
α

= largest α such that Wγ+1�(α + 1) =Wγ�(α + 1).

We put

W (T ,U�λ) =
⋃

γ<lhU

Wγ�(αγ + 1).

Since γ < η ⇒ αγ < αη, W (T ,U � λ) has limit length. There are no new σ’s or Φ’s
to be defined at this stage.

Now let b be a cofinal branch of U�λ (not necessarily a wellfounded one). We
define the embedding normalization

Wb = W (T ,Uab)

by forming the direct limit of the Wγ, for γ ∈ b, under the Φη,γ for η <U γ in b.
We begin with lh(Wb). Let us put

〈η, ξ〉 ∈ I iff η ∈ b, and for all sufficiently large γ ∈ b, φη,γ(ξ)↓.

Put

〈η, ξ〉 ≤I 〈δ, θ〉 iff for all sufficiently large γ ∈ b, φη,γ(ξ) ≤ φδ,γ(θ).
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It is easy to see that ≤I is a prewellorder (even if b is illfounded, or drops infinitely
often). We set

lh(Wb) = otp(I,≤I).
For η ∈ b, we let φη,b(ξ)↓ iff 〈η, ξ〉 ∈ I, and in that case, set

φη,b(ξ) = rank of 〈η, ξ〉 in (I,≤I).

We define the tree order ≤Wb
by: given 〈η, ξ〉 and 〈δ, θ〉 ∈ I

φη,b(ξ) ≤Wb
φδ,b(θ) iff for all sufficiently large γ ∈ b, φη,γ(ξ) ≤Wγ φδ,γ(θ).

Although the φη,γ do not completely preserve tree order, they almost do so. See
clause (4) in the list following Remark 3.12, and the illustration on p.85. Using this,
we can show ≤Wb

is a tree order. φη,b may fail to preserve tree order, but again, this
can only happen in a way similar to the possible failure described after 3.12. We
record this in a proposition.

Proposition 3.47 Let 〈η, ξ〉, 〈η, δ〉 ∈ I, and suppose ξ ≤Wη δ but φη,b(ξ) �Wb

φη,b(δ). Then there is a unique γ ≥ η in b such that letting U-pred(θ + 1) = γ with
θ + 1 ∈ b, F = Fθ, and β = βWγ ,Wθ,F , we have

1. β = φη,γ(ξ) ≤Wγ φη,γ(δ), and

2. letting G be the first extender used in [0, φη,γ(δ)) such that λ(G) ≥ λ(E
Wγ

β ), we
have crit(G) < crit(F ) < λ(G).

Moreover, in this case, if ξ = Wη-pred(δ), β = φη,γ(ξ) = Wγ-pred(φη,γ(δ)), and

Wθ+1-pred(φη,θ+1(δ)) = β = Wθ+1-pred(φη,θ+1(ξ)).

We omit the easy proof. Using such arguments, we can show ≤Wb
is a tree order,

and

Proposition 3.48 Let 〈η, ξ〉 and 〈δ, θ〉 ∈ I. Then φη,b(ξ) = Wb-pred(φδ,b(θ)) iff for
all sufficiently large γ ∈ b, φη,γ(ξ) = Wγ-pred(φδ,γ(θ)).

Here is a more concrete description of lh(Wb) and φη,b. Let

δ = lhW (T ,U�λ)

= sup
γ<λ

αγ

= sup{critφη,γ | η <U γ ∧ γ ∈ b}.
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(The last equality holds because if η = U -pred(γ + 1) and γ + 1 ≤U τ where τ ∈ b,
then crit(φη,γ+1) ≤ αγ < crit(φγ+1,τ ).)

Case 1. b drops somewhere.

Let γ+1 be least in b∩DU , and η = U -pred(γ+1), and β = βWη ,Wγ ,Fγ = crit(φη,γ+1).
Let β = φ0,η(τ). Then for all γ + 1 ≤U θ <U ρ, with ρ ∈ b,

crit(φθ,ρ) = φη,θ(β)

= lh(Wθ)− 1.

(Further dropping cuts down on the domains of the π-maps, not on that of the
φ-maps.) Thus

lh(Wb) = δ + 1

= φη,b(β) + 1 = φ0,b(τ) + 1.

Case 2. b does not drop.

Let

τ = τb = least α < lh T such that for all γ <U ξ

with ξ ∈ b, φ0,γ(α) ≥ crit(φγ,ξ).

Then

φ0,b(τ) = δ,

lh(Wb) = δ + (lh T − τ),

and for ξ ≥ τ with ξ < lh(T ),

φ0,b(ξ) = δ + (ξ − τ).

This case can happen in two ways: it can be that φ0,η(τ) = crit(φη,γ) for some η <U γ
with γ ∈ b, in which case that is true for all sufficiently large such η, γ. Or it can
happen that φ0,η(τ) > crit(φη,γ), for all η <U γ with γ ∈ b. In that case, τ is a limit
ordinal, and the extenders in b are being inserted cofinally into the branch extender
of [0, τ)T .

It can happen in Case 2 that τ is a limit ordinal, but some φ0,η(τ) and its images
are in the “eventual critical points” along b. In that case, some tail of the extenders
used in b are being inserted after the blow-ups of all those in [0, τ)T .
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Now we define the models and extenders of Wb. Suppose α = φη,b(γ) < lh(Wb).

Suppose η ≤ ξ < δ ∈ b. Then we have the map πξ,δφη,ξ(γ) acting on either MWξ

φη,ξ(γ) or

an initial segment thereof. We let

MWγ
α = dirlim of the MWξ

φη,ξ(γ) under the πξ,δφη,ξ(γ)’s.

If b does not drop after η, then we have

πη,bγ :MWη
γ →MWb

φη,b(γ)

as the direct limit map. Otherwise πη,bγ may (or may not) act on a proper initial

segment of MWη
γ .

Finally, if α = φη,b(γ) < lh(Wb) and α + 1 < lh(Wγ), then

EWb
α = πη,bγ (EWη

γ ).

One can check that with this choice of extenders,Wb is a normal iteration tree on M .
For example, suppose that η ∈ b and that for all ξ ≥ η in b, Wξ-pred(φη,ξ(γ + 1)) =
φη,ξ(θ), and we aren’t dropping, so

MWξ

φη,ξ(γ+1) = Ult(MWξ

φη,ξ(θ)
, E
Wξ

φη,ξ(γ)).

Then
MWb

φη,b(γ+1) = Ult(MWb

φη,b(θ)
, EWb

φη,b(γ)).

because each of the three objects in this equation is a direct limit of its ξ-approximations,
for ξ ∈ b, and the maps commute appropriately. We omit further detail.

Now we also have the natural map

σb : MU
b → Rb,

where Rb is the last model of Wb, given by

σb(i
U
γ,b(x)) = πγ,bz(γ)(σγ(x)).

In the abstract, it may happen that not all models ofWb are wellfounded. In our
context of interest, 〈T ,U_b〉 is played according to an iteration strategy Σ for M ,
and we show that Σ is sufficiently good that Wb is also played by Σ.
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Now suppose λ < lhU and b = [0, λ)U , and all models of Wb are wellfounded.
Then we set

Wλ =Wb,

φη,λ = φη,b,

πη,λγ = πη,bγ ,

σλ = σb,

and continue with the inductive construction of W (T ,U). If some model of Wb is
illfounded, we stop the construction, and say that W (T ,U) is undefined.

Finally, if U has a last model, we set W (T ,U) = Wγ, where lhU = γ + 1. If U
has limit length λ, then W (T ,U) = W (T ,U�λ) has already been defined.

To summarize our notation associated to W (T ,U): for γ < lhU ,

Fγ = σγ(E
U
γ )

where σγ :MU
γ → Rγ = last model of Wγ, and

Wγ+1 = W (Wη,Wγ, Fγ)

where η = U -pred(γ + 1). By normality, modulo an iteration strategy according to
which allWγ are played, Rγ andWγ determine each other, while Fγ andWγ�(αγ+1)
determine each other. The Rγ’s are not the models of a single iteration tree; they
constitute and enlargement of U , with accompanying maps σγ : MU

γ → Rγ. We
proved the basic facts about agreement of models and maps in this enlargement in
(∗)γ above; we list some of them again here for reference.

Proposition 3.49 Let γ < η < lhU . Then

(a) Rγ agrees with Rη below lhFγ,

(b) ση � (lh(EUη ) + 1) = σγ � (lh(EUη ) + 1), and

(c) Fγ is on the sequence of Rγ, but not that of Rη. In fact, lh(Fγ) is a cardinal
of Rη.

The following diagram summarizes the situation. We draw the diagram as if the
maps in question exist, although sometimes they may not, because of dropping. Let
z(η) + 1 = lh(Wη), and let iWη : M → Rη be the canonical embedding (assuming
M -to-Rη does not drop).
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R0 =MU
0 MU

η MU
γ

Rη

MWη
σ Rγ

MWγ

φη,γ(σ)

M

iW0

i
Wη
0σ

i
W
η

i
W
γ

πη,γσ

iUη,γ

ση

πη,γ
z(η)

σγ

The various embeddings all commute:

(i) iWγ = πη,γz(η) ◦ iWη

(ii) πη,γσ ◦ i
Wη

ξ,σ = i
Wγ

φη,γ(ξ),φη,γ(σ) ◦ π
η,γ
ξ (general version of (i))

(iii) σγ ◦ iUη,γ = πη,γz(η) ◦ ση.

In a sufficiently coarse case, the upper triangle in the diagram above collapses.

Proposition 3.50 Let T be normal on M , and U normal on the last model T .
Suppose also that T and U are ms-normal Suppose that whenever α + 1 < lh T ,

MT
α |= ν(ETα ) is strongly inaccessible.

Let Wη, ση :MU
η → Rη, Rη =MWη

z(η) etc., be as above. Then

(1) Rη =MU
η , and ση = id, for all η < lh(U);

(2) if η <U γ, then iUη,γ = πη,γz(η).

110



Proof. Proposition 3.18 generalizes to W (Wη,Wγ, F ), where F comes from Wγ. We
use that repeatedly. �

Remark 3.51 There is a tacit hypothesis in 3.50 that all models in Wγ are well-
founded. The ms-normality hypothesis is there because if we replace ν(ETα ) by λ(ETα )
above, then the hypothesis implies that M |= “ there is a superstrong cardinal”.

Remark 3.52 We shall need also to consider W (T ,U) when 〈T ,U〉 is a stack on
some M that is not a premouse of any kind. In that case we shall assume that
M |= ZFC, and M is the background universe for some construction for a fine-
structural object. The background extenders used in this construction will constitute
a coarsely coherent sequence ~F ∈ M . (See 2.38.) We shall only be interested in ~F -
trees on M . Normality for such trees S means

1. α < β ⇒ lhESα < lhESβ , and

2. S-pred(γ + 1) = least β such that crit(ETα ) < lh(ETβ ).

Given 〈T ,U〉 a normal ~F -stack on M , we can define W (T ,U) as above. In this
coarse case we shall have σγ = id for all γ, and hence Fγ = EUγ for all γ. Having
defined Wη for η ≤ γ, and with Rγ =MU

γ , we let

α = least τ such that for η = lh(EUγ ), VM
U
τ

η = V
MUγ
η .

It is easy to see that α is the least τ such that EUγ ∈ iU0,τ ◦ iT (~F ). We define

Wγ+1 = W (Wη,Wγ, E
U
γ )

=Wγ�(α + 1)a〈EUγ 〉aiEUγ “W> crit(EUγ )
η .

The coherence of ~F implies that if σ < α, then lh(E
Wγ
σ ) < lh(EUγ ), so that Wγ�(α+

1)a〈EUγ 〉 is normal, so Wγ+1 is normal.

This completes our definition of embedding normalization. Since we do not need
full normalization in this paper, we shall not discuss it further here.

Remark 3.53 One can regard the sequence of iteration trees 〈Wγ | γ < lh(U)〉 that
occurs in the definition of W (T ,U) as an iteration tree of iteration trees. One might
call such a system a meta-iteration tree, or meta-tree. The nodes in the meta-tree are
iteration trees, with T being the base node. The Fγ are used to extend the meta-tree

111



at successor steps, via the W -operation. We have tree embeddings from one node to
the later ones along branches of our meta-tree.

The meta-tree associated to W (T ,U) is not the general case, however, because
there is in general no need to require that the Fγ be obtained by lifting extenders used
in some tree U on the last model of T . This was first realized by Schlutzenberg, who
defined the general notion of “meta-iterate of T ”. (Schlutzenberg’s term is “inflation
of T ”.) Schlutzenberg also showed that if T is played by a strategy Σ with the weak
Dodd-Jensen property, then Σ induces a meta-iteration strategy for T . See [44].
Schlutzenberg’s work was streamlined and re-written by Jensen, who introduced the
general notion of meta-tree. See [12]. Further general results on meta-iteration trees
and strategies can be found in [48], along with a more detailed discussion of the
evolution of the idea.

3.6 Normalization commutes with copying

We prove that normalization commutes with copying. The proof is completely
straightforward, but takes a while to put on paper, because of the many embed-
dings involved. We shall use this fact to show that the pullback of a strategy that
normalizes well also normalizes well. The proof also serves as an introduction to our
proof that normalization commutes with lifting to a background universe. That in
turn is used in the proof that if a strategy for the background universe normalizes
well, then so do the strategies on premice that it induces. (See 4.41.)

Theorem 3.54 Let 〈T ,U〉 be a maximal M-stack, and let ψ : M → N be elemen-
tary. Let 〈T ∗,U∗〉 = ψ〈T ,U〉 be the stack on N obtained by copying. Suppose that
W (T ∗,U∗) exists; then

(1) W (T ,U) exists, and ψW (T ,U) = W (T ∗,U∗), and

(2) let U and U∗ have last models Q and Q∗ respectively, and W (T ,U) and W (T ∗,U∗)
have last model R and R∗ respectively, and let

(i) ρ : Q→ Q∗ be the map from copying 〈T ,U〉 to 〈T ∗,U∗〉,
(ii) σ : Q→ R be the normalization map associated to W (T ,U),

(iii) θ : R→ R∗ be the map from copying W (T ,U) to W (T ∗,U∗), and

(iv) σ∗ : Q∗ → R∗ be the normalization map associated to W (T ∗,U∗);

then θ ◦ σ = σ∗ ◦ ρ.
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The following diagram depicts our situation:

R∗

N P ∗ Q∗

R

M P Q

W∗

T

ψ

W

U

σ

ρ

T ∗ U∗
θ

σ∗

Proof.
The embedding normalization W (T ,U) has associated to it normal trees

Wγ = W (T ,U � γ + 1)

on M , for γ < lhU . We also have extended tree embeddings

Φη,γ : Wη → Wγ,

defined for η ≤U γ. For η ≤U γ, we set

φη,γ = uΦη,γ ,

so that φη,γ : lhWη → lhWγ, and for τ ∈ domφη,γ,

πη,γτ = tΦη,γτ ,

so that πη,γτ :MWη
τ →MWγ

φη,γ(τ). Let Rγ be the last model of Wγ, σγ :MU
γ → Rγ as

before, and Fγ = σγ(E
U
γ ). So

Wγ+1 = W (Wη, Fγ)

when η = U -pred(γ + 1).
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Similarly, W (T ∗,U∗) has associated trees

W∗γ = W (T ∗,U∗ � γ + 1)

on N for γ < lhU∗ = lhU , together tree embeddings

Φ∗η,γ : W∗η →W∗γ

defined when η ≤U γ. We call the u maps of these tree embeddings φ∗η,γ : lhW∗η →
lhW∗γ , and for τ ∈ domφ∗η,γ, the t map is

∗
πη,γτ . We let R∗γ = be the last model of

W∗γ , σ∗γ : MU∗
γ → R∗γ, and F ∗γ = σ∗γ(E

U∗
γ ). We have that W∗γ+1 = W (W∗η , F ∗γ ) when

η = U∗-pred(γ + 1) (equivalently, η = U -pred(γ + 1)).
We shall prove that for all γ,

ψWγ =W∗γ .

The proof is by induction on γ, with a subinduction on initial segments ofWγ. Given
that we know this holds for Wγ�η, we have copy maps

ψγτ : MWγ
τ →MW∗γ

τ

defined for all τ < η. ψγ0 = ψ for all γ.
For γ < lhU , let

ψUγ : MU
γ →MU∗

γ

be the copy map. So ψU0 is the copy map given by the fact that T ∗ = ψT , and the
remaining ψUγ come from the fact that U∗ = (ψU0 )U .

We write z(ν) for lhWν − 1 and z∗(ν) for lhW∗ν − 1. (Once we have shown that
ψWν = W∗ν , we get z(ν) = z∗(ν), of course.) We may use ∞ for z(ν) or z∗(ν)
when context permits. So Rν = MWν

z(ν) = MWν
∞ . If (ν, γ]U does not drop, then

φν,γ(z(ν)) = z(γ), and πν,γz(ν) = πν,γ∞ : Rν → Rγ.

Lemma 3.55 Let γ < lhU . Then

(1) W∗γ = ψWγ.

(2) φη,ν = φ∗η,ν, if η, ν ≤ γ and η ≤U ν.

(3) Whenever ν <U γ and (ν, γ]U does not drop in model or degree, then for all
τ < lhWν, ψγφν,γ(τ) ◦ πν,γτ =

∗
πν,γτ ◦ ψντ .

(4) ψγz(γ) ◦ σγ = σ∗γ ◦ ψUγ .
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Letting Ωη be the system of all copy maps from Wη to W ∗
η , item (3) is keeping

track of the sense in which Ωγ ◦ Φν,γ = Φ∗ν,γ ◦ Ων . Here is a diagram of (3):

MWγ

φν,γ(τ) MW∗γ
φ∗ν,γ(τ)

MWν
τ MW∗ν

τ

ψγ
φν,γ(τ)

ψντ

πν,γτ
∗
πν,γτ

There is a diagram related to (4) and the case τ = z(ν) of (3) near the end of the
proof.

Proof. We prove 3.55 by induction. Suppose that it is true at all ν ≤ γ. We show
it at γ + 1. Let ν = U -pred(γ + 1), and

F = Fγ = σγ(E
U
γ ),

and

α = αT ,Uγ

= α(Wν ,Wγ, F )

= least τ such that F is on the MWγ
τ -sequence.

So

Wγ+1 = W (Wν ,Wγ, F )

=Wγ�(α + 1)a〈F 〉aiF“W>crit(F )
ν .

Let also

F ∗ = F ∗γ = σ∗γ(E
U∗
γ ).

Since U∗ is a copy of U , ν = U∗-pred(γ + 1), so

W∗γ+1 = W (W∗ν ,W∗γ , F ∗).

Claim 3.56 (1) ψγz(γ)(F ) = F ∗,

(2) α = α(W∗γ ,W∗ν , F ∗), and

(3) β(Wν ,Wγ, F ) = β(W∗ν ,W∗γ , F ∗).
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Proof. For (1), we have

ψγz(γ)(F ) = ψγz(γ) ◦ σγ(E
U
γ )

= σ∗γ ◦ ψUγ (EUγ )

= σ∗γ(E
U∗
γ )

= F ∗.

For (2), it is enough to show that lh(F ) < lh(E
Wγ
τ ) if and only if lh(F ∗) <

lh(E
W∗γ
τ ). But if lh(F ) < lh(E

Wγ
τ ), then applying the copy maps ψγ, we have

lh(F ∗) = lh(ψγz(γ)(F )) = lh(ψγτ (F ))

< lh(ψγτ (EWγ
τ ))

= lh(E
W∗γ
τ ).

The first line holds because ψγz(γ) agrees with ψγτ on lh(E
Wγ
τ ). Conversely, if lh(F ) >

lh(E
Wγ
τ ), then if lh(F ∗) > lh(E

W∗γ
τ ) by the same calculation.

For (3), we must show that crit(F ) < λ(E
Wγ
τ ) if and only if crit(F ∗) < λ(E

W∗γ
τ ).

But this follows from the agreement of the copy maps ψγ in exactly the same way.
�

The claim easily implies that φν,γ+1 = φ∗ν,γ+1, which then gives us (2) of 3.55 at
γ + 1.

We now define the copy maps ψγ+1
τ : MWγ+1

τ → MW∗γ+1
τ that witness W∗γ+1 =

ψWγ+1. As we do so, we show that (3) of 3.55 holds, that is, the ψν and ψγ+1 maps
commute with the embedding normalization maps of models of Wν into models of
Wγ+1 and models of W∗ν into models of W∗γ+1.

We haveWγ+1�(α+ 1) =Wγ�(α+ 1) andW∗γ+1�(α+ 1) =W∗γ�(α+ 1), so we can
set

ψγ+1
τ = ψγτ , for all τ ≤ α.

Now F = E
Wγ+1
α and F ∗ = E

W∗γ+1
α , moreover ψγα(F ) = ψγz(γ)(F ) = F ∗ because

lh(F ) < lh(E
Wγ
α ) if α < z(γ). Letting P =MWν

β |〈η, k〉 be such that

MWγ+1

α+1 = Ult(P, F ),

we have
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MW∗γ+1

α+1 = Ult(P ∗, F ∗),

where P ∗ =MW∗ν
β |〈ψνβ(η), k〉. (Here we make the usual convention if η = o(MWν

β ).)
This is because Wν�(β + 1) = Wγ�(β + 1), and similarly at the (*) level, by the
properties of embedding normalization. So ψνβ = ψγβ , and thus agrees with ψγz(γ) up

to λ(E
Wγ

β ), hence past crit(F ). So we can let

ψγ+1
α+1([a, f ]PF ) = [ψγ+1

α (a), ψγ+1
β (f)]P

∗
F ∗ ,

by the Shift lemma, and we have ψWγ+1�(α+ 2) =W∗γ+1�(α+ 2). Note that α+ 1 =

φν,γ+1(β), so ψγ+1
φν,γ+1(β) ◦ π

ν,γ+1
β =

∗
πν,γ+1
β ◦ ψνβ by the Shift lemma, and this gives us

the new instance of (3) of 3.55.
The general successor case above α+ 1 is similar. Suppose we have ψWγ+1�(η +

1) =W∗γ+1�(η + 1) as witnessed by ψγ+1
τ for τ ≤ η. Suppose η > α. Let

η = φν,γ+1(ξ) = φ∗ν,γ+1(ξ),

G = EWγ+1
η ,

and
G∗ = E

W∗γ+1
η .

Then

ψγ+1
η (G) = ψγ+1

φν,γ+1(ξ)(π
ν,γ+1
ξ (EWν

ξ ))

=
∗
πν,γ+1
ξ (ψνξ (EWν

ξ ))

=
∗
πν,γ+1
ξ (E

W∗ν
ξ )

= E
W∗γ+1
η = G∗.

The Shift lemma now gives us ψγ+1
η+1 as above, and we have ψWγ+1�(η + 2) =

W∗γ+1�(η + 2).
We leave the limit case of the subinduction to the reader. This finishes the

subinduction proving (1), (2), and (3) of 3.55 at step γ + 1. For (4), let us set
τ = γ + 1. To simplify things, let us assume that (ν, γ + 1]U is not a drop. Consider
the diagram

117



Rτ R∗τ

MU
τ MU∗

τ

Rν R∗ν

MU
ν MU∗

ν

EUγ

ψUν

σν

στ

ψUτ

ψτ∞

σ∗τ

πν,τ∞

ψν∞

∗
πν,τ∞

σ∗ν

We are asked to show that σ∗τ ◦ ψUτ = ψτ∞ ◦ στ , in other words, that the square on
the top face of the cube commutes. The square on the bottom commutes by our
induction hypothesis. The square in front commutes because U∗ is a copy of U .
That the square in back commutes is clause (3) of our lemma at γ + 1, which we
just proved. The squares on the left and right faces commute by the properties of
embedding normalization.

It is clear from these facts that the top square commutes on ran(iUν,τ ). SinceMU
τ

is generated by ran(iUν,τ ) ∪ λ(EUγ ), it is enough to see that the top square commutes
on λ(EUγ ).

Let a ∈ [λ(EUγ )]<ω. So σγ(a) ∈ [λ(F )]<ω, and στ (a) = σγ(a) by Proposition 3.49
on the agreement properties of embedding normalization maps. Thus

ψτ∞(στ (a)) = ψτ∞(σγ(a))

= ψγ∞(σγ(a)),

using that the copy maps ψτ∞ and ψγ∞ both agree with ψγγ on λ(F ). On the other
hand, ψUτ (a) ∈ [λ(EU

∗
τ ]<ω, so

σ∗τ (ψ
U
τ (a)) = σ∗γ(ψ

U
τ (a))

= σ∗γ(ψ
U
γ (a),

by the agreement in normalization maps on the W∗ side. But ψγ∞ ◦ σγ = σ∗γ ◦ ψUγ by
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induction, so

ψτ∞ ◦ στ (a) = ψγ∞ ◦ σγ(a)

= σ∗γ ◦ ψUγ (a)

= σ∗τ ◦ ψUτ (a),

as desired.
This finishes the step from γ to γ + 1 in the inductive proof of 3.55. We leave

the limit step to the reader. �

It is easy to see that Theorem 3.54 follows from Lemma 3.55.
�

3.7 The branches of W (T ,U)

Let T be normal on M , and U be normal on the last model of T . Let us adopt the
notation of the last section, so that we have Wγ, Fγ, αγ, βγ, φη,γ, π

η,γ
τ , and so on.

Suppose lhU is a limit ordinal θ, and let

λ = lhW (T ,U) = sup
γ<θ

αγ.

Here we assume W (T ,U) exists, i.e. embedding normalization has so far produced
only wellfounded models. Let b be a cofinal branch of U . We do not assume MU

b is
wellfounded. Note that Wb still makes sense, as defined above.

Proposition 3.57 λ = φ0,b(τ), where τ is least such that whenever η, γ ∈ b and
η <U γ, then critφη,γ ≤ φ0,η(τ).

Proof. Let η + 1 ∈ b, and σ ∈ U -pred(η + 1). Then φσ,η+1(crit(φσ,η+1)) = αη + 1,
so αη + 1 ≤ crit(φη+1,ξ) for all ξ ∈ b. It follows that φ0,b(τ) ≥ λ. But if σ < τ , we
can find γ + 1 ∈ b with η = U -pred(γ + 1) such that φ0,η(σ) < crit(φη,γ+1). Then
φ0,b(σ) = φ0,η(σ) < αγ < λ. Finally, λ ∈ ranφ0,b (because any ξ < lh(Wγ) not in
ranφ0,γ is fixed by φγ,b), so λ = φ0,b(τ). �

Proposition 3.58 Let a = [0, λ)Wb
and λ = φ0,b(τ); then

ξ ∈ a iff ∃η ∈ b (ξ ≤ crit(φη,b) ∧ ξ ≤Wη φ0,η(τ)).

We omit the easy proof.
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Remark 3.59 We don’t get a “continuously” from b. If τ is fixed in advance, then
continuously in those b such that τ = τb, we can produce the corresponding a’s.

Definition 3.60 In the situation above, we write

a = br(b, T ,U)

and

τ = m(b, T ,U)

for the branch of W (T ,U) and model of T determined by b.

Remark 3.61 Let Eb be the extender of iUb . It is an extender over the model MT
ξ ,

where ξ + 1 = lh T . One can show that τ is the least α such that either Eb is an
extender over MT

α | lhETα (that is, dom(Eb) ⊆MT
α | lh(ETα )) , or α = ξ.

The branch extender of a is given by

Proposition 3.62 Let a = br(b, T ,U) and τ = m(b, T ,U) be as above; then

eW (T ,U)
a = p̂0,b(e

T
τ )a〈Fσ | σ + 1 ∈ b ∧ ∀i ∈ dom(p̂0,b(e

T
τ ))

λ(p̂0,b(e
T
τ )(i)) ≤ crit(Fσ)〉.

Here we are writing e
W (T ,U)
a for eWb

λ , because e
W (T ,U)
a really only depends on a and

W (T ,U). We omit the proof of 3.62. For what it’s worth, here is a picture
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MT
τ MW (T ,U)

a

G

K

H

λTτ

lh(ETτ )

ψ0,b(G)

ψ0,b(H)

ψ0,b(K)

Fγ

Fα

Fξ

sup π0,b
τ “λTτ

Fβ

Fδ

δ(U)

Note δ(U) = δ(W (T ,U)). The F ’s in the picture were all used in b. Some got put

directly into e
W (T ,U)
a , others indirectly via some p0,b(G). λTτ is the sup of the Jensen

generators of extenders used to get toMT
τ . (In general, λTτ < λ(ETτ ).) The extenders

in e
W (T ,U)
a with generators beyond supπ0,b

τ “λTτ are all directly inserted F ’s.
Branches of W (T ,U) of the form br(b, T ,U) come from cofinal branches of U and

models of T . There may also be cofinal branches of W (T ,U) coming from cofinal
branches of U and maximal (perhaps not cofinal) branches of T . So we extend our
definitions.

Definition 3.63 Let W = W (T ,U), where T is normal on M and U is normal on
the last model of T . For ξ < lh T ,

(a) for γ + 1 < lhU , letting η = U-pred(γ + 1), we set

ndW(ξ, γ + 1) =

{
φ0,η(ξ), if φ0,η(ξ)↓ and φ0,η(ξ) ≤Wη crit(φη,γ+1);

undefined, otherwise.

(b) For any γ < lhU ,

τ ∈ brW(ξ, γ) iff τ = ndW(ξ0, γ0 + 1),

for some ξ0 ≤T ξ and γ0 + 1 ≤U γ.
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“nd” stands for “node”. We shall drop the subscript and write nd(ξ, γ + 1) and
br(ξ, γ) when context permits. Notice that if τ = nd(ξ, γ + 1), then whenever
γ + 1 ≤U δ, then φ0,δ(ξ)↓, and τ ≤Wδ

φ0,δ(ξ). This is true even if τ = crit(φη,γ+1)
holds in the definition of ndW , because crit(φη,γ+1) ≤Wδ

φη,δ(crit(φη,γ+1)). This gives

Proposition 3.64 1. Let ξ0 ≤T ξ1 and γ0 + 1 ≤U γ1 + 1. Then

nd(ξ0, γ0 + 1) ≤W (T ,U) nd(ξ1, γ1 + 1)

if both are defined,

2. br(ξ, γ) is a branch of W (T ,U) (not cofinal),

3. ξ0 ≤T ξ1 and γ0 ≤U γ1 ⇒ br(ξ0, γ0) is an initial segment of br(ξ1, γ1).

Proof. Routine. �

Definition 3.65 Let c be a branch of T and b be a branch of U . Then

1. brW(c, b) =
⋃
ξ∈c,γ∈b brW(ξ, γ),

2. c is b-minimal iff for any ξ ∈ c, brW(c ∩ ξ, b) 6= brW(c, b).

Again we omit the subscript W when possible.

Remark 3.66 1. If b is cofinal in lh(U), then br(c, b) is the ≤W (T ,U)-downward
closure of φ0,b“ c ∩ lh(W (T ,U)).

2. Equivalent are: (1) c is b-minimal, (2) for cofinally many ξ ∈ c, ∃γ+1 ∈ b such
that nd(ξ, γ + 1)↓, (3) for all ξ ∈ c, ∃γ + 1 ∈ b, nd(ξ, γ + 1)↓.

We do not assume in Definition 3.65 that b and c are maximal branches. So for
example br([0, ξ]T , [0, γ]U) = br(ξ, γ).

We shall show that if a is a cofinal branch of W (T ,U), then a = br(c, b) for some
cofinal branch b of U and some c; moreover, there is a unique such b, and a unique
such b-minimal c. For this, we must assume that all Wγ are played according to a
common iteration strategy. The following is the key lemma.

Lemma 3.67 Let T , U be as above, and suppose there is an iteration strategy Σ for
M such that all Wγ, γ < lhU , are according to Σ. Let γ and δ be ≤U -incomparable,
and let η be largest such that η <U γ and η <U δ. Let α = φη,γ(ᾱ) and ε = φη,δ(ε̄),

where ᾱ ≥ crit(φη,γ) and ε̄ ≥ crit(φη,δ); then e
Wγ
α is incompatible with eWδ

ε .
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Proof. Let u = e
Wγ
α , ū = e

Wη

ᾱ , v = eWδ
ε and v̄ = e

Wη

ε̄ . Assume toward contradiction
that either u ⊆ v, or v ⊆ u.

Let

γ0 + 1 = least ξ ∈ (η, γ]U ,

δ0 + 1 = least ξ ∈ (η, δ]U ,

so that EUγ0
and EUδ0 are the extenders used in U along the two branches of U at the

point where they diverge, and Fγ0 and Fδ0 stretch Wη into Wγ0+1 and Wδ0+1. Let

k(ū) =

{
least i such that crit(Fγ0) < λ(ū(i)), if this exists;

dom(ū), otherwise,

and

k(v̄) =

{
least i such that crit(Fδ0) < λ(v̄(i)), if this exists;

dom(v̄), otherwise.

Claim 3.68 k(ū) = k(v̄), and for k = k(ū), ū�k = v̄�k = u�k = v�k.

Proof. Let k = k(ū). If k < k(v̄), then v(k) = v̄(k), so λ(v(k)) ≤ crit(Fδ0). But

λ(u(k)) ≥ λ(Fγ0). [e
Wγ0+1

φη,γ0+1(ᾱ)(k) = H is defined because ᾱ ≥ crit(φη,γ0+1). H is

either Fγ0 or the stretch by Fγ0 of some G such that crit(G) < crit(Fγ0). In either
case, λ(H) ≥ λ(Fγ0). u(k) = ψγ0+1,γ(H), so λ(u(k)) ≥ λ(H).] Since u(k) = v(k), we
have λ(Fγ0) ≤ crit(Fδ0), so Fγ0 and Fδ0 do not overlap, contradiction. k(v̄) < k(ū)
leads to a parallel contradiction. So we have k(ū) = k(v̄) = k.

For i < k, u(i) = ū(i) and v(i) = v̄(i). So ū�k = v̄�k = u�k = v�k. �

Fix k = k(ū). We may assume by symmetry that γ0 < δ0.

Claim 3.69 k ∈ dom(ū), and moreover, crit(ū(k)) < crit(Fγ0).

Proof. If either statement fails, then

e
Wγ0+1

φη,γ0+1(ᾱ)(k) = Fγ0 .

Since the extenders used in (γ0 + 1, γ]U have critical point at least λ(EUγ0
), we get

pγ0+1,γ(Fγ0) = Fγ0 .

(In fact, φγ0+1,γ�(γ0 + 1) = identity, and πγ0+1,γ
γ0

= identity.) So

u(k) = Fγ0 .
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But k = k(v̄), and from this we get

λ(Fδ0) ≤ λ(v(k))

as in Claim 3.68. Since λ(Fγ0) < λ(Fδ0), we have a contradiction. �

Let G = ū(k) and H = u(k). By Claim 3.69, along the branch from η to γ, G
is being stretched above its critical point into H, by the copy maps corresponding
to the Fτ for τ + 1 ≤U γ and η ≤ τ . Let γ1 ≤ γ be least such that the stretching is
finished at γ1. That is, setting

G = E
Wη

ξ

γ1 = least τ ≤ γ such that crit(φτ,γ) > φη,τ (ξ)

= least τ ≤ γ such that πη,τξ (G) = H.

If η <U τ + 1 ≤U γ1, so that Fτ was used in producing Wγ1 from Wη, then Fτ is an
initial segment of all the extenders of copy maps πµ,τ+1

ρ , where µ = U -pred(τ + 1),
and ρ ≥ crit(φµ,τ+1). From this we get

Claim 3.70 For η <U τ + 1 ≤U γ1, λ(Fτ ) < λ(H).

Proof. Just given. �

Claim 3.71 H 6= Fδ0.

Proof. Suppose H = Fδ0 . We claim that γ1 ≤ δ0. If γ1 is a limit ordinal, then
γ1 = sup{τ + 1 | η <U τ + 1 <U γ1}, so by Claim 3.70, λ(Fδ0) > λ(Fτ ) for cofinally
many τ in γ1, which implies δ0 ≥ γ1. If γ1 is not a limit ordinal, we have γ1 = τ + 1
where Fτ is used, so that λ(Fτ ) < λ(H) = λ(Fδ0). Thus τ < δ0, so γ1 = τ + 1 ≤ δ0.

On the other hand, H is used inWγ1 on the way to Rγ1 . Thus Rγ1 and Rδ0 agree
below lh(H), while H = Fδ0 is on the Rδ0-sequence, but not on the Rγ1-sequence.
This implies δ0 < γ1, a contradiction. �

By Claim 3.71, k ∈ dom(v̄), and letting L = v̄(k), crit(L) < crit(Fδ0). So L is
being stretched above its critical point into H along the branch from η to δ. Let
δ1 ≤ δ be least such that the stretching is over with at δ1; that is, setting

L = EWη
µ

δ1 = least τ ≤U δ such that crit(φτ,δ) > φη,τ (µ)

= least τ ≤U δ such that πη,τµ (L) = H.

Since γ1 6= δ1, we have λUγ1
6= λUδ1 . Assume λUγ1

< λUδ1 . (It no longer matters
whether γ0 < δ0, so this is not a loss of generality.) That is, we have a τ + 1 ≤U δ1

such that for all σ + 1 ≤U γ1, λ(EUσ ) < λ(EUτ ). This yields:
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(∗) τ ≤ δ1, and whenever σ + 1 ≤U γ1, then λ(Fσ) < λ(Fτ ).

Thus τ > σ, whenever σ + 1 ≤U γ1. So τ ≥ γ1. We have that H is used in
both Wγ1 and Wδ1 , so Rγ1 agrees with Rδ1 below lh(H), which is a cardinal in both
models. But Fτ is used in Wδ1 , before H, so lh(Fτ ) is a cardinal in both Rγ1 and
Rδ1 .

But then Rγ1 and Rτ agree up to lh(Fτ ), since Rτ ‖ lh(Fτ ) = Rδ1 ‖ lh(Fτ ). Fτ is
on the Rτ -sequence, and not the Rγ1-sequence, so τ < γ1. Contradiction. �

Corollary 3.72 Let σ = nd(ξ, γ0 +1) and τ = nd(ρ, γ1 +1), where γ0 +1 and γ1 +1
are ≤U -minimal. (I.e. γ′0 + 1 <U γ0 + 1⇒ σ 6= nd(ξ, γ′0 + 1), and similarly for γ1 + 1,
τ , and ρ.) Suppose that U-pred(γ0 +1) is ≤U -incomparable with U-pred(γ1 +1); then
σ and τ are ≤W (T ,U)-incomparable.

Proof. Let η be largest such that η <U γ0 + 1 and η <U γ1 + 1. Let η =
U -pred(η0 + 1) = U -pred(η1 + 1), where η0 + 1 ≤U γ0 + 1 and η1 + 1 ≤U γ1 + 1. By
the minimality of γ0 and γ1,

crit(φη,η0+1) ≤ φ0,η(ξ)

and

crit(φη,η1+1) ≤ φ0,η(ρ).

[ To see this, recall that the φ maps along a branch of U have increasing critical
points, so if crit(φη,η0+1) > φ0,η(ξ), then σ = φ0,η(ξ), so σ = nd(ξ, η0 + 1). Similarly
on the η1 side.] But then

crit(φη,γ0+1) ≤ φ0,η(ξ)

and

crit(φη,γ1+1) ≤ φ0,η(ρ).

By Lemma 3.67,

e
Wγ0+1
σ ⊥ e

Wγ1+1
τ .

But σ ≤ βγ0 by the definition of nd(ξ, γ0 + 1), so σ ≤ αγ0 , so e
Wγ0+1
σ = e

W (T ,U)
σ .

Similarly, e
Wγ1+1
τ = e

W (T ,U)
τ , so we are done. �

Corollary 3.73 Let a be a cofinal branch of W (T ,U), and suppose a = br(c0, b0) =
br(c1, b1). Then b0 = b1, and b0 is cofinal in U . Moreover, if c0 and c1 are b0-minimal,
then c0 = c1.
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Proof. We show first that b0 is cofinal. Let µ < lhU , and let τ ∈ a with τ > αµ, and

τ = nd(ξ, γ + 1),

for ξ ∈ c0 and γ + 1 ∈ b0. Let η = U -pred(γ + 1). Then

τ = φ0,η(ξ) ≤ crit(φη,γ+1) < αγ + 1,

so αµ < αγ + 1, so µ ≤ γ. Hence b0 is cofinal. Similarly for b1.

Remark 3.74 The proof showed that if nd(ξ, γ + 1)↓ and nd(ξ, γ + 1) > αµ, then
γ ≥ µ.

Suppose toward contradiction that b0 6= b1. Let η0 ∈ b0 and η1 ∈ b1 be ≤U -
incomparable. Let τ0, τ1 ∈ a with τ0 > αη0 and τ1 > αη1 and τ0 = nd(ξ, γ0 + 1),
τ1 = nd(ρ, γ1 + 1) for some γ0 + 1 ∈ b0 and γ1 + 1 ∈ b1. Then η0 ≤U γ0 + 1 and
η1 ≤U γ1 + 1 by the remark above. By Corollary 3.72, τ0 is ≤W (T ,U)-incomparable
with τ1. Since τ0, τ1 ∈ a, this is a contradiction.

Finally, suppose c0 and c1 are b0-minimal. We claim c0 = c1. For that it suffices
to show

Claim 3.74.1 Suppose nd(ξ, γ+1) and nd(ρ, δ+1) are defined and ≤W (T ,U)-comparable.
Suppose γ + 1 and δ + 1 are ≤U -comparable. Then ξ and ρ are ≤T -comparable.

Proof. Although the φ-maps do not fully preserve tree order, we do have

(i) φη,γ(ξ) ≤Wγ φη,γ(ρ)⇒ ξ ≤Wη ρ

(ii) ξ, ρ are ≤Wη -incomparable and φη,γ(ξ)↓ and φη,γ(ρ)↓ implies φη,γ(ξ) and φη,γ(ρ)
are ≤Wγ -incomparable.

Now let ξ, γ + 1, ρ, δ + 1 be as in our hypotheses, and suppose ξ and ρ are ≤T -
incomparable. By (ii), we cannot have γ + 1 = δ + 1. Suppose without loss of
generality γ + 1 <U δ + 1. Let

η = U -pred(γ + 1)

and

µ = U -pred(δ + 1).

Then φ0,η(ξ) is ≤Wη -incomparable with φ0,η(ρ). Since φ0,η(ξ) ≤ crit(φη,γ+1) we see
that φ0,η(ξ) is incomparable in Wγ+1 with φ0,γ+1(ρ). (If φ0,η(ξ) < crit(φη,γ+1), this
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follows from (ii). If φ0,η(ξ) = crit(φη,γ+1), it follows from the definition of Wγ+1.)
Since φ0,η(ξ) < crit(φγ+1,µ), φ0,η(ξ) is Wµ-incomparable with φ0,µ(ρ), contradiction.

�

�

Finally, we show (assuming still that all Wγ, γ < lhU , are by a common Σ.)

Lemma 3.75 For any cofinal branch a of W (T ,U), there is a cofinal branch b of U
and a branch c of T such that brW(c, b) = a.

Proof. We begin by decoding notes of U from nodes ofW (T ,U). For ξ < lh(W (T ,U)),
set

d(ξ) = least γ such that ξ ≤ αγ.

Claim 3.75.1

d(ξ) = least γ such that e
Wγ

ξ = e
W (T ,U)
ξ

= least γ such that MWγ

ξ =MW (T ,U)
ξ .

Proof. The two characterization are clearly equivalent. So it is enough to show that
ξ ≤ αγ ⇔ MWγ

ξ = MW (T ,U)
ξ . The ⇒ direction is trivial. But if MWγ

ξ = MW (T ,U)
ξ ,

thenWγ�(ξ+1) = W (T ,U)�(ξ+1) by normality. SinceWγ�(αγ+2) = W (T ,U)�(αγ+
2) (because Fγ was used in the latter, and not the former), ξ ≤ αγ. �

Claim 3.75.2 ξ0 ≤W (T ,U) ξ1 ⇒ d(ξ0) ≤U d(ξ1).

Proof. Let γ0 = d(ξ0) and γ1 = d(ξ1). We claim that ξ0 ∈ ranφ0,γ0 . For let τ be least
such that φ0,γ0(τ) ≥ ξ0. If φ0,γ0(τ) 6= ξ0, then there must be 0 ≤U η <U σ + 1 ≤U γ0

such that
crit(φη,σ+1) ≤ ξ0 < φη,σ+1(crit(φη,σ+1))

and η = U -pred(σ + 1). (All discontinuities in φ0,γ0 arise this way.) But then
ξ0 < ασ + 1, so ξ0 ≤ ασ, and σ < γ0, contradiction.

Similarly, ξ1 ∈ ranφ0,γ1 .
We claim that γ0 and γ1 are comparable in U . Suppose not, and let η be largest

such that η <U γ0 and η <U γ1. Let

ξ0 = φη,γ0(ξ̄0)
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and

ξ1 = φη,γ1(ξ̄1).

The hypotheses of 3.67 are satisfied, noting that ξ̄0 ≥ crit(φη,γ0) because otherwise

e
Wγ0
ξ0

= e
Wη

ξ0
, whilst γ0 was least such that e

Wγ0
ξ0

appears as a branch extender. Sim-

ilarly, ξ̄1 ≥ crit(φη,γ1). The other hypotheses of 3.67 hold, so we conclude e
Wγ0
ξ0

is

incompatible with e
Wγ1
ξ1

. This implies ξ0 and ξ1 are incomparable in W (T ,U). Fi-
nally, ξ0 ≤W (T ,U) ξ1 ⇒ ξ0 ≤ ξ1, and trivially ξ0 ≤ ξ1 ⇒ d(ξ0) ≤ d(ξ1). Since d(ξ0)
and d(ξ1) are ≤U -comparable, d(ξ0) ≤U d(ξ1), as desired. �

Claim 3.75.3 d : lh(W (T ,U)) → lhU is an order-homomorphism, and ran(d) is
cofinal in lh(U).

Proof. As we remarked, ξ0 ≤ ξ1 ⇒ d(ξ0) ≤ d(ξ1) is trivial. Pick any γ < lhU , and
ξ < lhW (T ,U) with ξ > αγ. (The αγ’s are strictly increasing.) Then d(ξ) > γ. �

It follows that for any branch a of W (T ,U), we can set

d(a) = {γ | ∃ξ ∈ a (γ ≤U d(ξ))},

and d(a) is a branch of U . If a is cofinal in W (T ,U), then d(a) is cofinal in U .
Next we decode nodes of T . For any ξ < lh(W (T ,U)), set

e(ξ) = unique α < lh T such that φ0,d(ξ)(α) = ξ.

We showed in the proof of Claim 3.75.2 that ξ ∈ ran(φ0,d(ξ)).

Claim 3.75.4 ξ0 ≤W (T ,U) ξ1 ⇒ e(ξ0) ≤T e(ξ1).

Proof. Let γi = d(ξi) and ξ̄i = e(ξi). As we noted above, the σ maps do not introduce
new tree-order relationships in ranφ.

Subclaim 3.75.1 If φη,γ(µ) ≤Wγ φη,γ(ν), then µ ≤Wη ν.

Proof. Easy induction on γ. �

So if ξ̄0 �T ξ̄1, then φ0,γ0(ξ̄0) �Wγ0
φ0,γ0(ξ̄1). That is, ξ0 �Wγ0

φ0,γ0(ξ̄1). If
crit(φγ0,γ1) > ξ0, then we get ξ0 �Wγ1

ξ1, and since ξ1 ≤ αγ1 , ξ0 �W (T ,U) ξ1, as
desired. So assume ξ0 ≥ crit(φγ0,γ1).

If ξ0 = crit(φγ0,γ1), then ξ0 ≤Wγ1
φγ0,γ1(σ) iff ξ0 ≤Wγ0

σ for all σ. Since ξ0 �Wγ0

φ0,γ0(ξ̄1), this yields ξ0 �Wγ1
ξ1, so ξ0 �W (T ,U) ξ1, as desired.
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Finally, suppose ξ0 > crit(φγ0,γ1). So letting τ + 1 ≤ γ1 be least such that
γ0 < τ + 1, and

β = β(Wγ0 ,Wτ , Fτ ),

we have
β < ξ0 ≤ αγ0 < ατ .

No extender in ranψγ0,γ1 can have critical point in the interval [crit(Fτ ), λ(Fτ )]. This
implies that if τ+1 ≤U γ and β < ξ ≤ ατ , then for all σ ∈ domφγ0,γ, ξ �Wγ φγ0,γ(σ).
In particular, ξ0 �Wγ1

ξ1, so ξ0 �W (T ,U) ξ1, as desired. �

For a branch a of W (T ,U), we set

e(a) = {β | ∃ξ ∈ a (β ≤T e(ξ))}.

So e(a) is a branch of T . Even if a is cofinal in W (T ,U), e(a) may not be cofinal in
T . e(a) may have a largest element, or be a maximal branch of T not chosen by T .

Claim 3.75.5 Let a be cofinal in W (T ,U). Then a = brW(e(a), d(a)), and e(a) is
d(a)-minimal.

Proof. Let b = d(a) and c = e(a). Let ξ ∈ a, we wish to show ξ ∈ br(c, b). Let η be
least such that ξ ≤ αη, so that η ∈ b. Let φ0,η(ξ̄) = ξ, so that ξ̄ ∈ c. Let γ+ 1 ∈ b be
such that η = U -pred(γ + 1). It will be enough to show that ξ = nd(ξ̄, γ + 1). For
that, it is enough to show that ξ ≤ crit(φη,γ+1).

Let ρ ∈ a be such that αη < ρ. Let σ be least such that ρ ≤ ασ, so that σ ∈ b
and γ + 1 ≤U σ. Let φ0,σ(ρ̄) = ρ. If ξ > crit(φη,γ+1), then ξ ∈ (crit(φη,γ+1), αη]. But
we observed above that ξ is “dead” along branches containing γ + 1 for extensions
in ranφη,σ, so since ρ is in ranφη,σ, ξ �Wσ ρ. But Wσ�(ασ + 1) = W (T ,U)�(ασ + 1),
so ξ �W (T ,U) ρ, contrary to ρ ∈ a.

It is easy to see that e(a) is d(a)-minimal. �
�

Definition 3.76 Given T normal on M , and U normal on the last model of T ,
we write brW(T ,U) for the function brW (defined on pairs of nodes and pairs of
branches) defined above. We write brWU for the function d and brWT for the function
e defined above.

Notation 3.76.1 To reconcile with our previous notation: if b is cofinal in U , there
is exactly one branch c of T such that

(i) c = [0, τ ]T or c = [0, τ)T for some τ < lh T , and
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(ii) brW(c, b) is cofinal in W (T ,U).

This uses that T has a last model. We defined br(b, T ,U) to be brW(c, b), for the
unique such c. We define m(b, T , b) to be the unique τ as in (i). We probably won’t
use that earlier notation much.

For τ in (i) a limit ordinal, the earlier notation does not distinguish between
c = [0, τ)T and c = [0, τ ]T , whereas the current one does. c = [0, τ)T is the case
where, roughly speaking, the measures in Eb concentrate on proper initial segments
of MT

c |δ(T � sup c) =MT
τ |λTτ .

Remark 3.77 We assumed T has a last model, but one could generalize some of
this by dropping that, and assuming that U is on M(T ).

Remark 3.78 There are two special cases worth mentioning.

(a) T aU is already normal. Then W (T aU) = T aU , and brW (c, b) = cab.

(b) U is a tree on M |κ, where κ = inf{crit(ETη ) | η + 1 < lh T }. Then if U has
limit length, then W (T ,U) = U -on-M , i.e. U regarded as a tree on M . For b
a cofinal branch of U , Wb = W (T ,Uab) = Uaba(iUb )T , and brW (c, b) = baφ“ c,
where φ(η) = lhU + η.

In our application, however, T and U will definitely not be separated this way.

Remark 3.79 brW(T ,U) makes sense in the coarse structural case. Our proof that
it is 1-1 and onto used fine structure (via 3.67), as well as the hypothesis that all
Wγ are by some fixed Σ. So that part is limited to the fine structural case. But not
much fine structure was used, and we shall adapt the proof to the coarse structural
case later.

3.8 Normalizing longer stacks

There seem to be in the abstract many different ways to normalize a stack 〈U1, ...,Un〉,
one for each way of associating the Ui. If we are in the case that embedding nor-
malization coincides with full normalization, and there is a fixed strategy Σ for M
according to which all these normalizations are played, such that for any N there is
at most one normal Σ-iteration from M , then clearly all these normalizations are the
same. They are just the unique normal tree by Σ from M to the last model of ~U . We
shall be in that situation below when we deal with coarse iterations of a background
universe. But in general, it seems that the various normalizations of ~U might all be
different from one another.
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We shall define Σ normalizes well by demanding that whenever ~U is a finite stack
by Σ, then all normalizations of ~U are by Σ. In addition, we demand that Σ pull
back to itself under normalization maps.

Definition 3.80 Let ~U = 〈U1, . . . ,Un〉 be a finite stack of normal trees on M , where
n > 1. Let M0 = M , and Mi be the last model of Ui for 1 ≤ i ≤ n. A 1-step
normalization of ~U is a triple 〈k, ~V , ~π〉 such that ~V is a stack of length n − 1 on
M = M0, and

(1) 1 ≤ k < n,

(2) Vm = Um for all m < k, and Vk = W (Uk,Uk+1),

(3) Letting N0 = M and Ni be the last model of Vi for i < n, we have that

(a) πi : Mi → Ni is the identity for i < k,

(b) πk : Mk+1 → Nk is the map given by embedding normalization, and

(c) for k < i < n, Vi = πi−1Ui+1, and πi : Mi+1 → Ni is the copy map.

Clearly, ~U and k determine the rest of the normalization.

Definition 3.81 Let ~U = 〈U1, . . . ,Un〉 be a finite, maximal M-stack, with n > 1.

Let 1 ≤ t < n; then a t-step normalization of ~U is a sequence s with domain t + 1
such that s(0) = (0, ~U , ∅), and whenever 0 ≤ i < t, s(i+ 1) is a 1-step normalization

of ~V, where ~V is the second coordinate of s(i).

A complete normalization of 〈U1, . . . ,Un〉 is an n−1 step normalization of 〈U1, . . . ,Un〉.
We shall sometimes identify a t-step normalization s of ~U with the stack of trees in
the second coordinate of s(t). If t = n− 1, then this is a single normal tree on M .

Remark 3.82 Benjamin Siskind has recently shown that the normalization opera-
tion is associative, in that if ~U is a finite stack of normal trees on a premouse M ,
then all complete normalizations of s produce the same normal tree on M . This is
not at all obvious, even in the case that lh(~U) = 3, where there are only two possible

ways to normalize ~U .

For m ≥ 1, and i ≥ 0, let us write Vs(i)m for the m-th tree in the second coordinate
of s(i) (or in its third coordinate, if i > 0), and N

s(i)
m for the last model of Vs(i)m . Let

N
s(i)
0 = M , for all i. For any e < i < n, and any m such that N

s(i)
m exists, there is a
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unique l such that N
s(i)
m comes from N

s(e)
l , in the sense that s(e)�(l+1) is normalized

to s(i)�(m+ 1) by s�(e, i]. Let us write

l = os,i,e(m)

in this case. Composing normalization maps and copy maps given by s�(e, i] yields
a canonical

πs,i,el,m : N
s(e)
l → N s(i)

m ,

where l = os,i,e(m). So if s is a normalization of 〈U1, . . . ,Un〉 with dom(s) = i + 1,

then the stack ~Vs(i) has last model N
s(i)
m , where m = n − i, and n = os,i,0(m), and

πs,i,0n,m is the natural map from the last model of ~U to the last model of ~V . Let us write

πs = πs,i,0n,m

in this case. So πs is the natural map from the last model of s(0) to the last model
of the stack in s(dom(s) − 1) that is given by s. All πs,i,el,m have the form πu, for u
obtained from s in a simple way.

Probably the most natural order in which to normalize a stack is bottom-up.

Definition 3.83 Let ~U = 〈U1, . . . ,Un〉 be a finite, maximal stack of normal trees

on M ; then the bottom-up normalization of ~U is the complete normalization s of ~U
such that for each i ≥ 1 in dom(s), s(i) has first coordinate 1. We write W (~U) for

the normal tree on M in the second coordinate of s(dom(s)− 1), and also call W (~U)

the bottom-up normalization of ~U .

The definitions above extend to stacks ~U on M of infinite length. Again, it seems
to makes sense to normalize in any order, but the most natural way is bottom-up.
Suppose for example that ~U = 〈Un | n < ω〉. Let W0 = U0, and for n ≥ 1 let

Wn = W (〈Ui | i ≤ n〉).

For n ≥ 0, let
Φn : Wn →Wn+1

be the tree embedding given by the fact that Wn+1 = W (Wn, πUn+1) for the appro-
priate π. (Φn is partial iff Un+1 drops along its main branch.) Then we set

W (~U) = lim
n
Wn,

where the limit is taken using the Φn. It is clear how to define this limit as an
algebraic structure, but not at all clear that it is an iteration tree. Its length may
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be illfounded, and the models occurring in it may be illfounded. As in the case of
finite stacks, what we need is that ~U has been played according to a sufficiently good
iteration strategy. The optimal result in this direction is due to Schlutzenberg; see
[44]. We discuss this matter further in the next chapter.

One can continue further into the transfinite. W (~U) makes sense as an algebraic

structure for stacks ~U of normal trees of any length, and under appropriate iterability
hypotheses it is an iteration tree. In fact, one could go beyond linear stacks of normal
trees, and consider normalizing arbitrary trees on M . There is as of now no good
theory at this level of generality.

In this book we shall not need more than normalization for finite stacks of normal
trees.
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4 Strategies that condense and normalize well

In this chapter we define what it is for an iteration strategy to normalize well, and
to have strong hull condensation. We prove some elementary facts related to these
two properties, and we show that they follow from strong unique iterability.

All the good behavior of iteration strategies one could wish for seems to follow
from their normalizing well and having strong hull condensation. This good behavior
then follows from strong uniqueness, but strong uniquenessis too restrictive. Mice
with Woodin cardinals do not in general have strongly unique iteration strategies.
On the other hand, we shall see later that every iterable pure extender premouse has
an iteration strategy that normalizes well and has strong hull condensation. (See
Proposition 6.25.)

Assuming AD+, one can obtain strongly uniquely iterable coarse premice having
Woodin cardinals via the Γ-Woodin construction. We discuss this in section 3.2.
In section 3.3, we show that UBH together with the existence of a Woodin cardinal
above a supercompact cardinal implies the existence of strongly uniquely iterable
coarse premice with Woodin cardinals. These are our main existence theorems for
coarse premice with strongly unique iteration strategies.

In section 3.4, we show that if C is a background construction done inside a
coarse premouse N∗ with an iteration strategy Σ∗ that normalizes well, then for any
model M of C, the induced strategy Ω(C,M,Σ∗) for M normalizes well. In section
3.5 we show that strong hull condensation is similarly preserved. In particular, if
Σ∗ is a strongly unique strategy for N∗, then the background-induced strategies
Ω(C,M,Σ∗) all normalize well and have strong hull condensation. This (together
with its counterpart later for strategy mice) is our main existence theorem for fine
structural mice with strategies that normalize well and have strong hull condensation.

4.1 The definitions

The definitions in this section apply to both fine-structural premice and coarse pre-
mice.

Definition 4.1 Let Σ be a complete iteration (λ, θ)-strategy for M , where λ > 1.

(1) We say that Σ 2-normalizes well iff whenever 〈T ,U〉 is a maximal 2-stack by
Σ such that U) has last model Q, then

(a) W (T ,U) is by Σ, and

(b) letting W = W (T ,U) have last model R, and π : Q→ R be the last t-map
of the embedding normalization, we have that Σ~U ,Q = (Σ~V,R)π.
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(2) We say that Σ normalizes well iff all its tails Σs 2-normalize well.

Clearly, if Σ normalizes well, then so do all its tail strategies.
In 4.1(1), we restrict ourselves to maximal stacks 〈T ,U〉 because we have not

defined W (T ,U) when 〈T ,U〉 is not maximal. It is in fact not hard to define W (s)
for non-maximal stacks of merely weakly normal trees. The theorems we prove here,
for example Theorem 4.21 and Theorem 4.41, hold for the resulting stronger version
of normalizing well.

Suppose that Σ normalizes well, and T is a normal tree on M with last model Q
that is according to Σ. Let U on Q be normal and by ΣT ,Q and of limit length, and let

b = ΣT ,Q(U) = Σ(〈T ,U〉),
and

a = Σ(W (T ,U)).

Then

a = brT ,UW (c, b)

where c is some branch [0, τ)T or [0, τ ]T of T that is chosen by Σ. Moreover,

b = brT ,UU (a).

In other words, Σ(〈T ,U〉) and Σ(W (T ,U)) determine each other, modulo T . (This

“moreover” part applies in the fine-structural case, and to the case of ~F -trees with
~F coarsely coherent, with all Wγ by a fixed Σ.) Applying this repeatedly we get

Proposition 4.2 Let Σ and Ψ be complete strategies for M with scope Hδ that
normalize well, and suppose that Σ agrees with Ψ on normal trees; then Σ agrees
with Ψ on finite, maximal M-stacks.

Proof. We just gave the proof for stacks of length 2. Let 〈U1, ...,Un+1〉 be a
maximal stack by Σ and Ψ such that Un+1 has limit length. Let Q be the base model
of Un+1, and R the last model of W (〈U1, ...,Un〉) =W , and σ : Q→ R the embedding
normaliztion map. We have that 〈W , σUn+1〉 is by both strategies because they
normalize well. By our result for stacks of length 2, Σ(〈W , σUn+1〉) = Ψ(〈W , σUn+1〉).
But Σ(〈W , σUn+1〉) = Σ(〈U1, ...,Un+1〉) because Σ normalizes well, and similarly for
Ψ, so we are done. �

We now show that if Σ normalizes well, then in fact it does so for arbitrary finite
stacks, not just stacks of length 2.
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Proposition 4.3 Let Σ be an complete (λ, θ)-iteration strategy for M that normal-

izes well, and let r be a stack of length < λ by Σ. Suppose ~U is a finite maximal
stack by Σr, and s is a t-step normalization of ~U , and ~V = ~Vs(t) is the stack in s(t),
then

(1) ~V is by Σr, and

(2) if π = πs is the natural map from the last model Q of ~U to the last model R of
~V, then Σr_ ~U ,Q = (Σr_~V,R)π.

Proof. We show by induction on n that Σ normalizes well for stacks of length n. The
same proof works for tails Σr of Σ.

For n = 2 this is true by hypothesis. Let ~T a〈U1,U2〉a~S be a stack of length n+ 1
by Σ. We want to see that the 1-step normalization obtained by replacing 〈U1,U2〉
by W (U1,U2), and ~S by π ~S for π the normalization map, behaves well. It is clear
that this implies t-step normalizations behave well, for all t.

Let V be a complete normalization of ~T , with θ the normalization map from
N = M~T

∞ to N∗ = MV
∞. θ lifts U1 to θU1; let ρ : MU1

∞ → MθU1
∞ be the copy map.

Note that 〈V , θU1, ρU2〉 is a stack by Σ, because ΣV,N∗ pulls back under θ to Σ~T ,N
by our induction hypothesis. Let Q∗ be its last model. Let

W∗ = W (θU1, ρU2),

and let R∗ be the last model of W∗, and σ∗ : Q∗ → R∗ the normalization map. The
hypothesis of our proposition tells us that 〈V ,W∗〉 is by Σ, and that

Σ〈V,θU1,ρU2〉,Q∗ = (Σ〈V,W∗〉,R∗)
σ∗ .

Let Q be the last model of ~T a〈U1,U2〉, let

W = W (U1,U2),

and let R be the last model of W . Let σ : Q → R be the normalization map. The
situation can be encapsulated in the following diagram.
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R∗

N∗ P ∗ Q∗

R

M N P Q

V

~T U1

θ

W

U2

σ

ψ

θU1

W∗

ρU2

φ

σ∗

Here P = MU1
∞ , and P ∗ = MθU1

∞ , and ρ : P → P ∗ is the copy map. The maps
ψ : Q → Q∗ and φ : R → R∗ are copy maps. We get φ from Theorem 3.54; in this
case, copying 〈U1,U2〉 via θ commutes with normalizing 〈U1,U2〉. We have

φ ◦ σ = σ∗ ◦ ψ

from 3.54.
Since θW = W∗, and Σ pulls back to itself under θ by induction, we have that

~T a〈W〉 is by Σ, and Σ~T a〈W〉,R = (Σ〈V,W∗〉,R∗)
φ. It follows that

(Σ~T a〈W〉,R)σ = (Σ〈V,W∗〉,R∗)
φ◦σ

= (Σ〈V,W∗〉,R∗)
σ∗◦ψ

= ((Σ〈V,W∗〉,R∗)
σ∗)ψ

= (Σ〈V,θU1,ρU2〉,Q∗)
ψ

= Σ~T a〈U1,U2〉,Q.

Line 1 holds because Σ normalizes well for ~T , line 2 comes from 3.54, line 4 holds
because ΣV,N∗ 2-normalizes well, and line 5 holds because Σ normalizes well for ~T .

This takes care of the case ~S = ∅. The general case follows easily. Since
Σ~T a〈W〉,R)σ = Σ~T a〈U1,U2〉,Q and ~S is by Σ~T a〈U1,U2〉,Q, we have that σ ~S is by Σ~T a〈W〉,R,

and moreover the ~T a〈W〉aσ ~S-tail of Σ pulls back under the relevant copy map to

the ~T a〈U1,U2〉a~S-tail of Σ. �

A very similar argument shows that the property of normalizing well passes to
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pullback strategies.

Theorem 4.4 Let Σ be an iteration strategy for N that normalizes well, and let
π : M → N be sufficiently elementary that the pullback strategy Σπ exists; then Σπ

normalizes well.

Proof. Let 〈V ,U1,U2〉 be a stack by Σπ, with last model Q. LetW = W (U1,U2) have
last model R, and σ : Q→ R be the normalization map. We want to see that 〈V ,W〉
is by Σπ, and that the 〈V ,W〉-tail of Σπ pulls back under σ to the 〈V ,U1,U2〉-tail of
Σπ.

We have the diagram

R∗

N K∗ P ∗ Q∗

R

M K P Q

π

V U1

θ

W

U2

σ

ψ

θU1

W∗

ρU2

φ

σ∗

πV

Here θ : K → K∗ and ρ : P → P ∗ are copy maps generated by π, and W∗ is the
normalization of 〈θU1, ρU2〉. σ∗ is the associated normalization map. ψ and φ are copy
maps, which we have because copying commutes with normalization. φ ◦ σ = σ∗ ◦ ψ
by 3.54.

The copy map φ tells us that 〈V ,W〉 is by Σπ. The rest is given by

(Σπ
〈V,W〉,R)σ = (Σ〈πV,W∗〉,R∗)

φ◦σ

= (Σ〈πV,W∗〉,R∗)
σ∗◦ψ

= ((Σ〈πV,W∗〉,R∗)
σ∗)ψ

= (Σ〈πV,θU1,ρU2〉,Q∗)
ψ

= Σπ
~T a〈U1,U2〉,Q

.
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This is what we want. �

We turn to strong hull condensation. It will be conveneient here to extend the
definition of extended tree embeddings (3.39) so that they can act on weakly normal
trees T of length 1.

Definition 4.5 Let U be a weakly normal tree on M of length β+1, and let N�M ;
then we say that ı̂U0,β is an extended tree embedding from the weakly normal tree
〈∅, N〉 into U .

The point of this perhaps strange terminology is to streamline the following def-
inition.

Definition 4.6 Let Σ be a complete iteration strategy for a premouse M . Then Σ
has strong hull condensation iff whenever s is a stack of weakly normal trees by Σ
with last model N , and U is a weakly normal tree on N by Σs,N , then for any weakly
normal T on N ,

(a) if T is a psuedo-hull of U , then T is by Σs,N , and

(b) if Φ: T → U is an extended tree embedding, with last t-map π : Q→ R �MU
α

then Σs_〈T 〉,Q = (Σs_〈U�(α+1)〉,R)π.

Because less is required of a tree embedding than is required of a hull embedding
in [30], the property is stronger than the property called Hull Condensation in [30].
Hence its name.

Clause (b) was not part of our original definition of strong hull condensation. B.
Siskind then showed that (b) follows abstractly from (a) and normalizing well (see
[48]), via a strategy-comparison argument. We have made clause (b) part of the
definition here because it is useful, and one can obtain it directly for background-
induced strategies.

Despite the title of this book, it will turn out that strong hull condensation is
the fundamental regularity property of iteration strategies. All the other regularity
properties are implied strong hull condensation together with normalizing well. We
believe that a complete strategy with strong hull condensation need not normalize
well, although we have no example at the moment. However, any complete strategy
for normal trees that has strong hull condensation can be extended in a unique way to
a complete strategy for finite stacks of normal trees that has strong hull condensation
and normalizes well. This is a result of Schlutzenberg and the author. Schlutzenberg
also proved a stronger version of the theorem in which the extended strategy can act
on infinite stacks. See [44] and [48], and Theorem 4.34 in the next section.
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Remark 4.7 The papers [60] and [48] introduce a still weaker sort of embedding
of iteration trees, and make use of the resulting “very strong hull condensation”. It
turns out that strategies for premice that have strong hull condensation also have very
strong hull condensation, and this implies that they fully normalize well. However,
the proof of this requires a strategy-comparison argument. Strong hull condensation
has the virtue that we can verify it directly for background-induced strategies, so we
can use it in proving a comparison theorem.

Because we have included clause (b) in the definition of strong hull condensation,
it implies a property usually known as pullback consistency. Indeed, what is usually
called pullback consistency is just clause (b), as applied to T of length one.

Definition 4.8 Let Ω be a complete iteration strategy for M . We say that Ω is
pullback consistent iff whenever u is an M-stack by Ω, and s is a finite M-stack
by Ωu, and π : MTm(s)

α → M∞(s) is an iteration map of s, then for t = s�(m −
1)a〈(νm(s), km(s), Tm(s)�(α + 1))〉,

Ωu_t = (Ωu_s)
π.

A pullback consistent strategy pulls back to itself under its own iteration maps,
where by “iteration map” we mean any map of a branch segment generated some-
where in a finite stack s by the strategy, from one model to a later one. This is a
strengthening of the pullback consistency condition from [30]. It follows at once from
strong hull condensation.

Lemma 4.9 Let Ω be a complete strategy for M that has strong hull condensation;
then Ω is pullback consistent.

Proof. Suppose first that T is a weakly normal tree on M∞(u) by Ωu of length
β + 1, and that α ≤T β. Suppose that Q �MT

α and Q ⊆ dom(̂ıTα,β). Let U
be T �(α + 1), followed by a gratuitous drop to Q, and let W be T followed by a
gratuitous drop to ı̂Tα,β(Q). Letting π = ı̂Tα,β�Q, we have that π is the last t-map of
an extended tree embedding from U to W . (If α > 0, its associated tree embedding
is just the identity on T �α + 1, and if α = 0, we appeal to definition 4.5.) By part
(b) of definition 4.6, (Ωu_〈T 〉,R)π = Ωu_〈T �α+1〉,Q, which is what we need.

It is routine the extend this argument to finite M -stacks by Ωu, by pulling back
under the branch embeddings of the constituent normal trees, one at a time. �

Strong hull condensation is preserved by pullbacks:
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Proposition 4.10 Let π : M → N be weakly elementary, and let Σ be a strategy for
N having strong hull condensation; then Σπ has strong hull condensation.

Proof.(Sketch.) There is a relevant diagram below. Let s be a stack on M with last
model K, and let K∗ be the last model of πs, with θ : K → K∗ the copy map. Let
U be on K and by (Σπ)s, and let T be a psuedo-hull of U . It is not hard to see that
θT is a psuedo-hull of θU . Since θU is by Σπs,K∗ , θT is by Σπs,K∗ , so T is by (Σπ)s,
as desired for part (a).

For part (b), let Φ: T → U be an extended tree embedding with last t-map
σ : Q→ R. By the (suppressed) construction of the first part, we have an extended
tree embedding Ψ: θT → θU . Let σ∗ : Q∗ → R∗ be the last t-map of Ψ. Let
ψ : Q→ Q∗ come from the copying of T to θT , and φ : R→ R∗ come from copying
U to θU . We have the diagram

R∗

N K∗ Q∗

R

M K Q

π

s T

θ

U
σ

ψ

θT

θU

φ

σ∗

πs

This is quite similar to the diagram in 4.4, because the situations are quite similar.
Again, we calculate

(Σ〈s_〈U〉,R〉)
σ = (Σ〈πs,θU〉,R∗)

φ◦σ

= (Σ〈πs,θU〉,R∗)
σ∗◦ψ

= ((Σ〈πs,θU〉,R∗)
σ∗)ψ

= (Σ〈πs,θT 〉,Q∗)
ψ

= (Σsa〈T 〉,Q)ψ.
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The following elementary lemma on extending tree embeddings at limit steps will
be useful.

Lemma 4.11 Let Σ be a strategy for the premouse M having strong hull conden-
sation, and let T and U be trees of limit length by Σ. Let Φ: T → U be a tree
embedding such that

∃α < lh(U)∀β(α < β < lh(U)⇒ β ∈ ran(uΦ)).

Let b = Σ(T ) and c = Σ(U); then there is a unique tree embedding Ψ: T _b→ U_c
such that Φ ⊆ Ψ.

Proof. Let u = uΦ, and d = u−1“c. By our hypothesis that ran(u) contains a final
segment of the ordinals below lh(U), we see that d is cofinal in lh(T ). Moreover,
Φ extends to a tree embedding of T _d into U_c. By strong hull condensation,
d = Σ(T ) = b, so we are done. �

If one weakens the hypothesis of Lemma 4.11 by requiring only that ran(uΦ) be
cofinal in lh(U), then the conclusion may not hold. There is a counterexample in
[48], just after definition 1.3.

4.2 Coarse Γ-Woodins and Γ-universality

Of course, one cannot prove that there are any nontrivial iteration strategies without
making assumptions that go beyond ZF. Determinacy assumptions are particularly
useful in this regard. Under AD+, every Suslin-co-Suslin set is Wadge reducible to
an iteration strategy; in fact, there are countable iterable structures at every Suslin-
co-Suslin degree of correctness. More precisely

Definition 4.12 Let A ⊆ R. We say that (M, δ, τ,Σ) captures A iff

(a) M |= ZFC + “δ is Woodin”,

(b) δ is countable, and Σ is a complete strategy with scope HC for V M
δ+1, and

(c) τ ∈M is a Col(ω, δ)-term for a set of reals, and

(d) whenever i : M → N is by Σ and g is Col(ω, i(δ))-generic over N , then i(τ)g =
A ∩N [g].
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Notice here that (M, δ, τ,Σ) does indeed determine A, because for every real x there
are N and g as in (d) such that x ∈ N [g].

The following came out of Woodin’s work in the late 1980s on large cardinals in
HOD under determinacy hypotheses. See [15] and [58].

Theorem 4.13 [Woodin] Assume AD; then for any Suslin and co-Suslin set A, there
is a tuple (M, δ, τ,Σ) that captures A.

Unfortunately, the models M produced by the proof of 4.13 are not given as fine
structural. They are “HOD-like”, but that doesn’t help until the analysis of HOD
to which this book contributes is done. However, one can use M as a background
universe for the construction of some fine structural premouse N , and hope to show
that N and its induced strategy capture some set close to A. This is the basic plan
behind the proofs we currently have for fragments of LEC and HPC, and it is therefore
the main source for the iteration strategies to which the theorems of this book apply.

In this context, it helps to be working with a background universe M having more
structure than is recorded in 4.12. We shall call the resulting pairs coarse Γ-Woodin
pairs.

Assume AD+, and let Γ,Γ1 be good (i.e. closed under ∃R) lightface pointclasses
with the scale property such that Γ ⊆ ∆1. Let A be a universal Γ1 set, and let
U ⊂ R code {〈ϕ, x〉 | (Vω+1,∈, A) |= ϕ[x]}. Let S and T be trees on some ω×κ that
project to U and ¬U . Using his work in [15], Woodin has shown ([58, Lemma 3.13])
that there is a countable transitive N∗ ∈ HC, a wellorder � of N∗, and an iteration
strategy Σ such that for δ = o(N∗),

(a) (fullness) N∗ = V
L(N∗∪{S,T,�})
δ ,

(b) N∗ is f -Woodin, for all f : δ → δ such that f ∈ CΓ(N∗,�),

(c) for all η ≤ δ, there is an f : η → η such that f ∈ CΓ1(V N∗
η ,� ∩ V N∗

η ) and V N∗
η

is not f -Woodin, and

(d) Σ is an (ω1, ω1)-iteration strategy for L(N∗, S, T,�), with respect to nice trees
based on N∗.

Concerning item (d), recall that ω1-iterability implies ω1 + 1-iterability, granted
AD.

Definition 4.14 Assume AD+, and let Γ be a good pointclass with the scale property,
and let N∗, δ, S, T,�, and Σ be as in (a)-(d); then
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(1) we call 〈N∗, δ, S, T,�,Σ〉 a coarse Γ-Woodin tuple, and

(2) letting M = (L[N∗, S, T,�],∈, S, T ), we call (M,Σ) a coarse Γ-Woodin pair.

Of course, S and T determine U , and hence A and Γ1. U is self-dual, so S is only
there for notational convenience. We write A = AT . If (M,Σ) is a coarse Γ-Woodin
pair, then we write δM , �M , TM , and SM for the associated objects.

From [15] (see also [58, Lemma 3.13]), we have

Theorem 4.15 (Woodin) Let Γ be a good lightface pointclass with the scale prop-
erty, and assume that all sets in Γ̆ are Suslin; then for any real x there is a coarse
Γ-Woodin pair (M,Σ) such that x ∈M .

Lemma 4.16 Let (P,Σ) be a coarse Γ-Woodin pair, δ = δP , T = T P , and S = SP .
Let s be a P -stack all of whose models are wellfounded, with iteration map i : P → Q
be an iteration map by Σ; then

(i) p[i(T )] = p[T ] and p[i(S)] = p[S],

(ii) if g is Col(ω, i(δ))-generic over N , then for A = AT , (V
N [g]
ω+1 ,∈, A ∩ N [g]) ≺

(Vω+1,∈, A), and

(iii) (Q,Σs) is a coarse Γ-Woodin pair.

Proof. As usual: p[T ] ⊆ p[i(T )] and p[S] ⊆ p[i(S)], while p[i(T )] ∩ p[i(S)] = ∅
because Q is wellfounded, and wellfoundedness is absolute to wellfounded models.
This gives us (i). For (ii), we use the Tarski-Vaught criterion. Suppose x ∈ N [g] and
(Vω+1,∈, A) |= ∃y ∈ Rϕ[y, x]. There is then a branch of T of the form (ϕ, 〈y, x〉, f).
But then (ϕ, 〈y, x〉, i(f)) is a branch of i(T ), so there is a branch (ϕ, 〈y, x〉, h) of i(T )
such that y ∈ N [g], as desired.

(iii) follows easily from (i) and (ii). �

Note that we did not assume in the lemma that s was by Σ. We shall show in a
moment that this follows, that is, that Σ witnesses strong unique iterability.

If we drop down from P to L(N∗,W,�), where W is the tree of a Γ-scale on a
universal Γ set, then δ becomes Woodin, and Lemma 4.16 yields a pair capturing Γ
in the sense of Definition 4.12.

Corollary 4.17 Let (P,Σ) be a coarse Γ-Woodin pair, and δ = δP . Let W be the
tree of a scale on a universal Γ set, and let τ be the natural term for p[W ]; then
(L[V P

δ ,�
P ,W ], δ, τ,Σ) captures p[W ].
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Let M = L[N∗, S, T,�], where (N∗, δ, S, T,�,Σ) is a coarse Γ-Woodin tuple.
Let A = AT , and let Γ1 be the good pointclass whose universal set is A. If P is
a Σ∗-iterate of M , and g is is P -generic over Col(ω, i(δ)), then P [g] is projectively-
in-A correct. Thus the CΓ and CΓ1 operators are correctly defined over P [g]. It
follows that M and its iterates are CΓ1-full, and Σ is guided at T by a Q-structure
in CΓ1(M(T )). More precisely,

Lemma 4.18 Assume AD+, and let (M,Σ) be a coarse Γ-Woodin pair. Let ~T ,U be
a stack of nice normal trees played by Σ; then the following are equivalent

(1) Σ~T (U) = b,

(2) CΓ1(M(U)) ⊆MU
b ,

(3) MU
b is wellfounded.

Proof. Just outlined. �

It follows that if (M,Σ) is a coarse Γ-Woodin pair, then Σ is positional, that is,
Σs,Q depends only on Q. (Cf. 6.24.) Moreover, if Q is an iterate of M via the stack
s, then for θ = ωV1 ,

(i) Q is strongly uniquely (θ, θ)-iterable, and

(ii) Q |= “ I am strongly uniquely (θ, θ)-iterable.”

The strategy witnessing (i) is ΣQ, and the strategy witnessing (ii) is ΣQ�Q. Moreover,

ΣQ is definable over (Vω+1,∈, A) from the parameter (V Q
δQ
,�Q), uniformly in Q, and

Q and its generic extensions are correct for the theory of (Vω+1,∈, A). So we have

Corollary 4.19 Assume AD+, and let (M,Σ) be a coarse Γ-Woodin pair; then M is
strongly uniquely iterable for countable stacks of countable normal trees. Moreover,
for κ = ωV1 ,

M |= “I am strongly uniquely (κ, κ)-iterable”.

If (M,Σ) is a coarse Γ-Woodin pair, and C is a background construction done in
M , then C never breaks down, because all its levels have iteration strategies induced
by Σ. (M, ~FC) is then a coarse premouse,, and Σ is a complete (ω1, ω1) iteration

strategy for (M, ~FC). If C is maximal, in that it never passes on the opportunity to
add an extender, then C is universal in the following sense.
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Theorem 4.20 (Γ-universality) Assume AD+, and let (N∗, S, T,�,Λ) be a coarse
Γ-Woodin tuple. Let P be a premouse in N∗ that is countable in N∗, and let Σ be an
ω1-iteration strategy for P such that Code(Σ) ∈ Γ(Code(P )). Let C be the maximal
�-construction of N∗; then there is some ν, k such that ν < o(N∗) and (P,Σ) iterates
to MC

ν,k.

Proof. Let δ = o(N∗), and let N = L[N∗,�,W ], where W is the tree of a Γ-scale
on a universal Γ-set. We have that N |= “δ is Woodin”, moreover, for κ = ωV1 ,
Σ � HN

κ can be computed from W , and is therefore in N . (Note that HN
κ is closed

under Σ, because if T is by Σ, then Σ(T ) is a Γ(T , P )-singleton.)
Letting Σ0 = Σ � HN

κ , we have that whenever F = FCν for some ν, then iF (Σ0) ⊆
Σ0. For suppose T ∈ HN

κ is a tree of limit length by both Σ0 and iF (Σ0), and let
b = Σ0(T ) and c = iF (Σ0)(T ). Let g be N -generic for Col(ω, |T |). Let W0 be the
tree projecting to Code(Σ) we get out of W , and let Code(T ) = t, Code(b) = u, and
Code(c) = v. We have f such that (t, u, f) ∈ [W0], so that (t, u, iF ◦ f) ∈ [iF (W0)].
We also have g such that (t, v, g) ∈ [iF (W0)]. But iF (W0) projects in V to the codeset
of a single-valued partial function, by absoluteness of wellfoundedness. Thus b = c,
as desired.

We can now apply Theorem 2.53 in N . �

It is easy to see that a strongly unique strategy has strong hull condensation and
normalizes well.

Theorem 4.21 Let M be a coarse premouse, and let Σ witness that M is is strongly
uniquely (η, θ)-iterable; then Σ has strong hull condensation, and the complete strat-
egy determined by Σ normalizes well.

Proof. Strong hull condensation is immediate. For if U is by Σs and T is a psuedo-
hull of U , then all models of T are wellfounded, so T is by Σs. Further, if π is the
map on last models, then Σπ

s,U = Σs,T because Σπ
s,U chooses wellfounded branches,

and Σs,T chooses unique wellfounded branches.
We show now that the complete strategy induced by Σ normalizes well. So let s

be by Σ and 〈T ,U〉 by Σs; we must see that W (T ,U) is by Σs. Let lh(U) = µ + 1,
and for γ ≤ µ set

Wγ = W (T ,U�γ + 1).

We show by induction on γ that Wγ is by Σs.
W0 = T is by Σs. Suppose now that Wγ is by Σs, and let

Wγ+1 = W (Wν ,Wγ, F ),
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where F = σγ(E
U
γ ). Since we are in the coarse case, full normalization coincides

with embedding normalization, and σγ is the identity, but we don’t need this. Let
α = α(Wν ,Wγ, F ) an β = β(Wν ,Wγ, F ). We have that Wγ+1 � α + 1 =Wγ � α + 1
is by Σs. So it is enough to show by induction that Wγ+1 � α+ λ+ 1 is by Σs for all
λ < lh(Wη). Clearly, we may assume that λ is a limit ordinal.

The construction of W (Wν ,Wγ, F ) gives us a tree embedding Φ fromWη � β+λ
into Wγ+1 � α+ λ whose u-map satisfies u(β + ξ) = α+ 1 + ξ for all ξ < λ. We can
use 4.11 to extend Φ. If

c = Σs(Wγ+1 � α + λ),

then letting b = u−1“c, we can extend Φ to a tree embedding of (Wν � β + λ)_b to
(Wγ+1 � α + λ)_c, and since psuedo-hulls of normal trees by Σ are by Σ,

b = Σ(Wν � β + λ).

So b = [0, β + λ]Wν , so c = [0, α + λ]Wγ+1 , as desired.
Now suppose λ is a limit ordinal. We want to see Wλ is by Σs. Let W =

W (T ,U�λ) and let a = Σ(W). The results of section 2.7 go through for ~FM -iteration
trees on M , because of 2.40. Adopting the notation of 2.7, let

b = brWU (a)

be the cofinal branch of U determined by a. So W (T ,U)_a is an initial segment of
Wb, and is by Σs.

We show by induction on ξ that Wb � ξ + 1 is by Σs, the proof being like the one
in the successor case above. Let η = lh(W (T ,U�λ)). Let

Φ = Φ0,b : T → Wb

be the “putative tree embedding” we get from the construction of Wb. (We don’t
know yet that the models of Wb are wellfounded, so Φ may not be a true tree
embedding.) Let u = uΦ, and let τ be such that

η = sup
γ<λ

αγ = u(τ),

so that τ < lh(T ), and τ = m(b, T ,U�λ). We show by induction on ξ that if
η ≤ ξ < lh(Wb), then Wb�(ξ + 1) is by Σs. This is trivial if ξ is a successor ordinal,
because Σs cannot lose at a successor step. But if ξ is a limit, then we have

ξ = u(ξ̄)
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for some limit ordinal ξ̄ < lh(T ). Moreover, ξ − η is contained in ran(u). Thus
by 4.11, letting c = Σ(Wb � ξ) and b = [0, ξ̄)T , we have u“b ⊆ c. It follows that
c = [0, ξ)Wb

, so that Wb � ξ + 1 is by Σs, as desired.
So Wb is by Σs. But there is an embedding of MU

b into the last model of Wb, so
MU

b is wellfounded, so b = Σs(〈T ,U � λ〉), that is b = [0, λ)U , and Wλ = Wb is by
Σs, as desired.

This shows that W (T ,U) is by Σs. Let π be the embedding normalization map
from the last model of U to the last model of W (T ,U). (π is the identity in this
coarse case, but we don’t need that.) Then Σπ

s_〈W (T ,U)〉 = Σs_〈T ,U〉 because the
π-pullback strategy picks wellfounded branches, and these are unique. �

Let us assume AD+ for a while. Let (M,Σ) be a coarse Γ-Woodin pair. M is
uncountable, because it incorporates the trees S and T . Σ acts on countable iteration
trees based on V M

δ , which is countable, but if we think of Σ as moving only V M
α for

some α < ωV1 , then there will no longer be unique wellfounded branches, just unique
CΓ1-full branches. To get equivalent (3) of Lemma 4.18, we really needed to let iUb
act on S and T . This showed up in the proof of 4.16.

In the AD+ context it is natural to be working with countable base models. This
leads us to

Definition 4.22 A coarse extender pair is a pair ((N, ~F ),Σ) such that (N, ~F ) is a

coarse extender premouse, and Σ is a complete (ω1, ω1)-iteration strategy for (N, ~F )
that normalizes well and has strong hull condensation.

From 4.21 we get at once

Corollary 4.23 Let (M, ~F ) be a coarse premouse, with ~F ⊆ V M
δ , and let Σ witness

that (M, ~F ) is strongly uniquely (ω1, ω1) iterable. Let δ < α, with V M
α |= ZFC, and

N = V M
α being countable; then ((N, ~F ),Σ) is a coarse extender pair.

In particular, if (M,Σ) is a coarse Γ-Woodin pair, δ = δM , and M |= “~F is

coarsely coherent and ~F ⊆ Vδ”, then whenever δ < α < ω1 is such that Vα |= ZFC,

we have that ((V M
α , ~F ),Σ) is a coarse extender pair.

4.3 Strong unique iterability from UBH

We now look at consequences of the Unique Branches Hypothesis for for the existence
of iteration strategies. The value of these iterability proofs that assume UBH is an
open question. Perhaps they will play an important role in the ultimate construction
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of iteration strategies for mice with very large cardinals, perhaps not. Perhaps in the
end UBH will be simply be a corollary of strategy-existence theorems that are proved
without assuming it. This is closer to the way inner model theory has developed so
far. In any case, we devote this section to describing some consequences of UBH for
iterability.

Definition 4.24 Let F be a set or class of extenders; then F −UBH holds iff when-
ever T is a normal F-tree on V , then T has at most one cofinal, wellfounded branch.

In particular, nice-UBH is the restriction of UBH to nice trees. Woodin has
observed that a Löwenheim-Skolem argument shows that F -UBH follows from F -
UBH for countable trees.

Although F -UBH involves only normal trees, we can show

Lemma 4.25 Let ~F be coarsely coherent, and suppose that~F -UBH holds; then when-
ever s is a stack of ~F -trees with last tree U , then U has at most one cofinal, well-
founded branch.

Proof. Suppose first that we have a stack s = 〈~T ,U〉 of length two. Let b and c
be a cofinal, wellfounded branches of U . Let W = W (T ,U), and let

a = br(b, T ,U)

and
d = br(c, T ,U).

It will be enough to show that a = d, for then b = c by the results of Chapter 2.
We have assumed ~F -UBH for normal trees, so it is enough to show that MW

a and
MW

d are wellfounded. The situation is symmetric, so it is enough to show MW
a is

wellfounded. So suppose toward contradiction that

MW
a is illfounded.

Let φ0,b(τ) = lh(W (T ,U). We see then from the normalization construction that

MW
a = Ult(MT

τ , Eb),

where Eb is the extender of b.
We need some elementary covering properties of the models in T . For η < lh(T ),

let
νη = sup({lh(G) | G is used in [0, η)T}).

It is clear that νη is either inaccessible or a limit of inaccessibles in MT
η . It is clear

that νη is either inaccessible or a limit of inaccessibles in MT
η .
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Claim 4.26 Let X ⊆ MT
η be countable in V ; then there is a Y ⊇ X such that

Y ∈MT
η and MT

η |= |Y | ≤ νη.

Proof. There are fn ∈ V , for n < ω, such that every x ∈ X is of the form
i0,η(fn)(a), for some a ∈ [νη]

<ω. So we can take Y = {i0,η(fn)(a) | n < ω and a ∈
[νη]

<ω}. �

Claim 4.27 Suppose Mη |= “θ is regular but not measurable”; then θ has uncount-
able cofinality in V .

Proof. We prove this by induction on η. It is trivial for η = 0. Suppose we have
it for η < λ, where λ is a limit ordinal. Let θ be regular but not measurable inMλ,
and let θ = iα,λ(β). By induction, cofV (β) > ω. But iα,λ is continuous at β, because
β is regular but not measurable in Mα. Thus cofV (θ) > ω.

Finally, suppose the claim holds at η, and let θ be regular but not measurable
in Mη+1. Let ν = lh(ETη ) = νη+1. If θ < ν, then the agreement between Mη and

Mη+1 implies θ is regular but not measurable in Mη, so cofV (θ) > ω by induction.
If θ = ν, then θ is regular but not measurable in Mη by our hypothesis on the

extenders in ~F , so again cofV (θ) > ω. Finally, if θ > ν and cofV (θ) = ω, then θ is
singular in Mη+1 by claim 4.26, contradiction. �

Now let ν = ντ+1 = lh(ETτ ). We have that iUb (ν) ≥ δ(U), for if not, then φ0,b(τ) <
λ. (See 3.57, and the discussion near it.) But ν is regular and not measurable in
MU

0 =MT
∞, so iUb is continuous at ν. Moreover, cofV (ν) > ω, while cofV (δ(U)) = ω

because b is not the only cofinal branch of U . Thus we can fix ρ such that

ρ < ν and iUb (ρ) > δ(U).

Since the measures in Eb all concentrate on bounded subsets of ρ, we also have

ντ ≤ ρ.

Let us fix a witness to the illfoundedness of Ult(MT
τ , Eb), namely fn ∈ Mτ and

an ∈ [δ(U)]<ω such that π(fn+1)(an+1) ∈ π(fn)(an) for all n, where

π : Mτ → Ult(MT
τ , Eb)

is the canonical embedding. By 4.26, we can cover {fn | n < ω} by a set Y ∈ MT
τ

such that |Y | ≤ ρ in MT
τ . Let Y ⊆ N , where N is a rank initial segment of MT

τ ,
and let P be the transitive collapse of HullN(Y ∪ ρ). Letting gn be the collapse of
fn, we see that

Ult(P,Eb) is illfounded,
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as witnessed by the gn’s and an’s. But MU
0 agrees with MT

τ up to ν, so

P ∈MU
0 .

Further, Ult(P,Eb) embeds into iUb (P ), so iUb (P ) is illfounded. But iUb (P ) is well-
founded in MU

b , so MU
b is illfounded, contradiction.

This takes care of the case that s has length two. Given an arbitrary finite stack
s = t_U , with t having last model N , set T = W (t). Because we are in the coarse
case, T has last model N . But T is normal, so the proof above shows that U has at
most one cofinal, wellfounded branch.

One can prove the full lemma for arbtrary stacks using the normalizability of
such stacks. This is shown in [44].

�

We do not know whether the coarse coherence hypothesis in the lemma is neces-
sary, but we would guess that nice-UBH implies nice-UBH for stacks. We shall see
below that one cannot drop the niceness hypothesis completely.

We turn to branch existence. The main results here come from [19]. That paper
shows that nice-UBH implies that every countable, normal tree on V has a cofinal
wellfounded branch. Combining it with Lemma 4.25, we get

Lemma 4.28 Let ~F be coarsely coherent, and suppose that ~F -UBH holds; then V is
strongly uniquely (ω1, ω1, ~F )- iterable.

For iterations of uncountable length, we need UBH in the appropriate collapse
extension.

Theorem 4.29 (Folk.) Let ~F be coarsely coherent, θ < crit(Fν) for all ν, and

suppose that ~F -UBH holds in V [G], where G is Col(ω, θ) generic over V ; then V is

strongly uniquely (θ+, θ+, ~F )-iterable.

Proof. [Sketch.] Given T in V of limit length < θ+, we can regard T as a tree on
V [G] because θ < κ. In V [G], T is countable, so by UBH in V [G] and [19] in V [G],
it has a unique cofinal, wellfounded branch. Because the collapse is homogeneous,
this branch is in V . �

In one situation, UBH in V implies instances of UBH in V [G]:

Theorem 4.30 (Woodin) Let δ be Woodin, and assume that F-UBH holds, where
F is a set or class of extenders with all critical points > δ. Let T be a normal F-tree,
with |T | < δ, and let G be V -generic for a poset of size < δ; then V [G] |= “T has at
most one cofinal, wellfounded branch”.
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Proof. [Sketch.] We may assume G is countable in V [H], where H is V -generic for
the countable stationary tower Q<δ. Suppose toward contradiction that b and c are
distinct cofinal branches of T in V [G]. T can be regarded as a tree on V [H], and b
and c are still wellfounded when it is regarded this way.

But let π : V → M = Ult(V,H) be the generic elementary embedding. Since M
is closed under countable sequences in V [H], πT ∈ M , and one can check that b
and c are wellfounded as branches of πT . (Essentially the same functions into the
ordinals are used in forming MT

b and MπT
b , for example.) One can also check that

in M , πT is a π(F)-tree. Thus π(F)-UBH fails in M , contrary to the elementarity
of π. �

At supercompacts, we catch our tail:

Theorem 4.31 (Woodin) Suppose that κ is supercompact, ~F is coarsely coherent,

crit(Fν) > κ for all ν, and ~F -UBH holds; then for all θ, V is strongly uniquely

(θ, θ, ~F )-iterable.

Proof. Given s an ~F -stack on V with last normal tree T , with s ∈ Vθ, let
j : V →M , crit(j) = κ, j�Vθ ∈M . In M , the lifted stack js has size < j(κ), and all
its critical points are above j(κ). So by 4.29 and 4.30, jT has a cofinal wellfounded
branch b in M . (Note j(κ) is a limit of Woodin cardinals in M .) The copy map
σ : MT

b →M jT
b witnesses that b is wellfounded branch of T . �

In the theory of hod mice, it is important that strategies be moved to themselves
by their own iteration maps. More precisely, we would like to know that if i : M → N
comes from a stack of trees ~T by Σ, then i(Σ∩M) = Σ~T ,N ∩N . We shall obtain this
from the corresponding property of coarse strategies Σ such that Σ witnesses that V
is strongly uniquely (λ, θ, ~F )-iterable.

Lemma 4.32 Let ~F be coarsely coherent, and let Σ witness that V is strongly
uniquely (λ, θ, ~F )-iterable. Suppose that i : V → N comes from a stack of trees
~T by Σ; then i(Σ) = Σ~T ,N ∩N .

Proof. Both i(Σ) and Σ~T ,N choose wellfounded branches. Since these are unique (in
V !), the two strategies cannot disagree. �

The remainder of this section contains some examples and results related to
unique iterability that are somewhat removed from the main line of this book.

First, there are some counterexamples to forms of UBH to keep in mind when
considering strong unique iterability for stacks on V . The counterexamples involve
extenders overlapping Woodin cardinals, and thus do not apply to the Γ-Woodin
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models of 4.14, which have no such extenders. They involve stacks of trees that are
not nice.

If we allow our trees to use extenders that do not have ω-closed ultrapowers in the
models where they apppear, then as we said above, Woodin has shown in [67] that
there are in fact normal trees of length ω on V having distinct wellfounded branches.
(His construction requires a supercompact cardinal.) The construction relies heavily
on the non-ω-closure, and it is quite plausible to the author that normal trees on V
using only extenders that are ω-closed in the models they are taken from can have
at most one cofinal wellfounded branch.

When one moves to stacks of normal trees, ω-closure is no longer enough to avoid
counterexamples, as Woodin has shown. His example builds on one due to Neeman
and the author. In [28], they construct a stack ~U = 〈U0,U1〉 of normal iteration trees
on V such that for some strong limit cardinal δ of cofinality ω,

(i) U0 = 〈F 〉, where lhF = strength (F ) = δ,

(ii) U1 is an alternating chain on Vδ = V
Ult(V,F )
δ , with distinct branches b and c,

and

(iii) both MU1
b and MU1

c are wellfounded.

The key here is that because Vδ = V
Ult(V,F )
δ , both iU1

b and iU1
c can be extended so as

to act on V , and the construction arranges that ib(F ) = ic(F ). But then MU1
b =

Ult(V, ib(F )) = Ult(V, ic(F )) = MU1
c . So not only are b and c both wellfounded as

branches of ~U , in fact MU1
b =MU1

c !
In the example above, Ult(V, F ) is not closed under ω-sequences. However,

Woodin showed that under stronger large cardinal assumptions, we can modify the
example so as to get a stack of length 2 of “almost nice” trees on V . Namely, suppose
we start with µ a normal measure on δ0, where δ0 is Woodin, and F0 an extender
with length = strength equal to δ0. Let I be a linear iteration of µ of length ω, with
direct limit model N . Let F and δ be the images in N of F0 and δ0. Then let U0 be
the normal tree determined by Ia〈F 〉, so that the last model of U0 is M = Ult(V, F ).
and let U1 be an alternating chain on M with branches b and c which, when acting
on N , satisfy ib(F ) = ic(F ). The construction of [28] gives us this U2; we only need

cof(δ) = ω to hold in V , it need not hold in N . Again we have M~U
b =M~U

c , so both

branches are wellfounded. But now ~U is satisfies all the requirements of niceness,
with the exception that lh(F0) is measurable in M .

Remark 4.33 We shall see in 4.40 that this apparently small departure from nice-
ness is essential.
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In both examples, the branches b and c are not equally good. For example,
consider the first example. Let Eb and Ec be the two branch extenders. Since
our chain was constructed by the one-step method, exactly one of Ult(V,Eb) and
Ult(V,Ec) is wellfounded. But in 〈U0,U1

ab〉 and 〈U0,U1
ac〉, these branch extenders

are applied to Ult(V, F ) rather than V . We have taken advantage of non-normality
to hide the difference between b and c. If we normalize, the difference shows up:

W (U0,U1
ab) = U1

abaiU1
b (F )

and
W (U0,U1

ac) = U1
acaiU1

c (F ).

Here U1
ab and U1

ac are acting on V , where only one of the two is actually an
iteration tree, in that all its models are wellfounded.

This suggests that we might iterate V for finite stacks by simply choosing branches
that are consistent with the iteration tree we get by normalizing. We shall show now
that in fact any iteration strategy with strong hull condensation that acts on normal
trees can be extended in this way.

In the fine-structural context, this was first proved independently by Schlutzen-
berg and the author. Schlutzenberg went on to prove a stronger form of the theo-
rem, in which the extended strategy acts on infinite stacks. ( See [44].) The proof
of Schlutzenberg’s stronger form requires significant new ideas. The construction
in the finite-stack case is at bottom the same as the one we are about to give in
a coarse setting. The details are simpler in the coarse case, however, because our
assumptions will imply embedding normalization coincides with full normalization,
and hence various maps are the identity that would not otherwise be.

Theorem 4.34 Let M |= ZFC + “~F is coarsely coherent”, and let Σ be a complete

(1, θ, ~F ) iteration strategy for M . Suppose that Σ has strong hull condensation; then

there is a unique (ω, θ, ~F ) strategy Σ∗ such that

(a) Σ ⊆ Σ∗, and

(b) Σ∗ normalizes well, and has strong hull condensation.

Remark 4.35 Let s be a stack of length ω all of whose finite initial segments are
by Σ∗. We do not demand that the direct limit along s be wellfounded, as would be
required if Σ∗ were to be a complete strategy. Adding this demand would take us
into the difficulties that Schlutzenberg overcame in the fine-structural case.

Remark 4.36 We do not assume in 4.34 that Σ witnesses strong unique iterability.
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Proof. Because ~F is coarsely coherent, ~F -trees onM are nice, and thus embedding
normalization coincides with full normalization. In particular, if 〈T ,U〉 is an ~F -stack
on M , with Q being the last model of T and N the last model of U , and W (T ,U)
exists, then W (T ,U) also has last model N . The embedding normalization map
σ : N → N is the identity, and the last t-map of the extended tree embedding from
T into U is equal to the main branch embedding iU : Q→ N .

We begin by extending Σ to Σ2, acting on stacks of length ≤ 2. Let 〈T ,U〉 be

a 2-stack of ~F -trees, with T by Σ. We define Σ2(〈T ,U〉) by induction on lh(U),
maintaining by induction that W (T ,U) is by Σ. Let us write

Wγ = W (T ,U � γ + 1)

as before.
Suppose that Wγ is by Σ; we wish to show that Wγ+1 is by Σ. For let η be such

that
Wγ+1 = W (Wη, F ),

where F = EUγ . Let α = α(Wη,Wγ, F ) an β = β(Wη,Wγ, F ). We have that
Wγ+1 � α + 1 = Wγ � α + 1 is by Σ. So it is enough to show by induction that
Wγ+1 � α + λ + 1 is by Σ for all λ < lh(Wη). Clearly, we may assume that λ is a
limit ordinal.

But now the construction of W (Wη,Wγ, F ) gives us a tree embedding Φ from
Wη � β + λ into Wγ+1 � α + λ whose u-map satisfies u(β + ξ) = α + 1 + ξ. We can
use 4.11 to extend Φ. To repeat its proof: if

c = Σ(Wγ+1 � α + λ),

then letting b = u−1“c, we can extend Φ to a tree embedding of (Wη � β + λ)_b to
(Wγ+1 � α + λ)_c, and since psuedo-hulls of normal trees by Σ are by Σ,

b = Σ(Wη � β + λ).

So b = [0, β + λ]Wη , so c = [0, α + λ]Wγ+1 , as desired.
Now suppose U of limit length λ. It is enough show that there is a unique cofinal

branch b of U such that setting

Wb = W (T ,Uab),

Wb is by Σ. For then we can set

Σ2(〈T ,U〉) = b,
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and our induction hypothesis remains true at λ+ 1. To show this, letW = W (T ,U)

and let a = Σ(W). The results of section 2.7 go through for ~F -iteration trees on M ,
because of 2.40. Adopting the notation of 2.7, let

b = brWU (a)

be the cofinal branch of U determined by a. So W (T ,U)_a is an initial segment of
Wb, and is by Σ. We show by induction on ξ thatWb � ξ+ 1 is by Σ, the proof being
like the one in the successor case above. Let η = lh(W (T ,U)). Let

Φ = Φ0,b : T → Wb

be the “putative tree embedding” we get from the construction of Wb. (We don’t
know yet that the models of Wb are wellfounded, so Φ may not be a true tree
embedding.) Let u = uΦ, and let τ be such that

η = sup
γ<λ

αγ = u(τ),

so that τ < lh(T ), and τ = m(b, T ,U). We show by induction on ξ that if η ≤ ξ <
lh(Wb), then Wb�(ξ+ 1) is by Σ. This is trivial if ξ is a successor ordinal, because Σ
cannot lose at a successor step. But if ξ is a limit, then we have

ξ = u(ξ̄)

for some limit ordinal ξ̄ < lh(T ). Moreover, ξ − η is contained in ran(u). Thus
by 4.11, letting c = Σ(Wb � ξ and b = [0, ξ̄)T , we have u“b ⊆ c. It follows that
c = [0, ξ)Wb

, so that Wb � ξ + 1 is by Σ, as desired.
This completes the definition of Σ2 on stacks of length ≤ 2. Clearly, normaliza-

tions of stacks by Σ2 are by Σ. Suppose now we have Σn where n ≥ 2, and

(∗)n whenever ~T is an ~F -stack of length ≤ n played by Σn, and having last model

R, then there is a normal ~F -iteration tree on V with last model R.

There is then exactly one such T by 2.40, and we write

T = W (~T ).

We define Σn+1 as follows: if ~T a〈U〉 is a stack of length ≤ n+ 1 played by Σn+1,

Σn+1(~T a〈U〉) = Σ2(〈W (~T ),U〉)).
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Clearly, Σn+1 is an ~F -iteration strategy defined on stacks of length at most n+1,
extending Σn. If ~T a〈U〉 is a stack on V by Σn+1 with last model R, then 〈W (~T ),U〉
is a 2-stack by Σ2 with last model R, so W (W (~T ),U) is a normal tree with last
model R. Thus (∗)n+1 holds, and we can go on.

Let
Σ∗ =

⋃
n

Σn.

We now show that Σ normalizes well. For this, the following definition is useful.

Definition 4.37 (1) Let W be a normal iteration tree, and δ a limit ordinal. We
say that b is a δ-branch of W iff δ = sup{lh(EWα ) | α + 1 ∈ b}.

(2) Let W and U be normal iteration trees, let b be a branch of U of limit order
type (perhaps maximal), and let c be a branch of W (perhaps maximal). We
say that b fits into c iff for any extender F used in b, there is an extender G
used in c such that crit(G) ≤ crit(F ) ≤ lh(F ) ≤ lh(G).

Lemma 4.38 Let W and U be normal iteration trees, and let δ be a limit ordinal;
then for any δ-branch c of W, there is at most one δ-branch b of U such that b fits
into c.

Proof. Suppose a and b fit into c, where a 6= b. We get the zipper pattern, that is Fn’s
used in a and Gn’s used in b such that crit(Fn) ≤ crit(Gn) < ν(Fn) < crit(Fn+1) <
ν(Gn). If H is used in c and F0 fits into H, then G0 must also fit into H, since it
doesn’t fit anywhere else in c. By induction, all the Fn and Gn fit into H. But then
δ ≤ ν(H), contradiction. �

Lemma 4.39 Let 〈T ,U〉 be a stack of nice iteration trees on M , and b a cofinal
branch of U ; then b fits into br(b, T ,U).

Proof. This is clear from the construction, and the fact that the σ-maps of embedding
normalization are the identity in this coarse case. See the earlier diagrams of the
extender tree of W (T ,U). �

We show now that all tails of Σ 2-normalize well. So let ~S be a stack by Σ
with last model Q, and let 〈T ,U〉 be by Σ ~S,Q with last model R. We must see that
W (T ,U) is by Σ ~S,Q, and that Σ ~Sa〈T ,U〉,R = Σ ~Sa〈W (T ,U)〉,R. Here we are making use of
the fact that the σ-maps in this coarse case are all the identity.
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The proof is by induction on lh(U), and the harder case is lh(U) = λ+ 1 for some
limit ordinal λ, so let us just handle that case. Let b = [0, λ)U , and δ = δ(U). Since
~Sa〈T ,U〉 is by Σ, we see from the definition of Σ that

W0 = W (W ( ~Sa〈T 〉),U)

is the unique normal ~F -tree on V with last model R =MU
λ . Moreover W0 chooses

the δ-branch
a = br(b,V ,U) = Σ(W0 � η)),

where we have set W ( ~Sa〈T 〉) = V . Letting

c = br(b, T ,U),

and
c1 = Σ2(〈W ( ~S),W (T ,U�λ)〉),

we must show that c = c1. Setting

W1 = W (W ( ~S),W (T ,U�λ)),

we have by our induction hypothesis that W1 is according to Σ. Because the em-
bedding normalization σ-maps are the identity, the common part model M(W1) =

V
W (T ,U�λ)
δ = V R

δ . By our uniqueness lemma for normal ~F -iterations,

W1 =W0�η,

so c1 fits into Σ(W1) = a. Thus it is enough to see that c also fits into a.
Let τ = m(b, T ,U), and

p : Ext(T )→ Ext(W (T ,U))

be the map on extenders induced by the tree embedding Φ of T into W (T ,U).
Suppose F is used in c; we must see that F fits into some H used in a. This is true
if F is used in b, since b fits into a. The other possibility is that F = p(G), where
G ∈ ran(sTτ ), so assume that. Let

q : Ext(V)→ Ext(W0)

be induced by the tree embedding Ψ of V into W (V ,U), and let ρ = m(b,V ,U).
Letting Eb be the extender of iUb , we have that τ is least such that Eb is an extender
overMT

τ , and ρ is least such that Eb is an extender overMV
ρ , so that ρ is least such
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thatMV
ρ agrees withMT

τ through dom(Eb). It follows that br([0, τ)T ,W ( ~S), T �τ +
1) = [0, ρ)V , and thus G fits into some K that is used in [0, ρ)V . But then F = p(G)
fits into q(K), because tΦτ and tΨρ are both Eb-ultrapower maps, so agree with one
another on lh(K) + 1. (Letting N be the last model of T and iU : N → R the
canonical embedding, tΦτ and tΨρ agree with the common last t-map iU of Φ and Ψ
this far.) Since q(K) is used in a, we are done.

We shall not give a full proof that Σ has strong hull condensation. To see how
it goes, suppose Φ: T → U is an extended tree embedding, where U is by Σ. Let
π : N → P be its last t-map, where these are the last models of T and U . We must
see that ΣT ,N = Σπ

U ,P . Let V be of limit length and by both strategies. Now ΣT ,N(V)
is determined by Σ(W (T ,V)), and ΣU ,P (πV) is determined by Σ(W (U , πV)). Using
Φ, we can obtain a tree embedding from W (T ,V) into W (U , πV). We can then use
the fact that Σ condenses well on normal trees to show that ΣT ,N(V) = ΣU ,P (πV).

�

This gives us a result on strong unique iterability that does not require a super-
compact.

Theorem 4.40 Let ~F be coarsely coherent, and suppose that V is strongly uniquely
(1, θ, ~F )- iterable; then V is strongly uniquely (ω, θ, ~F )-iterable. Moreover, letting Σ
be the complete strategy that witnesses this,

(a) Σ normalizes well and has strong hull condensation, and

(b) if s is a stack of length ω of countable normal trees on V with last models Mi(s),
then the direct limit of the Mi(s) under the iteration maps of s is wellfounded.

Proof. By the first part of the proof of 4.34, we have a strategy Σ witnessing that V
is (ω, θ, ~F )-iterable. Our hypothesis implies ~F -UBH, so by 4.25, Σ witnesses strong
uniqueness.

That Σ normalizes well and has strong hull condensation follows from 4.21. Item
(b) in the conclusion comes from the branch existence arguments of [19]. Note for
example that each Ti(s) is continuously illfounded off the branches it chooses. �

4.4 Fine strategies that normalize well

Next, we show that if Σ∗ is an iteration strategy for a coarse N∗ that normalizes
well, then the strategies for premice induced by Σ∗ via a full background extender
construction also normalize well.
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The reader should see the preliminaries section for our definitions and notation
related to background constructions, and to the conversion of iteration strategies
they mediate.

Theorem 4.41 Let C be a background construction done in some universe N∗ |=
ZFC, and let Σ∗ be a complete (λ, θ)-iteration strategy for (N∗, ~FC). Suppose that
Σ∗ normalizes well. Let M be a model of C, and Σ = Ω(C,M,Σ∗) be its induced
strategy; then Σ normalizes well.

Remark 4.42 We believe that the proof of 4.41 works even if the construction C
is allowed to use extenders that are not nice, so that embedding normalization does
not coincide with full normalization at the background level. This just means that
certain embeddings are no longer the identity, and hence must be given names in the
proof to follow.

Proof. We must show that all tails of Σ 2-normalize well. We consider first a
2-stack on MC

ν0,k0
itself.

Let T be normal on MC
ν0,k0

, and U normal on the last model of T , with 〈T ,U〉
by Σ. Let 〈T ∗,U∗〉 come from lifting 〈T ,U〉 as above. We shall show that W (T ,U)
lifts to an initial segment of W (T ∗,U∗). (If U has limit length, W (T ,U) lifts to
W (T ∗,U∗). If it has successor length, then dropping along the main branch of U can
cause W (T ,U) to lift to a proper initial segment of W (T ∗,U∗).) Since W (T ∗,U∗) is
by Σ∗, we get that W (T ,U) is by Σ.

More precisely, let

lift(T ,Mν0,k0 ,C) = 〈T ∗, 〈ηTξ , lTξ | ξ ≤ ξ0〉, 〈ψTξ | ξ ≤ ξ0〉〉.

We are using “ψ” rather than “π” for the maps so as not to clash with our notation
for embedding normalization.

Let

lift(ψTξ0U ,M
iT
∗

0,ξ0
(C)

ηTξ0
,lTξ0

, iT
∗

0,ξ0
(C)) = 〈U∗, 〈〈ηUξ , lUξ 〉 | ξ < lhU〉, 〈ρξ | ξ < lhU〉〉.

Let τξ :MU
ξ →M

(ψTξ0
)U

ξ be the copy map, and

ψUξ = ρξ ◦ τξ,

so that
ψUξ :MU

ξ → Qξ,

160



where

Qξ = M
iU
∗

0,ξ◦i
T ∗
0,ξ0

(C)

ηUξ ,l
U
ξ

.

So ψUξ is the lifting map on MU
ξ given by our conversion of 〈T ,U〉 to 〈T ∗,U∗〉.

The embedding normalization W (T ,U) has associated to it normal trees Wγ on
MC

ν0,k0
, for γ < lhU , and tree embeddings

Φη,γ : Wη →Wγ

defined when η <U γ. Φη,γ consists of its u-map φη,γ : lhWη → lhWγ for η <U γ,

and for τ ∈ domφη,γ, a its t-map πη,γτ :MWη
τ →MWγ

φη,γ(τ). We have also

Rγ = last model of Wγ,

and σγ :MU
γ → Rγ, and Fγ = σγ(E

U
γ ).

Wγ+1 = W (Wη, Fγ)

when η = U -pred(γ + 1).
Similarly, W (T ∗,U∗) has associated treesW∗γ onN∗ for γ < lhU∗ = lhU , together

with tree embeddings
Φ∗η,γ : W∗η →W∗γ

defined when η <U∗ γ, or equivalently, η <U γ. Φ∗η,γ determines a u-map φ∗η,γ :
lhW∗η → lhW∗γ , and for τ ∈ domφ∗η,γ, a t-map

∗
πη,γγ . Since Σ∗ normalizes well, the

W∗γ are by Σ∗; moreover, by 3.50, the last model of W∗γ is MU∗
γ . We have that

W∗γ+1 = W (W∗η , EU
∗

γ )

when η = U∗-pred(γ + 1) (equivalently, η = U -pred(γ + 1)).
We shall prove that eachWγ lifts intoW∗γ� lhWγ, and hence is by Σ. The proof is

by induction on γ, with a subinduction on initial segments of Wγ. Basically, we are
just showing that embedding normalization commutes with our conversion method.
The proof is like the proof that embedding normalization commutes with copying
given in 3.54, but there is more to it because in addition to copying, we are passing
to resurrected background extenders. Nevertheless, the main quality required to put
such a proof on paper is sufficient patience.

For γ < lhU , set

lift(Wγ,Mν0,k0 ,C) = 〈S∗γ , 〈〈η
γ
ξ , l

γ
ξ 〉 | ξ < lhWγ〉, 〈ψγξ | ξ < lhWγ〉〉.

We shall show, among other things, that S∗γ =W∗γ� lhWγ, so that Wγ is by Σ. Our
overall plan is summarized in the diagram:

161



Wγ S∗γ �W∗γ

Wν S∗ν �W∗ν

lift

Φν,γ

lift

Φ∗ν,γ

As before, we write z(ν) for lhWν − 1 and z∗(ν) for lhW∗ν − 1. We write ∞ for
z(ν) or z∗(ν) when context permits. So Rν =MWν

z(ν) =MWν
∞ , and if (ν, γ]U does not

drop, then φν,γ(z(ν)) = z(γ), and πν,γz(ν) = πν,γ∞ : Rν → Rγ. Let us also write

Cγξ = i
W∗γ
0,ξ (C)

for the construction of MW∗γ
ξ . In this notation,

Qγ = (MηUγ ,l
U
γ
)C

γ
z∗(γ) ,

because MW∗γ
z∗(γ) =MU∗

γ , and i
W∗γ
0,z∗(γ) = iU

∗
0,γ ◦ iT

∗

0,ξ0
.

Lemma 4.43 Let γ < lhU . Then

(1) S∗γ =W∗γ� lhWγ.

(2) Whenever ν <U γ and (ν, γ]U does not drop in model or degree, then for all
τ < lhWν,

(i) 〈ηγφν,γ(τ), l
γ
φν,γ(τ)〉 =

∗
πν,γτ (〈ηντ , lντ 〉), and

(ii) ψγφν,γ(τ) ◦ πν,γτ =
∗
πν,γτ ◦ ψντ .

(3) φη,ν ⊆ φ∗η,ν, if η, ν ≤ γ and η ≤U ν.

(4) (i) 〈ηγz(γ), l
γ
z(γ)〉 = 〈ηUγ , lUγ 〉, and Cγz(γ) agrees with Cγz∗(γ) at and below this point,

(ii) ψγz(γ) ◦ σγ = ψUγ .

Proof.
Here is a diagram related to 4.43:
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MU
γ Rγ Qγ ∈M

S∗γ
∞

MU
ν Rν Qν ∈MS∗ν∞

σγ

ψUγ

iUν,γ

σν

ψUν

πν,γ∞

ψν∞

∗
πν,γ∞

ψγ∞

The fact that ψγ∞ maps toQγ is (4)(i). The fact that the triangle on the top commutes
is (4)(ii). That the square on the right commutes is (2), in the case τ = z(ν). We of
course need (2) at other τ as well. That square on the left commutes is a basic fact
about embedding normalization.

The reader might look back at the diagram near the end of the proof of 3.55.
MU∗

ν in that diagram corresponds to Qν in the present one. We can take R∗ν of
that diagram to also be Qν in the present one, because our tree on the background
universe is nice. We don’t actually need that; if the background extenders were not
nice, then in the present case we would be introducing some σ∗ν : Qν → R∗ν via the
embedding normalization of 〈T ∗,U∗〉. ψν∞ would map into R∗ν , rather than Qν , and
the present diagram would transform into the previous one. (See remark 4.42 above.)

We prove 4.43 by induction on γ. For γ = 0,W0 = T andW∗0 = T ∗, so (1) holds;
moreover, 〈η0

ξ , l
0
ξ〉 = 〈ηTξ , lTξ 〉 and ψ0

ξ = ψTξ . (2) and (3) are vacuous. (4) holds: in
this case, z(0) = z∗(0) = lh(T ) − 1, and 〈η0

z(0)l
0
z(0)〉 = 〈ηU0 , lU0 〉 because U is on the

last model of T . That gives (i). For (ii), ψU0 = ρ0 ◦ τ0 = ψTξ0 , since ρ0 = identity and
τ0 = ψTξ0 . But σ0 = identity, so ψU0 = ψ0

ξ0
◦ σ0, as desired.

Now suppose Lemma 4.43 is true at all ν ≤ γ. We show it at γ + 1. Let
ν = U -pred(γ + 1), and

α = αT ,Uγ

= least τ such that Fγ is on the MWγ
τ -sequence.

Set F = Fγ. So

Wγ+1 = W (Wν , F )

=Wγ�(α + 1)a〈F 〉aiF“W>crit(F )
ν .

Then ν = U∗-pred(γ + 1), and

W∗γ+1 = W (W∗ν , EU
∗

γ ).
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EU
∗

γ came from lifting EUγ by ψUγ , then resurrecting it inside the construction ofMU∗
γ ,

then using the background extender provided by this construction. MU∗
γ is the last

model of W∗γ , so the construction in question is Cγz∗(γ). More precisely, let ψUγ (EUγ )
be the last extender of

Qγ|〈θ, 0〉 =def P̄

and
G = σ〈ηUγ ,lUγ 〉[P̄ ](ψUγ (EUγ )),

where the resurrection is computed in Cγz∗(γ). Set

G∗ = background extender for G provided by Cγz∗(γ).

Then EU
∗

γ = G∗, and
W∗γ+1 = W (W∗ν , G∗).

Recall that α = α(Wγ, F ).

Claim 4.44 α = α(W∗γ , G∗), and G∗ is the background extender for σ ◦ ψγα(F ) pro-
vided by Cγα, where σ is the resurrection map σ〈ηγα,lγα〉[M〈ηγα,lγα〉 ‖ 〈lhψγα(F ), 0〉] of Cγα.

Proof. F is on theMWγ
α -sequence, so there is a background extender H∗ for σ◦ψγα(F )

provided by Cγα. By induction, the extender E
W∗γ
α used to exitMW∗γ

α comes from lifting

and resurrecting E
Wγ
α . But F comes before E

Wγ
α , so H∗ comes before E

W∗γ
α in Cγα.

But letting E
W∗γ
α = (Fθ)

Cγα , we then have

Cγτ �θ = Cγα�θ

for all τ ≥ α, and in particular, for τ = z(γ). Moreover, the part of the lifting and
resurrecting maps acting on F does not change from α to z(γ):

σ ◦ ψγα(F ) = σ′ ◦ ψγz(γ)(F ),

where σ′ is appropriate for resurrecting ψγz(γ)(F ) in MW∗γ
z(γ), and hence also by (4)(i)

in MW ∗γ
z∗(γ) =MU∗

γ . But our inductive hypothesis (4)(ii) yields

ψγz(γ)(F ) = ψγz(γ) ◦ σγ(E
U
γ )

= ψUγ (EUγ ),

so σ◦ψγα(F ) = σ′◦ψγτ (F ) = σ′(ψUγ (EUγ )) = G. Thus H∗ = G∗. Hence α(W ∗
γ , G

∗) ≤ α.
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But suppose G∗ ∈ Cγξ for some ξ < α. Since lhE
Wγ

ξ < lhF , lh(E
W∗γ
ξ ) < lhG∗,

and so G∗ occurs after E
W ∗γ
ξ in Cγξ . So MW∗γ

β does not compute VlhG∗ the same way

that MW∗γ
ξ does, for all β > ξ. This implies G∗ /∈ Cγβ, for all β > ξ, contrary to

G∗ ∈ Cγz∗(γ).

This shows α = α(W ∗
γ , G

∗). In the course of the proof we also showed the rest of
Claim 4.44. �

Claim 4.45 1. The iteration tree in lift(Wγ�(α + 1)a〈F 〉,Mν0,k0 ,C) is
W∗γ�(α + 1)a〈G∗〉.

2. β = βW
∗
γ ,G
∗
.

Proof. Part 1 is just Claim 4.44 restated. Part 2 follows at once from the fact that
the lifted tree is normal; cf. 2.45. �

Since α(Wγ,F ) = α(W∗γ ,G) and βWγ ,F = βW
∗
γ ,G
∗
, we have φν,γ+1 ⊆ φ∗ν,γ+1.

Remark 4.46 If DU ∩ [0, γ+1]U = ∅, then lhWγ+1 = lhW ∗
γ+1, and φν,γ+1 = φ∗ν,γ+1.

We now show that (1) and (2) of Lemma 4.43 hold at γ + 1. For this, we show
by induction on ξ that for ξ ≤ lhWγ+1, letting

S∗ = S∗γ+1,

Induction Hypothesis (†)ξ:

(1) S∗�ξ =W∗γ+1�ξ

(2) if (ν, γ + 1]U does not drop in model or degree, and φ0,γ+1(τ) < ξ, then

(a) 〈ηγ+1
φν,γ+1(τ), l

γ+1
φν,γ+1(τ)〉 =

∗
πν,γ+1
τ (〈ηντ , lντ 〉), and

(b) ψγ+1
φν,γ+1(τ) ◦ πν,γ+1

γ =
∗
πν,γ+1
τ ◦ ψντ .

Note that the limit step in the inductive proof of (†)ξ is trivial.

Base Case 1. ξ = α + 1.

We haveWγ+1�(α+1) =Wγ�(α+1) andW∗γ+1�(α+1) =W∗γ�(α+1). Since Lemma
4.43 holds at γ, we get (†)ξ(1). For (†)ξ(2), let φν,γ+1(τ) < α + 1. Then τ < β and
φν,γ+1(τ) = τ . Moreover πν,γ+1

τ and
∗
πν,γ+1
τ are the identity. So (†)ξ(2) boils down to
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〈ηγ+1
τ , lγ+1

τ 〉 = 〈ηντ , lντ 〉, and ψγ+1
τ = ψντ . This holds becauseWν�(τ+1) =Wγ+1�(τ+1),

so their lifts are equal.

Base Case 2. ξ = α + 2.

We have

Wγ+1�(α + 2) =Wγ+1�(α + 1)a〈F 〉
and

W∗γ+1�(α + 2) =W∗γ+1�(α + 1)a〈G∗〉.

By Claim 4.44, G∗ is the background extender for σ ◦ψγ+1
α (F ) provided by Cγ+1

α . So

S∗�(α + 2) = S∗�(α + 1)a〈G∗〉
=W∗γ+1�(α + 2),

and we have (†)ξ(1). (Note that G∗ is applied toMS∗
β in S∗, because lifting produces

normal trees.)
For (†)ξ(2), the new case to consider is τ = β. Note that

ψνβ = ψγ+1
β ,

πν,γ+1
β = i

Wγ+1

β,α+1

and
∗
πν,γ+1
β = i

W∗γ+1

β,α+1.

The first because Wγ+1�(β + 1) =Wν�(β + 1), and the second two by our definition
of embedding normalization. (Note we are in the case that (β, α + 1]Wγ+1 is not a
drop in model or degree.) But

ψγ+1
α+1 ◦ i

Wγ+1

β,α+1 = i
W∗γ+1

β,α+1 ◦ ψ
γ+1
β

holds because lifting maps commute with the tree embedding in a conversion system.
This gives

ψγ+1
α+1 ◦ π

ν,γ+1
β =

∗
πν,γ+1
β ◦ ψνβ

as desired.
If lhWν = β + 1 or γ + 1 ∈ DU or degU(γ + 1) < degU(ν), then lhWγ+1 = α+ 2,

so we are done. So suppose lhWν > β + 1, and (ν, γ + 1]U is not a drop of any kind
in U .
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Inductive Case 1. (†)ξ+1 holds, and ξ ≥ α + 1.

We must prove (†) at ξ + 2. We are assuming ξ + 1 < lhWγ+1. Let

E = E
Wγ+1

ξ .

Let σ be the resurrection map for ψγ+1
ξ (E) in Cγ+1

ξ , the construction of MS∗
ξ =

MW∗γ+1

ξ . That is,

σ = σ〈ηγ+1
ξ ,lγ+1

ξ 〉[M〈ηγ+1
ξ ,lγ+1

ξ 〉|〈lhψ
γ+1
ξ (E), 0〉].

Let
E∗ = background extender for σ ◦ ψγ+1

ξ (E) provided by Cγ+1
ξ .

So
S∗�(ξ + 2) = S∗�(ξ + 1)a〈E∗〉.

Claim 4.47 E∗ = E
W∗γ+1

ξ .

Proof. Since ξ ≥ α + 1, we can write

ξ = φν,γ+1(ξ̄), ξ̄ ≥ β

Let

Ē = EWν

ξ̄
,

so that

E = πν,γ+1

ξ̄
(Ē).

Letting H = σ ◦ ψγ+1
ξ (E), we have

H = σ ◦ (ψγ+1
ξ ◦ πν,γ+1

ξ̄
(Ē))

= σ ◦ (
∗
πν,γ+1

ξ̄
◦ ψνξ̄ (Ē))

by induction. Let σ̄ be the resurrection map for ψν
ξ̄
(Ē) in Cν

ξ̄
, that is,

σ̄ = σ〈ην
ξ̄
,lν
ξ̄
〉[M〈ην

ξ̄
,lν
ξ̄
〉|〈lhψνξ̄ (Ē), 0〉].

It is not hard to see that
∗
πν,γ+1

ξ̄
(σ̄) = σ.
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This is because
∗
πν,γ+1

ξ̄
(〈ην

ξ̄
, lν
ξ̄
〉) = 〈ηγ+1

ξ , lγ+1
ξ 〉 by induction hypothesis (2)(a), and

similarly
∗
πν,γ+1

ξ̄
(ψν

ξ̄
(Ē)) = ψγ+1

ξ (πν,γ+1

ξ̄
(Ē)) = ψγ+1

ξ (E). But then

E
W∗γ+1

ξ =
∗
πν,γ+1

ξ̄
(E
W∗ν
ξ̄

)

=
∗
πν,γ+1

ξ̄
(background for σ̄(ψνξ̄ (Ē)) in Cνξ̄ )

= background for
∗
πν,γ+1

ξ̄
(σ̄(ψνξ̄(Ē))) in Cγ+1

ξ

= background for σ(
∗
πν,γ+1

ξ̄
(ψνξ̄ (Ē))) in Cγ+1

ξ

= background for H in Cγ+1
ξ

= E∗

as desired. �

From Claim 4.47, we have that S∗�(ξ + 2) is the unique normal continuation of

S∗�(ξ + 1) =W∗γ+1�(ξ + 1) via E
W∗γ+1

ξ . That is, S∗�(ξ + 2) =W∗γ+1�(ξ + 2).
It remains to show, keeping our previous notation:

Claim 4.48 ψγ+1
ξ+1 ◦ π

ν,γ+1

ξ̄+1
=
∗
πν,γ+1

ξ̄+1
◦ ψν

ξ̄+1
.

Proof. Both maps act on MWν

ξ̄+1
. The right hand side embeds it elementarily into

Mη′,l′ of Cγ+1
ξ+1 , where

〈η′, l′〉 =
∗
πν,γ+1

ξ̄+1
(〈ηνξ̄+1, l

ν
ξ̄+1〉)

The left hand side embeds MWν

ξ̄+1
elementarily into M〈ηγ+1

ξ+1 ,l
γ+1
ξ+1 〉

of Cγ+1
ξ+1 . So first we

show (†)ξ+1(2)(a):

Subclaim 4.48.1 〈ηγ+1
ξ+1 , l

γ+1
ξ+1 〉 =

∗
πν,γ+1

ξ̄+1
(〈ην

ξ̄+1
, lν
ξ̄+1
〉).

Proof. Let

θ =Wγ+1-pred(ξ + 1)

=W∗γ+1-pred(ξ + 1)

= S∗γ+1-pred(ξ + 1).

Case 1. crit(Ē) ≥ crit(Fγ), or θ < β.

This is the case in which φν,γ+1 preserves tree predecessor, that is, θ = φν,γ+1(θ̄) =
φ∗ν,γ+1(θ̄) for θ̄ =Wν-pred(ξ̄ + 1). We have

MWν

ξ̄+1
= Ult(P̄, Ē),
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where P̄ �MWν

θ̄
. Let

P = πν,γ+1

θ̄
(P̄ ).

Embedding normalization leads to

MWγ+1

ξ+1 = Ult(P,E),

where recall E = πν,γ+1

ξ̄
(Ē). Letting ρ be the resurrection map for P in Cγ+1

θ , that is

ρ = σ〈ηγ+1
θ ,lγ+1

θ 〉[ψ
γ+1
θ (P )],

ρ maps ψγ+1
θ (P ) into (Mη,l)

Cγ+1
θ , where

〈η, l〉 = Res〈ηγ+1
θ ,lγ+1

θ 〉[ψ
γ+1
θ (P )],

we have
〈ηγ+1
ξ+1 , l

γ+1
ξ+1 〉 = i

W∗γ+1

θ,ξ+1 (〈η, l〉),

becauseW∗γ+1|(ξ+2) = S∗|(ξ+2) is a conversion system. Note that
∗
πν,γ+1

θ̄
(〈ηγ+1

θ̄
, lγ+1

θ̄
〉) =

〈ηγ+1
θ , lγ+1

θ 〉 by induction. (I.e. Subclaim 4.48.1 at θ̄ instead of ξ̄.) Also,
∗
πν,γ+1

θ̄
(ψν

θ̄
(P̄ )) =

ψγ+1
θ (πν,γ+1

θ̄
(P̄ )) = ψγ+1

θ (P ). It follows that

〈η, l〉 =
∗
πν,γ+1

θ̄
(Resην

θ̄
,lν
θ̄
[ψνθ̄ (P̄ )]C

ν
θ̄ ).

Thus

〈ηγ+1
ξ+1 , l

γ+1
ξ+1 〉 = i

W∗γ+1

θ,ξ+1 (〈η, l〉)

= i
W ∗γ+1

θ,ξ+1 ◦
∗
πν,γ+1

θ̄
(Resην

θ̄
,lν
θ̄
[ψνθ̄ (P̄ )])

=
∗
πν,γ+1

ξ̄+1
◦ iW

∗
ν

θ̄,ξ̄+1
(Resην

θ̄
,lν
θ̄
[ψνθ̄ (P̄ )])

=
∗
πν,γ+1

ξ̄+1
(〈ηνξ̄+1, l

ν
ξ̄+1〉),

as desired.

Case 2. Otherwise.

In this case, we must have β ≤ θ and crit(Ē) < crit(F ). It follows that θ = β,
and Wν-pred(ξ̄ + 1) = Wγ+1-pred(ξ̄ + 1) = β. The argument above works, with
θ̄ = θ = β and P̄ = P , and πν,γ+1

θ̄
and

∗
πν,γ+1

θ̄
being replaced by the identity map. (
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If θ < β they are already the identity. This case is similar to the case θ < β.) The
relevant calculation is

〈ηγ+1
ξ+1 , l

γ+1
ξ+1 〉 = i

W∗γ+1

β,ξ+1(Resηγ+1
β ,lγ+1

β
[ψγ+1
β (P )]C

γ+1
β )

= i
W∗γ+1

β,ξ+1(Resηνβ ,lνβ [ψνβ(P )]C
ν
β)

=
∗
πν,γ+1

ξ̄+1
◦ iW

∗
ν

β,ξ̄+1
(Resηνβ ,lνβ [ψνβ(P )]C

ν
β)

=
∗
πν,γ+1

ξ̄+1
(〈ηνξ̄+1, l

ν
ξ̄+1〉).

The first equation holds because W∗γ+1�(ξ + 2) = S∗�(ξ + 2) is a conversion system.
The second comes from the fact that W∗γ+1�(β + 1) = W∗ν �(β + 1). The third
comes from properties of embedding normalization. The last comes from W∗ν being
a conversion system. �

We now finish proving Claim 4.48. We keep the notation above. Let us assume
that we are in Case 1. Let x ∈MWν

ξ̄+1
be arbitrary, and let

x = [a, f ]P̄Ē,

where a ⊆ hĒ is finite and f ∈ P̄ . (We assume k(P̄ ) = 0 for simplicity.) Then

ψγ+1
ξ+1 ◦ π

ν,γ+1

ξ̄+1
(x) = ψγ+1

ξ+1 (πν,γ+1

ξ̄+1
([a, f ]P̄Ē))

= ψγ+1
ξ+1 ([πν,γ+1

ξ̄
(a), πν,γ+1

θ̄
(f)]PE)

(by the properties of embedding normalization, and the fact πν,γ+1

θ̄
(P̄ ) = P and

πν,γ+1

ξ̄
(Ē) = E)

= [σ ◦ ψγ+1
ξ ◦ πν,γ+1

ξ̄
(a), ρ ◦ ψγ+1

θ ◦ πν,γ+1

θ̄
(f)]

M
W∗γ+1
θ

E∗,

where σ resurrects ψγ+1
ξ (E) and ρ resurrects ψγ+1

θ (P ), as defined above. We have

σ =
∗
πν,γ+1

ξ̄
(σ̄), and ρ =

∗
πν,γ+1

θ̄
(ρ̄).
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Further
∗
πν,γ+1

ξ̄+1
◦ ψνξ̄+1(x) =

∗
πν,γ+1

ξ̄+1
(ψνξ̄+1([a, f ]P̄Ē))

=
∗
πν,γ+1

ξ̄+1
([σ̄ ◦ ψνξ̄ (a), ρ̄ ◦ ψνθ̄ (f)]

MW
∗
ν

θ̄

E
W∗ν
ξ̄

)

= [
∗
πν,γ+1

ξ̄
◦ σ̄ ◦ ψνξ̄ (a),

∗
πν,γ+1

θ̄
◦ ρ̄ ◦ ψνθ̄ (f)]

M
W∗ν+1
θ

E
W∗ν+1
ξ

= [σ ◦ ∗πν,γ+1

ξ̄
◦ ψνξ̄ (a), ρ ◦ ∗πν,γ+1

θ̄
◦ ψνθ̄ (f)]

M
W∗ν+1
θ

E∗

= [σ ◦ ψγ+1
ξ ◦ πν,γ+1

ξ̄
(a), ρ ◦ ψγ+1

θ ◦ πν,γ+1

θ̄
(f)]

M
W∗ν+1
θ

E∗ .

The first 4 lines come from the way embedding normalization and lifting work. The
last line comes from our induction hypothesis.

We leave it to the reader to finish the proof in Case 2. This proves Claim 4.48.
�

Returning to the inductive proof of (†)ξ, we see that the limit case is trivial. We
are left with

Inductive Case 2. ξ is a limit ordinal, and (†)ξ.

We must prove (†)ξ+1. We have S∗�ξ =W∗γ+1�ξ. Since Σ∗ normalizes well, the branch
[0, ξ]W∗γ+1

ofW∗γ+1 produced by embedding normalization is equal to Σ∗(S∗�ξ). Thus

S∗�(ξ+ 1) =W∗γ+1�(ξ+ 1). One can then prove (†)ξ+1 by looking at how the objects

it deals with come from the MWν
τ and MW∗ν

τ for τ <Wγ φ−1
ν,γ+1(ξ), and using our

induction hypothesis (†)ξ. We omit further detail.
This completes our inductive proof of (1) and (2) of Lemma 4.43. We have already

proved (3) of Lemma 4.43. We now prove (4).
Recall that z(η) = lhWη − 1. The following diagram summarizes the proof of

(4).

MU
γ+1 MWγ+1

z(γ+1) Mηz(γ+1),lz(γ+1)
MW∗γ+1

z(γ+1)

MU
ν MWν

z(ν) = Rν Mηz(ν),lz(ν)
MW∗ν

z(ν)

σγ+1
ψγ+1
z(γ+1)

σν

EUγ πν,γ+1
z(ν)

ψν
z(ν)

∗
πν,γ+1
z(ν)

∈

∈
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That the square on the right commutes is (†)z(γ+1). We have shown already that the
square on the left commutes. We have that ψUν = ψWν

z(ν) ◦ σν by induction. Further,
the diagram

MU
γ+1 Mηz(γ+1),lz(γ+1)

∈MW∗γ+1

z(γ+1) =MU∗γ+1

MU
ν Mηz(ν),lz(ν)

∈MW∗ν
z(ν) = MU∗ν

ψUγ+1

ψUν

iUν,γ+1 iU
∗

ν,γ+1

commutes, since it is part of the copy and conversion of U to U∗. So ψUγ+1 agrees

with ψγ+1
z(γ+1) ◦σγ+1 on ran iUν,γ+1. ButMU

γ+1 is generated by ran iU0,γ+1 union λEUγ . For

a ∈ [λEUγ ]<ω,

ψγ+1
z(γ+1) ◦ σγ+1(a) = ψγz(γ) ◦ σγ(a). (∗)

To see (∗), note first σγ�λEUγ = σγ+1�λEUγ by facts about embedding normalization.

(See 3.49.) So it is enough to show that ψγ+1
z(γ+1) agrees with ψγz(γ) on λFγ . But for

α = αT ,Uγ as before, Wγ�(α + 1) = Wγ+1�(α + 1). Also, λFγ < λ
E
Wγ
α

. Thus for
λ = λFγ ,

ψγz(γ)�λ = ψγα�λ

= ψγ+1
α �λ

= ψγ+1
z(γ+1)�λ.

This completes the proof of (∗).
But ψUγ = ψγz(γ) ◦ σγ by induction, and ψUγ agrees with ψUγ+1 on λEUγ , by the

properties of conversion systems. So ψUγ+1 agrees with ψγ+1
z(γ+1) ◦ σγ+1 on λEUγ , as

desired.
This completes the proof of (4) in Lemma 4.43 in the case that [0, γ + 1]U does

not drop in model or degree, so that we have z(γ) = lhW∗γ+1 − 1 as well, and

MU∗
γ+1 =MW∗γ+1

z(γ+1). We leave the dropping case to the reader.
This completes the proof that if Lemma 4.43 holds at γ, then it holds at γ + 1.
Now suppose γ is a limit ordinal. Let

λ = sup{αT ,U | ξ < γ}.
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So W (T ,U�γ) =Wγ�λ, and W (T ∗,U∗�γ) =W∗γ�λ. Also

S∗γ�λ =W∗γ�λ,

because S∗ξ �αξ = W∗ξ �αξ = W∗γ�αξ for ξ < λ. Since Σ∗ normalizes well, [0, λ)W ∗γ =
Σ∗(W∗γ�λ). Thus

S∗γ�(λ+ 1) =W∗γ�(λ+ 1).

We now go on to prove (†)ξ, for ξ ≥ λ, by induction. The proof is similar to the
one above. Having (†)ξ for ξ = lhWγ, we go on to prove (4) as above. We omit
further detail.

This proves Lemma 4.43. �

Now let lh(U) = γ+1. So W (T ,U) =Wγ and W (T ∗,U∗) =W∗γ . By Lemma 4.43,

Wγ lifts to W∗γ , so Wγ is by Σ. Let τ = z(γ). Let P = MU
γ , R = MWγ

τ , and

S = MW∗γ
τ . We have N = MηUγ ,l

U
γ

= Mηγτ ,l
γ
τ

in the construction of MU∗
γ = MW∗γ

τ , by

Lemma 4.43. Moreover, the lemma tells us that ψUγ = ψγτ ◦ σγ. Let then Ω be the
strategy for N induced by the construction of MU∗

γ . Then

Σ〈T ,U〉,P = ΩψUγ

= Ωψγτ ◦σγ

= (Ωψγτ )σγ

= (ΣWγ ,R)σγ .

Thus Σ 2-normalizes well.
Finally, we must show that all tails of Σ 2-normalize well. It is enough to consider

tails of the form ΣT ,Q, where T is normal on M = MC
ν0,k0

. Let

lift(T ,M,C) = 〈T ∗, 〈ηTξ , lTξ | ξ ≤ ξ0〉, 〈ψTξ | ξ ≤ ξ0〉〉.

Let Ω be the iteration strategy for

Q∗ = M
iT
∗

0,ξ0
(C)

ηTξ0
,lTξ0

that is induced by Σ∗T ∗,MT ∗ξ0
. The argument we have just given shows that Ω 2-

normalizes well. But ΣT ,Q is by definition the pullback of ΩT ∗ via ψTξ0 . So by 4.4,
ΣT ,Q 2-normalizes well.

This finishes our proof of Theorem 4.41. �

Strong unique iterability yields strategies for coarse premice that normalize well
for infinite stacks. In particular, assuming AD+, if (M,Σ∗) is a coarse Γ-Woodin
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pair, then Σ∗ normalizes well for countable stacks. We believe that by extending the
proof of 4.41 one can show that normalizing infinite stacks commutes with lifting to
a background universe. Thus if we assume in the hypothesis of Theorem 4.41 that
Σ∗ normalizes well for infinite stacks, we can conclude that the induced strategies
Ω(C,M,Σ∗) normalize well for infinite stacks.

4.5 Fine strategies that condense well

We show that if Σ∗ is an iteration strategy for V that has strong hull condensation,
then the strategies for premice induced by Σ∗ via a full background extender con-
struction also have strong hull condensation. The proof is routine, but we include it
for the sake of completeness. The corresponding result for ordinary hull condensation
was proved by Sargsyan in [30].

Theorem 4.49 Let N∗ |= ZFC + “C is a background construction”. Let Σ∗ be

a (λ, θ)-iteration strategy for (N∗, ~FC). Suppose that 〈ν, k〉 < lh(C), and Σ is the
complete (λ, θ)- iteration strategy for MC

ν,k induced by Σ∗. Suppose finally that Σ∗

has strong hull condensation; then Σ has strong hull condensation.

Proof. We show first that Σ condenses properly on weakly normal trees. The
proof that all its tails Σs do so as well is similar. We then deal with the pullback
clause in the definition of strong hull condensaion.

Let U be a weakly normal iteration tree on M = MC
ν0,k0

that is by Σ, and let
Φ: T → U be a tree embedding, with

Φ = 〈u, 〈sβ | β < lh(T )〉, 〈tβ | β + 1 < lh(T )〉, p〉.

Let Nβ = NΦ
β , so that sβ : MT

β → Nβ�MU
v(β). The reader will lose little by assuming

that T and U are fully normal, so that Nβ =MU
v(β). Nevertheless, we shall not make

that simplification here.
We must see that T lifts to a tree by Σ∗. Let

lift(U ,M,C) = 〈U∗, 〈θξ,mξ | ξ < lh(U)〉, 〈ψξ | ξ < lh(U)〉〉.

It is enough to show that T lifts to a psuedo-hull of U∗. For this, let

lift(T ,M,C) = 〈T ∗, 〈ηξ, lξ | ξ < lh(T )〉, 〈ϕξ | ξ < lh(T )〉〉.

Note that both T ∗ and U∗ are fully normal. (See 2.45.) Let Cα = iT
∗

0,α(C) and

Dα = iU
∗

0,α(C). Let Qα = MCα
ηα,lα

, and Xα = MDα
θα,mα

. Thus

ϕα : MT
α → Qα,
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and
ψα : MU

α → Xα

are the liftup maps of the two conversion systems. The map that resurrects ϕα(ETα )
inside Cα is

σα = σηα,lα [MCα
ηα,lα
|〈lh(ϕα(ETα )), 0〉].

Similarly, the resurrection map for ψα(EUα ) is

τα = σθα,mα [MDα
θα,mα

|〈lh(ϕα(EUα )), 0〉].

For any background construction D, if G is the last extender of MD
ν,0, we write

BD(G) = FDν for the background extender of G given by D. (Note G is the last
extender at most once.) Thus

ET
∗

α = BCα ◦ σα ◦ ϕα(ETα )

and
EU

∗

α = BDα ◦ τα ◦ ψα(EUα ).

Let us write Rα for the level of Cα that has σα ◦ϕα(ETα ) as its last extender, so that
σα maps an initial segment of Qα to Rα. Similarly, let Yα be such that τα ◦ ψα(EUα )
is the last extender of Yα.

We shall construct a tree embedding Φ∗ : T ∗ → U∗ by induction, with

Φ∗ = 〈u, 〈rβ | β < lh(T )〉, 〈wβ | β + 1 < lh(T )〉, q〉.

Notice here that uΦ∗ = u = uΦ. Because Φ∗ is to be a tree embedding, this completely
determines the putative Φ∗, and what we have to show is just that Φ∗ is indeed a
tree embedding of T ∗ into U∗.

For γ ≤ lh(T ), let

Φ∗γ = Φ∗�γ = 〈u�{ξ | ξ + 1 < γ}, 〈rβ | β < γ〉, 〈wβ | β + 1 < γ〉, qγ〉.

Let v be the common “minimal realization” map of Φ and Φ∗, given by v(0) = 0,
v(α + 1) = u(α) + 1, and v(λ) = supα<λ v(α) for λ a limit ordinal. We show by
induction on γ that

(1) Φ∗�γ is a tree embedding of T ∗�γ into U∗,

(2) for α < γ, ψv(α) ◦ sα = rα ◦ ϕα, and

(3) for α < γ, rα(Qα) = ψv(α)(Nα) �Xv(α).
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Let (∗)γ be the conjunction of (1)-(3). The following diagram illustrates the
situation:

MU
u(α) Xu(α) ∈MU∗

u(α)

MU
v(α) Xv(α) ∈MU∗

v(α)

MT
α Qα ∈MT ∗

α

ψu(α)

tα wα

ı̂U
v(α),u(α)

ψv(α)

sα

ϕα

rα

ı̂U
∗

v(α),u(α)

Some care is needed in reading this diagram. The bottom rectangle is just (2)
and (3) of our induction hypotheses, and is always valid, provided we understand
that sα may only be elementary as a map of MT

α into a proper initial segment Nα

of MU
v(α). Similarly, rα(Qα) may be a proper initial segment of Xv(α). (These would

be the relics of gratuitous dropping along [0, α)T or [0, v(α)]U .) The top rectangle
involves only the conversion of U to U∗, so our induction hypotheses are irrelevant.
It is valid if and only if (v(α), u(α)]U does not drop (in model or degree), so that
iU
∗

v(α),u(α)(Xv(α)) = Xu(α). In the case that (v(α), u(α]U drops, something like it is
valid. We discuss that below.

To start with, Φ∗1 is given by setting v(0) = 0 and r0 = identity map from
N∗ =MT ∗

0 to N∗ =MU∗
0 .

If λ is a limit, and (∗)α for α < λ, then

Φ∗λ =
⋃
α<λ

Φ∗α

in the obvious componentwise sense. It is clear that (∗)λ holds.
If γ = λ + 1 for λ < lh(T ) a limit such that (∗)λ, then Φ∗λ+1 is just Φ∗λ together

with the map rλ, defined as follows. Recall that v preserves tree order, and

v(λ) = sup
α<λ

v(α).

For α <T λ and x ∈MT ∗
α , we set

rλ(i
T ∗
α,λ(x)) = iU

∗

v(α),v(λ)(rα(x)).
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Using (1) at γ < λ, we see that rλ is well defined, elementary, and as required for
(∗)λ+1.

Finally, suppose we have Φ∗α+1 satisfying (∗)α+1. The whole of Φ∗α+2 is determined
by u(α), which is already given to us, but we must see this choice works; that is,
that (∗)α+2 holds for the system it determines.

Let

G = ETα ,

G∗ = ET
∗

α = (BCα ◦ σα ◦ ϕα)(G),

H = EUu(α),

H∗ = EU
∗

u(α) = (BDu(α) ◦ τα ◦ ψu(α))(H).

Set also
wα = iU

∗

v(α),u(α) ◦ rα,

as we are forced to do. Note that wα(Cα) = Du(α). Lemma 5.3 below will tell us that
the following claim is what we need.

Claim 4.50 (a) τu(α) ◦ψu(α) ◦ iUv(α),u(α) ◦ sα � (lh(G) + 1) = iU
∗

v(α),u(α) ◦ rα ◦ σα ◦ϕα �
(lh(G) + 1).

(b) wα(G∗) = H∗.

Proof. We prove (a). Suppose first that (v(α), u(α]U does not drop. In that
case, iU

∗

v(α),u(α)(Xv(α)) = Xu(α), so the top rectangle in the diagram above is valid.
Expanding the diagram, we have

MU
u(α) Xu(α) Yu(α)

MU
v(α) Xv(α) Yv(α)

MT
α Qα Rα

ψu(α) τu(α)

ı̂U
v(α),u(α)

ψv(α)

sα

ϕα σα

rα

iU
∗

v(α),u(α)

τv(α)

iU
∗

v(α),u(α)

rα

Notice that rα(σα) = τv(α). So the diagram commutes, and in particular the two
routes from MT

α to Yu(α) around the outer edges are the same. This gives us (a).
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Suppose now that (v(α), u(α)]U drops. Let I = sα(G). Since H = ı̂Uv(α),u(α)(I),

all extenders used along (v(α), u(α]U have critical points strictly below the current
image of λI . For simplicity, let us assume there is just one such drop, at ξ, where
v(α) <U ξ ≤U u(α). (It doesn’t matter whether or not the drop is gratuitous.) Let
θ = U -pred(ξ). We have the following diagram:

MU
u(α) iU

∗

v(α),u(α)(Xv(α)) Xu(α) Yu(α)

MU
ξ Xξ Yξ

MU
θ Xθ Z Yθ

MU
v(α) Xv(α) Yv(α)

MT
α Qα Rα

ψu(α)

k

τu(α)

iU
∗

ξ,u(α)

h τξ

iU
∗

ξ,u(α)
iU
∗

ξ,u(α)

ψθ j

iU
∗

θ,ξ

l

iU
∗

θ,ξ iU
∗

θ,ξ

ψv(α)

iU
∗

v(α),θ

τv(α)

iU
∗

v(α),θ

sα

ϕα

rα

σα

rα

In the diagram, j = σµ,n[ψθ(M∗,U
ξ ]Dθ resurrects the drop in U , and τθ = l ◦ j.

We have Xξ = iU
∗

θ,ξ(Z), and τξ = iU
∗

θ,ξ(l). Also, h = iU
∗

θ,ξ(j) and k = iU
∗

ξ,u(α)(h). The

unlabelled vertical arrows on the far left are the maps of U . Finally, rα(σα) = τv(α).
The facts we have just enumerated imply that all parts of the diagram commute

on the image of lh(G) + 1. (For the square at the bottom left, this is our induction
hypothesis.) The reason for restricting to the image of lh(G) + 1 is that the resur-
rection maps j, h, k and the τ ’s and σα are partial, defined on initial segments of the
models displayed above. But all are defined on the image of lh(G) + 1 in that model.

The fact that the two routes from MT
α to Yu(α) going along the outer edges are

the same when restricted to lh(G) + 1 gives us part (a) of the claim.
Part (b) follows easily from the fact that the images of G in Yu(α) along the two

outer edges of the diagram are the same.
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This proves Claim 4.50. �

By Lemma 5.3, there is a unique tree embedding Ψ from T ∗�(α + 2) to U∗ that
extends Φ∗α+1 and satisfies uΨ(α) = u(α). Let Φ∗α+2 be this Ψ. We check now that
(∗)α+2 holds.

Let β = T -pred(α + 1), and let τ = U -pred(u(α) + 1). Because Φ is a tree
embedding, τ ∈ [v(β), u(β)]U . Let us assume for simplicity that there is no relevant
dropping, that is,

(a) (α + 1) /∈ DT , and

(b) DU ∩ [v(β), v(α + 1)] = ∅.

SoMT
α+1 = Ult(MT

β , G) andMU
v(α+1) = Ult(MU

τ , H)). Let ρ = iUv(β),τ) ◦ sβ and ρ∗ =

iU
∗

v(β),τ ◦ rβ. The lifting construction yields MT ∗
α+1 = Ult(MT ∗

β , G∗)) and MU∗
v(α+1) =

Ult(MU∗
τ , H

∗), moreover

Xv(α+1) = iU
∗

v(β),v(α+1)(Xv(β)).

rv(α+1) is given by the Shift Lemma:

rv(α+1)([a, f ]
MT ∗β
G∗ ) = [wα(a), ρ∗(f)]

MU∗τ
H∗ .

Here is a diagram of the situation.

MU
v(α+1) Xv(α+1) ∈MU∗

v(α+1)

MT
α+1 Qα+1 ∈MT ∗

α+1

MU
τ Xτ ∈MU∗

τ

MU
v(β) Xv(β) ∈MU∗

v(β)

MT
β Qβ ∈MT ∗

β

G

ϕβ

sβ

ρ

sα+1

ϕα+1

ψτ

ψv(α+1)

rα+1

ψv(β)

H∗

G∗

rβ

ρ∗

H

H∗
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The diagram resembles the diagram associated to our proof the copying commutes
with embedding normalization. That is not an accident, of course. Embedding
normalization yields tree embeddings, and lifting to a background universe is similar
to copying. We have simplified the diagram above by ignoring the fact that sβ is
only elementary as a map into Nβ, which may be a proper initial segment ofMU

v(β).

In that case, rβ maps Qβ to the corresponding initial segment ψv(β)(Nβ) of Xv(β).
Similarly, sα+1 and rα+1 will then map MT

α+1 and Qα+1 to proper initial segments
of MU

v(α+1) and Xv(α+1).
We are asked to show that ψv(α+1) ◦ sα+1 = ϕα+1 ◦ rα+1, in other words, that

the rectangle on the top face of the cube commutes. We argue just as we did in the
proof of 3.55. The rectangle on the bottom commutes by our induction hypothesis.
The rectangle in front commutes because T ∗ comes from lifting T to the background
universe. The diagram on the back face commutes because U∗ comes from lifting U .
The maps on the left face commute because Φ is a tree embedding of T into U . The
maps on the right face commute because we obtained rα+1 from the Shift Lemma.
(This of course is where we used that H∗ = wα(G∗).)

It is clear from these facts that the top rectangle commutes on ran(iTβ,α+1). Since
MT

α+1 is generated by ran(iTβ,α+1) ∪ λ(G), it is enough to see that the top square
commutes on λ(G). But

ψv(α+1) ◦ sα+1�λ(G) = τu(α) ◦ ψu(α) ◦ iUv(α),u(α) ◦ sα � λ(G)

= iU
∗

v(α),u(α) ◦ rα ◦ σα ◦ ϕα�λ(G)

= rα+1 ◦ ϕα+1�λ(G).

Line 1 comes from the facts that sα+1 agrees with iUv(α),u(α) ◦ sα on λ(G) by the
way it is defined using the Shift Lemma, and that ψv(α+1) agrees with τu(α) ◦ψu(α) on
λ(H) for a similar reason. Line 2 comes from Claim 4.50. Line 3 again comes from
using the Shift Lemma, now at the level of T ∗ and U∗.

This completes the proof that Σ condenses well on weakly normal trees. The proof
that its tails do so as well is similar. Let us now consider the pullback condition,
clause (b) of 4.6. For this, let us keep our previous notation, but assume that
lh(T ) = α+1, lh(U) = β+1, and that v(α) ≤ β and Φ has been extended by adding
the t-map

π = ı̂Uv(α),β ◦ sα.

Let us assume J � dom(π), and let K = π(J). We need to see that (ΣU ,K)π = ΣT ,J .
For that, consider the diagram
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MU
β iU

∗

θ,β(Xθ) Xβ MU∗
β

MU
ξ Xξ MU∗

ξ

MU
θ Xθ Z MU∗

θ

MU
v(α) Xv(α) MU∗

v(α)

MT
α Qα MT ∗

α

ψβ

i k

iU
∗

ξ,β

h

iU
∗

ξ,β iU
∗

ξ,β

ψθ j

iU
∗

θ,ξ iU
∗

θ,ξ iU
∗

θ,ξ

ψv(α)

iU
∗

v(α),θ
iU
∗

v(α),θ

sα

ϕα

rα rα

In the diagram, j = σµ,n[ψθ(M∗,U
ξ ]Dθ , and h and k are its images under the U∗

embeddings. We are assuming for definiteness that U dropped once on (v(α), β]U ,
at its step from θ to ξ. The maps j, h, and k are defined only on initial segments of
the models displayed, but all are defined on the image of J in that model.

Let L = ϕα(J) and P = ψβ(K). Let also N = i(K) = k−1(P ). By the commu-
tativity of the left column in the diagram, it is enough to see that the Dβ-induced
strategy of P pulls back under k ◦ iv(α),β ◦ rα to the Cα-induced strategy of L. The
following claims show this. Put Y = iU

∗

v(α),β(Xv(α)).

Claim 1. Ω(Dβ, Y,Σ∗U∗�β+1)N = Ω(Dβ, Xβ,Σ
∗
U∗�β+1)kP .

Proof. This follows at once from Lemma 2.47. �

Claim 2. Ω(Dv(α), Xv(α),Σ
∗
U∗�v(α)+1) = Ω(Dβ, Y,Σ∗U∗�β+1)i

U∗
v(α),β .

Proof. Let π = iU
∗

v(α),β. Because Σ∗ has strong hull condensation, it is pullback consis-

tent, so Σ∗U∗�v(α+1) = (Σ∗U∗�β+1)π. But Ω(Dβ, Y,Σ∗U∗�β+1)π = Ω(Dv(α), Xv(α), (Σ
∗
U∗�β+1)π)

by 2.50. �

Claim 3. Ω(Cα, Qα,Σ
∗
T ∗�α+1) = Ω(Dv(α), Xv(α),Σ

∗
U∗�v(α)+1)rα .
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Proof. Since Σ∗ has strong hull condensation, Σ∗T ∗�α+1 = (Σ∗U∗�v(α)+1)rα . We can
therefore apply Corollary 2.50 again. �

Let Λ = Ω(Dβ, Xβ,Σ
∗
U∗�β+1)P . The claims imply that Ω(Cα, Qα,Σ

∗
T ∗�α+1)L is the

pullback of Λ under k ◦ iU∗v(α),β ◦ rα, and hence that ΣT ,J is the pullback of Λ under

k ◦ iU∗v(α),β ◦ rα ◦ϕα. By commutativity, ΣT ,J is the pullback of Λ under ψβ ◦ iUv(α,β ◦ sα.

But this means that it is the pullback of ΣU�(β+1),K under iUv(α),β ◦ sα, as desired.
This completes the proof of Theorem 4.49.

�

4.6 Pure extender pairs and strategy coherence

As we have just seen, background constructions in Γ-Woodin universes yield iteration
strategies for premice that condense and normalize well. It seems that all the nice
behavior of iteration strategies one could wish for follows from these two properties.
We shall see this as we proceed. Because of that, the following is one of our central
definitions.

Definition 4.51 (M,Ω) is a pure extender pair with scope Hδ iff

(1) M is a pure extender premouse, and M ∈ Hδ,

(2) Ω is a complete iteration strategy for M , with scope Hδ, and

(3) Ω normalizes well, and has strong hull condensation.

We are only interested in the case that Ω is absolutely definable. In the most
important context, M is countable, Ω has scope Hω1 , and its absolute definability is
witnessed by membership in a model of AD+. At other times we are working under
hypotheses that allow us to reach something close to this AD+ context in a generic
extension.

The proviso “scope Hδ” implies that Ω is an (ω, δ)-strategy. It would be more
natural to require that Ω be a (δ, δ)-strategy, but then our comparison proof for pure
extender pairs would need to go into normalizing infinite stacks.

It follows immediately from the definitions that any iterate of a pure extender
pair is also a pure extender pair. That is, if (P,Σ) is a pure extender pair with scope
Hδ, and s is a P -stack by Σ with last model Q, then (Q,Σs) is a pure extender pair
with scope Hδ. We have already in effect proved another useful basic fact, namely,
that elementary submodels of pure extender pairs are pure extender pairs. More
precisely,
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Lemma 4.52 Let (M,Ω) be a pure extender pair with scope Hδ, and let π : N →M
be weakly elementary, where N is a pure extender premouse; then (N,Ωπ) is a pure
extender pair with scope Hδ.

Proof. Clearly, Ωπ is a complete iteration strategy for N with scope Hδ. Ωπ normal-
izes well by 4.4, and has strong hull condensation by 4.10. �

Another elementary fact is

Lemma 4.53 Let (M,Ω) be a pure extender pair; then Ω is pullback consistent.

Proof. We proved this in Lemma 4.9. �

Concerning pairs with scope going beyond HC, the following lemmas will be
useful. The first says that the strategy restricted to countable trees determines the
strategy on all trees.

Lemma 4.54 Let (P,Σ) and (P,Λ) be pure extender pairs with scope Hδ, and sup-
pose that Σ and Λ agree on countable normal trees; then Σ = Λ.

Proof. Otherwise we have a normal T of limit length by both Σ and Λ, with Σ(T ) = b
and Λ(T ) = c, and b 6= c. Let H be countable and transitive, and

π : H → Vγ

be elementary, with γ large and everything relevant in ran(π). Let P̄, T̄ , b̄, c̄ in H be
the collapses of P, T , b, c. So b̄ 6= c̄. Letting

U = πT̄ ,

it is easy to see that U_b̄ is a pseudo-hull of T _b. (For example, the relevant u-
map is just π� lh(U).) Similarly, U_c̄ is a pseudo-hull of T _c. But by strong hull
condensation, U_b̄ is by Σ and U_c̄ is by Λ, so b̄ = c̄ because the strategies agree
on countable normal trees. This is a contradiction. �

The reader should compare the following lemma to Proposition 2.32.

Lemma 4.55 Let (P,Σ) be a pure extender pair with scope Hδ, and let j : V → M
be elementary, where M is transitive and crit(j) > |P |; then j(Σ) and Σ agree on all
trees in j(Hδ) ∩Hδ.
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Proof. Otherwise we have a normal tree T with distinct cofinal branches b and c
such that T _b is by Σ and T _c is by j(Σ). As in the proof of the last lemma, this
gives us a countable normal tree U on P with distinct cofinal branches b̄ and c̄ such
that U_b̄ is a pseudo-hull of T _b and U_c̄ is a pseudo-hull of T _c. Thus Σ(U) = b̄.
But since U is countable, and M is wellfounded,

M |= U_c is a pseudo-hull of T _c.

Thus j(Σ)(U) = c̄. But U is countable, hence fixed by j, so Σ(U) = c̄, a contradiction.
�

For the remainder of this section, we look at one further elementary property,
strategy coherence. To see what is at stake here, suppose (P,Σ) is a pure extender
pair, and κ is a cardinal of P such that κ ≤ ρ(P ). Let T be a tree on P |κ that is
according to ΣP |κ. We can also think of T as a tree on P , or as a tree on Ult(P,EP

α )
whenever lh(EP

α ) > κ. Does it follow from our definitions that, considered this way,
T is by Σ? There is no reason to believe that an arbitrary complete strategy Σ
would be coherent in this way, but we shall show that strong hull condensation and
normalizing well guarantee it.

Given π : P → R weakly elementary, we can copy a P -stack s to an R-stack πs,
until we reach an illfounded model on the πs side. Thus if Ω is a complete strategy
for R, we have the complete pullback strategy Ωπ for P . We extend the construction
slightly, so as to allow stronger ultrapowers on the R side than the copied ones. This
will let us lift weakly normal trees to fully normal ones.

Let T be a weakly normal tree on the premouse P , and let k = k(P ). Let

π : P → Q|〈ν, k〉

be weakly elementary; then we can copy T to a fully normal tree U on Q as follows.
(We care most about the case P = Q|〈ν, k〉 and π = id.) U has the same tree order
as T , so long as it is defined. Let Pα and Qα be the α-th models, and Eα and Fα
the α-th extenders, of T and U . We shall have a weakly elementary

πα : Pα → Qα|〈να, kα〉.

Here π0 = π, ν0 = ν, and k0 = k. We have the usual agreement and commutativity
conditions:

(1) whenever β ≤ α, πα� lh(Eβ)+1 = πβ� lh(Eβ)+1) and Qα|| lh(Fβ) = Qβ|| lh(Fβ),
and

(2) whenever β ≤T α, then πα ◦ ı̂Tβ,α = ı̂Uβ,α ◦ πβ.
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(We do not demand any further coordination of the points at which the two trees
drop. T may drop gratuitously where U does not, and U may drop where T does
not because the dropping point is above some 〈να, kα〉.) The successor step is the
following. We are given Eα on Mα; set

Fα = πα(Eα),

or Fα = ḞQα|〈να,kα〉 if Eα = Ḟ Pα . Let β = T -pred(α + 1) = least ξ such that
κ < λ(Eξ), where κ = crit(Eα). By (1) above, β = U -pred(α + 1) according to the
rules of weak normality for U . Let

Pα+1 = Ult(Pβ|〈η, l〉, Eα),

and
Qα+1 = Ult(Qβ|〈γ, n〉, Fα),

where 〈η, l〉 is chosen by player I in T , and 〈γ, n〉 is determined by normality. It is
easy to see that

〈πβ(η), l〉 ≤lex 〈γ, n〉.

(If 〈η, l〉 = l(Mβ), we understand πβ(η) = νβ here, and we have l = kβ. Since
πβ is weakly elementary, and no proper initial segment of Mβ projects ≤ κ, no
proper initial segment of Qβ|〈νβ, l〉 projects ≤ πβ(κ). But πβ(κ) = crit(Fα), so
〈νβ, l〉 ≤lex 〈γ, n〉. If 〈η, l〉 <lex l(Pβ), a similar argument works.) We then set

〈να+1, kα+1〉 = ı̂Uβ,α+1(〈πβ(η), l〉)

and we have 〈να+1, kα+1〉 ≤lex l(Qα+1). πα+1 comes from the Shift Lemma definition:

πα+1([a, f ]) = [πα(a), πβ(f)],

where the equivalence classes are in Ult(Pβ|〈η, l〉, Eα) and Ult(Qβ|〈γ, n〉, Fα) respec-
tively. The proof of the Shift Lemma tells us that πα+1 is weakly elementary. (Even
if we had started with elementary maps, the case that 〈πβ(η), l〉 <lex 〈γ, n〉 could
lead to πα+1 not being fully elementary.)

Of course, at limit steps λ < lh(T ), we stop unless [0, λ]T is a wellfounded branch
of U . If it is, we get πλ, νλ and kλ from commutativity, and continue.

Definition 4.56 Given π : P → Q|〈ν, k〉 weakly elementary and T on P weakly
normal,

(a) (πT )+ is the normal tree on Q defined above. We call it the (π, ν, k)-lift of T .
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(b) When P = Q|〈ν, k〉 and π is the identity, we let T + = (πT )+.

(c) If Ω is a strategy for Q defined on normal trees, then Ω(π,ν,k) is the strategy
on weakly normal trees given by pulling back: Ω(π,ν,k)(T ) = Ω((πT )+). When
P = Q|〈ν, k〉 and π = id, we write Ω(ν,k) for Ω(π,ν,k).

With π = identity and 〈ν, k〉 = l(P ), we get a reduction of weakly normal trees
on P to fully normal trees on P , and of P -stacks to finite maximal stacks of normal
trees. So

Lemma 4.57 Let P be a premouse that is θ-iterable for normal trees; then P is
θ-iterable for weakly normal trees. If P is θ-iterable for maximal, finite stacks of
normal trees, then P has a complete (ω, θ)-iteration strategy.

We don’t actually need this lemma, because background constructions give us
directly strategies that apply to non-maximal stacks of merely weakly normal trees.

Definition 4.58 Let Σ be a complete strategy for P ; then we say (P,Σ) is strategy
coherent iff whenever s is a P -stack by Σ with last model Q, then

(a) for any 〈ν, k〉 ≤ l(Q), (Σs,Q)(ν,k) = Σs,Q|〈ν,k〉, and

(b) whenever T is a normal tree on Q by Σs, and N �MT
α and N �MT

β , then
Σs,T �(α+1),N = Σs,T �(β+1),N .

We do need the following lemma.

Lemma 4.59 Let (M,Σ) be a pure extender pair; then Σ is strategy coherent.

Proof. We begin with part (a). Let s be an P -stack by Σ with last model Q, let
Ω = Σs,Q, and let R = Q|〈ν, k〉. Let T be a weakly normal tree on R such that for
U = T + = (id, ν, k)T , U is by Ω. We must see that T is by ΩR. Let Rα = MT

α ,
Qα =MU

α , and
πα : Rα → Qα|〈να, kα〉

be as in the construction above.
Let T0 be the Q-equivalent of T ; that is, T0 is the weakly normal tree on Q that

uses the same extenders as T , and always drops at least as far as R when it applies an
extender to its base model Q. The construction above then gives us a tree embedding
Φ from T0 into U . Namely, uΦ = vΦ = identity, sΦ

α = tΦα = πα, and NΦ
α = Qα|〈να, kα〉.
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Since (P,Σ) is a pure extender pair, Ω has strong hull condensation. This implies
that T0 is by Ω. But Ω is mildly positional, so T is by ΩR, as desired.

We now prove (b). Let T be normal on Q and by Σs, and let N �MT
α and

N �MT
β . Let Ψ0 = ΣT �(α+1),N and Ψ1 = ΣT �(β+1),N , and let U be a normal tree of

limit length on N that is by both Ψ0 and Ψ1. We may assume α < β. Let γ ≤ α
be least such that N �MT

γ . Then N �MT
γ |ξ, where ξ = lh(ETγ ), so by part (a) we

may as well assume N =MT
γ ||ξ.

Looking at the normalization process, it is easy to see by induction on η < lh(U)
that

W (T � γ + 1,U � η + 1) = W (T � β + 1),U � η + 1) � φ0,η(γ),

where φ0,η is the u-map of the tree embedding of T � β + 1 into W (T � β + 1),U �
η + 1). So

W (T � γ + 1,U) = W (T � β + 1),U),

and in parallel fashion,

W (T � γ + 1,U) = W (T � α + 1),U).

But then let b0 = Ψ0(U) and b1 = Ψ1(U), and let

ai = br(bi, T � (γ + 1),U)).

Since Σs normalizes well, Σs(W (T � (γ+ 1),U)) = ai, for i = 0, 1. Thus a0 = a1. By
3.73, b0 = b1, as desired. �

Recall that Σ is positional iff whenever s and t are stacks by Σ, and N is an initial
segment of the last model of each, then Σs,N = Σt,N . Positionality clearly implies
part (b) of strategy coherence. The techniques of [60] show that normalizing well
and strong hull condensation together imply positionality, but the proof is not an
elementary combinatorial one like that above.

It was in order to be able to prove part (a) of strategy coherence that defined very
strong hull condensation using weakly normal trees, and dealt with the small extra
awkwardness this brings to the proof that background-induced strategies have strong
hull condensation. We shall use Lemma 4.59 in our comparison proof for iteration
strategies. One can see on heuristic grounds that it must come up somewhere; one
could not hope to compare an incoherent strategy with a coherent one.

Our work in the last few sections has shown how to reduce a complete strategy
that normalizes well and has strong hull condensation to its action on normal trees.
We summarize this now.
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Theorem 4.60 Let (P,Σ) and (P,Ψ) be pure extender pairs with scope Hδ, and
such that Σ and Ψ agree on normal trees; then Σ = Ψ.

Proof. Note first that Σ and Ψ agree on weakly normal trees. For if T is by Σ and
weakly normal, then T + is a normal tree by Σ because (P,Σ) is strategy coherent.
So T + is by Ψ, and hence T is by Ψ because Ψ is strategy coherent.

Now suppose 〈T ,U〉 is a P -stack by Σ. Let Q be the last model of T and R the
last model of T +, and let π : Q → N � R come from the copying/lifting process.
Then 〈T +, (πU)+〉 is a maximal stack by Σ, because Σ is strategy coherent. But Σ
and Ψ agree on maximal stacks by Proposition 4.2, so 〈T +, (πU)+〉 is by Ψ. Also,
T is by Ψ and ΨT ,Q = (Ψπ

T +,R by strong hull condensation for Ψ. But πU is a
psuedo-hull of (πU)+, so 〈T +, πU〉 is by Ψ, so U is by ΨT ,Q, so 〈T ,U〉 by by Ψ.

Clearly, this works for finite stacks of any length, so Σ = Ψ. �

In the next chapter we shall prove a basic comparison theorem for pure extender
pairs. The following terminology helps smooth the statement of this theorem.

Definition 4.61 Let (P,Σ) and (Q,Ψ) be pure extender pairs with common scope
Hθ; then

(a) (P,Σ) � (Q,Ψ) iff P �Q and Σ = ΨP .

(b) (P,Σ) � (Q,Ψ) iff P �Q and Σ = ΨP .

(c) (P,Σ) iterates past (Q,Ψ) iff there is a normal tree T on P by Σ with last
model R such that (Q,Ψ) � (R,ΣT ,R). If P -to-R drops, or if Q � R, then we
say that (P,Σ) iterates strictly past (Q,Ψ). If Q = R and P -to-R does not
drop, then we say (P,Σ) iterates to (Q,Ψ).

Note that if (P,Σ) iterates past (Q,Ψ), then the normal tree T on P witnessing
this is determined completely byQ and Σ: it comes from iterating away least extender
disagreements, with the Q side never moving. No strategy disagreements show up
along the way, because there are no strategy disagreements at the end, and (P,Σ) is
strategy coherent.

We shall show that assuming AD+, for any two pairs (P,Σ) and (Q,Ψ) with scope
HC, there is a pair (R,Ω) such that either

(i) (P,Σ) iterates to (R,Ω), and (Q,Ψ) iterates past (R,Ω), or

(ii) (Q,Ψ) iterates to (R,Ω), and (P,Σ) iterates past (R,Ω).
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5 Comparing iteration strategies

The standard Comparison Theorem of inner model theory applies to mice. One
statement of it is

Theorem 5.1 Let P and Q be premice of size ≤ θ, and suppose Σ and Ψ are θ+ +1-
iteration strategies for P and Q respectively; then there are normal trees by Σ and
U by Ψ of size θ, with last models R and S, such that either

(a) R� S, and P -to-R does not drop, or

(b) S �R, and Q-to-S does not drop.

This theorem, and the comparison process behind it, are the main engines driving
inner model theory, but they have a clear defect. We haven’t really compared the
data. We were given (P,Σ) and (Q,Ψ), and we only compared P with Q. Whether
it is the P -side or the Q-side that comes out shorter could depend on which iteration
strategies for P and Q we use. (See Proposition 6.26.)

The standard way to to avoid this problem when it might arise is to make as-
sumptions that imply P and Q can have at most one iteration strategy. This is
good enough for practical purposes in many situations, but it is unnatural, and leads
to somewhat awkward devices like the Weak Dodd-Jensen Lemma. The better re-
sponse would be to strengthen the Comparison Theorem by finding a process which
will compare all the data.

In this chapter, we shall do that. The resulting comparison process is the key to
developing the theory of a class of strategy mice sufficiently rich to analyze HOD in
models of ADR+ NLE. This theory is the practical payoff for the work we do here,
but one can see without knowing anything about HOD in models of determinacy
that we are filling a gap in basic inner model theory.

We shall prove the main comparison theorem for pairs (P,Σ) such that P is a
pure extender premouse, in Jensen indexing, and Σ is a complete strategy for P
that normalizes well and has strong hull condensation. The proof adapts easily to
ms-indexing, and to hod mice. The good behavior of Σ is needed for the argument,
and it is unlikely that one could drop it as a hypothesis. It does not seem to be a
restrictive hypothesis; for example, every iterable P has an iteration strategy with
these properties. (See Proposition 6.25.)

The first two sections contain some preliminary lemmas. The last contains the
comparison argument.
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5.1 Extending tree embeddings

We shall prove an elementary lemma on the extendibility of tree embeddings. Its
proof uses

Proposition 5.2 Let S be a normal tree, let δ ≤S η, and suppose that P �MS
η , but

P 5MS
σ whenever σ <S δ. Suppose also that P ∈ ran(̂ıSδ,η). Let

α = least γ such that P �MS
γ

= least γ such that o(P ) < lh(ESγ ) or γ = η,

and
β = least γ ∈ [0, η]S such that o(P ) < crit(̂ıSγ,η) or γ = η.

Then β ∈ [δ, η]S, and

(a) either β = α, or β = α + 1, and λ(ESα ) ≤ o(P ) < lh(ESα );

(b) if P = dom(ESξ ), then S-pred(ξ + 1) = α = β.

(We allow δ = η, with the understanding ı̂δ,δ is the identity.)

Proof. By normality, for any γ < η, P �MS
γ iff lh(ESγ ) > o(P ). So the two

characterizations of α are equivalent. Clearly, P �MS
β , and thus α ≤ β. We have

that o(P ) ≥ lh(ESσ ) for all σ <S δ, and hence by normality, for all σ <S δ whatsoever.
So δ ≤ α, and β ∈ [δ, η]S.

Suppose α < β; then o(P ) < lh(ESα ), so o(P ) < lh(ESσ ) where σ is least such that
α ≤ σ and σ + 1 ≤S β. If o(P ) < λ(ESσ ), then because δ ≤ σ and P ∈ ran(̂ıSδ,η),
we have o(P ) < crit(ESσ ), which contradicts our definition of β. So λ(ESσ ) < o(P ) <
lh(ESσ ). If crit(̂ıSσ+1,η) = λ(ESσ ), then P is not in ran(̂ıSδ,η), so crit(̂ıSσ+1,η) > o(P ), and
thus β = σ + 1.

This yields (a). For (b), note that if λ(ESσ ) ≤ o(P ) < lh(ESσ ), then P cannot be
the domain of an extender used in S. So we have α = β. We have already observed
that S-pred(ξ + 1) = α.

�

On extending tree embeddings, we have

Lemma 5.3 Let Φ = 〈u, 〈sβ | β ≤ α〉, 〈tβ | β < α〉, p〉 be a tree embedding of T
into U , and let F be an extender on the MT

α -sequence such that lh(F ) > lh(ETβ ) for

all β < α. Let T a〈F 〉 be the unique putative normal tree S extending T such that
F = ESα . Let ξ < lh(U); then the following are equivalent:
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(1) There is a tree embedding Ψ of T a〈F 〉 into U such that Φ ⊆ Ψ and uΨ(α) = ξ,

(2) v(α) ≤U ξ, and EUξ = ı̂Uv(α),ξ ◦ sα(F ).

Moreover, there is at most one such Ψ.

Proof. It is easy to see from definition 3.27 that (1) implies (2).
Suppose that ξ witnesses that (2) holds. Set u(α) = ξ and tα = ı̂Uv(α),ξ ◦ sα.

Clearly,
tα�λ

T
α = sα�λ

T
α ,

and
crit(̂ıUv(α),ξ) ≥ λUv(α).

Let p(F ) = G = EUξ . We shall find sα+1 such that Ψ = 〈u, 〈sβ | β ≤ α+ 1〉, 〈tβ | β ≤
α〉, p〉 is a tree embedding of S = T a〈F 〉 into U .

Let µ = crit(F ) and µ∗ = crit(G). Let

β = S-pred(α + 1) = least η s.t. µ < λTη+1,

and
β∗ = U -pred(ξ + 1) = least η s.t. µ∗ < λUη+1.

Let γ = (µ+)M
T
α | lh(F ) and P = MT

α |γ. Similarly, let γ∗ = (µ∗,+)M
U
ξ | lh(G) and

P ∗ =MU
ξ |γ∗. So P is the domain of F (the sets measured by it), P ∗ is the domain

of G, and tα(P ) = P ∗. The rules of normality tell us that

β = least η s.t. P =MT
η |γ,

and
β∗ = least η s.t. P ∗ =MU

η |γ∗.

(P and P ∗ are passive, so these identities imply that γ and γ∗ are passive stages in
MT

β and MU
β∗ .) Suppose first that β < α. We then have that µ < λTα , so

P ∗ = tα(P )

= sα(P )

= tβ(P )

= ı̂Uv(β),u(β) ◦ sβ(P ),
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where the last equalities hold because µ < λETβ . Thus P ∗ is in the range of ı̂Uv(β),u(β).

Proposition 5.2, with δ = v(β), η = u(β), and P ∗ as its P then tells us that

β∗ = least η ∈ [v(β), u(β)]U such that crit ı̂Uη,u(β) > ı̂Uv(β),η ◦ sβ(µ).

Let Q be the first level ofMT
β beyond P that projects to or below µ, and let Q∗ be

the first level ofMU
β∗ beyond P ∗ that projects to or below µ∗. SoMT

α+1 = Ult(Q,F )
and MU

ξ+1 = Ult(Q∗, G). Let

ρ = (̂ıUv(β),β∗ ◦ sβ)�Q.

We have that
ρ�P = tβ�P = sα�P = tα�P.

We can then set
sα+1([a, f ]QF ) = [tα(a), ı̂Uv(β),β∗ ◦ sβ(f)]Q

∗

G ,

as we are required to do by definition 3.27, and the Shift Lemma tells us that sα+1

as defined is indeed well-defined, elementary, and agrees with tα as required in a tree
embedding.

We must check clause (b) of definition 3.27. The new case involves F and G; we
must see that E ∈ ran(eSβ ) iff p(E) ∈ eUβ∗ . But for E ∈ Ext(T ),

E ∈ ran(eTβ )⇔ p(E) ∈ eUv(β)

⇔ p(E) ∈ ran(eUβ∗).

The right-to-left implication in line 2 holds because if E /∈ ran(eTβ ) and lh(E) <
lh(ETβ ), then E is incompatible with some H ∈ ran(eTβ ), so p(E) is incompatible
with p(H) ∈ eUv(β), so the right hand side of line 2 fails. On the other hand, if

lh(E) ≥ lh(ETβ ), then lh(p(E)) ≥ lh(p(ETβ )) = lh(EUu(β)), and since β∗ ≤ u(β), again
the right hand side of line 2 fails.

The case that α = β is similar. In this case, we apply the proposition to P ∗ with
δ = v(β) and η = ξ. This gives us that

β∗ = least η ∈ [v(β), ξ]U such that crit ı̂Uη,ξ > ı̂Uv(β),η ◦ sβ(µ).

We leave the remaining details to the reader. �

192



Remark 5.4 The proof gives a formula for the point of application of EUu(α) under
a tree embedding of T into U , namely

U -pred(u(α) + 1) = least η ∈ [v(β), u(β)]U such that crit ı̂Uη,u(β) > ı̂Uv(β),η ◦ sβ(µ),

where
β = T -pred(α + 1) and µ = crit(ETα ).

Remark 5.5 One can have the following situation, for F = ETα :

MT
α

MU
v(α) MU

γ MU
u(α)

sα ρ
tα

ı̂γ,u(α)

It can happen that dom ρ =MT
α , but dom tα =MT

α � lhF , so tα(F ) is the last exten-
der ofMU

u(α). In this case, ı̂γ,u(α) is acting like a resurrection embedding, resurrecting

ρ(F ), and (γ, u(α)]U drops.

5.2 Resurrection embeddings as branch embeddings

We prove a technical lemma on normal iterations past levels of a background con-
struction.

Let Σ be an iteration strategy for the premouse P0, for finite stacks of normal
trees, that normalizes well and has strong hull condensation. Suppose that Σ is
universally Baire. Let C be a background construction above |P0|+, and 〈ν0, k0〉 <
length(C). Let us write Mν,k = MC

ν,k. Suppose that whenever 〈ν, k〉 <lex 〈ν0, k0〉,
MC

ν,k is not a Σ-iterate of P0. It has been known since the mid-80s that whenever
〈ν, k〉 ≤lex 〈ν0, k0〉, only the P0 side moves if we compare it with Mν,k by least
disagreement, using Σ to pick branches. See Lemma 2.52.

Thus for 〈ν, k〉 ≤lex 〈ν0, k0〉, we have

W∗ν,k = unique shortest normal tree on P0 by Σ

with last model Q�Mν,k.

Our technical lemma says that below 〈ν0, k0〉, the resurrection embeddings of C
are captured by branch embeddings of the W∗ν,k.
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Lemma 5.6 Let 〈θ, j〉 ≤ 〈ν0, k0〉, and let P � MC
θ,j. Let τ = σθ,j[P ]C, so that

τ : P →MC
θ0,j0

, where 〈θ0, j0〉 = Resθ,j[P ]. Let

T =W∗θ,j�(α + 1), where α is least such that MW∗θ,j
α � P.

Then T = W∗θ0,j0�(α + 1), W∗θ0,j0 has last model M
W∗θ0,j0
ξ = MC

θ0,j0
, and α ≤W∗θ0,j0 ξ,

and τ = ı̂
W∗θ0,j0
α,ξ .

We remark that our convention that P 5 Q when Q is active and P = Q||o(Q)

matters here. It could be that for α as in the lemma, E = E
W∗θ,j
α−1 is such that

lh(E) = o(P ). The resurrection embedding τ is given by a branch of W∗θ0,j0 that has

α in it, and may not have α− 1 in it, even though P is an initial segment of MW∗θ,j
α−1

in a weaker sense.

Definition 5.7 If M is a premouse such that k(M) > 0, then M− is the premouse
that is equal to M , except that k(M−) = k(M)− 1.

Sublemma 5.7.1 Suppose that Mν,k is not k + 1-sound. Let π : M−
ν,k+1 → Mν,k be

the anticore embedding. Let ξ0 + 1 = lhW∗ν,k+1; then

(a) W∗ν,k has last model Mν,k,

(b) W∗ν,k+1 =W∗ν,k�(ξ0 + 1),

(c) ξ0 is the least γ such that lhE
W∗ν,k
γ > ρ(Mν,k), and

(d) letting lh(W ∗
ν,k) = ξ1 + 1, we have ξ0 <W∗ν,k ξ1, and ı̂

W∗ν,k
ξ0,ξ1

= π.

Proof.

By definition,MW∗ν,k
ξ1

�Mν,k. But Mν,k is not sound (= k+1-sound), soMW∗ν,k
ξ1

=
Mν,k. This gives (a).

The iteration W∗ν,k from P0 to Mν,k must have dropped. The last drop had to be
to Mν,k+1, and it lies on the branch to Mν,k. So we can fix η such that

Mν,k+1 = dom ı̂
W ∗ν,k
η,ξ1

, and ı̂
W∗ν,k
η,ξ1

= π.

We have that Mν,k+1 �M
W ∗ν,k
η .
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Letting ρ = ρ(Mν,k), we have that Mν,k+1 agrees with Mν,k to ρ+Mν,k = ρ+Mν,k+1 .
Thus W∗ν,k+1 and W∗ν,k use the same extenders E such that lhE ≤ ρ.

We claim that W∗ν,k+1 uses no extenders E such that lh(E) > ρ. For if W∗ν,k+1

uses E such that lhE > ρ, then the branch P0-to-MW∗ν,k+1

ξ0
uses such an E, since

ξ0 + 1 = lhW ∗
ν,k+1. lh(E) ≤ o(Mν,k+1) because W∗ν,k+1 was of minimal length. But

then ρ ≤ crit(E) is impossible, because dom(E) ⊆ Mν,k+1, and Mν,k+1 is sound.
However, crit(E) < ρ is also impossible, since no model on the branch [0, ξ0] after E
can project into (crit(E), lhE).

So we have that W∗ν,k+1 =W∗ν,k�ξ0 + 1. We have (a)-(c) of the sublemma already.

For (d), we need to see ξ0 = η. Since Mν,k+1 �MW∗ν,k
η , ξ0 ≤ η. Suppose toward

contradiction that ξ0 < η. We then have that o(Mν,k+1) ≤ lh(E
W∗ν,k
ξ0

) because Mν,k+1

is an initial segment of both MW∗ν,k
ξ0

and MW∗ν,k
η . But let θ + 1 be the successor of η

on the branch [0, ξ1] of W∗ν,k, that is, W ∗
ν,k-pred(θ + 1) = η and θ + 1 ≤W ∗ν,k ξ1. Then

Mν,k+1 = (M∗
θ+1)W

∗
ν,k , and so lh(E

W∗ν,k
η ) ≤ o(Mν,k+1) ≤ lh(E

W∗ν,k
ξ0

). Thus η ≤ ξ0, so
η ≤ ξ0, a contradiction. �

Proof. [Proof of Lemma 5.6] We go by induction on 〈θ, j〉. Suppose Lemma 5.6
holds for 〈θ′, j′〉 <lex 〈θ, j〉, as well as for all Q� P , where P �Mθ,j. Let

ρ = least κ such that κ = ρn(S) for some S �Mθ,j

such that P � S, and n = k(S).

(Here we do not mean κ = ρ(S) = ρn+1(S), where n = k(S).) Pick S to be the first
such. We can assume that ρ < o(P ), as otherwise τ = identity, and all is trivial.
Thus k(S) > 0.

The reader can check that σθ,j[S]�P = σθ,j[P ] = τ . If S �Mθ,j, then we can find
some 〈θ′, j′〉 <lex 〈θ, j〉 such that S = Mθ′,j′ . [Let 〈ν, k〉 be least such that S �Mν,k,
and assume toward contradiction that S 6= Mν,k. We must have k > 0, as otherwise
S �Mη,j for some η < ν. Since S 5 Mν,k−1, we have M−

ν,k 6= Mν,k−1, that is, the
coring down is nontrivial. We must have ρk(Mν,k−1) < ρ, because ρk(S)(S) = ρ, and
S �Mν,k, so if ρ ≤ ρk(Mν,k−1), then S �Mν,k−1. so ρk(Mν,k−1) < ρ. P �Mν,k and
ρk(Mν,k) < ρ, contrary to our definition of ρ.]

The argument above also shows that σθ,j[S] = σθ′,j′ [S]. So we can apply our
induction hypothesis at θ′, j′. Note that W∗θ,j�(α + 1) =W∗θ′,j′�(α + 1).

Thus we may assume S = Mθ,j. So j = k(S) and j > 0. If σθ,j[S] = σθ,j−1[S],
then as 〈θ, j− 1〉 <lex 〈θ, j〉, our induction hypothesis carries the day. Otherwise, we
have that Mθ,j−1 is not sound. Moreover

σθ,j[S] = π ◦ σθ,j−1[S],
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where π : M−
θ,j →Mθ,j−1 is the anticore embedding.

Let α + 1 = lhW∗θ,j and β + 1 = lhW∗θ,j−1. By the sublemma, S �MW∗θ,j
α and

Mθ,j−1 =MW ∗θ,j−1

β , α ≤W ∗θ,j−1
β, and

π = ı̂
W∗θ,j
α,β .

Also, W∗θ,j uses only extenders of lh ≤ ρ, so α is the least γ such that P �MW ∗θ,j
γ .

Remark 5.8 The reason that the statement of Lemma 5.6 does not have α + 1 =
lhW∗θ,j is that that is clearly not always true. It becomes true when we reduce 〈θ, j〉
to a 〈θ′, j′〉 with S = Mθ′,j′ .

Let P1 = π(P ). Let

α1 = least γ such that P1 �M
W∗θ,j−1
γ .

We can assume crit(π) ≤ o(P ), as otherwise P �Mθ,j−1 and τ = σθ,j−1[P ], so we are
done by induction.

Claim 5.8.1 α <W∗θ,j−1
α1 ≤W ∗θ,j−1

β.

Proof. Let γ ∈ (α, β]W∗θ,j−1
be least such that o(P1) < crit(̂ı

W∗θ,j−1

γ,β ). We claim that

α1 = γ. Certainly, P1 �M
W∗θ,j−1
γ . Also, P1 5M

W∗θ,j−1
α . Since P1 is in the range of

ı̂
W∗θ,j−1

α,β , we get α1 = γ. See the proof of Proposition 5.2. �

The claim also showed that

π�P = ı̂θ,α1�P.

Now we apply our induction hypothesis to P1 �Mθ,j−1. We get θ0, j0 such that

1. W∗θ0,j0�(α1 + 1) = W ∗
θ,j−1�(α1 + 1).

2. W∗θ0,j0 has last model Mθ0,j0 =M
W∗θ0,j0
ξ , and

3. α1 ≤W ∗θ0,j0 ξ, and σθ,j−1[P1] = ı̂
W∗θ0,j0
α1,ξ

.

But σθ,j[P ] = σθ,j−1[P1] ◦ π. This yields σθ,j[P ] = ı̂
W∗θ0,j0
α1,ξ

◦ ı̂
W∗θ0,j0
α,α1 = ı̂

W∗θ0,j0
α,ξ , as

desired. �
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5.3 Iterating into a backgrounded strategy

In this section we prove the basic comparison theorem for pure extender pairs. In
the next chapter we shall generalize it to least branch hod pairs, but all the main
ideas occur in the pure extender proof.

The proof is based on proving (*)(P,Σ), for pure extender pairs (P,Σ). This
involves iterating (P,Σ) to a level (Mν,k,Ων,k) of some background construction C.
In the statement of (*)(P,Σ), C is the construction of some coarse Γ-Woodin back-
ground universe N∗ that captures Σ, but here we shall assume somewhat less about
C.

Definition 5.9 Let ~F be coarsely coherent; then ΩUBH
~F

is the partial iteration strategy

for V : if ~T a〈U〉 is a finite stack of normal ~F -trees by ΩUBH
~F

such that U has limit
length, then

ΩUBH
~F

(~T a〈U〉) = b iff b is the unique cofinal, wellfounded branch of U .

So if V is strongly uniquely iterable for finite stacks of normal ~F -trees, then ΩUBH
~F

is total, and it is the unique iteration strategy witnessing this. Moreover, ΩUBH
~F

normalizes well, and has strong hull condensation. The results of Chapter 3 show
that this is the case if V is a coarse Γ-Woodin model, and ~F its distinguished coherent
sequence, and under other hypotheses as well. But our notation allows the case
that ΩUBH

~F
is partial. ΩUBH

~F
(~T a〈U〉) can fail to be defined because U has no cofinal

wellfounded branch, or because it has more than one cofinal wellfounded branch.

Definition 5.10 Let C be a background construction above κ. Suppose Mν,k exists.
Then ΩCν,k is the partial strategy for Mν,k induced by ΩUBH

~FC , i.e.

~T is by ΩCν,k iff lift(~T ,Mν,k,C) is by ΩUBH
~FC ,

whenever ~T is a finite stack of weakly normal trees on Mν,k.

So if V is strongly uniquely (ω, θ, ~FC)-iterable above κ, then ΩCν,k is a complete
strategy with scope Hθ that normalizes well and has strong hull condensation.

The following is essentially Theorem 1.15, but in the pure extender model case.

Theorem 5.11 Let (P,Σ) be a pure extender pair with scope Hδ, where δ is in-
accessible. Let C be a background construction above |P |+ such that all FCν are in
Hδ. Let 〈ν, k〉 < lh(C), and suppose that (P,Σ) iterates past (MC

η,j,Ω
C
η,j), for all

〈η, j〉 <lex 〈ν, k〉; then (P,Σ) iterates past (MC
ν,k,Ω

C
ν,k).

197



Remark 5.12 Σ is total so if (P,Σ) iterates past (MC
ν,k,Ω

C
ν,k), then ΩCν,k is total. So

although did not assume unique iterability in the hypothesis of Theorem 5.11, we
got the ΩCη,l are total, until we reach an Mν,k that is beyond Σ. Before that point,
C-lifted trees have unique cofinal wellfounded branches.

Theorem 5.11 yields at once a comparison theorem for pure extender pairs. The
following is the pure extender case of our main strategy comparison theorem.

Theorem 5.13 (Pure extender mouse pair comparison) Assume AD+, and let (P,Σ)
and (Q,Ψ) be pure extender pairs with scope Hω1; then there are countable normal
trees T on P and U on Q by Ψ, with last models R and S respectively, such that
either

1. P -to-R does not drop, R� S, and ΣT ,R = ΨU ,R, or

2. Q-to-S does not drop, S �R, and ΨU ,S = ΣT ,S.

Proof. By the Basis Theorem of AD+, we may assume that Code(Σ) and Code(Ψ)
are Suslin and co-Suslin. (The paper [63] shows this directly, assuming only AD.)
So we have a coarse Γ-Woodin tuple (N∗,�, S, T,Σ∗), where Γ is a pointclass big
enough that Σ and Ψ are coded by sets of reals in Γ. We may assume P and Q are
in N∗, and countable there. Let C be the maximal �-construction of N∗. Since we
are in the pure extender case, we have that C does not break down.

We now apply Theorem 4.20. This gives us a 〈ν, k〉 such that MC
ν,k is a Σ-iterate

of P , and P iterates by Σ past MC
η,j, for each 〈η, j〉 <lex 〈ν, k〉. Similarly we have

〈µ, l〉 such that MC
µ,l is a Ψ-iterate of Q, and Q iterates by Ψ past MC

η,j, for each
〈η, j〉 <lex 〈ν, k〉. By Theorem 5.11, no strategy disagreements with the strategies
in C show up in these iterations. So if 〈ν, k〉 ≤lex 〈µ, l〉, then by Theorem 5.11, we
get conclusion (1), with R = MC

ν,k and ΣT ,R = ΩCν,k. If 〈µ, l〉 ≤lex 〈ν, k〉, then we get
conclusion (2).

Let T ,U , R, and S witness in N∗ that either (1) or (2) holds. T and U are
countable in V , and N∗ is sufficiently correct that either (1) or (2) holds in V .

�

Remark 5.14 When we generalize the comparison theorem for pure extender pairs
to strategy mouse pairs in Chapter 5, we shall have to re-organize the proof a bit.
Lemma 2.52 and Theorem 4.20 don’t help in the strategy mouse context, so in effect
we must prove the analogs of both Theorem 5.11 and Lemma 2.52 as part of one
induction.
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The rest of this chapter is devoted to the proof of Theorem 5.11.

Proof. [Proof of Theorem 5.11] The proof is by induction on 〈ν, k〉. Suppose that
(P0,Σ) iterates past MC

ν,k for all 〈ν, k〉 <lex 〈ν0, k0〉. For 〈ν, k〉 ≤lex 〈ν0, k0〉, let

W∗ν,k = unique shortest normal tree on P0 by Σ

with last model Q�Mν,k.

Let M = Mν0,k0 , and let U be a normal tree on M that is of limit length, and is
by both ΣW∗ν0,k0

,M and ΩCν0,k0
. Let

lift(U ,M,C) = 〈U∗, 〈ητ , lτ | τ < lhU〉, 〈ψUτ | τ < lhU〉〉.

Lemma 5.15 If b is a cofinal, wellfounded branch of U∗, then ΣW∗ν0,k0
,M(U) = b.

Lemma 5.15 implies that U∗ has at most one cofinal wellfounded branch. More-
over, that branch is identified by Σ, if it exists, and Σ is universally Baire. So a
simple reflection argument will then give that U∗ has a cofinal, wellfounded branch.
From this we get that ΣW∗ν0,k0

,M and ΩCν0,k0
agree on normal trees, and then by the

proof of Theorem 4.60, they must agree on finite stacks of normal trees. (If we were
assuming ΩCν0,k0

is total, we could simply quote 4.60 at this point.)
Proof. [Proof of Lemma 5.15] Let

Sγ =MU∗
γ

N0
γ = M

Sγ
ηγ ,lγ

= M
iU
∗

0,γ(C)

ηγ ,lγ
,

so that
ψUγ :MU

γ → N0
γ

is elementary. We have M = MU
0 = N0

0 , and ψU0 = identity. We write (W∗ν,k)Sγ for

〈ν, k〉 ≤lex i
U∗
0,γ(〈ν0, k0〉) to stand for iU

∗
0,γ(〈η, l〉 7→ W∗η,l)ν,k. Note that

iU
∗

0,γ(Σ) ∩ Sγ = Σ ∩ Sγ,

by Lemma 4.55. Also iU
∗

0,γ(P0) = P0. Thus (W∗ν,k)Sγ is by Σ.

The statements above also make sense for b replacing γ. So Sb = MU∗
b , N0

b =
MSb

ηb,lb
, ψUb :MU

b → N0
b , etc. Set

W∗γ = (W∗ηγ ,lγ )
Sγ
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for γ < lhU or γ = b. Let z∗(γ) + 1 = lh(W∗γ) and put

Nγ =MW∗γ
z∗(γ).

SoW∗0 is our normal tree from P0 to N0�M = N0
0 that is by Σ. We have N0

γ�Nγ

for all γ. If ν <U γ and (ν, γ]U does not drop, then iU
∗

ν,γ(W∗ν ) =W∗γ . (This is not the
case if we have a drop.)

Now let’s look at the embedding normalization of 〈W∗0 ,U+〉. This is a maximal
normal stack, so our theory of embedding normalization applies to it. (If N0

0 = N0,
then U+ = U . In any case, U and U+ have the same tree order. ) Set

Wγ = W (W∗0 ,U+�(γ + 1))

for γ < lhU , and

Wb = W (W∗0 , (U+)ab).

SoW0 =W∗0 . TheWγ’s are all by Σ, because Σ normalizes well and U+�(γ+1) is by
Σ. Suppose that Wb is by Σ, and let Σ(〈W0,U+〉) = c; then Wc is by Σ because Σ
normalizes well, so br(b,W0,U+) = br(c,W0,U+), so b = c. Thus Σ(〈W0,U+〉) = b,
and hence Σ(〈W0,U〉) = b by strategy coherence. This is what we want, so it is
enough to show that Wb is by Σ.

We shall show

Sublemma 5.15.1 Wb is pseudo-hull of W∗b .

That is enough to yield Lemma 5.15, since W∗b is by Σ, and Σ has strong hull
condensation.

Proof. [Proof of Sublemma 5.15.1] We construct by induction on γ an extended
tree embedding

Φγ : Wγ →W∗γ .

We write z(γ) + 1 = lhWγ, and

Φγ = 〈uγ, 〈sγβ | β ≤ z(γ)〉, 〈tγβ | β ≤ z(γ)〉, pγ〉.

The domain of uγ is z(γ). Let vγ = vΦγ be as in Definition 3.27. Then dom vγ =
z(γ) + 1. Because Φγ is an extended tree embedding, we have vγ(z(γ)) ≤W ∗γ z∗(γ),

and the last t-map tγz(γ) fromMWγ

z(γ) toMW∗γ
z∗(γ). We shall write simply tγ for tγz(γ), and

Rγ =MWγ

z(γ),
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so that
tγ : Rγ → Nγ

is the last t-map of Φγ. As we noted above, the last t-map of an extended tree
embedding determines the whole of the tree embedding.

The embedding normalization process gives us extended tree embeddings

Ψν,γ : Wν →Wγ,

defined when ν <U γ. We use φν,γ for the u-map of Ψν,γ, so that φν,γ : lhWν → lhWγ,
the map being total if (ν, γ]U does not drop in model or degree. We write πν,γτ for

the t-map t
Ψν,γ
τ , so that

πν,γτ :MWν
τ →MWγ

φν,γ(τ)

elementarily, for ν <U γ and τ ∈ domφν,γ. Let also eν,γ = pΨν,γ , so that

eν,γ(E
Wν
α ) = E

Wγ

φν,γ(α),

is the natural partial map from Ext(Wν) to Ext(Wγ). Let also

σ1
η :MU+

η → Rη

be the natural map from MU+

η to the last model of Wη, and

Fη = σ1
η(E

U+

η ),

so that

Wη+1 = W (Wξ,Wη, Fη)

where ξ = U -pred(η + 1). Finally,

αη = least α such that Fη is on the MWη
α sequence.

We also have an extended tree embedding Ψ∗ν,γ : W∗ν →W∗γ defined when ν <U γ
and (ν, γ]U does not drop. The maps of Φ∗ν,γ are all restrictions of iU

∗
ν,γ, so we don’t

need to give them special names. Part of what we want to maintain as we define the
Φγ is that in this case, the diagram

Wγ W∗γ

Wν W∗ν

Φη

Ψν,γ

Φν

Ψ∗ν,γ
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commutes, in the appropriate sense. The other inductive requirements have to do
with the agreement between Φη and Φξ for η ≤ ξ, and the fact that ση factors into
ψUη . We spell the requirements out completely below.

Since W0 =W∗0 , Φ0 is trivial, consisting of identity embeddings.

Remark 5.16 Before going through the induction in technical detail, let us look at
the definition of Φ1 in a simple case. This case contains the main idea.

Let F = EU
+

0 = EU0 = ψU0 (EU0 ). Let G be the resurrection of F in C, and suppose
G = F for simplicity. Let F ∗ be the background extender for F given by C. Then
W1 = W (W0, F ) and W∗1 = iF ∗(W0). Let α = α(W0, F ). The last model of W∗1 is
iF ∗(M), and iF ∗(M) agrees with Ult(M,F ) up to lh(F ) + 1. (The “plus 1” part is
important, and it is why we were careful about choosing our background extenders.)

It follows thatW∗1 uses F ; in factW1�(α+2) =W∗1�(α+2), with F = EW1
α+1 = E

W∗1
α+1.

This gives us the desired tree embedding from W1 to W∗1 . For example, the map
p1 : Ext(W1)→ Ext(W∗1 ) is given by:

p1(E) = E, if E = EW1
ξ for some ξ ≤ α + 1,

and if there is no dropping at α + 1,

p1(e0,1(E)) = iF ∗(E).

This is typical of the general successor step. Various maps that are the identity in
this special case are no longer so in the general case. In particular, the resurrection
maps may not be the identity. But the key is still that ifWγ+1 = W (Wν ,Wγ, F ), and
H = ψUγ (EUγ ) is the blowup of F in the last model of W∗γ , and G is the resurrection
of H inside Sγ, then W∗γ+1 = iG∗(W∗ν ), and G is used in W∗γ+1. [ There is a small
revision to the first part of the conclusion in the dropping case.] In showing this, we
shall need to know that the map resurrecting H to G appears as a branch embedding
inside a certain normal tree W∗∗γ extending W∗γ .

Setting pγ+1(F ) = G determines everything. For we certainly want pγ+1 to agree
with pγ on the extenders used before F in Wγ+1. Moreover, we need to take a limit
of the Φη’s along branches of U in order to get past limit ordinals, and this requires
that pγ+1 ◦ eν,γ+1 = iU

∗
ν,γ+1 ◦ pν . But this accounts for all the extenders in dom(pγ+1),

so we have completely determined pγ+1, and hence Φγ+1, from Φν .

The following little lemma says something about how iU
∗

ν,γ(W∗ν ) sits insideW∗γ . In

the language of tree embeddings, the map l it describes is just s
Ψ∗ν,γ
β .
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Lemma 5.17 Suppose ν <U γ, and (ν, γ]U does not drop. Let β ≤ z(ν); then

sup iU
∗

ν,γ“β ≤W ∗γ i
U∗
ν,γ(β).

Moreover, setting θ = sup iU
∗

ν,γ“β, we have that (θ, iU
∗

ν,γ(β)]W ∗γ does not drop, and there

is a unique embedding l : MW∗ν
β →MW∗γ

θ such that

i
W∗γ
θ,iU∗ν,γ(β)

◦ l = iU
∗

ν,γ�M
W∗ν
β .

Proof. We have
iU
∗

ν,γ(W∗ν ) =W∗γ
because (ν, γ]U did not drop. If β is a successor ordinal, or iU

∗
ν,γ is continuous at β,

then θ = iU
∗

ν,γ(β) and all is trivial. Otherwise, let τ <W ∗ν β be the site of the last drop;
then iU

∗
ν,γ(τ) is the site of the last drop in [0, iU

∗
ν,γ(β)]W ∗ν , and iU

∗
ν,γ(τ) <W∗γ θ. Finally,

we can define l by: if η ∈ (τ, β)W ∗ν and

µ = iU
∗

ν,γ(η),

then
l(i
W∗ν
η,β (x)) = i

W∗γ
µ,θ (iU

∗

ν,γ(x)).

It is easy to see that this works. �

The following diagram illustrates the lemma.

MW∗γ
θ MW∗γ

iU∗ν,γ(β)

P0 MW∗ν
β

j1

j0

j

l
iU
∗

ν,γ

Here j1 ◦ j0 = iU
∗

ν,γ(j). (The diagram assumes j exists, which is of course not the
general case.) j0 is given by the downward closure of {iU∗ν,γ(E) | E is used in [0, β)W ∗ν }.
Again, l is just s

Ψ∗ν,γ
β .

We proceed to the general successor step. Suppose we are given Φη for η ≤ γ,
and let us define Φγ+1. For any γ + 1 < lhU , let

• Hγ = ψUγ (EUγ ),

• Xγ = M
Sγ
ηγ ,lγ
| lh(Hγ) = Nγ| lh(Hγ), and
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• resγ = σηγ ,lγ [Xγ].

So resγ is the map resurrecting ψUγ (EUγ ) inside Sγ. Let also

• Yγ = M
Sγ
θ,j , where 〈θ, j〉 = Resηγ ,lγ [Xγ],

• Gγ = resγ(Hγ), and

• G∗γ = background extender for Gγ in iU
∗

0,γ(C).

So resγ : Xγ → Yγ, Gγ is the last extender of Yγ, and G∗γ = EU
∗

γ . Finally, let

σ0
γ : MU

γ → Kγ �MU+

γ

be the copy/lifting map, and set

σγ = σ1
γ ◦ σ0

γ,

so that σγ : MU
γ → K1

γ �Rγ. To save notation below, we shall just write σγ : MU
γ →

Rγ. Our induction hypothesis is

Induction Hypothesis †.

(†)γ (a) For ξ < η ≤ γ, Φξ�(αξ + 1) = Φη�(αξ + 1).

(b) For all η ≤ γ, tη is well defined; that is, vη(z(η)) ≤W ∗η z∗(η).

(c) For ν < η ≤ γ, sηz(η)�(lhFν + 1) = resν ◦ tν�(lhFν + 1).

(d) Let ν < η ≤ γ, and ν <U η, and suppose that (ν, η]U does not drop. Let
i∗ = iU

∗
ν,η, and let τ = φν,η(ξ); then

(i) if ξ < z(ν), then uη(τ) = i∗(uν(ξ)),

(ii) if ξ < z(ν), setting j = i
W∗ν
vν(ξ),uν(ξ) and k = i

W∗η
vη(τ),uη(τ), there is an

embedding l : MW∗ν
vν(ξ) →M

W∗η
vη(τ) such that k ◦ l = i∗ ◦ j, and sητ ◦π

ν,η
ξ =

l ◦ sνξ , and

(iii) if ξ = z(ν), then setting j = i
W∗ν
vν(ξ),z∗(ν) and k = i

W∗η
vη(τ),z∗(η), there

is an embedding l : MW∗ν
vν(ξ) → M

W∗η
vη(τ) such that k ◦ l = i∗ ◦ j, and

sητ ◦ π
ν,η
ξ = l ◦ sνξ .

(e) For ξ ≤ γ, ψUξ = tξ ◦ σξ.
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(f) . For all ν < η ≤ γ, Yν agrees with Nη strictly below lhGν . Gν is on the
Yν-sequence, but lhGν is a cardinal of Nη.

Items (a), (c), and (f) are our agreement hypotheses on the Φν .
Clauses (c) and (f) should be read with clause (e) in mind. By (e), for all η ≤ γ,

Gη = tη(Fη).

For ν < η ≤ γ, resν ◦tν maps Rν | lhFν elementarily into Yν , and sηz(η) maps Rη ‖ lhFν
elementarily into Nη ‖ lh(Gν). But dropping last extender predicates, the domain
models are the same, and (f) says that the range models are the same. By (c), the
maps agree on lh(Fν). (This also uses (a), and the agreement between s and t maps
in a tree embedding.) The upshot is that (†)γ implies

resν ◦ tν�(Rν ‖ lhFν) = sηz(η)�(Rγ ‖ lhFν),

for all ν < η ≤ γ.

Remark 5.18 Literally speaking, (†)γ.(c) does not make sense, because tν(lhFν) /∈
dom(resν). Here and below, we are declaring that if σ : P → Q is a resurrection map,
then σ(o(P )) = o(Q).

Remark 5.19 In most cases, (†)γ.(c) implies that if ν < η, then tη agrees with
resν ◦tν on lh(Fν) + 1. For letting Gν = tηαν (Fν), we have that

crit(̂ı
W∗η
vη(z(η)),z∗(η)) ≥ λGν .

Thus in any case, tη = tηz(η) agrees with sηz(η) on λFν , and thus with resν ◦tν on λFν

by (†)γ.(c). The stronger agreement will fail iff crit(̂ı
W∗η
vη(z(η)),z∗(η)) = λGν . The reader

can check that for this to happen, Fν must be the last extender used in Wη, so that
η = ν + 1, and z(η) = αν + 1.

Item (d) captures the commutativity hypothesis Φη◦Ψν,η = Ψ∗ν,η◦Φν . It is written
out in terms of the component maps of these tree embeddings; the map l in part (d)
is (svν(ξ))

Ψ∗ν,η . (†)γ.(d)(i) says that pη(eν,η(E)) = iU
∗

ν,η(p
ν(E)). Here is a diagram to

go with the rest of this clause. In the diagram, τ = φν,η(ξ). The far right assumes
uν(ξ) exists, that is, ξ < z(ν).
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MWη
τ MW∗η

vη(τ) MW∗η
uη(τ)

MWν
ξ MW∗ν

vν(ξ) MW∗ν
uν(ξ)

sητ k

πν,ηξ

sνξ

iU
∗

ν,ηl

j

Here j and k are the branch embeddings of W∗ν and W∗η . There is a similar
diagram when ξ = z(ν), with z∗(ν) and z∗(η) replacing uν(ξ) and uη(τ).

Remark 5.20 The embedding along the bottom row of the diagram above is either
tνξ or tν , depending on whether ξ < z(ν). The embedding along the top is either tητ
or tη. So (†)γ.(d) implies that

tηφν,η(ξ) ◦ π
ν,η
ξ = iU

∗

ν,η ◦ tνξ

if ξ < z(ν), and
tη ◦ πν,ηz(ν) = iU

∗

ν,η ◦ tν .

Remark 5.21 (†)γ implies that for ν < η ≤ γ,

tηαν�(lhFν + 1) = resν ◦tν�(lhFν + 1).

This is because αν < z(η), and Fν = E
Wη
αν . So on lh(Fν) + 1, tηαν agrees with sηz(η)

by the agreement properties of tree embeddings (3.35), and hence with resν ◦tν by
(†)γ.(c).

If αν < z(ν), then since Φν is a tree embedding, tν�(lhEWν
αν +1) = tναν (� lhE

Wν
αν +1).

But lhFν < lhEWν
αν , so tν and tναν agree on lh(Fν) + 1.

Thus tναν 6= tν+1
αν in general. (In fact, always.) The two maps agree up to lh(Fν)

if resν is the identity on tναν (lh(Fν)), but they need not agree past that, and they do
not agree below that if resν is not the identity that far. They may map into different
models.

This is all consistent with (†)γ.(a), because tναν is not part of Φν�(αν + 1). The

map tξη is recording how the extender E
Wξ
η is blown up into W∗ξ . As we go from ν to

ν + 1, EWν
αν is replaced by Fν = EWν+1

αν . So the map blowing it up must be changed
somewhat — even below lhFν , if there is resurrection going on in Sν . But EWν

αν is
not part of Wν�(αν + 1), so this does not affect (a).
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In defining Φγ+1, we shall make use of 5.6, which implies that resγ is present in
a branch embedding of some (W∗ν,k)Sγ . Let

τγ = least ξ such that Xγ �M
W∗γ
ξ .

Let’s also drop some subscripts for now, by setting

〈F,H,G,G∗, X, τ〉 = 〈Fγ, Hγ, Gγ, G
∗
γ, Xγ, τγ〉.

Claim 5.22 1. If αγ = z(γ), then τ ∈ [vγ(αγ), z
∗(γ)]W ∗γ ,

2. If αγ < z(γ), then τ ∈ [vγ(αγ), u
γ(αγ)]W ∗γ .

Proof.

1. If αγ = z(γ), then vγ(αγ) ≤W ∗γ z∗(γ). tγ(F ) = ı̂
W∗γ
v(αγ),z∗(γ) ◦ s

γ
z(γ)(F ) is on the

sequence ofMW∗γ
z∗(γ). Since lhE

Wγ

ξ < lhF for all ξ < αγ, lh(pγ(E
Wγ

ξ )) < lh tγ(F )

for all ξ < αγ. Cofinally many extenders used in [0, v(αγ))W∗γ are in ran pγ,

which gives lh sγz(γ)(F ) > lhE
W∗γ
ξ for all ξ < vγ(αγ). So vγ(αγ) is less than or

equal to the least τ such that tγ(F ) is on the M
W∗γ
τ sequence. That τ is the

least η such that tγ(F ) = ı̂
W∗γ
v(αγ),η ◦ s

γ
z(γ)(F ), so that τ ∈ [vγ(αγ), z

∗(γ)]W ∗γ . (See

proposition 5.2.)

2. If αγ < z(γ), then tγ(F ) = tγαγ (F ) = ı̂
W ∗γ
vγ(αγ),uγ(αγ) ◦ sγαγ (F ). In this case

τ = least β ∈ [v(αγ), u(αγ)]W ∗γ such that crit(̂ıτ,u(αγ)) > ı̂v(αγ),τ (lhF ).

This can be shown as in 1. We omit the details.

�

By Lemma 5.6, there is a normal tree W∗∗γ such that

(i) W∗∗γ is by Σ, and extends W∗γ�(τ + 1),

(ii) letting ξγ = lhW∗∗γ − 1, G is on the MW∗∗γ
ξγ

sequence, and not on the MW∗∗γ
α

sequence for any α < ξγ,

(iii) τ ≤W∗∗γ ξγ, and ı̂
W∗∗γ
τ,ξγ
�(lhH + 1) = resγ �(lhH + 1).
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Let
N∗γ =MW∗∗γ

ξγ
.

We shall show that W∗∗γ is an initial segment of W∗γ+1, and that G is used in

W∗γ+1. (So Gγ = E
W∗γ+1

ξγ
.) By induction, the same has been true at all ν < γ. That

is, we have

Induction Hypothesis (†)γ.

(†)γ (g) . For all ν < γ, W∗∗ν is an initial segment of W∗γ�(vγ(αγ) + 1). The last

model of W∗∗ν is N∗ν =MW∗∗ν
ξν

, and Yν �N∗ν .

Here is a diagram showing where G came from, in the case that αγ = z(γ).

(Nγ, H)

(MW∗∗γ
ξγ

, G)

(MW∗γ
τγ , H)

MU
γ (Rγ, F ) MW∗γ

vγ(αγ)

P0

k

l

σγ

tγ

sγαγ

Wγ

W∗γ

W∗∗γ

Here k is the branch embedding of W∗γ , and it is the identity on lh(H) + 1. l is the
branch embedding of W∗∗γ , and it agrees with resγ on lh(H) + 1.

If αγ < z(γ), then the corresponding diagram is:
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(Nγ, H) (MW∗γ
uγ(αγ), H)

(MW∗∗γ
ξγ

, G)

(MW∗γ
τγ , H)

MU
γ (Rγ, F ) (MWγ

αγ , F ) MW∗γ
vγ(αγ)

P0

k

l

σγ

tγ

sγαγ

tγαγ

Wγ Wγ

W∗γ

W∗∗γ

Here again, k is the branch embedding of W∗γ , and it is the identity on lh(H) + 1. l

is the branch embedding ofW∗∗γ , and it agrees with resγ on lh(H) + 1. Rγ andMWγ
αγ

agree up to lh(F ) + 1, and tγ agrees with tγαγ on lh(F ) + 1. (In fact, on λ
E
Wγ
αγ

.)

In either case, we get

Claim 5.23 resγ ◦tγ agrees with ı̂
W∗∗γ
vγ(αγ),ξγ

◦ sγαγ on lh(F ) + 1.

Proof. Suppose αγ < z(γ). Let k and l be as in the diagram above. Then for
η ≤ lh(F ),

resγ ◦tγ(η) = resγ ◦tγαγ (η)

= resγ ◦(k ◦ ı̂
W∗γ
vγ(αγ),τγ

◦ sγαγ )(η)

= resγ ◦(̂ı
W∗γ
vγ(αγ),τγ

◦ sγαγ )(η)

= l ◦ (̂ı
W∗γ
vγ(αγ),τγ

◦ sγαγ )(η)

= ı̂
W∗∗γ
vγ(αγ),ξγ

◦ sγαγ (η),
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as desired. The calculation when αγ = z(γ) is similar. �

Now let
ν = U -pred(γ + 1).

Thus we have
Sγ+1 = Ult(Sν , G

∗),

where G∗ is the background extender for G = Gγ provided by iU
∗

0γ (C). We write

iG∗ = iU
∗

ν,γ+1

for the canonical embedding.

Case 1. (ν, γ + 1]U does not drop in model or degree.

In this case, we have

〈ηγ+1, lγ+1〉 = iG∗(〈ην , lν〉)
Nγ+1 = iG∗(Nν)

and

W∗γ+1 = iG∗(W∗ν ).

Our goal is to define Φγ+1, and with it tγ+1, so that the following diagram is
realized (among other things).
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MU
γ+1 Rγ+1 Nγ+1 Sγ+1

MU
ν Rν Nν Sν

P0 P0

σγ+1

ψUγ+1

tγ+1

σν tν

πν,γ+1
z(ν) iG∗

Wν

Wγ+1

W∗ν

W∗γ+1

iG∗

As we remarked in the case γ+ 1 = 1, it is important to see that the resurrection
of the blowup of F , which is in our case G, is used in W∗γ+1.

Claim 5.24 (a) W∗γ+1�ξγ =W∗∗γ �ξγ.

(b) G = E
W∗γ+1

ξγ
.

Proof. Let µ = crit(F ), where F = Fγ. Let σγ(µ̄) = µ, where µ̄ = crit(EUγ ). Since U
does not drop at γ+1, no level of MU

ν beyond lhEUν projects to or below µ̄. So no level
of Rν beyond lhFν projects to or below µ. So no level of Nν beyond lhHν projects
to or below tν(µ). Thus resν is the identity on tν(µ)+Nν , and N∗ν �(t

ν(µ)+)N
∗
ν =

Nν�(tν(µ)+)Nν . Also, (tν(µ)+)N
∗
ν < λGν . Thus

Nν |tν(µ)+Nν = N∗ν |tν(µ)+N
∗
ν = Nγ|tν(µ)+Nγ .

But also, if ν < γ, then no proper initial segment ofMU
γ projects to or below lhEUν ,

so no proper initial segment of Nγ projects to or below lhGν , so resγ = id on lhGν ,
and Nγ|tγ(µ+)Nγ = N∗γ |tγ(µ+)N

∗
γ .. Thus in both cases (ν < γ and ν = γ),

Nγ|tγ(µ+)Nγ = N∗γ |tγ(µ+)N
∗
γ .
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Letting λ = tγ(µ+)N
∗
γ , we have then that iG∗(Nγ|λ) = iG∗(N

∗
γ |λ). But Ult(N∗γ , G)

agrees with iG∗(N
∗
γ |λ) up to lhG + 1. (We chose G∗ so that they would agree at

lhG.) Thus
Nγ+1 ‖ lhG = N∗γ ‖ lhG

and lhG is a cardinal in Nγ+1. Since W ∗
γ+1 and W ∗∗

γ are normal trees by the same
strategy Σ, we get Claim 5.24. �

By Lemma 5.3, there is a unique tree embedding Ψ of Wγ+1�(αγ + 2) into W∗γ+1

such that Ψ extends Φγ�(αγ + 1), and uΨ(αγ) = ξγ, or equivalently, pΨ(F ) = G. We
let Φγ+1�(αγ + 2) be the unique such Ψ.

In order to establish the proper notation related to Φγ+1�(αγ + 2), as well as its
relationship to Φν , we shall now just run through the proof of Lemma 5.3 again.

Let’s keep our notation µ = crit(F ), and write

µ∗ = tν(µ) = tγ(µ) = crit(G).

Let
β = βWν ,F ,

so that F is applied to MWν
β =MWγ+1

β in Wγ+1. Let

β∗ = W ∗
γ+1-pred(ξγ + 1),

so that G is applied to MW∗γ+1

β∗ =MW∗∗γ
β∗ in W∗γ+1.

Claim 5.25 (a) β∗ ≤ τν, and MW∗ν
β∗ =MW∗∗ν

β∗ =MW∗γ
β∗ =MW∗∗γ

β∗ =MW∗γ+1

β∗ .

(b) β∗ = µ∗.

(c) If β < z(ν), then β∗ ∈ [vν(β), uν(β)]W ∗ν .

(d) If β = z(ν), then β∗ ∈ [vν(β), z∗(ν)]W ∗ν .

Proof. Let P be the domain of F and P ∗ the domain of G; that is,

P = Rγ|(µ+)Rγ

and
P ∗ = Nγ|(tγ(µ)+)Nγ = N∗γ |(tγ(µ)+)N

∗
γ .

(Nγ agrees with N∗γ this far because we are not dropping when we apply F .) By the
rules of normality,

β∗ = least α such that P ∗ =MW∗∗γ
α |o(P ∗).
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Put another way, W∗∗γ �β∗ + 1 is unique shortest normal tree on P0 by Σ such that
P ∗ is an initial segment of its last model, and o(P ∗) is passive in its last model. But
we showed in the proof of Claim 5.24 that P ∗ = N∗ν |o(P ∗), and o(P ∗) < λGν . We
also showed that (resν)�P ∗ = identity. Thus P ∗ = Nν |o(P ∗), and o(P ∗) < λHν . So
P ∗ is a passive initial segment of the last models of W∗ν ,W∗∗ν ,W∗γ ,W∗∗γ , and W∗γ+1.
Thus all these trees agree up to β∗+ 1. As o(P ∗) < lh(Hν), β

∗ ≤ τν . This yields (a).

For (b), note that µ∗ is a cardinal of Sγ, so |MW∗γ
α | < µ∗ in Sγ, for all α < µ∗. It

follows that µ∗ ≤ β∗, and if s = e
W∗γ
µ∗ is the branch extender, then s : µ∗ → Vµ∗ . If

µ∗+ 1 = lh(W ∗
γ ) or λ(Eµ∗)

W∗γ > µ∗, then β∗ ≤ µ∗. So we may assume that E = E
W∗γ
µ∗

exists, and λE = µ∗. This implies P ∗ =MW∗γ
µ∗ || lh(E).

Working in Sγ, let
V = iG∗(W∗γ).

and
iG∗(M

W∗γ
µ∗ ) =MV

θ ,

where θ = iG∗(µ
∗). Since s = iG∗(s)�µ∗, we have that MW∗γ

µ∗ = MV
µ∗ , µ

∗ ∈ [0, θ)V ,

and [µ∗, θ)V has no drops. Thus MW∗γ
µ∗ agrees with MV

θ up to their common value
of µ∗,+, and in particular, E is on the MV

θ -sequence. It follows that E is on the
sequence of iG∗(P

∗). But now let

k : Ult(P ∗, G)→ iG∗(P
∗)

be the canonical factor map. We have that crit(k) = λG, and in particular, crit(k) >
o(P ∗). Since o(P ∗) is passive in Ult(P ∗, G), it must be passive in iG∗(P

∗), contrary
to our assumption that E is indexed there. This proves (b).

For (c): if β < z(ν), then µ < λEWνβ
, so

µ∗ = tν(µ) = tνβ(µ)

= ı̂
W∗ν
vν(β),uν(β) ◦ s

ν
β(µ).

Also, µ∗ < λ(E
W∗ν
uν(β)), so β∗ ≤ uν(β) and P ∗ �M

W∗ν
uν(β) ‖ λ(E

W∗ν
uν(β)). But since

P ∗, µ∗ ∈ ran i
W∗ν
vν(β),uν(β)

(we don’t actually need ı̂ because in this case [vν(β), uν(β)]W ∗ν does not drop), we
get

β∗ = least α ∈ [vν(β), uν(β)]W ∗ν such that crit(i
W∗ν
α,uν(β)) > i

W∗ν
vν(β),α(sνβ(µ)) or α = uν(β)..
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Proposition 5.2 essentially proves this, but the situation is not quite the same, so we
repeat the argument.

First, note that vν(β) ≤ β∗. For if E = EWν
η is used in [0, β)Wν , then λE ≤ µ,

and thus λpν(E) = tνη(λE) ≤ tν(λE) ≤ tν(µ) = µ∗. This implies vν(β) ≤ β∗.
We have by the agreement of W∗∗γ with W∗ν up to β∗ + 1 that

β∗ = least α such that P ∗ =MW∗ν
α |o(P ∗).

Let α be least such that α ∈ [vν(β), uν(β)]W∗ν and crit(i
W∗ν
α,uν(β)) > i

W∗ν
vν(β),α(sνβ(µ)) or

α = uν(β). We want to see β∗ = α. Since P ∗ =MW∗ν
uν(β)|o(P ∗), we have β∗ ≤ α. We

must see α ≤ β∗. If α = vν(β), this holds, so assume α > vν(β).

If σ < α and E
W∗ν
σ is used in [0, α)W ∗ν , then λ(E

W∗ν
σ ) ≤ o(P ∗). This is true if

σ+ 1 ≤ vν(β) because vν(β) ≤ β∗. If vν(β) < σ+ 1, then Eσ is used in (vν(β), α]W ∗ν ,

and since P ∗ ∈ ran i
W∗ν
vν(β),uν(β), o(P

∗) < crit(Eσ), and α was not least.

It follows that lh(E
W∗ν
σ ) ≤ o(P ∗) for all σ < α such that E

W∗ν
σ is used in [0, α)W ∗ν ,

and hence for all σ < α whatsoever. So if σ < α, P ∗ 6=MW∗ν
σ |o(P ∗), as Eσ is on the

sequence of the latter model, but not of the former. Thus α ≤ β∗, as desired.
This gives (c). The proof of (d) is similar. �

With regard to part (b) of the claim: it is perfectly possible that β is a successor
ordinal. We can even have β = α+ 1, where λEα = µ. In this case vν(β) < β∗ = µ∗,
and sνβ(µ) < µ∗ as well. So β∗ = µ∗ is strictly between vν(β) and either uν(β) or
z∗(ν), as the case may be. This is a manifestation of the fact that the tree embeddings
Φν are very far from being onto, when ν > 0.

Claim 5.26 1. If β < z(v), then β∗ = least α ∈ [vν(β), uν(β)]W ∗ν such that

crit(i
W∗ν
α,uν(β)) > i

W∗ν
vν(β),α(sνβ(µ)).

2. If β = z(v), then β∗ = least α ∈ [vν(β), z∗(ν]W ∗ν such that crit(i
W∗ν
α,z∗(ν) >

i
W∗ν
vν(β),α(sνβ(µ)).

3. In either case, the embeddings tν, resν ◦tν, and i
W∗ν
vν(β),β∗ ◦ sνβ all agree on the

domain of F .

Proof. This is what we actually showed in Claim 5.25. The following diagram
illustrates the situation when β < z(ν).
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Nν MW∗ν
uν(β)

MW∗ν
β∗

MU
ν Rν MWν

β MW∗ν
vν(β)

σν

tν tνβ

sνβ

k

We have shown that both k and resν are the identity on the domain of G, that
is, on tν(µ)+ of MW∗ν

β∗ . The agreement of tν with tνβ on lh(EWν
β ), which is strictly

greater than (µ+)Rγ , completes the proof. The case that β = z(ν) is similar. �

Now let
ρ = i

W∗ν
vν(β),β∗ ◦ s

ν
β,

so that ρ :MWν
β →MW∗ν

β∗ . On the domain of F , ρ agrees with tν and with resν ◦tν .
We can then define Φγ+1 at αγ + 1. That is, we set

uγ+1�αγ = uγ�αγ,

pγ+1�Ext(Wγ�αγ) = pγ�Ext(Wγ�αγ),

sγ+1
η = sγη for η ≤ αγ,

and

tγ+1
η = tγη for η < αγ.

Then we set

uγ+1(αγ) = ξγ,

pγ+1(F ) = G,

and let sγ+1
αγ+1 be given by the Shift Lemma,

sγ+1
αγ+1([a, f ]

MWνβ
F ) = [resγ ◦tγ(a), ρ(f)]

MW
∗
ν

β∗

G .

We have shown that ρ agrees with resν ◦tν on the domain of F . By (†)γ, ρ agrees
with tγ on the domain of F . Since resγ is the identity on the domain of H (cf. 5.24),
ρ agrees with resγ ◦tγ on the domain of F , and we can apply the Shift Lemma here.
Let us also set
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tγ+1
αγ = ı̂

W∗∗γ
vγ(αγ),ξγ

◦ sγαγ .

Then tγ+1 : MWγ+1
αγ →MW∗γ+1

uγ+1(αγ) =MW∗∗γ
ξγ

, and tγ+1 agrees with resγ ◦tγ on lh(F )+1,
by claim 5.23.

This gives us Φγ+1�(αγ + 2).

Claim 5.27 Φγ+1�(αγ +2) is a tree embedding of Wγ+1�(αγ +2) into W∗γ+1�(ξγ +2),
and extends Φγ�(αγ + 1).

Proof. We checked some of the tree embedding properties as we defined Φγ+1. We
must still check that tγ+1

αγ satisfies properties (d) and (e) of definition 3.27. Noting

that E
Wγ
αγ = F and that tγ+1

αγ agrees with resγ ◦tγ on lh(F ) + 1, this is easy to do. See
the proof of lemma 5.3. �

We can define the remainder of the maps uγ+1 and pγ+1 of Φγ+1 right now. If
β ≤ ξ < z(ν), then we set

uγ+1(φν,γ+1(ξ)) = iG∗(u
ν(ξ)),

and
pγ+1(eν,γ+1(E)) = iG∗(p

ν(E)),

for E = EWν
ξ . Note that this then holds true for any E, since if E = EWν

ξ for some

ξ < β, then pγ+1(eν,γ+1(E)) = pγ+1(E) = pν(E) = iG
∗
(pν(E)).

The definition of the s and t-maps of Φγ+1, and the proof that everything fits
together properly, must be done by induction.

As we define Φγ+1, we shall also check the applicable parts of (†)γ+1. We begin
with

Claim 5.28 Φγ+1�(αγ + 2) satisfies the applicable clauses of (†)γ+1.

Proof. We have Φγ+1�(αγ +1) = Φγ�(αγ +1) by construction, which yields (†)γ+1(a).
Suppose that (†)γ+1(b) is applicable, that is, that z(γ+1) = αγ +1. So z(ν) = β.

We have vγ+1(αγ + 1) = ξγ + 1. So what we must see is that ξγ + 1 ≤W ∗γ+1
z∗(γ + 1).

That is, we must see that G is used on the branch to z∗(γ + 1). We are in the
non-dropping case, so z∗(γ + 1) = iG∗(z

∗(ν)). The relevant diagram here is
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MW∗γ+1

iG∗ (β∗) MW∗γ+1

z∗(γ+1)

MW∗γ+1

ξγ+1

MW∗ν
β∗ MW∗ν

z∗(ν)

MW∗ν
vν(β)

σ

iG

iG∗

If s is the branch extender s = e
W∗ν
β∗ , then iG∗(s(i)) = s(i) for all i ∈ dom(s), and

thus s ⊆ e
W∗γ+1

iG∗ (β∗). It follows that

MW∗ν
β∗ =MW∗γ+1

β∗ ,

and that
iG∗�MW∗ν

β∗ = i
W∗γ+1

β∗,iG∗ (β∗).

The factor map σ in our diagram is the identity on the generators of G. It follows

that G is compatible with the first extender used in i
W∗γ+1

β∗,iG∗ (β∗), and thus G is that
extender, as desired.

Turning to (†)γ+1(c), the new applicable cases are (ii) and (iii), when ξ = β and
τ = αγ + 1. Let us suppose that it is (ii) that applies, that is, that β < z(ν). The
last paragraph showed that G is used on the branch to iG∗(β

∗) in this case as well.
We have the diagram
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MW∗γ+1

iG∗ (β∗) MW∗γ+1

uγ+1(αγ+1)

MWγ+1

αγ+1 MW∗γ+1

ξγ+1

MW∗ν
β∗ MW∗ν

uν(β)

MWν
β MW∗ν

vν(β)

ϕ

sγ+1
αγ+1

σ

iG

h

iU
∗

ν,γ+1

tνβ

ρ
f

iF

Here πν,γ+1
β = i

MWνβ
F . The branch embeddings ϕ ◦ σ of W∗γ+1 and h ◦ f of W∗ν

play the roles of k and j in (†)γ.(d). The role of l is played by iG ◦ f . The diagram
commutes, so we are done. The case β = z(ν) is similar.

Turning to (†)γ.(c), it is enough to show that sγ+1
αγ+1 agrees with resγ ◦tγ on lh(F )+

1. But this follows from the Shift Lemma.
We turn to (†)γ.(e), that ψUγ+1 = tγ+1 ◦ σγ+1. This is applicable when z(γ + 1) =

αγ + 1, and hence since we didn’t drop, z(ν) = β. So MWν
β = Rν , M

Wγ+1

αγ+1 = Rγ+1,

MW∗ν
z∗(ν) = Nν , and MW∗γ+1

z∗(γ+1) = Nγ+1. Expanding the diagram immediately above a
little, while making these substitutions, we get
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MW∗γ+1

iG∗ (β∗) Nγ+1

MU
γ+1 Rγ+1 MW∗γ+1

ξγ+1

MW∗ν
β∗ Nν

MU
ν Rν MW∗ν

vν(β)

ϕ

σγ+1
sγ+1
αγ+1

σ

iG

h

sνβ

ρ

iF

σν

iUν,γ+1

ψUν

iU
∗

ν,γ+1

ψUγ+1

We have tγ+1 = ϕ ◦ σ ◦ sγ+1
αγ+1 and tν = h ◦ ρ.

Note first that ψUγ+1 agrees with tγ+1 ◦ σγ+1 on ran(iUν,γ+1). This is because

ψUγ+1 ◦ iUν,γ+1 = iU
∗

ν,γ+1 ◦ ψUν
= iU

∗

ν,γ+1 ◦ (h ◦ ρ ◦ σν)

(by (†)ν)

= tγ+1 ◦ σγ+1 ◦ iUν,γ+1.

The last equality holds because of the commutativity of the non-ψ part of the dia-
gram.
MU

γ+1 is generated by ran(iUν,γ+1) ∪ λ, where λ = λEUγ . So it is now enough to

show that ψUγ+1 agrees with tγ+1 ◦ σγ+1 on λ. But note

ψUγ+1�λ = resγ ◦ψUγ �λ
= resγ ◦tγ ◦ σγ�λ
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(by (†)γ)

= tγ+1 ◦ σγ�λ

(because tγ+1 agrees with resγ ◦tγ on λF )

= tγ+1 ◦ σγ+1�λ.

The last equality holds because σγ agrees with σγ+1 on lh(F )+1, by our earlier work
on normalization. This proves (†)γ+1(e).

For (†)γ+1(f), note that Nγ+1 agrees with N∗γ =MW∗∗γ
ξγ

below lh(G), and the latter

is a cardinal in Nγ+1. This and (†)γ(f) give us what we want.
This proves Claim 5.28.

�

For the rest, we define Φγ+1�η + 1, for αγ + 1 < η ≤ z(γ + 1), by induction on η,
and verify that it is a tree embedding. At the same time, we prove those clauses in
(†)γ+1 that make sense by stage η. The agreement clauses (a), (c), and (f) already
make sense once we have Φγ+1�(αγ + 2), and we have already verified them. So we
must consider clauses (b), (d), and (e).

First, suppose we are given Φγ+1�(η + 1), where αγ + 2 ≤ η + 1 < z(γ + 1). We
must define Φγ+1�(η + 2). Let

φν,γ+1(τ) = η,

E = EWγ+1
η ,

and
K = EWν

τ .

Let
E∗ = pγ+1(E) and K∗ = pν(K).

We have already defined pγ+1 so that iG∗(K
∗) = E∗, and uγ+1(η) = iG∗(u

ν(τ)). We
can simply apply lemma 5.3 to obtain Φγ+1�(η + 2) from Φγ+1�(η + 1). For we have
the diagram from (†)γ+1(c).

MWγ+1
η MW∗γ+1

vγ+1(η) MW∗γ+1

uγ+1(η)

MWν
τ MW∗ν

vν(τ) MW∗ν
uν(τ)

sγ+1
η

πν,γ+1
τ

sντ

iU
∗

ν,γ+1l
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Taking ξ = uγ+1(η), we see from the commutativity of this diagram that E
W∗γ+1

ξ =

i
W∗γ+1

vγ+1(η),ξ ◦ s
γ+1
η (E

Wγ+1
η ). Thus the condition (2) in 5.3 is fulfilled, and we can let

Φγ+1�(η + 2) be the unique tree embedding of Wγ+1�(η + 2) into W∗γ+1 that extends
Φγ+1�(η + 1), and maps E to iG∗(p

ν(K)).
We now verify the applicable parts of (†)γ+1. The proofs are like the successor

case η = αγ that we have already done. We consider first clause (d). The new case
to consider is ξ = τ + 1. We have φν,γ+1(τ + 1) = η+ 1. Let σ = Wν-pred(τ + 1) and
θ = Wγ+1-pred(η + 1) index the places K and E are applied. Let σ∗ and θ∗ index
the models in W∗ν and W∗γ+1 to which K∗ and E∗ are applied. Let us write i∗ = iG∗ .
We have i∗(K∗) = E∗ and i∗(σ∗) = θ∗.

For purposes of drawing the following diagram, we assume τ + 1 < z(ν). The
situation is

MWγ+1

η+1 MW∗γ+1

vγ+1(η+1) MW∗γ+1

uγ+1(η+1)

MWν
τ+1 MW∗ν

vν(τ+1) MW∗ν
uν(τ+1)

MWγ+1

θ MW∗γ+1

vγ+1(θ) MW∗γ+1

θ∗

MWν
σ MW∗ν

vν(σ) MW∗ν
σ∗

P0 P0

sγ+1
η+1

πν,γ+1
τ+1

sντ+1

h i∗

E

sγ+1
θ

E∗

K∗
i∗π

sνσ

K

l

There are two cases being covered in this diagram:

(Case A.) crit(F ) ≤ crit(K). In this case, θ = φν,γ+1(σ), and π = πν,γ+1
σ . The map l in

our diagram is given by the part of (†)γ.(d) we have already verified.
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(Case B.) crit(K) < crit(F ). In this case, θ = σ ≤ β, where β = βWν ,F . Moreover,
Wν�(σ + 1) = Wγ+1�(θ + 1), and π is the identity. Moreover, β ≤ αν by the
way normalization works, so the part of (†)γ.(a) we have already verified tells

us that sνσ = sγ+1
θ , and MW∗ν

vν(σ = MW∗γ+1

vγ+1(θ). We take l to be the identity as
well. In other words, the bottom left rectangle in the diagram above consists
of identity embeddings.

We also have dom(E) = dom(K) < crit(i∗) in this case (though E 6= K is

perfectly possible). So then dom(E∗) = dom(K∗), which implies that MW∗ν
σ∗ =

MW∗γ+1

θ∗ , and i∗�MW∗ν
σ∗ is the identity. Thus the bottom right rectangle also

consists of identity embeddings. ( It is however possible that uν(σ) 6= uγ+1(σ)
in this case.)

In both cases, our job is to define h so that it fits into the diagram as shown.
Using the notation just established, we can handle the cases in parallel.

We define h using the Shift Lemma:

h([a, f ]
MW

∗
ν

σ∗
K∗ ) = [i∗(a), i∗(f)]

M
W∗γ+1
θ∗

E∗ .

Note here that i∗(uν(τ)) = uγ+1(η) by our induction hypotheses, so i∗ mapsMW∗ν
uν(τ),

the model where we found K∗, elementarily into MW∗γ+1

uγ+1(η), the model that had E∗.
So the Shift Lemma gives us h, and that h ◦ iK∗ = iE∗ ◦ i∗.

We shall leave it to the reader to show that the rectangle on the upper right of
our diagram commutes. If s is the branch extender of [0, uν(τ + 1)]W ∗ν and t is the
branch extender of [0, uγ+1(η + 1)]W ∗γ+1

, then i∗(s) = t. Moreover, if s(a) = K∗ and

t(b) = E∗, then i∗(s�(a+ 1)) = t�(b+ 1). This implies that the upper right rectangle
commutes.

So we are left to show that h ◦ sντ+1 = sγ+1
η+1 ◦ π

ν,γ+1
τ+1 . Let x = [b, f ]M

Wν
σ

K be in

MWν
τ+1. Then

h ◦ sντ+1(x)) = h(sντ+1([b, f ]M
Wν
σ

K ))

= h([tντ (b), i
W∗ν
vν(σ),σ∗ ◦ s

ν
σ(f)]

MW
∗
ν

σ∗
K∗

= [i∗ ◦ tντ (b)), i∗ ◦ i
W∗ν
vν(σ),σ∗ ◦ s

ν
σ(f)]

M
W∗γ+1
θ∗

E∗ .

The second step uses our definition of sντ+1. On the other hand,
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sγ+1
η+1 ◦ π

ν,γ+1
τ+1 (x) = sγ+1

η+1(πν,γ+1
τ+1 ([b, f ]M

Wν
σ

K ))

= sγ+1
η+1([πν,γ+1

τ (b), π(f)]
M
Wγ+1
θ

E )

= [tγ+1
η ◦ πν,γ+1

τ (b), i
W∗γ+1

vγ+1(θ),θ∗ ◦ s
γ+1
θ ◦ π(f)]

M
W∗γ+1
θ∗

E∗ .

Now let’s compare the two expressions above. The function f is moved the same
way in both cases because the bottom rectangles in the diagram above commute.
That is,

i∗ ◦ iW
∗
ν

vν(σ),σ∗ ◦ s
ν
σ = i

W∗γ+1

vγ+1(θ),θ∗ ◦ s
γ+1
θ ◦ π.

So we just need to see that

tγ+1
η ◦ πν,γ+1

τ = i∗ ◦ tντ .

But this follows from the part of (†)γ+1(d) that we have already verified. The relevant
diagram is

MWγ+1
η MW∗γ+1

vγ+1(η) MW∗γ+1

uγ+1(η)

MWν
τ MW∗ν

vν(τ) MW∗ν
uν(τ)

sγ+1
η

πν,γ+1
τ

sντ

i∗

tγ+1
η

tντ

Thus we have verified the new case of (†)γ+1(d) that is applicable to Φγ+1�(η+2).
We turn to (†)γ+1(e). If it is applicable, then z(γ + 1) = η + 1, and because

we did not drop, z(ν) = τ + 1. We must show that ψUγ+1 = tγ+1 ◦ σγ+1. We have

Rγ+1 = MWγ+1

η+1 , and Rν = MWν
τ+1. Making these substitutions and expanding the

upper part of the diagram above, we get

223



MU
γ+1 Rγ+1 MW∗γ+1

vγ+1(z(γ+1)) MW∗γ+1

z∗(γ+1) = Nγ+1

MWν
ν Rν MW∗ν

vν(z(ν)) MW∗ν
z∗(ν) = Nν

sγ+1
z(γ+1)

πν,γ+1
z(ν)

sν
z(ν)

σγ+1

σν

h i∗

The embedding across the bottom row is tν ◦ σν , and hence by induction, it is ψUν .
The embedding across the top row is tγ+1 ◦ σγ+1. The diagram commutes, so

ψUγ+1 ◦ iUν,γ+1 = iU
∗

ν,γ ◦ ψUν
= i∗ ◦ tν ◦ σν .
= tγ+1 ◦ σγ+1 ◦ iUν,γ+1.

Thus tγ+1 ◦ σγ+1 agrees with ψUγ+1 on ran(iUν,γ+1). So it will be enough to show the
two embeddings agree on λ = λEUγ . For that, we calculate exactly as we did in the
case η = αγ + 1:

ψUγ+1�λ = resγ ◦ψUγ �λ
= resγ ◦tγ ◦ σγ�λ
= tγ+1 ◦ σγ�λ
= tγ+1 ◦ σγ+1�λ.

The last equality holds because σγ agrees with σγ+1 on lh(F )+1, by our earlier work
on normalization. This proves (†)γ.(e).

Finally, suppose that λ is a limit ordinal, and we have defined Φγ+1�η for all
η < λ. Then we set

Φγ+1�λ =
⋃
η<λ

Φγ+1�η.

We are of course assuming Φγ+1�η is a subsystem of Φγ+1�β whenever η < β, and
the tree embedding properties clearly pass through limits, so this gives us a tree
embedding of Wγ+1�λ into W∗γ+1�λ.

In order to define Φγ+1�(λ + 1), for λ ≤ z(γ + 1) a limit ordinal, let τ be such
that

λ = φν,γ+1(τ).

Consider r = p̂γ+1(e
Wγ+1

λ ). Since Φγ+1�λ is a tree embedding, p̂γ+1 is ⊆-preserving on
Wext

γ+1. Thus r is the extender of some branch b of W∗γ+1. In fact, b is the downward
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closure of {iG∗(vν(ξ)) | ξ <Wν τ}. Recall that the v-maps preserve tree order, so that
{iG∗(vν(ξ)) | ξ <Wν τ} is contained in the branch [0, iG∗(v

ν(τ)]W ∗γ+1
of W∗γ+1. So

vγ+1(λ) = sup{iG∗(vν(ξ)) | ξ <Wν τ}.

Moreover, we can define sγ+1
λ : MWγ+1

λ → MW∗γ+1

vγ+1(λ) using the commutativity given

by (c) of definition 3.27:

sγ+1
λ (i

Wγ+1

θ,λ (x)) = i
W∗γ+1

vγ+1(θ),vγ+1(λ)(s
γ+1
θ (x).

It is easy to verify the agreement of sγ+1
λ with earlier embeddings specified in clause

(d) of 3.27. Thus Φγ+1�(λ+ 1) is a tree embedding.
We must check that the applicable parts of (†)γ+1 hold. Let us keep the notation

of the last paragraph. For part (b), we must consider the case z(γ+1) = λ. We have
not dropped in (ν, γ + 1]U , so z(ν) = τ , and vν(τ) ≤W ∗ν z∗(ν) by (†)ν . We showed
that vγ+1(λ) ≤W ∗γ+1

iG∗(v
ν(τ)) in the last paragraph. So vγ+1(λ) ≤W ∗γ+1

iG∗(z
∗(ν)) =

z∗(γ + 1), as desired.
For (†)γ+1(d), the new case is ξ = τ , and λ = φν,γ+1(τ). Everything in sight

commutes, so things work out. Let’s work them out. Setting i∗ = iU
∗

ν,γ+1, and letting

k be the branch embedding from MW∗γ+1

vγ+1(λ) to MW∗γ+1

i∗(vν(τ), the relevant diagram is

MWγ+1

λ MW∗γ+1

vγ+1(λ) MW∗γ+1

i∗(vν(τ))

MWν
τ MW∗ν

vν(τ)

MWγ+1

θ MW∗γ+1

vγ+1(θ)

MWν
σ MW∗ν

vν(σ)

P0 P0

sγ+1
λ k

πν,γ+1
τ

sντ

l

sγ+1
θ

πν,γ+1
σ

sνσ

i∗
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Here we are taking θ = φν,γ+1(σ), where σ <Wν τ , and σ is sufficiently large that
φν,γ+1 preserves tree order above σ. We also take σ to be a successor ordinal, so that
i∗(vν(σ)) = vγ+1(τ). The map l is defined by

l(i
W∗ν
vν(σ),vν(τ)(x)) = i

W∗γ+1

vγ+1(θ),vγ+1(λ)(i
∗(x)).

(Where of course we are taking the union over all such successor ordinals σ.) If we
draw the same diagram with τ replaced by some sufficiently large τ0 <Wν τ and λ
replaced by λ0 = φν,γ+1(τ0), then all parts of our diagram commute, because we have
verified (†)γ+1 that far already. Since all these approximating diagrams commute, l
is well-defined, and the diagram displayed commutes. Moreover, it is easy to check
that k ◦ l = i∗�MW∗ν

vν(τ). Thus we have (†)γ+1(d).

The proof of (†)γ+1(e) is exactly the same as it was in the successor case, so we
omit it.

Remark 5.29 Actually, that proof seems to show that (†)γ.(e) is redundant, in that
it follows from the other clauses.

Thus tγ+1 ◦ σγ+1 agrees with ψUγ+1 on ran(iUν,γ). So it will be enough to show the
two embeddings agree on λEUγ . For that, it is enough to see tγ+1 agrees with tν on

λF . But in fact, tγ+1 agrees with tν on lh(Fξ), for all ξ < ν, so we are done.
This completes our work associated to the definition of Φγ+1�λ+ 1, for λ > αγ a

limit. Thus we have completed the definition of Φγ+1, and the verification of (†)γ+1,
in Case 1.

Case 2. (ν, γ + 1]U drops, in either model or degree.

Let

µ̄ = crit(EUγ ),

P̄ = dom(EUγ ),

Q̄ = first level of MU
ν beyond P̄

that projects to or below µ̄.

We have that
P̄ =MU

ν |(µ̄+)M
U
ν | lh(EUν ) =MU

γ |(µ̄+)M
U
γ | lh(EUγ ).
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Let

µ = σν(µ̄) = crit(F ),

P = σν(P̄ ) = dom(F ),

Q = σν(Q̄) = first level of Rν beyond P

that projects to or below µ.

Since σν agrees with σγ on lh(Fν), we can replace σν by σγ in the first two equations.
( But if ν < γ, then Q̄ /∈ dom(σγ).) We have that

P = Rν |(µ+)Rν | lh(Fν) = Rγ|(µ+)Rγ | lh(F ).

In this case, z(γ + 1) = αγ + 1, and

Wγ+1 =Wγ�(αγ + 1)a〈Ult(Q,F )〉.

Claim A. resγ ◦tγ agrees with resν ◦tν on λFν .

Proof. This is clear if ν = γ. But if ν < γ, then tγ agrees with resν ◦tν on λFν by
(†)γ(c). (See the remarks after the statement of (†)γ.) But also, resγ is the identity
on resν ◦tν(λFν ), because ν < γ. This yields the claim. �

We have H = tγ(F ) and G = resγ(G). We have that resγ : Nγ| lh(H) →
N∗γ | lh(G), and that resγ agrees with ı̂

W∗∗γ
τγ ,ξγ

on lh(H). Let

Q∗ = MSν
η,l , where 〈η, l〉 = Resην ,lν [t

ν(Q)]Sν ,

σ∗ = σην ,lν [t
ν(Q)]Sν ,

µ∗ = σ∗(tν(µ)), and

P ∗ = σ∗(tν(P )).

σ∗ is a partial resurrection map at stage ν. We had resν : Nν | lh(Hν) → N∗ν | lh(Gν).
σ∗ resurrects more, namely tν(Q), but doesn’t trace it as far back in iU

∗
0,ν(C). Because

no proper level of tν(Q) projects to tν(µ), σ∗ agrees with resν on tν(P ). So

σ∗ ◦ tν�P = resν ◦tν�P = resγ ◦tγ�P,

the last equality being Claim A. The embeddings displayed also agree at P , where
they have value P ∗. Note that P = dom(F ) and P ∗ = dom(G).
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We have that Q∗ is the last model of (W ∗
η,l)

Sν . Set

T ∗ = (W∗η,l)Sν .

Lemma 5.6 tells us that T ∗ has the following form. Let ξ be least such that tν(Q)�

MW∗ν
ξ . Then T ∗�ξ+ 1 =W∗ν �ξ+ 1, and letting lh(T ∗) = η+ 1, ξ ≤T ∗ η and σ∗ = ı̂T

∗

ξ,η.
We have that

W∗γ+1 = iG∗(T ∗), and

Nγ+1 = iG∗(Q
∗),

by the way that lifting to the background universe works in the dropping case. As
in the non-dropping case, the key is

Claim B.

(i) W∗γ+1�ξγ + 1 =W∗∗γ �ξγ + 1, and

(ii) G = E
W∗γ+1

ξγ
.

Proof. We have that dom(G) = resγ ◦tγ(P ) = resν ◦tν(P ) by claim A, so dom(G) =

σ∗ ◦ tν(P ) = P ∗ = Q∗|(µ∗+)Q
∗
. P is MWγ

αγ | lh(F ) cut off at its µ+. So P ∗ is

resγ ◦tγ(MWγ
αγ | lh(F )), cut off at its (µ∗)+, that is, P ∗ is MW∗∗γ

ξγ
| lh(G), cut off at

(µ∗)+.

Thus Q∗ agrees withMW∗∗γ
ξγ
| lh(G) up to their common value for (µ∗)+. It follows

that iG∗(Q
∗) agrees with Ult(MW∗∗γ

ξγ
| lh(G), G) up to lh(G) + 1, with the agreement

at lh(G) holding by our having chosen a minimal G∗ for G. Claim B now follows
from the fact that W∗∗γ and W∗γ+1 are normal trees by the same strategy. �

We now get Φγ+1 by setting pγ+1(F ) = G, and applying Lemma 5.3. We must
see that (†)γ+1 holds. Part (a) is clear.

Let β∗ = Wγ+1-pred(ξγ).

Claim C.

(1) lh(T ∗) = β∗ + 1, and Q∗ =MW∗γ+1

β∗ .

(2) β∗ = µ∗, and if s = sT
∗

µ∗ , then s : µ∗ → Vµ∗ .
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Proof. By definition, β∗ is the least α such that MW∗γ+1
α |o(P ∗) = P ∗. But Q∗ is

the last model of T ∗, and P ∗ = Q∗|o(P ∗), so since T ∗ and W∗γ+1 are normal trees by

the same strategy, β∗ < lh(T ∗) and MT ∗
β∗ =MW∗γ+1

β∗ . This gives (1).
Part (2) is proved exactly as in case 1. �

Now consider (†)γ+1(b). We have vγ+1(αγ + 1) = ξγ + 1, and z∗(γ + 1) = iG∗(µ
∗).

So we must see that ξγ + 1 ≤W ∗γ+1
iG∗(µ

∗), that is, that G is used on the branch of

W∗γ+1 to iG∗(µ
∗). But if s = eT

∗
µ∗ , then s = iG∗(s)�µ∗, so µ∗ is on the branch of W ∗

γ+1

to iG∗(µ
∗). Moreover, iG∗(s)(µ

∗) is compatible with G, so it is equal to G, as desired.
(†)γ+1(d) is vacuous, because we have dropped. We shall leave the agreement

conditions (c) and (f) to the reader, and consider (e). That is, we show ψUγ+1 =
tγ+1 ◦ σγ+1. The relevant diagram is

MU
γ+1 Rγ+1 MW∗γ+1

ξγ+1 MW∗γ+1

iG∗ (µ∗)

Q̄ Q tν(Q) Q∗

P0

σγ+1
sγ+1
αγ+1 k

σν tν σ∗

ı̂Uν,γ+1 iF iG iG∗

W∗ν T ∗

Here k = i
W∗γ+1

vγ+1(αγ+1),z∗(γ+1). Thus the embedding along the top row is tγ+1 ◦σγ+1.

The lifting process defines ψUγ+1 by

ψγ+1([a, f ]Q̄
EUγ

) = [resγ ◦ ψγ(a), σ∗ ◦ ψν(f)]Q
∗

G∗ ,

where we have dropped a few superscripts for readability. Let us write ı̂ for ı̂Uν,γ+1.
Then ψγ+1 agrees with tγ+1 ◦ σγ+1 on ran(̂ı), because

tγ+1 ◦ σγ+1 ◦ ı̂ = iG∗ ◦ σ∗ ◦ tν ◦ σν
= iG∗ ◦ σ∗ ◦ ψν
= ψγ+1 ◦ ı̂.

The first line comes from the commutativity of the diagram, the second from (†)ν(e),
and the last from the definition of ψγ+1.
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So it is enough to see that ψγ+1 agrees with tγ+1 ◦ σγ+1 on λ, where λ = λ(EUγ ).

But note that tγ+1 = k ◦ sγ+1
αγ+1, and crit(k) ≥ λG. So tγ+1 agrees with the Shift

Lemma map sγ+1
αγ+1 on λF . Thus tγ+1 agrees with resγ ◦tγ on λF . So we can calculate

ψγ+1�λ = resγ ◦ψγ�λ
= resγ ◦ tγ ◦ σγ�λ
= tγ+1 ◦ σγ+1�λ.

The second line comes from (†)γ)(e), and the third from our argument above, together
with the fact σγ�λ = σγ+1�λ.

This finishes case 2, and hence the definition of Φγ+1 and verification of (†)γ+1.
We leave the detailed definition of Φλ and verification of (†)λ, for λ a limit ordinal

or λ = b, to the reader. The normalization Wλ is a direct limit of the Wν for
ν ∈ [0, λ)U . The tree W∗λ is iU

∗

ν,λ(W∗ν ), for ν past the last drop. So it is a direct limit
too. We define Φλ to be the direct limit of the Φν for ν ∈ [0, λ)U past the last drop.
Part (d) of (†) tells us we can do that. We omit further detail.

This finishes our proof of Sublemma 5.15.1, that Wb is a psuedo-hull of W∗b . �

That in turn proves Lemma 5.15 �

Lemma 5.30 Let M = Mν0,k0, and let U be a normal tree on M that is of limit
length, and is by both ΣW∗ν0,k0

,M and ΩCν0,k0
. Let

lift(U ,M,C) = 〈U∗, 〈ητ , lτ | τ < lhU〉, 〈ψUτ | τ < lhU〉〉;

then U∗ has a cofinal, wellfounded branch.

Proof. Let π : H → Vθ be elementary, where H is countable and transitive,
and θ is sufficiently large, and everything relevant is in ran(π). Let S = π−1(U),
S∗ = π−1(U∗), and T = π−1(W∗ν0,k0

).
Because Σ is universally Baire, π−1(Σ) = Σ ∩ H, so 〈T ,S〉 is by Σ. Moreover,

letting
b = Σ(〈T ,S〉),

we have that b ∈ H. (Because b ∈ H[g] for all g on Col(ω, τ), for τ ∈ H sufficiently
large.) It will be enough to see thatMS∗

b is wellfounded, as then the elementarity of
π yields a cofinal wellfounded branch of U∗.

By [19], S∗ has a cofinal, wellfounded branch c. The proof of Sublemma 5.15.1
shows that Wc is a psuedo-hull of W∗c , where Wc = W (T ,Sac) and W∗c = iS

∗
c (T ).

That is because we can run the construction of Φc in H; we don’t need c ∈ H to
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do that. But then W∗c is by Σ, so Wc is by Σ by strong hull condensation, and
c = Σ(〈T ,S〉) since Σ normalizes well. Thus c = b, and MS∗

b is wellfounded, as
desired. �

We can now finish the proof of Theorem 5.11. We have just shown that ΣW∗ν0,k0
,M

agrees with ΩCν0,k0
on normal trees. We must see that they agree on finite stacks ~T

of normal trees. But for such ~T ,

~T is by ΩCν0,k0
⇔ lift(~T ) is by ΩUBH

FC

⇔ W (lift(~T )) is by ΩUBH
FC

⇔ lift(W (~T )) is by ΩUBH
FC

⇔ W (~T ) is by Σ.

The first equivalence is our definition of ΩCν0,k0
. The second comes from the fact that

ΩUBH
FC normalizes well on its domain. (This is implicit in the results of Chapter 3,

section 2.) The third comes from the fact that embedding normalization commutes
with lifting to the background universe, which we proved in the proof of Theorem
4.41. The last comes from the agreement of Σ with ΩCν0,k0

on normal trees.
This finishes the proof of Theorem 5.11. �
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6 Fine structure for the least-branch hierarchy

We now adapt the definitions and results of the previous sections to mice that are
being told their own background-induced iteration strategy.

The particular kind of strategy mice dealt with in this book we call least branch
hod mice. Paired with their iteration strategies, they become least branch hod pairs.
Least branch hod pairs and pure extender pairs share many basic properties, and so
we define a mouse pair to be a pair of one of the two varieties. Section 3 discusses
some of the basic properties of mouse pairs.

The deeper results about least branch hod pairs require a comparison theorem.
The proof of our comparison theorem for pure extender pairs generalizes in a straight-
forward way to least branch hod pairs, provided that we have background construc-
tions for them that do not break down. The main problem is to show that. That is,
one must show that the standard parameter of any pair reached in such a construction
is solid and universal.

One might worry that the usual solidity and universality proofs require a com-
parison, so we are being led into a vicious circle. But this is not a problem, because
if (M,Σ) has been reached in some construction, and C is the maximal hod pair
construction of some coarse Γ-Woodin mouse that captures Σ, then C cannot break
down until it has reached an iterate of (M,Σ). This means we do have enough back-
grounded hod pairs to show the comparisons involved in the solidity and universality
proofs do terminate.

But we do in fact confront a new problem in adapting the usual solidity/universality
proof. Namely, when we compare (M,H, ρ) with M , we must do so by iterating them
into some background construction C, and so disagreements will very often happen
when the two sides agree with each other, but not with C. If we proceed naively, this
renders invalid the usual argument that we can’t end up above M on both sides. Our
solution is to modify the way the phalanx is iterated, so that sometimes we move the
whole phalanx up, including its exchange ordinal. Schlutzenberg has, independently
and earlier, developed and used this idea in another context.

Sections 4 through 7 are devoted to background constructions of least branch hod
pairs, and the proof that all their levels have well behaved standard parameters.

6.1 Least branch premice

A least branch premouse (lpm) is a variety of acceptable J-structure. Acceptable
J-structures are structures of the form (JAα ,∈, A ∩ JAα ) that are amenable, and sat-
isfy a local form of GCH. The basic fine structural notions, like projecta, standard
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parameters, and solidity witnesses, can be defined at this level of generality, and
various elementary facts involving them proved. This is done in [41], and we assume
familiarity with that material here. See the preliminaries section for more.

The language L0 of least branch premice should therefore have symbols ∈ and
Ȧ. It is more convenient in our situation to have ∈, predicate symbols Ė, Ḟ, Σ̇, Ḃ,
and constant symbol γ̇. If M is an lpm, then M = (N, k), where N is an amenable
structure for L0, and k = k(M). We often identify M with N . The predicates and
constant of N can be amalgamated in some fixed way into a single amenable ȦM.
So we are within the framework of [41]. o(M) is of course the ordinal height of M .
We let ô(M) be the α such that o(M) = ωα. The index of M is

l(M) = 〈ô(M), k(M)〉.

If 〈ν, l〉 ≤lex l(M), then M |〈ν, l〉 is the initial segment N of M with index l(N) =
〈ν, l〉. (So ĖN = ĖM ∩N, ḞN = ĖM

ν , Σ̇N = Σ̇M ∩N , and ḂN is determined by Σ̇M

is a way that will become clear shortly.) In order that M be an lpm, all its initial
segments N must be k(N)-sound. If ν ≤ ô(M), then we write M |ν for M |〈ν, 0〉.

As with ordinary premice, if M is an lpm, then ĖM is the sequence of extenders
that go into constructing M , and ḞM is either empty, or codes a new extender
being added to our model by M . ḞM must satisfy the Jensen conditions; that is, if
F = ḞM is nonempty (i.e., M is extender-active), then M |= crit(F )+ exists, and for
µ = crit(F )+M , o(M) = iMF (µ). ḞM is just the graph of iMF �(M |µ). M must satisfy
the Jensen initial segment condition (ISC). That is, the whole initial segments of ḞM

must appear in ĖM . If there is a largest whole proper initial segment, then γ̇M is
its index in ĖM . Otherwise, γ̇M = 0. Finally, an lpm M must be coherent, in that
iMF (ĖM)�o(M) + 1 = ĖMa〈∅〉.

In other words, the conditions for adding extenders to M are just as in Jensen.
The predicates Σ̇M and ḂM are used to record information about an iteration

strategy Ω for M . The strategy Ω will be determined by its action on normal trees,
in an absolute way, so that we need only tell the model we are building how Ω acts
on normal trees, and then the model itself can recover the action of Ω on the various
non-normal trees it sees. Since this simplifies the notation, it is what we shall do.

Let us write M |〈ν,−1〉 for (M |〈ν, 0〉)−; that is, for M |〈ν, 0〉 with its last extender
predicate set to ∅.

Definition 6.1 An M -tree is a triple s = 〈ν, k, T 〉 such that

(1) 〈ν, k〉 ≤lex l(M), and

(2) T is a normal iteration tree on M |〈ν, k〉.
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We allow here T to be empty. The case k = −1 allows us to drop by throwing
away a last extender predicate. Given an M -tree s we write s = 〈ν(s), k(s), T (s)〉.
We write M∞(s) for the last model of T (s), if it has one. We say lh(T (s)) is the
length of s.

What we shall feed into an lpm M is information about how its iteration strategy
acts on M -trees.

Σ̇M is a predicate that codes the strategy information added at earlier stages, with
Σ̇M(s, b) meaning that T (s) is a normal tree on M |〈ν(s), k(s)〉 of limit length, and
T (s)ab is according to the strategy. We write ΣM

ν,k for the partial iteration strategy

for M |〈ν, k〉 determined by Σ̇M . We write

ΣM(s) = b iff Σ̇M(s, b)

iff ΣM
ν(s),k(s)(T (s)) = b.

We say that s is according to ΣM iff T (s) is according to ΣM
ν(s),k(s).

We now describe how strategy information is coded into the ḂM predicate. Here
we use the B-operator discovered by Schlutzenberg and Trang in [46]. In the original
version of this paper, we made use of a different coding, one that has fine-structural
problems. The authors of [65] discovered those problems. The discussion to follow
is taken from [65].

Definition 6.2 M is branch-active (or just B-active) iff

(a) there is a largest η < o(M) such that M |η |= KP, and letting N = M |η,

(b) there is a <N -least N-tree s such that s is by ΣN , T (s) has limit length, and
ΣN(s) is undefined.

(c) for N and s as above, o(M) ≤ o(N) + lh(T (s)).

Note that being branch-active can be expressed by a Σ2 sentence in L0 − {Ḃ}.
This contrasts with being extender-active, which is not a property of the premouse
with its top extender removed. In contrast with extenders, we know when branches
must be added before we do so.

Definition 6.3 Suppose that M is branch-active. We set

ηM = the largest η such that M |η |= KP,

bM = {α | ηM + α ∈ ḂM},
sM = least M |ηM -tree such that Σ̇M |ηM is undefined, and

νM = unique ν such that ηM + ν = o(M).
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Moreover, for s = sM ,

(1) M is a potential lpm iff bM is a cofinal branch of T (s)�νM .

(2) M is honest iff νM = lh(T (s)), or νM < lh(T (s)) and bM = [0, νM)T (s).

(3) M is an lpm iff M is an honest potential lpm.

(4) M is strategy-active iff νM = lh(T (s)).

We demand of an lpm M that if M is not Ḃ-active, then ḂM = ∅.
The Σ̇ predicate of an lpm grows at strategy-active stages. More precisely, sup-

pose that ô(Q) is a successor ordinal, and M = Q|(ô(Q)−1). If M is strategy-active,
then in order for Q to be an lpm, we must have

Σ̇Q = Σ̇M ∪ {〈s, bM〉},

while if M is not strategy-active, we must have Σ̇Q = Σ̇M . If ô(Q) is a limit ordinal,
then we require that Σ̇Q =

⋃
η<ô(Q) Σ̇Q|η. We see then that if M is an lpm and

ν < ô(M), then Σ̇M |ν ⊆ Σ̇M , and M |ν is strategy-active iff Σ̇M |ν 6= Σ̇M .
This completes our definition of what it is for M to be a least-branch premouse,

the definition being by induction on the hierarchy of M .

Definition 6.4 M is a least branch premouse (lpm) iff M is an acceptable J struc-
ture meeting the requirements stated above.

Notice that if M is an lpm, then no level of M is both Ḃ-active and extender-
active, because Ḃ-active stages are additively decomposable.

Returning to the case that M is branch-active, note that ηM is a ΣM
0 singleton,

because it is the least ordinal in ḂM (because 0 is in every branch of every iteration
tree), and thus sM is also a ΣM

0 singleton. We have separated honesty from the other
conditions because it is not expressible by a Q-sentence, whereas the rest is. Honesty
is expressible by a Boolean combination of Σ2 sentences. See 6.9 below.

The original version of this book required that when o(M) < ηM + lh(T (s)),
ḂM is empty, whereas here we require that it code [0, o(M))T (s), in the same way

that ḂM will have to code a new branch when o(M) = ηM + lh(T (s)). Of course,
[0, νM)T (s) ∈ M when o(M) < ηM + lh(T (s)) and M is honest, so the current ḂM

seems equivalent to the original ḂM = ∅. However, ḂM = ∅ leads to ΣM
1 being

too weak, with the consequence that a Σ1 hull of M might collapse to something
that is not an lpm. (The hull could satisfy o(H) = ηH + lh(T (sH)), even though
o(M) < ηM + lh(T (sM)). But then being an lpm requires ḂH 6= ∅.) Our current
choice for ḂM solves that problem.
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Remark 6.5 Suppose N is an lpm, and N |= KP. It is very easy to see that Σ̇N

is defined on all N -trees s that are by Σ̇N iff there are arbitrarily large ξ < o(N)
such that N |ξ |= KP. If M is branch-active, then ηM is a successor admissible;
moreover, we do add branch information, related to exactly one tree, at each successor
admissible. Waiting until the next admissible to add branch information is just a
convenient way to make sure we are done coding in the branch information for a
given tree before we move on to the next one. One could go faster.

We say that an lpm M is (fully) passive if ḞM = ∅ and ḂM = ∅.
We would like to see that being an lpm is preserved by the appropriate embed-

dings. Q-formulae are useful for that.

Definition 6.6 A rQ-formula of L0 is a conjunction of formulae of the form

(a) ∀u∃v(u ⊆ v ∧ ϕ), where ϕ is a Σ1 formula of L0 such that u does not occur
free in ϕ,

or of the form

(b) “Ḟ 6= ∅, and for µ = crit(Ḟ )+, there are cofinally many ξ < µ such that ψ”,
where ψ is Σ1.

Formulae of type (a) are usually called Q-formulae. Being a passive lpm can be
expressed by a Q-sentence, but in order to express being an extender-active lpm, we
need type (b) clauses, in order to say that the last extender is total. rQ formulae are
π2, and hence preserved downward under Σ1-elementary maps. They are preserved
upward under Σ0 maps that are strongly cofinal.

Definition 6.7 Let M and N be L0-structures and π : M → N be Σ0 and cofinal.
We say that π is strongly cofinal iff M and N are not extender active, or M and N
are extender active, and π“(crit(Ḟ )+)M is cofinal in (crit(Ḟ )+)N .

It is easy to see that

Lemma 6.8 rQ formulae are preserved downward under Σ1-elementary maps, and
upward under strongly cofinal Σ0-elementary maps.

Lemma 6.9 (a) There is a Q-sentence ϕ of L0 such that for all transitive L0

structures M , M |= ϕ iff M is a passive lpm.

(b) There is a rQ-sentence ϕ of L0 such that for all transitive L0 structures M ,
M |= ϕ iff M is an extender-active lpm.
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(c) There is a Q-sentence ϕ of L0 such that for all transitive L0 structures M ,
M |= ϕ iff M is a potential branch-active lpm.

Proof. (Sketch.) We omit the proofs of (a) and (b). For (c), note that “Ḃ 6= ∅” is
Σ1. One can go on then to say with a Σ1 sentence that if η is least in Ḃ, then M |η is
admissible, and sM exists. One can say with a Π1 sentence that {α | Ḃ(η + α)} is a
branch of T (s), perhaps of successor order type. One can say that Ḃ is cofinal in the
ordinals with a Q-sentence. Collectively, these sentences express the conditions on
potential lpm-hood related to Ḃ. That the rest of M constitutes an extender-passive
lpm can be expressed by a Π1 sentence. �

Corollary 6.10 (a) If M is a passive ( resp. extender-active, potential branch-
active ) lpm, and Ult0(M,E) is wellfounded, then Ult0(M,E) is a passive
(resp.extender-active, potential branch-active ) lpm.

(b) Suppose that M is a passive (resp. extender-active, potential branch-active)
lpm, and π : H → M is Σ1-elementary; then H is a passive (resp. potential
branch-active) lpm.

(c) Let k(M) = k(H) = 0, and π : H →M be Σ2 elementary; then H is a branch-
active lpm iff M is a branch-active lpm.

Proof. rQ-sentences are preserved upward by strongly cofinal Σ0 embeddings, so
we have (a). They are Π2, hence preserved downward by Σ1- elementary embeddings,
so we have (b).

It is easy to see that honesty is expressible by a Boolean combination of Σ2

sentences, so we get (c).
�

Part (c) of Corollary 6.10 is not particularly useful. In general, our embeddings
will preserve honesty of a potential branch active lpm M because Σ̇M and ḂM are
determined by a complete iteration strategy for M that has strong hull condensation.
So the more useful preservation theorem in the branch-active case applies to hod pairs,
rather than to hod premice. See 6.13 below.

Remark 6.11 The following examples show that the preservation reults of 6.10 are
optimal in certain respects.

(1) Let M be an extender-active lpm, and N = Ult0(M,E), where E is a long
extender over M whose space is (crit(Ḟ )+)M , so that the canonical embedding
π : M → N is discontinuous at (crit(Ḟ )+)M . Then π is cofinal and Σ0, so that
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M and N satisfy the same Q-sentences, but N is not an lpm, because its last
extender is not total. π is not strongly cofinal, of course.

(2) The interpolation arguments in [37] yield examples of π : M → N being a
weakly elementary (with k(M) = k(N) = 0), and N being an extender-active
lpm, but M not being an lpm. Again, M falls short in that its last extender is
not total.

The copying construction, and the lifting argument in the iterability proof, do
give rise to maps that are only weakly elementary. However, in those cases we know
the structures on both sides are lpms for other reasons. On the other hand, core maps
and ultrapower maps are fully elementary, so we can apply (a) and (b) of Corollary
6.10 to them. We do need to do this.

6.2 Least branch hod pairs

If M is an lpm, then iteration trees on M can be understood in the same fine struc-
tural sense as iteration trees on ordinary premice. We are interested in least branch
premice M that have well-behaved iteration strategies Ω, strategies that normalize
well and have strong hull condensation. Another aspect of the good behavior of
Ω is that all Ω-iterates of M are least branch premice whose strategy predicate is
consistent with the appropriate tail of Ω.

It is really the pair (M,Ω) to which our definitions and results apply.

Definition 6.12 (M,Ω) is a least branch hod pair (lbr hod pair) with scope Hδ iff

(1) M is a least branch premouse,

(2) Ω is a complete iteration strategy for M , with scope Hδ,

(3) Ω normalizes well, and has strong hull condensation, and

(4) If s is by Ω and has last model N , then N is an lpm, and Σ̇N ⊆ Ωs.

Of course, δ as in (2) is determined by Ω.
We say that (M,Ω) is self-consistent just in case it has property (4).
Definition 6.12 assumes we have made sense of embedding normalization and tree

embeddings as they apply to iteration trees on least branch premice. The definitions
and basic results that apply to pure extender premice go over word-for-word, so we
shall simply assume it has been done.

238



There is one small difference in the two situations, in that the class of lpms is not
closed under Σ0 ultrapowers or Σ1 elementary embeddings, because of the branch-
honesty requirement. But we will always be dealing with hulls or iterates of pairs,
and lpm-hood is preserved in that context. For iterates, that is just part of clause
(4) of 6.12. In the case of hulls, it is part of the following lemma.

Lemma 6.13 Let (M,Ω) be a least branch hod pair with scope Hδ, let π : N → M
be weakly elementary, and suppose that if ḞN 6= ∅, then ḞN is total over N ; then
(N,Ωπ) is a lbr hod pair with scope Hδ.

Proof. N is an lpm by 6.10, except perhaps when M is branch-active. In this case,
N is a potential branch-active lpm, and we must see that N is honest.

So let ν = νN , b = bN , and T = T (sN). If ν = lh(T ), there is nothing to show,
so assume ν < lh(T ). We must show that b = [0, ν)T . We have by induction that
for Q = N |ηN , (Q,Ωπ

Q) is an lbr hod pair, and in particular, that it is self-consistent.
Thus T is by Ωπ, and so we just need to see that for U = T �ν, U_b is by Ωπ, or
equivalently, that πU_b is by Ω. But it is easy to see that πU_b is a psuedo-hull of
π(U)_bM , and Ω has strong hull condensation, so we are done.

Thus N is an lpm. Ωπ is a complete iteration strategy defined on all N -stacks in
Hδ, where Hδ is the scope of (M,Ω). Ωπ normalizes well by the the proof of 4.4, and
has strong hull condensation by the proof of 4.10.

Finally, we must show that (N,Ωπ) is self-consistent. Let P be a Ωπ iterate of N ,
via the stack s. Let Q be the corresponding iterate of M via πs, and let τ : P → Q
be the copy map. Then

U is by Σ̇P ⇒ τ(U) is by Σ̇Q

⇒ τ(U) is by Ωπs,Q

⇒ τU is by Ωπs,Q

⇒ U is by (Ωπ)s,P ,

as desired. �

Definition 6.12 records the properties of the hod pairs we construct needed to
prove the comparison theorem and the existence of cores. The other properties one
might hope for seem to follow from these, as they did in the case of pure extender
pairs, and by the same proofs. For example, from the proofs of 4.9, 4.59, and 4.60,
we get

Lemma 6.14 Let (M,Ω) be an lbr hod pair with scope Hθ; then
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(a) (M,Ω) is pullback consistent and strategy coherent, and

(b) if (M,Ψ) is an lbr hod pair with scope Hθ such that Ψ and Ω agree on normal
trees, then Ψ = Ω.

Inspired by these and many other similarities, we define

Definition 6.15 (M,Ω) is a mouse pair iff (M,Ω) either a pure extender pair, or
an lbr hod pair.

The reader will naturally ask whether there are other classes of strategy pairs
(M,Σ) which behave like the two classes we have isolated here. The answer is
positive. The remarks to follow were stimulated by a suggestion by Hugh Woodin.

One can vary how much of Σ gets encoded into Σ̇M , and when that is done. One
can think each of these variations as associated to some Σ1 formula ϕ(v). Roughly,
a ϕ-premouse M starts to encode a branch for T when it reaches some α such
that M |α |= ϕ[T ]. Pure extender premice are ϕ-premice, for ϕ = “v 6= v”. Least
branch premice are ϕ-premice, for ϕ a Σ1 formula that can be abstracted from §5.1.
Other Σ1 formulae would lead to classes that might be called “ϕ-mouse pairs”. The
requirements of normalizing well, strong hull condensation, and self-consistency are
the same for all classes of ϕ-mouse pairs. What varies is how much of the strategy
Σ is encoded into M , and when that is done.

We should note that the rigidly layered hod pairs of [30] are not ϕ-mouse pairs,
because the condition governing branch insertion is not first order. ϕ-mouse pairs
have the condensation properties of pure extender pairs, while rigidly layered hod
pairs do not.

The analysis of HOD in models of AD+ that do not satisfy ADR may need ϕ-
mouse pairs, for ϕ not one of the two formulae we have given privileged status in
Definition 6.15. But this is speculation right now, and we have no real applications
for classes of mouse pairs beyond those identified in 6.15, so we have avoided the
extra generality.

6.3 Mouse pairs and the Dodd-Jensen Lemma

Mouse is generally taken to mean iterable premouse, and the Comparison Lemma is
taken to say that any two mice M and N can be compared as to how much infor-
mation they contain. But in fact, how M and N are compared depends on which
iteration strategies witnessing their iterability are chosen. There is no mouse order
on iterable premice, even of the pure extender variety, unless we make restrictive

240



assumptions which imply that the iteration strategy is unique. The canonical infor-
mation levels of the mouse order are occupied not by mice, but by mouse pairs. These
pairs are the objects to which the Comparison Lemma, the Dodd-Jensen Lemma,
and the other basic results of inner model theory apply. In the special case that
M can have at most one strategy, we don’t need to make the pair explicit, but in
general, we do.

Let us introduce some terminology that reflects this point of view. We have
already used some of it as it applies to pure extender pairs. (See 4.61.)

Definition 6.16 Let (P,Σ) and (Q,Ω) be mouse pairs.

(a) (P,Σ) � (Q,Ω) iff P �Q and Σ = ΩQ.

(b) π : (P,Σ)→ (Q,Ω) is elementary (resp. weakly elementary) iff π is elementary
(resp. weakly elementary) as a map from P to Q, and Σ = Ωπ,

(c) A (normal, weakly normal) iteration tree on (P,Σ) is a (normal, weakly nor-
mal) iteration tree T on P such that T is by Σ. The αth pair of T is (MT

α ,ΣT �α+1).

(d) A (P,Σ)-stack is a P -stack by Σ. If s is a (P,Σ)-stack with last model Q, then
the last pair of s is (Q,Σs,Q).

(e) (Q,Ψ) is an iterate of (P,Σ) iff there is a (P,Σ)-stack with last pair (Q,Ψ).
If s can be taken to be a single normal tree, then (Q,Ψ) is a normal iterate of
(P,Σ). If s can be taken so that P -to-Q in s does not drop, then (Q,Ψ) is a
non-dropping iterate of (P,Σ).

(f) (P,Σ) ≤∗ (Q,Ω) iff there is an iterate (R,Ψ) of Q,Ω) and an elementary
π : (P,Σ)→ (R,Ψ). We call ≤∗ the mouse pair order.

Notice that the natural agreement of pairs in a normal tree on (P,Σ) follows at
once from strategy coherence. Here are some further elementary facts stated in this
language.

Lemma 6.17 Let (P,Σ) be a mouse pair with scope Hδ, and let (Q,Ω) be an iterate
of (P,Σ); then (Q,Ω) is a mouse pair with scope Hδ.

Proof. Iterates of pure extender premice are pure extender premice, and normalizing
well and strong hull condensation are defined so that they pass to tail strategies. If
M is an lpm, then N is an lpm by clause (4) of 6.12. The properties in (3) and (4)
of 6.12 clearly pass to tail strategies. �

In the mouse pair language, the elementarity of iteration maps amounts to pull-
back consistency. So we have

241



Lemma 6.18 Let (P,Σ) be a mouse pair, and let s be a (P,Σ)-stack; then the
iteration maps of s are elementary in the category of mouse pairs. That is, if
Q = MTm(s)

α |〈ν, k〉 and π : Q → M∞(s) is the iteration map of s, then for t =
s�(m− 1)a〈(νm(s), km(s), Tm(s)�(α + 1))〉, π is elementary as a map from (Q,Σt,Q)
to (M∞(s),Σs).

The appropriate statement of the Dodd-Jensen Lemma on the minimality of
iteration maps is:

Theorem 6.19 (Dodd-Jensen Lemma) Let (P,Σ) be an mouse pair, let (Q,Ω) be
an iterate of (P,Σ) via the stack s, and let π : (P,Σ)→ (Q,Ω) be weakly elementary;
then

(a) the branch P -to-Q of s does not drop, and

(b) letting is : P → Q be the iteration map, for all η < o(P ), is(η) ≤ π(η).

We omit the well known proof. Notice that it requires the assumption that
Σπ
s,Q = Σ. This was at one time a nontrivial restriction on the applicability of the

Dodd-Jensen Lemma, and led to the Weak Dodd-Jensen Lemma of [27]. Now that
we can compare iteration strategies, the restriction is less important.

We get the Dodd-Jensen corollary on the uniqueness of iteration maps.

Corollary 6.20 Let (P,Σ) be a mouse pair, (Q,Ω) a non-dropping iterate of (P,Σ)
via the stack s, and suppose (Q,Ω)� (R,Ψ), where (R,Ψ) is an iterate of (P,Σ) via
the stack t; then

(a) (Q,Ω) = (R,Ψ), and the branch P -to-R of t does not drop, and

(b) letting is and it be the two iteration maps, is = it.

In the language of mouse pairs, the Comparison Lemma reads

Theorem 6.21 (Comparison Lemma) Assume AD+, and let (P,Σ) and (Q,Ψ) be
mouse pairs with scope HC of the same type; then there are iterates (R,Λ) of (P,Σ)
and (S,Ω) of (Q,Ψ), obtained via normal trees T on P and U on Q, such that either

(1) (R,Λ) � (S,Ω) and P -to-R does not drop, or

(2) (S,Ω) � (R,Λ) and Q-to-S does not drop.
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We proved this for pure extender pairs in 5.13, and we shall give the proof for
least branch hod pairs in 6.54. For now let us assume it. We get

Corollary 6.22 Assume AD+; then

(a) For (P,Σ) and (Q,Ψ) mouse pairs with scope HC of the same type,

(P,Σ) <∗ (Q,Ψ)⇔∃(R,Ω)∃π[(R,Ω) is a dropping iterate of (Q,Ψ)

and π : (P,Σ)→ (R,Ω) is weakly elementary].

(b) When restricted to a fixed type, ≤∗ is a prewellorder of mouse pairs with scope
HC.

Proof. The left-to-right direction of (a) follows from the Comparison Lemma. The
right-to-left direction follows from Dodd-Jensen. For (b), the Comparison Lemma
implies that ≤∗ is linear. That it is wellfounded follows from (a), using the proof of
the Dodd-Jensen Lemma. �

For the record

Definition 6.23 Let (P,Σ) be a mouse pair; then Σ is positional iff whenever (Q,Ψ)
and (R,Ω) are iterates of (P,Σ), and Q = R, then Ψ = Ω.

The property is clearly related to what is called being positional in [30]. In the
present context, with gratuitous dropping allowed, it implies clause (b) of strategy
coherence.

[48] proves

Lemma 6.24 Assume AD+, and let (P,Σ) be a mouse pair with scope HC; then Σ
is positional.

Fortunately, this lemma is not needed in the proof of the Comparison Lemma 6.21.
Its proof instead relies on a comparison argument.

Here are two propositions that explain the relationship between pure extender
mice and pure extender pairs.

Proposition 6.25 Assume AD+, and let P be a countable, ω1-iterable pure extender
premouse; then there is a Σ such that (P,Σ) is a pure extender pair.
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Proof. Let Ψ be an arbitrary ω1 iteration strategy for P . We may assume Ψ is Suslin
and co-Suslin by Woodin’s Basis Theorem. ( See [52], Theorem 7.1.) Thus there is
a coarse Γ-Woodin mouse (N∗,�, S, T,Σ∗) that captures Ψ. Working in N∗, we get
that P iterates by Ψ to a level (Q,Ψ) of the pure extender pair construction of N∗.
Let π : P → Q be the iteration map; then (P,Ψπ) is a pure extender pair. �

Proposition 6.26 Assume AD+, LEC, and θ0 < θ; then there are pure extender
pairs (P,Σ) and (P,Ω) such that (P,Σ) <∗ (P,Ω).

Proof.(Sketch.) By LEC, there is a pure extender pair (P,Ω) such that Ω is not
ordinal definable from a real. Fix such a pair. By the Basis Theorem, there is a
Σ such that (P,Σ) is a pure extender pair, and Σ is ordinal definable from a real.
Suppose toward contradiction that (P,Ω) ≤∗ (P,Σ); then

Ω = (Σs)
π

for some stack s and iteration map π. Thus Ω is ordinal definable from a real,
contradiction. �

It follows that under the hypotheses of 6.26, there are pure extender pairs (P,Σ) and
(P,Ω) such that for some R, P iterates normally by Σ to a proper initial segment of
R, and normally by Ω to a proper extension of R.

The Dodd-Jensen Lemma hypothesis that Σπ
s,P = Σ is too restrictive for use in

the proof of solidity and universality of standard parameters. For that proof, we
need the Weak Dodd-Jensen Lemma of [27].

Note that the proofs we have given that background induced strategies normalize
well and have strong hull condensation actually yield (ω1, ω1) strategies Ω such that
each Ω∗s, for lh(s) < ω1, normalizes well and has strong hull condensation. Here Ω∗s is
the complete strategy, defined on finite stacks t, given by Ω∗s(t) = Ω(s_t). We need
this in the weak Dodd-Jensen argument to come.

Let N be a countable pure extender premouse or lpm, and 〈ei | i < ω〉 enumerate
the universe of N . A map π : N → M is ~e-minimal just in case π is elementary,
and whenever σ : N → M |〈η, k〉 is elementary, then 〈η, k〉 = l(M), and if σ 6= π,
then for i least such that σ(ei) 6= π(ei), we have π(ei) < σ(ei) (in the order of
construction). A complete strategy Ω for N has the weak Dodd-Jensen property
relative to ~e iff whenever M = M∞(s) for some stack s by Ω, and there is some
elementary embedding fom N to an initial segment of M , then the branch N -to-M
of s does not drop, and the iteration map is is ~e-minimal.

Lemma 6.27 (Weak Dodd-Jensen) Let (M,Ω) be a mouse pair with scope Hδ, and
let ~e be an enumeration of the universe of M in order type ω. Suppose that Ω is
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defined on all countable M-stacks s from Hδ, and that for any such s having a last
model, (M∞(s),Ωs) is an lbr hod pair. Then there is a countable M-stack s by Ω
having last model N = M∞(s), and an elementary π : M → N , such that

(1) (N, (Ωs)
π) is a mouse pair, and

(2) (Ωs)
π has the weak Dodd-Jensen property relative to ~e.

Proof. The proof from [27] goes over verbatim. Notice here that any such (N, (Ωs)
π)

is an lbr hod pair, by 6.17 and 6.13. �

The proofs of Lemmas 4.54 and 4.55 go over from pure extender pairs to least
branch hod pairs with no change. We get

Lemma 6.28 Let (P,Σ) and (P,Λ) be mouse pairs with scope Hδ, and suppose that
Σ and Λ agree on countable normal trees; then Σ = Λ.

Lemma 6.29 Let (P,Σ) be a mouse pair pair with scope Hδ, and let j : V → M be
elementary, where M is transitive and crit(j) > |P |; then j(Σ) and Σ agree on all
trees in j(Hδ) ∩Hδ.

We have stated the elementary results about lbr hod pairs in this section as results
about mouse pairs, because that is their natural context. We are mainly interested
in lbr hod pairs for the rest of this book, so we shall return to that level of generality.

6.4 Background constructions

It is easy to modify the background constructions of pure extender premice described
in the preliminaries chapter so that they produce least branch hod pairs. The back-
ground conditions for adding an extender are unchanged. If we have reached the
stage at which Mν,0 is to be defined, then our construction, together with an iteration
strategy for the background universe, will have provided us with complete iteration
strategies Ωη,l for Mη,l, for all η < ν. We must assume here that the background uni-
verse knows how to iterate itself for trees that are of the form lift(T ,Mη,l,C)0. Each
(Mη,l,Ωη,l) will be a least branch hod pair. If Mν,0 is to be branch-active according
to the lpm requirements, then we use the appropriate Ωη,l to determine ḂMν,0 .

The additional strategy predicates in our structures affect what we mean by cores
and resurrection, but otherwise nothing much changes.

As before, Mν,k+1 is the core of Mν,k. We shall need to show that the standard
parameter of Mν,k behaves well, so that this core is sound, and agrees with Mν,k up
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to ξ, where ξ = (ρ(Mν,k)
+)Mν,k . Letting π : Mν,k+1 →Mν,k be the uncoring map, and

γ < ξ, this requires that (Ων,k)〈γ,l〉 agree with the π-pullback of (Ων,k)〈π(γ),l〉 on all
stacks belonging to Mν,k|ξ. We shall show this, but we shall not show that these two
strategies agree on all Mν,k|〈γ, l〉-stacks in V . We doubt that is true in general, but
we do not have a counterexample.

The simplest sort of iterability hypothesis under which we can carry out such a
construction is the following.

Definition 6.30 IHκ,δ is the assertion: for any coarsely coherent ~F such that all Fν
have critical point > κ, and belong to Vδ, (V, ~F ) is strongly uniquely (δ, δ)- iterable.

Assuming AD+, we have by Corollary 4.19 that whenever (N∗, δ, S, T,�,Σ∗) is a
coarse Γ-Woodin tuple, then L(N∗,�, S, T ) |= IHω,δ, where δ is the Γ-Woodin of N∗.
So we could be doing our background construction inside this model.

Now let δ be inaccessible, w be a wellorder of Vδ, and κ < δ. Let us assume IHκ,δ
for a while; we shall relax this assumption later. A least branch w-construction above
κ is a full background construction in which, as before, the background extenders
are nice, have critical points > κ, cohere with w, have strictly increasing strengths,
and are minimal (first in Mitchell order, then in w). The index of the last pair in
our construction is some 〈ν, k〉 ≤lex 〈δ, 0〉.

More precisely, such a construction C consists of least branch premice MC
ν,k and

extenders FCν . The length lh(C) of C is the least 〈ν, k〉 such that MC
ν,k is not defined.

M0,0 is the passive premouse with universe Vω, and Ω0,0 is its unique iteration strategy.
The indices are pairs 〈ν, k〉 ≤lex 〈δ, 0〉 such that −1 ≤ k ≤ ω.
C determines resurrection maps Resν,k and σν,k for 〈ν, k〉 <lex lh(C), in the same

way as before: we define Resν,k+1, σν,k+1 by

1. If N = Mν,k+1, then Resν,k+1[N ] = 〈ν, k + 1〉 and σν,k+1[N ] = identity.

2. If N �Mν,k+1|(ρ+)Mν,k+1 , where ρ = ρ(Mν,k), then Resν,k+1[N ] = Resν,k[N ] and
σν,k+1[N ] = σν,k[N ].

3. Otherwise, letting π : Mν,k+1 → Mν,k be the anti-core map, Resν,k+1[N ] =
Resν,k[π(N)] and σν,k+1 = σν,k[π(N)] ◦ π.

For the definition of Resν,0 and σν,0 see [1]. The resurrection maps are fully
elementary, and their agreement properties are the same as before.

The definitions of conversion system, and of the particular conversion system
lift(T ,M,C) = 〈T ∗, 〈(ηξ, lξ) | ξ < lh T 〉, 〈πξ | ξ < lh T 〉〉, for T weakly normal, do
not change. The lift of an M -stack is essentially the stack of the lifts, as before.
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lift(s,M,C)0 is the stack on V that is one component of lift(s,M,C), and it is a
maximal stack of fully normal trees. Conversion systems treat gratuitous dropping
like ordinary dropping.

The sequence 〈FCν | ḞMν,0 6= ∅〉 of background extenders is coarsely coherent, so

by IHκ,δ, V is strongly uniquely (δ, δ, ~F )-iterable. Let Σ∗ be the iteration strategy
witnessing this. Σ∗ then induces a complete strategy Ω(C,M,Σ∗) with scope Hδ for
M = MC

ν,k, for each 〈ν, k〉 < lh(C). That is,

s is by Ω(C,M,Σ∗) iff lift(s,M,C)0 is by Σ∗.

We write
ΩCν,k = Ω(C,MC

ν,k,Σ
∗)�finite stacks,

for the (ω, δ)-iteration strategy determined by Ω(C,MC
ν,k,Σ

∗).

Remark 6.31 For example, let s = 〈β, l, T 〉 be an Mν,k-stack of length one, and let
N = Mν,k|〈β, l〉. Let

〈η, l〉 = Resν,k[N ], and σ = σν,k[N ].

So σ is elementary from N to Mη,l. Then letting

lift(σT ,Mη,l,C,Σ∗) = 〈T ∗, 〈(ηξ, lξ) | ξ < lh T 〉, 〈πξ | ξ < lh T 〉〉,

we have that
〈β, l, T 〉 is by ΩCν,k iff T ∗ is by Σ∗.

If Q =MT
ξ is the last model of T , and τ : Q → MσT

ξ is the copy map, then πξ ◦ τ
maps Q into a model of the construction iT

∗

0,ξ(C). This enables us to define Ων,k

on stacks extending s; for example, if t = sa〈γ, n,U〉, then we handle the possibly
gratuitous drop in Q by resurrecting πξ(Q|〈γ, n〉) from the stage πξ(Q) inside iT

∗

0,ξ(C),
just as above. Etc.

Our construction determines in this way complete iteration strategies ΩCν,k for

MC
ν,k, defined on stacks in Hδ, for each 〈ν, k〉 < lh(C). We demand that (Mν,k,Ων,k) be

a least branch hod pair; otherwise we stop the construction and leave Mν,k undefined.

Suppose now we have Mν,k and Ων,k, with k ≥ 0. Let ρ = ρ(Mν,k) and p = p(Mν,k)
be the k + 1-st projectum and parameter. Let u be either the sequence of solidity
witnesses for pk(Mν,k), or that sequence together with ρk−1(Mν,k) if the latter is
< o(Mν,k). Let

π : N →Mν,k
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where N is transitive and

ran(π) = Hull
Mν,k

k+1 (ρ ∪ {p, u}).

We shall prove, for k ≥ 0,

(†)ν,k.

(a) Mν,k|(ρ+)Mν,k = N |(ρ+)N , and

(b) π−1(p) is solid over N .

Items (a) and (b) of (†) are the universality and solidity of the standard parame-
ter. They are needed to see that the iteration maps of Ων,k+1 are elementary, which
goes into the proof that the lifting maps in the construction of Ων,k+1 are weakly
elementary. So we need (a) and (b) before we can define Ων,k+1.

Corollary 6.66 below proves (†)ν,k (for k ≥ 0) under the assumption that for every
countable M and π : M → Mν,k elementary, letting Ψ = (Ων,k)

π�HC, L(Ψ,R) |=
AD+. Note here that Ψ is κ-Universally Baire, where κ is our lower bound on
the critical points of background extenders, by the uniqueness implicit in IHκ,δ. So
L(Ψ,R) |= AD+ follows from there being infinitely many Woodin cardinals below κ.
(If we are already assuming AD+, and the construction C takes place inside a coarse
Γ-Woodin mouse, then the argument is slightly different.)

If (Mν,k,Ων,k) satisfies (†)ν,k, then we let

Mν,k+1 = transitive collapse of Hull
Mν,k

k+1 (ρ ∪ {p, u}),

with k(Mν,k+1) = k + 1. The lifting procedure and our iterability hypothesis IHκ,δ
yield a complete iteration strategy

Ων,k+1 = ΩCν,k+1

for Mν,k+1 on stacks in Hδ.

Lemma 6.32 [IHκ,δ] Assume C satisfies (†)ν,k; then

(1) (Mν,k+1,Ων,k+1) is a least branch hod pair, and

(2) setting γ = (ρ+)Mν,k , (Ων,k)〈γ,0〉 = (Ων,k+1)〈γ,0〉.
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Proof. Part (2) is an immediate consequence of the fact that for ξ < (ρ+)Mν ,k

and Q = Mν,k|〈ξ, l〉, Resν,k[Q] = Resν,k+1[Q] and σν,k[Q] = σν,k+1[Q].
For part (1), we repeat the proofs that background induced strategies normalize

well and have strong hull condensation (4.41 and 4.49) that we gave in the pure
extender model case. What is left is to show that (Mν,k+1,Ων,k+1) is self-consistent.

For this, let (N,Ω) = (Mν,k+1,Ων,k+1), and let s be a stack on N by Ω, with last
model P . Let T ∈ Σ̇P . We must see that T is by Ωs. Let

s∗ = lift(s,N,C),

and let R be the last model of s∗. Let Σ∗ be the unique ~FC-iteration strategy for V ,
so that Σ∗s∗,R is the unique ~FD strategy for R, where D is the image of C in R. We
have

π : N → Q

where Q is a model of the construction of R. Let Ψ be the strategy for Q induced
by the construction of R. We have that

Ωs = Ψπ,

because this is how Ω is induced by Σ∗. So we are done if we show that πT is by Ψ.
But π(T ) ∈ Σ̇Q, so π(T ) is by Ψ because (Q,Ψ) is an lbr hod pair in R. Moreover,

Ψ has strong hull condensation, not just in R, but in V . (That is because a psuedo-
hull W of some U by Ψ lifts to a psuedo-hull W∗, of some U∗ by Σ∗s∗,R, and even if
W and W∗ are not in R, Σ∗s∗,R chooses unique-in-V cofinal wellfounded branches, so
W∗ is by Σ∗s∗,R, and hence W is by Ψ.) Since πT is a hull of π(T ), πT is by Ψ, as
desired.

�

If (†)ν,k is not the case, then we stop the construction, leaving Mν,k+1 undefined.
Suppose now that (†)ν,k holds for all k < ω. For k < ω sufficiently large,

Mν,k = Mν,k+1
21, and we set

Mν,ω = eventual value of Mν,k as k → ω,

and

Mν+1,0 = rud closure of Mν,ω ∪ {Mν,ω},
arranged as a fully passive premouse.

Ων+1,0 = ΩCν+1,0 is the C-induced strategy. The proof of Lemma 6.32 gives

21Except of course that the distinguished degree of soundness differs.
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Lemma 6.33 [IHκ,δ] Suppose (†)ν,k holds for all k < ω; then (Mν+1,0,Ων+1,0) is an
lbr hod pair with scope Hδ.

Finally, if ν is a limit, put
M<ν = unique fully passive structure P such that for all premice N ,

N � P iff N �Mα,l for all sufficiently large 〈α, l〉 < 〈ν, 0〉.

Case 1. M<ν is branch active.

Let M = M<ν , and b = Ω<ν(sM); then
Mν,0 = (M<ν , ∅, B),

where B = {ηM + γ | γ ∈ b ∧ ηM + γ < o(M)}.

Case 2. There is an F such that (M<ν , F, ∅) is an lpm, crit(F ) ≥ κ, and there is a
certificate for F , in the sense of Definition 2.1 of [29].

As we remarked, cases 1 and 2 are mutually exclusive. We shall prove

(†)ν,−1. There is at most one F such that (M<ν , F, ∅) is an lpm, crit(F ) ≥ κ, and F
admits a certificate in the sense of Definition 2.1 of [29].

This is the Bicephalus Lemma; see Corollary 7.5. We are now allowed either to set
Mν,0 = (M<ν , ∅, ∅),

that is, to pass on the opportunity to add F , or to set
Mν,0 = (M<ν , ∅, F ).

In the latter case, we add the same demands of our certificate as we had in
Definition 2.42, and again choose FCν to be the unique certificate for F such that

(∗) FCν is a certificate for F , minimal in the Mitchell order among all certificates
for F , and w-least among all Mitchell order minimal certificates for F .

Thus the sequence of all ~FC of all FCν is coarsely coherent. By a C-iteration, we

mean a ~FC-iteration in the sense explained above.

Case 3. Otherwise.
Then we set

Mν,0 = (M<ν , ∅, ∅).

In any case, Ων,0 is the C-induced strategy for Mν,0. We get

Lemma 6.34 [IHκ,δ] Let ν be a limit ordinal, and suppose that (†)α,j holds for all
α < ν and j < ω; then (Mν,0,Ων,0) is an lbr hod pair.
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This finishes the definition of what it is for C to be a least branch w- construction
above κ.

We may wish to restrict our choice of background extenders to members of some
coarsely coherent sequence ~F given in advance. Such C we call least branch ~F -
constructions. Any w-construction C is a least branch ~FC-construction. Also, it is
not necessary that the iteration strategy for the background universe used in the
construction pick unique wellfounded branches. What we need is that it normalizes
well, has strong hull condensation, and is moved to its tails by its own iteration
maps. So let us drop our hypothesis IHκ,δ, and make the following definitions.

Definition 6.35 A coarse strategy premouse is a structure (M, ~F,Σ) such that

(M, ~F ) is a coarse extender premouse, and Σ ∈ M , and for some θ, the following
hold in M :

(a) θ is inaccessible and ~F ∈ Vθ,

(b) Σ is a (θ, θ, ~F )-iteration strategy for V that normalizes well and has strong hull
condensation, and

(c) if i : V → N is an iteration map associated to the stack s by Σ, then i(Σ) ⊆ Σs.

Inside a coarse strategy premouse (M, ~F,Σ) we can do least branch (~F,Σ)-
constructions. These are sequences C = 〈Mν,k,Ων,k, Fν〉, where the Mν,k are formed

as above using background extenders Fν ∈ ~F , and the Ων,k are given by Ων,k =
Ω(C,Mν,k,Σ). In order to show that C does not break down, we need a further

assumption about the countable elementary submodels of (M, ~F,Σ).
The next definition is meant to be considered in the AD+ context.

Definition 6.36 A coarse strategy pair is a pair 〈(M, ~F,Σ),Σ∗〉 such that

(a) (M, ~F,Σ) is a countable coarse strategy premouse,

(b) Σ∗ is a complete (ω1, ω1) iteration strategy for (M, ~F ) that normalizes well and
has strong hull condensation, and

(c) if i : M → N is the iteration map associated to a stack s by Σ∗, then i(Σ) ⊆ Σ∗s.

The proofs of 6.32, 6.33, and 6.34 show

Lemma 6.37 Let 〈(M, ~F,Σ),Σ∗〉 be a coarse strategy pair, and let C be an (~F,Σ)-
construction done in M ; then
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(1) if (†)ν,k then (Mν,k+1,Ων,k+1) is a least branch hod pair with scope HC, and
setting γ = (ρ+)Mν,k , (Ων,k)〈γ,0〉 = (Ων,k+1)〈γ,0〉,

(2) if (†)ν,k holds for all k < ω, then (Mν+1,0,Ων+1,0) is a least branch hod pair with
scope HC, and

(3) if ν is a limit ordinal and (†)α,k holds for all α < ν and k < ω, then (Mν,0,Ων,0)
is a least branch hod pair with scope HC.

Notice here that the pairs referred to in (1)-(3) have scope all of HC, even though
they come from a construction done in the countable model M . This is because Σ
extends to Σ∗, and Σ∗ has scope HC.

Definition 6.38 C is a least branch background construction iff C is a least branch
(~F,Σ)-construction, for some ~F and Σ. We say C is maximal iff it never passes on
an opportunity to add an extender.

Definition 6.39 A least branch background construction C is pathological iff for
some 〈ν, k〉, (†)ν,k is false.

A pathological construction is one that reaches a pair (Mν,k,Ων,k) whose stan-
dard parameter does not behave well, or that reaches a stage 〈ν,−1〉 at which the
Bicephalus Lemma fails.22

We shall show that assuming AD+, if 〈(M, ~F,Σ),Σ∗〉 is a coarse strategy pair,

and C is a least branch (~F,Σ)-construction done in M , then C is not pathological.
Lemma 6.37 is a preliminary step in that direction. The remaining steps are taken
in Theorem 6.57 on the existence of cores, and in 7.3, the Bicephalus Lemma.

The existence of coarse strategy pairs under AD+ comes from

Theorem 6.40 Assume AD+, and let (M,Σ∗) be a coarse Γ-Woodin pair. Let δ =

δM , and ~F ⊆ V M
δ be such that M |= “~F is coarsely coherent”. Suppose δ < θ < α

with θ and α inaccessible in M . Let P = V M
α and Σ = Σ∗ ∩V M

θ ; then 〈(P, ~F,Σ),Σ∗〉
is a coarse strategy pair.

22It is not clear that we need to stop our construction because of a bicephalus pathology. We
might continue by not adding any extenders to M<ν , or by picking one of the certified extenders
and adding it. However, the existence of a bicephalus pathology would cause problems later, in the
argument that a certified extender that coheres with M<µ must satisfy the Jensen initial segment
condition. Without this, we can’t show the model we construct reaches even a Woodin cardinal,
or, in the Γ-Woodin background model case, is universal.
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Proof. Since Σ∗ is guided by CΓ Q-structures, Σ∗ ∩ V M
θ ∈ M , that is, Σ ∈ P .

Moreover, M believes it is strongly uniquely (θ, θ, ~F )-iterable by Σ, so P believes
Σ has strong hull condensation, normalizes well, and moves itself to its tails under
iteration. Thus (P, ~F,Σ) is a coarse strategy premouse. The remaining clauses of
definition 6.36 follow from the fact that Σ∗ witnesses that M is strongly uniquely
(ω1, ω1)-iterable in V . �

If we are starting with ZFC and very large cardinals, together with IHκ,δ, we can
use

Theorem 6.41 Assume ZFC plus IHκ,δ, and that there are λ < µ < κ such that λ is
a limit of Woodin cardinals, and µ is measurable. Let w be a wellorder of Vδ, C be
a w-construction above κ, and let Ω be the unique ~FC-iteration strategy for V ; then
there is a coarse strategy premouse of the form (N, ~FC,Ω�N) such that V N

δ = Vδ.
Moreover, whenever

π : (M, ~FD,Σ)→ (N, ~FC,Ω�N)

is elementary, with M countable transitive, then letting Σ∗ = Ωπ�HC,

(a) 〈(M, ~FD,Σ),Σ∗〉 is a coarse strategy pair, and

(b) L(R,Σ∗) |= AD+.

Proof. We leave it to the reader to find N such that (N, ~FC,Ω�N) is a coarse

strategy premouse. Since π is elementary, (M, ~FD,Σ) is a coarse strategy premouse.

〈(M, ~FD,Σ),Σ∗〉 is a coarse strategy pair because strong hull condensation, normal-
izing well, and self-consistency pull back under π. Finally, Σ∗ is κ-universally Baire
by IHκ,δ. Since we have λ and µ, we get that L(R,Σ∗) |= AD+. �

Theorem 6.41 makes theorems about the constructions of coarse strategy pairs
proved assuming AD+ applicable in the ZFC context. Whatever was true of C in N
is true of π−1(C) in M .

Remark 6.42 If C is a maximal, non-pathological, pure extender w-construction
above κ, then the map 〈ν, k〉 7→ MC

ν,k is ordinal definable. w enters into picking

the FCν , but not into defining the MC
ν,k, by the Bicephalus Lemma. But it is not at

all clear that if C is a maximal, non-pathological, least branch w-construction, then
each MC

ν,k is ordinal definable. The problem lies in the use of w to pick background

extenders. Although our strategy for V is unique, different choices for the FCν lead to
different ways of lifting trees on MC

ν,k to V , and hence possibly different candidates

for ΩCν,k. Information about Ων,k is being recorded in later Mµ,l, making it possible
that they are not ordinal definable.
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Remark 6.43 Let M = MC
ν,k and Ω = ΩCν,k, and suppose M |= ZFC. Then Ω�M

is definable over M , by a definition that is uniform in 〈ν, k〉. That is because the
restriction of Ω to normal trees in M is given by Σ̇M , and that determines its re-
striction to stacks of normal trees because Ω normalizes well, and that determines
its restriction to stacks of weakly normal trees in M because Ω is strategy coherent.

6.5 Comparison and the hod pair order

We can adapt Theorem 5.11 to hod pairs.

Definition 6.44 Let (M,Σ) and (N,Ω) be mouse pairs; then

(a) (M,Σ) iterates past (N,Ω) iff there is a normal iteration tree T by Σ on M
with last model Q such that N �Q, and ΣT ,N = Ω.

(b) (M,Σ) iterates to (N,Ω) iff there are T and Q as in (a), and moreover, N = Q,
and the branch M-to-Q of T does not drop.

(c) (M,Σ) iterates strictly past (N,Ω) iff it iterates past (N,Ω), but not to (N,Ω).

The normal tree T above is completely determined by N and Σ; it must come
by iterating away the least extender disagreement. (M,Σ) and (N,Ω) are strategy
coherent and self-consistent, so (M,Σ) iterates past (N,Ω) if and only if (i) no
strategy disagreements show up as we iterate, (ii) no non-empty extenders from N
participate in least disagreements, so that N does not move, and (iii) N is an initial
segment of the final model on the M -side.

The following notation is convenient: let C be a construction such that MC
ν,0 is

extender-active; then
(MC

ν,−1,Ω
C
ν,−1) = (M<ν ,Ω<ν).

Setting γ = ô(MC
ν,0), we can write this (MC

ν,−1,Ω
C
ν,−1) = (MC

ν,0|〈γ,−1〉, (ΩCν,0)〈γ,−1〉).
Adapting the proof of Theorem 5.11, we get

Theorem 6.45 Suppose that (V, ~F,Λ) is a coarse strategy premouse, with ~F ⊆ Vδ,
where δ is inaccessible. Let (P,Σ) be a least branch hod pair with scope Hδ such that

|P | < crit(E) for all E on ~F . Let C be a (~F,Λ)- construction, and let 〈ν, k〉 < lh(C)
be such that (P,Σ) iterates strictly past (MC

η,j,Ω
C
η,j), for all 〈η, j〉 <lex 〈ν, k〉; then

(P,Σ) iterates past (MC
ν,k,Ω

C
ν,k).
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Remark 6.46 It is not possible that (P,Σ) iterates to (MC
ν,−1,Ω

C
ν,−1), for some ν

such that FCν 6= ∅. For if so, then in Ult(V, FCν ), (P,Σ) would iterate strictly past
(MC

ν,−1,Ω
C
ν,−1), contradiction.

Remark 6.47 It follows by our work realizing resurrection embeddings as branch
embeddings that if M iterates to MC

ν,l+1, then it iterates strictly past MC
ν,l. This

terminology might be a bit confusing at first, because the iteration tree T from M
to MC

ν,l+1 is an initial segment of the tree U from M to MC
ν,l. Along the branch of U

from M to MC
ν,l we dropped once, at MC

ν,l+1, from degree l+ 1 to degree l. That drop

meant that M iterates past, but not to, Mν,l. This is the case even if MC
ν,l = MC

ν,l+1

as an lpm, with only the attached soundness level changing. Then U would be T ,
together with one gratuitous drop in degree at the end.

Remark 6.48 We do not know whether there can be more than one 〈ν, k〉 such that
(P,Σ) iterates to (MC

ν,k,Ω
C
ν,k).

Theorem 6.45 easily implies theorem 1.15 of the introduction:

Theorem 6.49 Assume AD+, and let (P,Σ) be a least branch hod pair; then (*)(P,Σ)
holds.

Proof. Let N∗ be a coarse Γ-Woodin model that Suslin-co-Suslin captures Σ, as in
the hypothesis of (*)(P,Σ). We can then simply apply 6.45 inside N∗. �

In order to apply (*)(P,Σ), we need to know that there are coarse Γ-Woodin
models whose maximal hod-pair construction does not break down before they absorb
(P,Σ). The following lemma will help with that.

Lemma 6.50 Assume IHκ,δ, and let let C be a least branch construction above κ.
Suppose that MC

ν,k exists. Let (P,Σ) be a least branch hod pair with scope Hδ such
that o(P ) < κ; then for any ν, k:

(a) if (P,Σ) iterates strictly past all (MC
µ,l,Ω

C
µ,l) such that µ < ν, then C satisfies

(†)ν,−1, and

(b) if (P,Σ) iterates strictly past (MC
ν,k,Ω

C
ν,k), then C satisfies (†)ν,k.

Proof. For (a), suppose toward contradiction that F0 6= F1, and for i ∈ {0, 1},
(M<ν , Fi, ∅) is an lpm, crit(Fi) ≥ κ, and Fi is certifiable, in the sense of Definition
2.1 of [29]. It follows that for i ∈ {0, 1} there is a construction Ci such that MCi

ν,0 =

(M<ν , Fi, ∅), and for all µ < ν and k, (MCi
µ,k,Ω

Ci
µ,k) = (MC

µ,k,Ω
C
µ,k). It follows from
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Theorem 6.45 that (P,Σ) iterates past both (MC0
ν,0,Ω

C0
ν,0) and (MC1

ν,0,Ω
C1
ν,0). This is

impossible, for it has to be the same iteration, but F0 6= F1.
For (b), we have a normal tree T on P by Σ, with last model N = MT

γ , such
that either

(i) MC
ν,k is a proper initial segment of N , or

(ii) MC
ν,k = N , and [0, γ]T drops (in model or degree).

We claim that in either case, C satisfies (†)ν,k, a contradiction.
Let µ and s be the projectum and standard parameter of Mν,k. (That is, the

k + 1-st.) In case (i), Mν,k is sound, so (a) and (b) of (†)ν,k hold trivially.
Suppose we are in case (ii), and let Q = MT

θ |〈ô(Q), k〉 be the last structure we
drop to in [0, γ]T . So k(Q) = k, and Q is sound (i.e. k + 1 sound), and setting

i = ı̂Tθ,γ,
we have that i : Q→ N is elementary, and

ρ(Q) = ρ(N) = µ ≤ crit(i).
Since there was no further dropping, Q and N agree to their common value for µ+.
Also, i maps p(Q) to s, so s is solid. This gives us (a) and (b) of (†)ν,k. �

From this we get

Theorem 6.51 Assume AD+, and let (P,Σ) be an lbr hod pair with scope HC. Let
Code(Σ) ∈ Γ, and let (N∗, δ, S, T,�,Ψ) be a coarse Γ-Woodin tuple, and let C be the
maximal least branch construction of N∗; then there is an 〈ν, k〉 such that

(i) ν < δ,

(ii) (MC
ν,k,Ω

C
ν,k) exists (that is, the construction has not broken down yet), and

(iii) there is a normal T such that (P,Σ) iterates via T to (MC
ν,k,Ω

C
ν,k).

Remark 6.52 Clause (iii) of the conclusion can be understood as a truth in N∗

about Σ ∩N∗. But letting (ΩCν,k)
∗ be the strategy on all stacks in V that is induced

by C and Ψ, (iii) implies that in V , ΣT ,Mν,k
= (ΩCν,k)

∗.

Proof. If not, then by applying 6.45 and 6.50 in N∗, we have that C does not
break down at all, and P iterates past MC

δ∗,0 in N∗. The proof of universality at a
Woodin cardinal in the pure extender premouse case (see 2.53 and 4.20) then leads
to a contradiction. �

We can now show that under AD+, any two least branch hod pairs are comparable.
First, some notation for cutpoint initial segments:
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Definition 6.53 For M and N lpms, we write M �ct N iff M �N , and whenever
E is on the N-sequence and lh(E) ≥ o(M), then crit(E) > o(M).

Theorem 6.54 Assume AD+, and let (P,Σ) and (Q,Ψ) be lbr hod pairs with scope
HC; then there are normal trees T and U by Σ and Ψ respectively, with last models
R and S respectively, such that either

(a) R�ct S, ΣT ,R = ΨU ,R, and the branch P -to-R of T does not drop, or

(b) S �ct R, ΨU ,S = ΣT ,S, and the branch Q-to-S of U does not drop.

Proof. We find Γ-Woodin background universe N∗ having universally Baire rep-
resentations for both strategies. Letting C be the maximal least branch construction
of N∗, we have that there are 〈ν, k〉 and 〈µ, l〉 such that (P,Σ) normally iterates
to (MC

ν,k,Ω
C
ν,k) and strictly past all earlier pairs, while (Q,Ψ) normally iterates to

(MC
µ,l,Ω

C
µ,l) and strictly past all earlier pairs. If say 〈ν, k〉 ≤lex 〈µ, l〉, then (Q,Ψ))

normally iterates past (MC
ν,k,Ω

C
ν,k), and the latter is a normal, nondropping iterate

of (P,Σ). By perhaps using one more extender on the Q-side, we can arrange that
MC

ν,k is a cutpoint of the last model. This yields a successful comparison of type (a).
If 〈µ, l〉 ≤lex 〈ν, k〉, then we have a successful comparison of type (b).

�

Theorem 6.54 was phrased in the language of mouse pairs in 6.21. We get at once

Corollary 6.55 Assume AD+, and let (M,Ω) be an lbr hod pair with scope HC; then
every real in M is ordinal definable.

It is natural to ask whether M satisfies “every real is ordinal definable”. Borrow-
ing Lemma 8.1 from the future, we have

Theorem 6.56 Assume AD+, and let M,Ω) be an lbr hod pair with scope HC. Sup-
pose M |= ZFC + “δ is Woodin”. Working in M , let UB be the collection of δ-
universally Baire sets; then

M |= there is a (Σ2
1)UB wellorder of R.

Proof.. Working in M , let N ∈ C iff N � M and ρ(N) = ω. We claim that
N is in C if and only if there is a Ψ such that (N,Ψ) is an lbr hod pair, and Ψ is
δ-universally Baire.

For let N ∈ C. By Lemma 8.1, ΩN is δ-universally Baire in M . Clearly, (N,ΩN)
is an lbr hod pair in M .
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Conversely, let (N,Ψ) be an lbr hod pair in M such that ρ(N) = ω, and Ψ is δ
universally Baire in M . Let S be the first initial segment of M that projects to ω
and is such that S /∈ N . We apply Theorem 6.45 in M . Letting C be the maximal
construction below δ in M , neither side can iterate past M〈δ,0〉 because δ is Woodin.
It is easy to see then that there must be a 〈ν, k〉 such that both (N,Ψ) and S,ΩS)
iterate to MC

〈ν,k〉; otherwise we would get N ∈ S or S ∈ N . This then implies S = N ,

as desired. (It also implies Ψ = ΩS, by pullback consistency.)
This easily yields the theorem. �

Theorem 6.56 stands in contrast to the situation with pure extender mice, which
can satisfy “not all reals are ordinal definable”. (See for example [39].) We shall
show in Chapter 7 that V = HOD holds in any hod mouse with arbitrarily large
Woodin cardinals, and in fact, a version of V = K holds true.

One feature of our comparison process is that we may often use the same extender
on both sides. That does not happen in an ordinary comparison of premice by
iterating least disagreements. This feature can be awkward. What we gain is that
we never encounter strategy disagreements in our comparison process. A comparison
process that involves iterating away strategy disagreements as we encounter them
(such as the process of [30]) will also often use the same extender on both sides.
But such a process (if we knew one in general) might have some advantages. For
example, it might be possible to get by without assuming the existence of a Γ-Woodin
background universe, where Σ0 and Σ1 are in Γ. It might also give better bounds on
the lengths of comparisons between uncountable pairs.

For example, Grigor Sargsyan has pointed out that our results leave the following
question open. Suppose that (P,Σ) and (Q,Ψ) are pure extender pairs with scopeHδ,
where δ is Woodin, and that o(P ) = o(Q) = ω1. Suppose that whenever i : V → N
with N transitive, then i(Σ) ⊆ Σ and i(Ψ) ⊆ Ψ. Our results show that (P,Σ)
and (Q,Ψ) have a common iterate (R,Λ) such that one of P -to-R and Q-to-R does
not drop. Can we find such an (R,Λ) with o(R) = ω1? The standard “weasel
comparison” proof shows that one can find iterates (R,Λ0) and (R,Λ1) such that
o(R) = ω1, but if one demands that Λ0 = Λ1, the question is open, and our strategy-
comparison theorem does not answer it.

6.6 The existence of cores

As in the case of ordinary premice, we can formulate our solidity and universality
results abstractly, in a theorem about least branch premice having sufficiently good
iteration strategies.
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Theorem 6.57 (The existence of cores.) Let M be a countable lpm, and let Ψ be
an iteration strategy for M defined on all countable M-stacks by Σ. Suppose that
whenever s is a countable M-stack by Ψ having last model N , then (N,Ψs) is a
least branch hod pair. Suppose that Ψ is coded by a set of reals that is Suslin and
co-Suslin in some L(Γ,R), where L(Γ,R) |= AD+. Let ρ = ρ(M) and r = p(M) be
the projectum and standard parameter of M , and let

H = transitive collapse of HullM(ρ ∪ r);
then

(1) r is solid, and

(2) H|(ρ+)H = M |(ρ+)M .

Remark 6.58 We don’t need the full strength of a model of AD+ with Ψ in it.

Proof. Let q be the longest solid initial segment of r. Let r = q ∪ s, where either
s = ∅ or min(q) > max(s). Let

α0 = least β such that ThMk+1(β ∪ q) /∈M .
Here k = k(M). We may assume α0 ∈ M , as otherwise r = ∅ and α0 = ρ(M) =
o(M), in which case the theorem is trivially true. Let

K = transitive collapse of HullM(α0 ∪ q),
and let π : K →M be the collapse map. We may assume that α0 ∈ K, as otherwise
K �M , so ThMk+1(α0 ∪ q) ∈M .

Claim 0.

(a) If q = r, then ρ = α0.

(b) If q 6= r, then ρ < α0 ≤ max(s).

(c) K |= α0 is a cardinal.

Proof. (a) is clear. For (b), let W be the solidity witness for q ∪ {max(s)}, that
is, the transitive collapse of HullM(max(s) ∪ q). We are assuming W /∈ M . This
implies that ThMk+1(max(s) ∪ q) /∈ M . [Proof: Suppose T = ThMk+1(max(s) ∪ q) is
in M . Note max(s) is a cardinal of W , and max(s) = crit(π), where π : W → M
is the uncollapse. So T ∈ M |π(α), and M |π(α) |= KP. So W ∈ M |π(α).] Thus
α0 ≤ max(s).

We have ρ < α0 because otherwise p(M) = q.
(c) is clear if α0 = ρ. So we may assume π 6= id. (c) is clear if α0 = crit(π), so

we may assume α0 < crit(π). Suppose f : β → α0 is a surjection, with β < α0 and
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f ∈ K. Let π(f) be rΣM
k+1 definable from parameters in γ ∪ q, where β < γ < α0.

Then from ThMk+1(γ∪ q) one can easily compute ThMk+1(α0∪ q), so ThMk+1(γ∪ q) /∈M ,
contrary to the minmality of α0.

�

We shall show that if q 6= r, then ThMk+1(α0 ∪ q) ∈ M . This implies q = r, so r
is solid. We then show that K satisfies conclusion (2). The argument is based on
comparing the phalanx (M,K,α0) with M , as usual.

Let M = {ei | i < ω} be an enumeration of M in which for some n, r = 〈e0, ..., en〉
(in descending order, so e0 = max(r)). By Lemma 6.27, we may assume that Ψ has
the weak Dodd-Jensen property relative to ~e. This involves replacing Ψ by a pullback
of one of its tails, but we stay with the same M , and it is the first order theory of
M that matters in (1) and (2).

Remark 6.59 Under the additional hypothesis that Ψ has the weak Dodd-Jensen
property relative to some ~e, we can strengthen the strategy agreement part of (2) to:
for γ = (ρ+)M , Ψ〈γ,0〉 = (Ψπ)〈γ,0〉.

In the comparison argument, we iterate both M and (M,K,α0) into the models
of a common background construction. Additional phalanxes (N,L, β) may appear
above (M,K,α0) in its tree.

The background construction is the following. Working in our model of AD+

having Ψ in it, let (N∗, δ∗, S, T,�,Σ∗) be a coarse Γ-Woodin tuple, with M countable
in N∗ and Code(Ψ) in Γ. Let C be the maximal �-construction done in N∗. (N∗,Σ∗).
C may break down before stage δ∗, but by Theorem 6.51 it absorbs (M,Ψ) before
that. In other words, letting

Mη,l = MC
η,l and Ωη,l = ΩCη,l,

we have

Claim 1. Let k = k(M). There is an η < δ∗ such that 〈η, k〉 ≤ l(C), and (M,Ψ)
iterates to (Mη,k,Ωη,k), and strictly past all earlier pairs in C.

Let us fix k0 = k(M), and η0 < δ∗ and U a normal tree on M with last model Mη0,k0

witnessing Claim 1. For each 〈ν, l〉 ≤lex 〈η0, k0〉, let Uν,l be the unique normal tree
on M witnessing that (M,Ψ) iterates strictly past (Mν,l,Ων,l).

We now want to compare (M,K,α0) with the Mν,l for 〈ν, l〉 ≤lex 〈η0, k0〉. For
each such 〈ν, l〉 we shall define a “psuedo iteration tree” Sν,l on (M,K,α0). We shall
have complete strategies attached to the models of Sν,l, and as before, the key will
be that no strategy disagreements with Ων,l show up, and that Mν,l does not move.
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The rules for forming Sν,l will be the usual ones for iterating a phalanx, with the
exception that at certain steps we are allowed to move the whole phalanx up. (We
don’t throw away the phalanxes we had before, we just create a new one.) Whenever
we introduce a new phalanx, we continue the construction of S by looking at the
least disagreement between its second model and Mν,l.

Fix ν and l. Let us write U = Uν,l. At the same time that we define S = Sν,l, we
shall copy it to a normal tree T = Tν,l on M that is by Ψ. We allow a bit of padding
in T ; that is, occasionally MT

θ =MT
θ+1. We shall have copy maps

πθ : MS
θ →MT

θ

with the usual commutativity and agreement properties. We should write πν,lθ here,
but will omit the superscripts when we can. The strategy we attach to MS

θ is
Σθ = (ΨT �θ+1)πθ .

We shall have that (MS
θ ,Σθ) is an lbr hod-pair. Finally, we have ordinals λSθ for each

θ < lh(S) that measure agreement between the models of S, and tell us which one
we should apply the next extender to.23

We start with
MS

0 = M,MS
1 = K, and λS0 = α0,

and
MT

0 =MT
1 = M.

We let π0 = identity, and let π1 : K → M be the uncollapse map. Since crit(π1) ≥
α0 = λS0 , π0 and π1 agree up to the relevant exchange ordinal. We think of 0 and
1 as distinct roots of S. One additional root will be created each time we move a
phalanx up, and only then.

As we proceed, we define what it is for a node θ of S to be unstable. We shall
have that if θ is unstable, then 0 ≤S θ and [0, θ]S does not drop. We then set

αθ = sup iS0,θ“α0.
The idea is that θ is unstable iff (MS

θ ,MS
θ+1, αθ) is a phalanx that we are allowed

to move up. If θ is unstable, then θ+ 1 is stable, and a new root in S, that is, there
are no ξ <S θ + 1. These are the only roots, except for 0. Our first unstable node is
0, and 1 is stable.

The padding in T corresponds exactly to the unstable nodes of S, in that θ is
unstable iff MT

θ =MT
θ+1.

We maintain by induction on the construction of S that the current last model is
stable, and conversely, every stable model is the last model at some stage. So really,

23Earlier we defined λTα , for T a normal iteration tree, to be the sup of the Jensen generators on
the branch [0, α)T . (See 2.13.) Our use of the notation now is a different one. Psuedo-trees are not
normal trees, so there is not a literal conflict. But if S is a psuedo-tree, then λSα corresponds to
λTα+1 in the normal case, and not to λTα .
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we are defining Sη, which has a stable last model, by induction on η, sometimes
adding two models at once, and taking S =

⋃
η Sη. We shall suppress the superscript

η, however. All extenders used in S will be taken from stable nodes. We also maintain
that if MS

θ has been defined, then

Induction hypotheses. If θ is unstable, then

(i) 0 ≤S θ, the branch [0, θ]S does not drop in model or degree,

(ii) λSθ ≤ αθ ≤ ρk(MS
θ ), where k = k(M),

(iii) every τ ≤S θ is unstable,

(iv) there is a ξ such that MS
θ =MU

ξ ,

(v) ρ(MS
θ ) = sup iS0,θ“ρ,

(vi) αθ = least β such that Th
MSθ
k+1(β ∪ iS0,θ(q)) /∈MS

θ .

Item (ii) explains why [0, θ]S does not drop in model or degree, for an extender
applied to MS

θ must have critical point < λSθ . Concerning item (iv), notice

Claim 2. If 0 ≤S θ, and [0, θ]S does not drop in model or degree, and MS
θ = MU

ξ ,
then then [0, ξ]U does not drop in model or degree; moreover iS0,θ = iU0,ξ.

Proof. This follows as usual the weak Dodd-Jensen property of Ψ. If for example
that [0, ξ]U drops, then iS0,θ maps M elementarily into a dropping Ψ-iterate of M ,
contradiction. Similarly, iU0,xi must be “to the left of” iS0,θ with respect to ~e. But also,
πθ ◦ iU0,ξ is an elementary map from M to MT

θ , so iT0,θ = πθ ◦ iS0,θ is to its left. So iS0,θ
is to the left of iU0,ξ, so iSo,θ = iU0,ξ. �

The following notation will be useful. For any node γ of S, let
st(γ) = least stable θ such that θ ≤S γ,

and

rt(γ) =

{
S-pred(st(γ)) if S-pred(st(γ)) exists

st(γ) otherwise.

Note that if θ is unstable and θ + 1 ≤S γ, then rt(γ) = θ + 1. If θ is the largest
unstable ordinal ≤S γ, then rt(γ) = θ. Finally, if there are unstable ordinals ≤S γ,
but no largest one, then rt(γ) = sup{θ | θ ≤S γ and θ is unstable }.

The construction of S can end in one of two ways:

(1) We reach a stable θ such that either
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(a) Mν,l �MS
θ or

(b) MS
θ �Mν,l, and [rt(θ), θ]S does not drop in model or degree.

In both cases, the full external strategies will be lined up, by Lemma 6.64 below.
Case 1(b) constitutes a successful comparison of (M,K,α0) with M , which iterated
past Mν,l via U . So in case 1(b), we leave Sη,m undefined for all 〈η,m〉 >lex 〈ν, l〉.
In case 1(a) our phalanx has iterated strictly past Mν,l, and so we go one to define
Sν,l+1.

There is a second way the construction of S can end.

(2) We reach a stable θ such that for some ξ,MS
θ =MU

ξ , and neither [rt(θ), θ]S nor
[0, ξ]U has dropped in model or degree. Moreover, lettingQ =MS

θ |〈ô(MS
θ ),−1〉

be the result of removing the last extender predicate, we have that Q�Mν,l.

IfMS
θ is not extender-active, then this is the same as case 1(b) above (and we must

have 〈ν, l〉 = 〈η0, k0〉). But ifMS
θ is extender-active, it is a new way to end. We think

of it as a successful comparison, and leave Sη,m undefined for all 〈η,m〉 >lex 〈ν, l〉.
Note that in the extender-active case, we have not actually lined up the strategies
of MS

θ and MU
ξ . We’ve lined up the part of them that acts on Q, and we’ve lined

up the last extender predicates themselves, but not how the strategies act on trees
involving the last extender.

In both case (1) and case (2), the last model of S is MS
θ .

Claim 3. Induction hypotheses (i)-(vi) hold for θ = 0 and θ = 1.

Proof.. (i)-(vi) are trivial for θ = 0, and vacuous for θ = 1. �

The rules for extending S at successor steps are the following. SupposeMS
γ is the

current last model, so that γ is stable, and suppose the construction is not required
to stop by (1) or (2) above. So we have a least disagreement betweenMS

γ and Mν,l.
Suppose the least disagreement involves only an extender E from theMS

γ sequence.
By this we mean: letting τ = lh(E),

• Mν,l|〈τ, 0〉 =MS
γ |〈τ,−1〉, and

• (Ων,l)〈τ,0〉 = (Σγ)〈τ,−1〉.

Lemma 6.64 below proves that this is the case. Set
λSγ = λE.

Let ξ be least such that crit(E) < λSξ . We declare that S-pred(γ+ 1) = ξ. Let 〈β, n〉
be lex least such that either ρ(MS

ξ |〈β, n〉) ≤ crit(E), or 〈β, n〉 = 〈ô(MS
ξ ), k(MS

ξ )〉.
We set

MS
γ+1 = Ult(MS

ξ |〈β, n〉, E),
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and let ı̂Sξ,γ+1 be the canonical embedding. We let

MT
γ+1 = Ult(MT

ξ |〈πξ(β), n〉, πγ(E)),
and let πγ+1 be given by the Shift Lemma, as usual. If ξ is stable, or if 〈β, n〉 <lex

〈ô(MS
ξ ), k(MS

ξ )〉, then we declare γ + 1 to be stable, and we just go on now to look
at least disagreement between MS

γ+1 and Mν,l. Nothing unusual has happened.
Induction hypotheses (i)-(vi) concern only unstable nodes, so they are vacuously

true at θ = γ + 1.

Remark 6.60 There is an anomalous case to consider here. It occurs also in the
solidity proof for ordinary premice, where Schindler and Zeman found the arguments
that take care of it. (See [42].) This case only occurs when α0 = lh(F ), for some
extender F from the M -sequence. Equivalently, for some (all) unstable ξ, αξ = lh(F )
for some F from the M -sequence. Then we could have an unstable ξ and a γ such
that S-pred(γ+1) = ξ, and crit(ES

γ ) = λ(F ), where F is the last extender ofMS
ξ |αξ.

Thus 〈β, n〉 = 〈αξ, 0〉, and MS
γ+1 = Ult(MS

ξ |〈αξ, 0〉) is not an lpm, because F is a
missing whole initial segment of iSξ,γ+1(F ). But this is ok. The next disagreement
will force us to apply iSξ,γ+1(F ) to MS

ξ , and that will produce an lpm; moreover,
λ(ESγ ) = λ(iSξ,γ+1(F )), so γ + 1 is now a dead node. One can cope with the fact
that iSξ,γ+1(F ) has a missing whole initial segment in the termination arguments; the
argument is the same as that of Schindler-Zeman. We shall not give any further
details of this anomalous case here.

Now suppose ξ is unstable, and 〈β, n〉 = 〈ô(MS
ξ ), k(MS

ξ )〉. (Since α0 ∈ M , this
means the anomalous case does not occur.) We look to see whether MS

γ+1 is also a
model of U . If not, then again we declare γ + 1 to be stable, and go on. Our new
last node γ + 1 is stable, so (i)-(vi) are vacuous for θ = γ + 1.

Finally, if MS
γ+1 is also a model of U , then we declare γ + 1 to be unstable, and

γ + 2 to be stable. Set
MS

γ+2 = transitive collapse of HullM
S
γ+1(αγ+1 ∪ iS0,γ+1(q)).

Let also σγ+1 : MS
γ+2 →MS

γ+1 be the collapse map, and

MT
γ+2 =MT

γ+1, and

πγ+2 = πγ+1 ◦ σγ+1.
Our new last node is stable. Our induction hypothesis (i) holds for θ = γ + 1

because it held for θ = ξ, and because λξ ≤ αξ. (iii) is clear. For (ii), we must
define λγ+1. Suppose that there is a least disagreement betweenMS

γ+2 and Mν,l, and
lemma 6.64 applies to it, so it involves only some F from the sequence of MS

γ+2. If
there is no such F , MS

γ+2 is the last model of S, and we leave λSγ+1 as undefined as
λSγ+2 is. If F exists, we set

λSγ+2 = λ(F ),
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and
λSγ+1 = inf(λSγ+2, αγ+1).

This insures that (ii) holds at θ = γ + 1. It also insures that λγ < λγ+1 ≤ λγ+2,
so that the λ’s remain nondecreasing, which is something we want. πγ+2 agrees
with πγ+1 on λSγ+1, as required. (MS

γ+1,MS
γ+2, α

S
γ+1) is the result of moving up the

phalanx.

Remark 6.61 It is possible that λγ+1 = λγ+2, and lh(F ) < αγ+1. Indeed, this will
happen a lot. In this case, F will immediately move the phalanx (MS

γ+1,MS
γ+2, αγ+1)

up again. Moreover, since λγ+1 = λγ+2, no extender ever gets applied to MS
γ+2. It

is a “dead node”. The phalanx (MS
γ+1,MS

γ+2, αγ+1) may get moved up repeatedly,
along various branches, but that doesn’t really involveMS

γ+2. After contributing F ,
it became irrelevant.

Induction hypothesis (iv) is clear. Next we verify (v) and (vi). For this we need

Claim 4. For a ⊂ λE finite, Ea ∈MS
ξ .

Proof. Let MS
γ+1 = MU

µ . By claim 2, [0, µ]U does not drop, and sSγ+1 = sUµ . It
follows that E is also used in U . Say E = EUβ . Let κ = crit(E). We have

sup
τ<ξ

λτ ≤ κ < λξ,

because we are applying E to MS
ξ .

Suppose first that E is not the last extender of MS
γ . Then Ea ∈ MS

γ , and
since κ < λSξ ≤ λSξ+1, Ea ⊆ MS

ξ+1|λSξ+1. Thus by the agreement of models in S,
Ea ∈MS

ξ+1. If αξ = crit(σξ), then αξ is a cardinal of MS
ξ+1. If MS

ξ =MS
ξ+1, we get

Ea ∈ MS
ξ , as desired. If not, then κ < αξ ≤ crit(σξ), and crit(σξ) is a cardinal of

MS
ξ+1, so Ea ⊆Mξ+1| crit(σξ), which yields Ea ∈MS

ξ , as desired.
Suppose next that E is the last extender of MS

γ , and the branch to γ of S has
dropped. Let η be the site of the last drop, i.e. η is least such that ı̂Sη,γ maps the full
MS

η elementarily to MS
γ . Then κ ∈ ran(̂ıSη,γ), and γ ≥ (ξ + 1). This implies η > ξ.

(Proof: η ≤S ξ is impossible since [0, ξ]S does not drop. So if η < ξ, and F is the first
extender used in (η, γ]S such that λF > κ, then F is applied toMS

τ where τ < ξ. So
crit(F ) < λτ ≤ κ, and κ /∈ ran(̂ıSη,γ.) Thus crit(̂ıSη,γ) > κ. Letting τ = S-pred(η), this
easily yields Ea ∈ MS

τ . Then we can argue as we did in the preceding paragraph
under the hypothesis that Ea ∈MS

γ , and we get Ea ∈MS
ξ as desired.

Thus we may assume that E is the last extender of MS
γ , and the branch of S to

γ (i.e. either [0, γ]S or [rt(γ), γ]S) does not drop in model or degree. By a parallel
argument, we may assume that E is the last extender ofMU

β , and the branch [0, β]U
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does not drop in model or degree. But that means we stop our construction for
reason (2), with MS

γ being the last model of S, contrary to our assumption. This
proves Claim 4.

�

It is precisely in order to insure Claim 4 that we stop the construction for reason
(2).

Claim 5. Items (v) and (vi) of our induction hypotheses hold.

Proof. Let i = iSξ,γ+1, and k = k0 = k(M). Consider first (vi). For β ≤ αξ, let

Tβ = Th
MSξ
k+1(β ∪ iS0,ξ(q)),

and for β ≤ αγ+1, let

Rβ = Th
MSγ+1

k+1 (β ∪ iS0,γ+1(q)).

If β < αξ, then Tβ ∈ MS
ξ , and we can use i(Tβ) to compute Ri(β), as usual with

solidity witnesses. Since αγ+1 = sup i“αξ, this gives half of (vi). For the other half,
assume R = Rαγ+1 is in MS

αγ+1
, say

R = [a, f ]
MSξ
E .

Letting T = Tαξ , we then have 〈ϕ, µ〉 ∈ T iff 〈ϕ, i(µ)〉 ∈ R iff for Ea almost every u,
〈ϕ, µ〉 ∈ f(u). Since Ea ∈MS

ξ , T ∈MS
ξ , a contradiction.

Consider now (v). Let t = p(MS
ξ ) and σ = ρ(MS

ξ ) be the standard parameter
and projectum. Let τ = sup i“σ.

Remark 6.62 Our proof shows that iS0,ξ(q) is an initial segment of t, but it does not
show t = iS0,ξ(r). The standard parameter could move down in its non-solid region.

Let for any β, x ∈MS
ξ

Tβ(x) = Th
MSξ
k+1(β ∪ {x}),

and for β, x ∈MS
γ+1, let

Rβ(x) = Th
MSγ+1

k+1 (β ∪ {x}).
If Rτ (i(t)) ∈ MS

γ+1, say Rτ (i(t)) = [a, f ], then using Ea we can compute Tσ(t)
inside MS

ξ , contradiction. Thus ρ(MS
γ+1) ≤ τ . On the other hand, let κ ≤ β < σ

and x = [a, f ] in Ult(MS
ξ , E). Then Tβ(f) ∈ MS

ξ , and we can compute Ri(β)(x)
from i(Tβ(f)) in MS

γ+1. (First, compute Ri(β)(i(f)). Then note x = i(f)(a), and
a ⊂ i(β).) Since ran(i) is cofinal in τ , we get τ ≤ ρ(MS

γ+1).
This proves Claim 5. �

Now let θ be a limit ordinal, and let b = Ψ(T �θ) be the branch of T chosen by Ψ.
b may have pairs of the form γ, γ + 1 in it whereMT

γ =MT
γ+1; this occurs precisely
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when γ ∈ b is unstable. By construction, the set of such pairs is an initial segment
of b that is closed as a set of ordinals.

Suppose first

Case 1. There is a largest η ∈ b such that η is unstable.
Fix this η. There are two subcases.

1(b) for all γ ∈ b− (η + 1), rt(γ) = η + 1. In this case, b− (η + 1) is a branch of S.
We let S choose this branch, that is,

[η + 1, θ)S = b− (η + 1),
and letMS

θ be the direct limit of theMS
γ for γ ∈ b− (η+ 1) sufficiently large.

The branch embeddings ı̂Sγ,θ, for γ ≥ η in b, are as usual. πθ : MS
θ → MT

θ is
given by the fact that the copy maps commute with the branch embeddings.
We declare θ to be stable.

1(b) for all γ ∈ b− (η + 1), rt(γ) = η. We let S choose
[0, θ)S = (b− η) ∪ [0, η]S,

and let MS
θ be the direct limit of the MS

γ for γ ∈ b sufficiently large. The
branch embeddings ı̂Sγ,θ, for γ ≥ η in b, are as usual. πθ : MS

θ →MT
θ is given

by the fact that the copy maps commute with the branch embeddings. Again,
we declare θ to be stable.

In this case, θ is stable, so (i)-(vi) still hold.

Case 2. There are boundedly many unstable ordinals in b, but no largest one.

Let η be the sup of the unstable ordinals in b. We let S choose
[0, θS] = (b− η) ∪ [0, η]S,

etc. Again, we declare θ to be stable, and (i)-(vi) still hold.

Case 3. There are arbitrarily large unstable ordinals in b. In this case b is a disjoint

union of pairs {γ, γ + 1} such that γ is unstable and γ + 1 is stable. That is, in S
we have been moving our phalanx up all along b. We set

[0, θ)S = {ξ ∈ b | ξ is unstable },
and let MS

θ be the direct limit of the MS
ξ for ξ ∈ b unstable. There is no dropping

of any kind in [0, θ)S. The branch embeddings iSγ,θ and the copy map πθ are as usual.
If MS

θ is not a model of U , then we declare θ to be stable. Otherwise, we declare θ
to be unstable, and set

MS
θ+1 = transitive collapse of HullM

S
θ (λSθ ∪ iS0,θ(q)).

λSθ is defined as it was in the unstable successor case: first we define λθ+1, then set
λSθ = inf(λSθ+1, αθ).
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Let also
σθ : MS

θ+1 →MS
θ

be the collapse map, and
MT

θ+1 =MT
θ , and

πθ+1 = πθ ◦ σθ.
πθ+1 agrees with πθ on λSθ , as desired.

(i)-(iv) are clear. Items (v) and (vi) are routine.
We shall use the following proposition in the next section.

Proposition 6.63 Let θ be a limit ordinal such that θ is stable in Sν,l, but every
ξ <Sν,l θ is unstable in Sν,l; then cof(θ) = ω.

Proof. Let t = e
Sν,l
θ be the branch extender of [0, θ)S, and λ = dom(t). By hypothesis,

t�η ∈ U ext
ν,l for all η < λ, but t /∈ U ext

ν,l . For η < λ, let ξη be such that

t�η = s
Uν,l
ξη
.

Then η < γ implies sUξη ⊆ sUξγ , and hence ξη <U ξγ. Letting µ = sup({ξη | η < λ}),
and b be the branch of U�µ determined by the ξη’s, we have that t is the branch
extender of b in U , so b 6= sUµ , so b 6= [0, µ)U . This implies cof(µ) = ω, so cof(λ) = ω,
so cof(θ) = ω, as desired. �

This finishes our construction of the psuedo-tree Sν,l, and its lift Tν,l. Notice that
every extender used in S was taken from the sequence of a stable node. Every stable
node, except the last model of S, contributes exactly one extender to be used. The
last model of S is stable.

Recall that we assumed that the construction never reached a strategy disagree-
ment between the current model of Sν,l and (Mν,l,Ων,l), and that the extender dis-
agreements involved only empty extenders on the Mν,l side. Let us record this in a
lemma.

Lemma 6.64 Let γ < lh(S), where S = Sν,l is defined as above; then either

(1) (MS
γ ,Σγ) � (Mν,l,Ων,l), or

(2) (Mν,l,Ων,l) � (MS
γ ,Σγ), or

(3) there is a nonempty extender E on the MS
γ sequence such that, setting τ =

lh(E),

(i) Ė
Mν,l
τ = ∅, and
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(ii) (Σγ)〈τ,−1〉 = (Ων,l)〈τ,0〉.

So far as we can see, the lemma can only be proved by going back through the
proof of Theorem 5.11, and extending the arguments so that they apply to Sν,l. That
involves generalizing strong hull condensation to psuedo-trees like S, and normalizing
well to stacks 〈S,U〉, where U is a normal tree on the last model of S. Then we need
to run the construction of 5.11, showing that W (S,Uab) is a psuedo-hull of i∗b(S),
where b is the branch of U chosen by Ων,l. There is nothing new in these arguments,
but it does not seem possible to get by with quoting our earlier results. We therefore
defer the proof of Lemma 6.64 to the next section.

Claim 6. For some 〈ν, l〉 ≤lex 〈η0, k0〉, the construction of Sν,l stops for either reason
1(b) (that is, MS

∞ �Mν,l), or reason (2).

Proof. If not, then the construction of S = Sη0,k0 must reach someMS
θ such that

Mη0,k0 is a proper initial segment ofMS
θ . But Mη0,k0 is a Ψ-iterate of M via a branch

of Uη0,k0 that does not drop; let j be the iteration map. We have πθ fromMS
θ to the

last model of Tη0,k0 . Then πθ ◦ j maps M elementarily into a proper initial segment
of the last model of Tη0,k0 , contrary to the weak Dodd-Jensen property of Ψ. �

The following weaker version of induction hypotheses (v) and (vi) holds more
generally.

Claim 7. Let U = Uν,l for some ν, l. Suppose [0, η]U does not drop in model or degree,
and let i = iU0,η; then

(a) for any β < α0, Th
MUη
k0+1(i(β) ∪ i(q)) ∈MU

η ,

(b) sup i“ρ(M) ≤ ρ(MU
η ) ≤ i(ρ(M)), and

(c) if q 6= r, then Th
MUη
k0+1(ρ(MU

η ) ∪ i(q)) ∈MU
η .

Proof. Part (a) holds because i(ThMk0+1(β∪q)) can be used to compute ThM
U
η (i(β)∪

i(q)). Part (b) is proved in Claim 5 of the proof of Theorem 6.2 of [23]. If q 6= r,
then ρ < α0, and ρ(Mη) ≤ iU0,η(ρ), so we get (c) by using (a) with β = ρ. ‘ �

Let us now fix ν, l as in Claim 6, and let S = Sν,l, U = Uν,l, and T = Tν,l. Let
lh(S) = θ + 1. We have that [rt(θ), θ]S does not drop in model or degree. If 0 ≤S θ,
this implies that [0, θ]S does not drop in model or degree.

Claim 8. For some unstable ξ, rt(θ) = ξ + 1.
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Proof. If not, then 0 ≤S θ, and [0, θ]S does not drop. If S ended for reason 1(b),
thenMS

θ �MU
δ for some δ. But thenMU

δ =MS
θ and [0, δ]U does not drop, by weak

Dodd-Jensen. If S ended for reason (2), then again MU
δ =MS

θ and [0, δ]U does not
drop.

Standard weak Dodd-Jensen arguments give
iS0,θ = iU0,δ.

(This involves copying over to T in one direction.) But the extenders used in each of
these branches can be recovered from the embeddings, using the hull and definability
properties. So

sSθ = sUδ .

Now let η be least such that η is stable and η ≤S θ. Then sSη = sSθ �γ = sUδ �γ,
for some γ. But there is τ such that sUτ = sUδ �γ. Thus MS

η = MU
τ . If η is a limit

ordinal, then by the rules in limit case 3, η was declared unstable, contradiction. If
S-pred(η) = µ, then µ is unstable, and our rules in the successor case declare η to
be unstable. So in any case, we have a contradiction. �

Fix ξ as in Claim 8. Since ξ is unstable, we can fix τ such that MU
τ =MS

ξ . Fix
also γ ≥ τ such that Mν,l �MU

γ , and hence MS
θ �MU

γ . Set

µ = ρ(MS
ξ+1),

and
t = σ−1

ξ (iS0,ξ(q)).

Claim 9. Either

(i) µ = αξ, or

(ii) µ < αξ ≤ crit(σξ), and crit(σξ) = (µ+)M
S
ξ+1 .

Proof. By induction hypothesis (vi), Th
MSξ+1

k0+1 (αξ ∪ t) /∈ MS
ξ+1, and therefore

µ ≤ αξ.

Suppose µ < αξ. We can then find some finite p ⊂ αξ such that Th
MSξ+1

k0+1 (µ∪p∪t) /∈
MS

ξ+1. Since max(p) < αξ, we get from (vi) that R = Th
MSξ
k0+1(µ ∪ p ∪ iS0,ξ(q)) ∈MS

ξ .
If R ∈ MS

ξ+1, then we have a contradiction, so assume R /∈ MS
ξ+1. Since R is

essentially a subset of µ, we get (ii) of Claim 9. �

Claim 10. µ = ρ(MS
θ ).
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Proof. This follows easily from the fact that all extenders used in [ξ + 1, θ]S are
close to the model to which they are applied, and crit(iSξ+1,θ) ≥ αξ. �

Claim 11.

(i) MS
θ =MU

γ , and [0, γ]U does not drop in model or degree.

(ii) If τ ≤ η < γ, then lh(EUη ) ≥ αξ.

Proof. We have by (vi) that

Th
MSξ
k0+1(αξ ∪ iS0,ξ(q)) /∈MS

ξ .
Suppose MS

θ �MU
γ . We have that [ξ + 1, θ]S does drop in model or degree, and

crit(iSξ+1,θ) ≥ αξ, so we get

Th
MSξ
k0+1(αξ ∪ iS0,ξ(q)) = Th

Mξ+1

k0+1 (αξ ∪ t) ∈MU
γ .

Set
R = Th

Mξ+1

k0+1 (αξ ∪ t).
Note that if ESξ+1 exists (i.e. θ 6= ξ + 1), then lh(ESξ+1) ≥ αξ. This is because

otherwise λSξ = λSξ+1, so ξ+1 is a dead node of S, and ξ+1 <S θ is impossible. So in
any case,MS

θ agrees withMS
ξ below αξ. It follows thatMU

γ agrees withMS
ξ below

αξ, and hence withMU
τ below αξ. Thus all EUµ for τ ≤ µ < γ have length ≥ αξ. But

R is essentially a subset of αξ, and R ∈MU
γ , so R ∈MU

τ , contradiction.
Thus MU

γ =MS
θ . The argument also proved (ii).

To see that [0, γ]U does not drop, suppose not, and let the last drop in [0, γ]U
occur at η + 1. We must have η + 1 ≤ τ , as otherwise R ∈MU

τ . But then ρ(MU
γ ) ≤

crit(EUη ) < λ(EUη ) < αξ, which yields ρ(MS
θ ) = ρ(MU

γ ) < µ, by Claim 9. This
contradicts Claim 10. �

Claim 12. iSξ+1,θ(t) = iU0,γ(q).

Proof. Let β be the first (i.e. largest) element of q such that iU0,γ(β) 6= iSξ+1,θ ◦
σ−1
ξ ◦ iS0,ξ(β). If

iU0,γ(β) < iSξ+1,θ ◦ σ−1
ξ ◦ i

S
0,ξ(β),

then
πθ ◦ iU0,γ(β) < πθ ◦ iSξ+1,θ ◦ σ−1

ξ ◦ i
S
0,ξ(β) = iT0,θ(β).

The maps on the two sides above agree at all earlier elements of q, and ~e started out
with r, so this contradicts the weak Dodd-Jensen property of Ψ relative to ~e. On
the other hand, suppose

iU0,γ(β) > iSξ+1,θ ◦ σ−1
ξ ◦ i

S
0,ξ(β).
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Let β̄ = σ−1
ξ ◦ iS0,ξ(β), and u = t − (β̄ + 1). Since q is solid at β, and iSξ+1,θ(u) =

iU0,γ(q − (β + 1)), we get that

Th
MSθ
k0+1(iSξ+1,θ((β̄ + 1) ∪ iS0,ξ(u)) ∈MS

θ .

It follows that Th
MSθ
k0+1(αξ ∪ iSξ+1,θ(t)) ∈ MS

θ . But the theory is a subset of αxi, and

it is equal to Th
MSξ+1

k0+1 (αξ ∪ t). So Th
MSξ
k0+1(αξ ∪ iS0,ξ(q)) ∈Mξ, contradiction. �

Claim 13. Let η be such that η + 1 ≤U γ and η ≥ τ ; then αξ ≤ crit(EUη ).

Proof. Let E = EUη and β = U -pred(η+1). Let κ = crit(E), and suppose κ < αξ.
We have lh(E) ≥ αξ by Claim 11.

If ρ(MU
β ) ≤ κ, then ρ(MU

β ) = ρ(MU
γ ) = µ, and so we have µ < αξ, and thus (ii)

of Claim 9 holds, and (µ+)M
S
ξ > αξ. Now if F is used in [0, ξ)S, then λ(F ) < αξ,

and so λ(F ) ≤ µ ≤ κ. Thus if β < τ , then λ(EUβ ) ≤ µ ≤ κ, contradiction. So β = τ .

But then P (µ)M
S
ξ = P (µ)M

U
τ = P (µ)M

U
γ = P (µ)M

S
θ = P (µ)M

S
ξ+1 , which contradicts

(ii) of Claim 9.
Thus κ < ρ(MU

β ). But then

αξ ≤ sup iE“(κ+)M
U
β ≤ ρ(MU

γ ) = µ ≤ αξ,
so αξ = µ = lh(E). If q 6= r, then (c) of Claim 7, applied with η = γ, implies that

Th
MUγ
k0+1(αξ ∪ iU0,γ(q)) ∈MU

γ . Hence Th
MSξ+1

k0+1 (αξ ∪ t) ∈MS
ξ+1, a contradiction. On the

other hand, if q = r, then αξ = ρ(MS
ξ ) is a cardinal of MS

ξ , so sup iE“(κ+)M
U
β =

lh(E) > αξ, contrary to the inequality displayed above. �

It follows from Claim 13 that τ ≤U γ, and either τ = γ or crit(iUτ,γ) ≥ αξ. In
either case

(µ+)M
S
ξ = (µ+)M

U
τ = (µ+)M

U
γ = (µ+)M

S
θ = (µ+)M

S
ξ+1 ,

and all models displayed agree to their common value for µ+. In particular,
MS

ξ |(µ+)M
S
ξ =MS

ξ+1|(µ+)M
S
ξ+1 .

It follows then from Claim 9 that
µ = αξ.

Claim 14. r is solid; that is, q = r.

Proof. If not, then ρ(M) < α0. It follows by Claim 7 that
ρ(MU

τ ) < sup iU0,τ“α0 = sup iS0,ξ“α0 = αξ = µ = ρ(MS
θ ) = ρ(MU

γ ).
However, crit(iUτ,γ) ≥ αξ or γ = τ , so ρ(MU

τ ) = ρ(MU
γ ). This is a contradiction. �

By Claim 14, α0 = ρ. It follows from (v) and (vi) that for all unstable η,
αη = ρ(MS

η ). Moreover, by the usual preservation of solid parameters, iS0,η(r) is the
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standard parameter ofMS
η . In particular, this is true when η = ξ. That tells us that

the parameter of MS
ξ is universal:

Claim 15. iS0,ξ(r) is universal overMS
ξ ; that is,MS

ξ |η =MS
ξ+1|η, where η = (α+

ξ )M
S
ξ .

Proof. This follows from the fact that MS
θ = MU

γ , and crit(iS0,θ) ≥ αξ and
crit(iU0,γ) ≥ αξ (and neither branch drops). �

If ξ = 0, we are done.

Claim 16. r is universal; that is, K|(ρ+)M = M |(ρ+)M .

Proof. Let us assume k0 = 0 and ô(M) is a limit ordinal to simplify the fine
structure a bit. We may also assume ξ > 0.

Suppose first that ρ is regular in M . Let N �M |(ρ+)M , ρ(N) = ρ, and B ⊆ ρ
code ThNn (ρ(N)∪ p(N)) for n = k(N). We must show N �K, and that is equivalent
to

(*) For some Σ1 formula ϕ, some b < ρ, and some σ < ô(M), there is a unique
〈P,C〉 such that:

(a) P �M |σ and C ⊆ ρ(P ) codes ThPn (ρ(P ) ∪ p(P )) for n = k(P ), and

(b) M|σ |= ϕ[P,C, b, r].

Moreover, for the unique such 〈P,C〉, we have C ∩ ρ = B.

We can express (*) as
M |= ψ[B, ρ, r],

where ψ is Σ1. Let i = iS0,ξ, and note that i : M →MS
ξ is elementary, that is, cofinal

and Σ1-elementary. Moreover, i(ρ) = sup i“ρ = αξ, because ρ is regular in M . By
Claim 15

MS
ξ |= ψ[i(B), i(ρ), i(r)].

Thus M |= ψ[B, ρ, r], as desired.
Now assume that ρ is singular in M . It will then be enough to show that P (ρ)M ⊆

K. This is because if π : K →M is the collapse map, then crit(π) > ρ, as otherwise
crit(π) = ρ is regular in K, and hence regular in M because P (ρ)M ⊆ K. It follows
that crit(π) ≥ (ρ+)K = (ρ+)M , which yields Claim 16.

So let B ⊆ ρ, B ∈ M , and B /∈ K. We show by induction on η ≤S ξ that
iS0,η(B) /∈ MS

η+1. The case η is a limit ordinal is easy, so assume S-pred(η) = β, let
E = ESη−1, and let A = iS0,β(B) ∩ αβ. So A /∈MS

β+1. Let us write iE for iSβ,η, and let
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s = iS0,β(r). Suppose toward contradiction that iE(A) ∩ αη ∈ MS
η+1; then we have

some b < αη, some C, and some Σ1 formula ϕ such that
MS

η |= C is the unique D such that ϕ(D, b, iE(s)),
and C ∩αη = iE(A)∩αη. Fix b, C, and ϕ. There are cofinally many ordinals inMS

β

that are Σ1 definable from parameters in αβ ∪ s, so we can find such an ordinal σ
such that

MS
η |iE(σ) |= C is the unique D such that ϕ(D, b, iE(s)),

But now let

b = [a, f ]
MSβ
E .

For Ea almost every u,
MS

β |σ |= there is a unique D such that ϕ(D, f(u), s).
Let Cu be the unique such D, when it exists. The function u 7→ Cu is definable over
MS

β |σ from f and s. Since αη = sup iE“αβ, we may assume that f ∈MS
β |αβ. (αβ is

a singular cardinal of MS
β in the present case.) Moreover, Ea ∈MS

β |αβ by Claim 4.
Then for δ < αβ,

δ ∈ A⇔ for Ea a.e. u, δ ∈ Cu.
This defines A over MS

β |σ from f, s, and Ea. That implies A ∈ MS
β+1, a contradic-

tion. �

This completes the proof of Theorem 6.57, modulo Lemma 6.64. �

Corollary 6.65 Assume AD+, and let 〈(M, ~F,Σ),Σ∗〉 be a coarse strategy pair. Let

C be an (~F,Σ)-construction done in M ; then for any 〈ν, k〉 < lh(C) such that k ≥ 0,
(†)ν,k holds, that is, the standard parameter of MC

ν,k is solid and universal.

Corollary 6.66 Assume IHκ,δ, and there are infinitely many Woodin cardinals below
κ. Let w be a wellorder of Vδ, and let C be a w-construction above κ; then for any
〈ν, k〉 < lh(C) such that k ≥ 0, (†)ν,k holds, that is, the standard parameter of MC

ν,k

is solid and universal.

Proof. We can use Corollary 6.65, inside a model of AD+ we get by the method
of Remark 6.41. That is, if 6.66 is false, then we have a countable M and π : M →
MC

ν,k elementary such that the standard parameter of M is either non-solid or non-
universal. We have that (M,Ωπ) is a least branch hod pair by 6.13. Standard
arguments using unique iterability show that Ωπ is < κ-homogeneously Suslin. Be-
cause we have assumed that there are infinitely many Woodin cardinals below κ,
L(Ωπ,R) |= AD+. Thus the hypotheses of 6.57 are satisfied, and the standard pa-
rameter of M is solid and universal, a contradiction. �

We can prove a condensation lemma for lbr hod pairs by the same method. Rather
than attempt a general statement, we shall content ourselves with the following
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simple one, since it is what we need in the next section. The author and Nam Trang
have proved a stronger condensation theorem in [65], and used it to generalize the
Schimmerling-Zeman characterization of {κ | M |= �κ} to the case that M is a
least branch hod mouse. The proof in [65] is given in much greater detail than we
give here; moreover, it yields condensation for mouse pairs, not just condensation for
mice.

Theorem 6.67 (Condensation lemma) Let M be a countable lpm, and let Ψ be
a complete iteration strategy for M defined on all countable M-stacks by Σ. Suppose
that whenever s is a countable M-stack by Ψ having last model N , then (N,Ψs) is
a least branch hod pair. Suppose that Ψ is coded by a set of reals that is Suslin and
co-Suslin in some L(Γ,R), where L(Γ,R) |= AD+. Let

π : H →M
be elementary, with crit(π) = ρ(H) < ρ(M), and H being k(H) + 1-sound. Suppose
also that ρ(H) is a limit cardinal of H; then H �M .

Proof.(Sketch.) We proceed as in the proof of 6.57. Let C be the construc-
tion of some Ψ-Woodin model N∗. We have 〈η0, k0〉 such that (M,Ψ) iterates to
(MC

η0,k0
,ΩCη0,k0

). We may assume that Ψ has the weak Dodd-Jensen property relative
to some ~e.

For 〈ν, l〉 ≤lex 〈η0, k0〉 we define a psuedo iteration tree Sν,l which iterates the
phalanx (M,H, ρ(H)). Sν,l is defined exactly as it was in the proof of 6.57, with one
exception with regard to how we move phalanxes up. Note that because ρ(H) <
ρ(M), we have H ∈M .(The theory coding H is a bounded rΣM

k(M)+1 subset of ρ(M),

hence in M . Since M |ρ(M) |= KP, H ∈ M |ρ(M).) Now suppose γ + 1 is unstable,
and ξ = S-pred(γ + 1). We have MS

γ+1 = Ult(MS
ξ , Eγ) as before. We then set

MS
γ+2 = iS0,γ+1(H),

and
αSγ+1 = iS0,γ+1(ρ(H)).

We have
σγ+1 : MS

γ+2 →MS
γ+1

determined by: σγ+1�αSγ+1 is the identity, and σγ+1(iS0,γ+1(p(H)) = iS0,γ+1(π(p(H)). If
H is not an initial segment of M , then MS

γ+2 is not an initial segment of MS
γ+1, so

we have successfully moved the bad situation up.
There is a similar change at unstable limit ordinals θ. We set MS

θ+1 = iS0,θ(H)
and αSθ = iS0,θ(ρ(H)), etc.

The rest of the construction of Sν,l, and its conditions for termination, are the
same as in the proof of 6.57. Again, the key lemma is the counterpart of Lemma
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6.64, according to which no strategy disagreements show up, and least extender
disagreements involve only empty extenders on the MC

ν,l side. We shall prove this
lemma in the next section.

We argue as before that for some ν, l, the construction of Sν,l terminates at a
stable θ such that MS

θ �MU
γ , where U = Uν,l. (We no longer have MU

γ �MS
θ , as

the proof of that used that K /∈M , whereas H ∈M .) Using weak Dodd-Jensen, We
get that for some unstable ξ, rt(θ) = ξ + 1.

Let MU
τ = MS

ξ . We have that lh(EUτ ) ≥ λSξ+1, as otherwise ξ + 1 would have
been dead. But in the present case, λSξ+1 is a limit cardinal of MS

ξ = MU
τ , so

lh(EUτ ) > λSξ+1.
Now we simply follow the proofs of Claims 1-4 in the proof of Theorem 8.2 of

[23]. We get from that that MS
ξ+1 is a proper initial segment of MU

γ . This implies
there are no cardinals of MU

γ strictly between λSξ+1 and o(MS
ξ+1). It follows that

lh(EUτ ) ≥ o(MS
ξ+1), so that MS

ξ+1 �MU
τ = MS

ξ . But then, as we observed above,
H �M , as desired.

�

We get at once

Corollary 6.68 Assume AD+, and let 〈(M, ~F,Σ),Σ∗〉 be a coarse strategy pair. Let

C be an (~F,Σ)-construction done in M , and let M = MC
ν,k. Let

π : H →M
be elementary, with crit(π) = ρ(H) < ρ(M), and H being k(H) + 1-sound. Suppose
also that ρ(H) is a limit cardinal of H; then H �M .

Corollary 6.69 Assume IHκ,δ, and there are infinitely many Woodin cardinals below
κ. Let w be a wellorder of Vδ, let C be a w-construction above κ, and let M = MC

ν,k.
Let

π : H →M

be elementary, with crit(π) = ρ(H) < ρ(M), and H being k(H) + 1-sound. Suppose
also that ρ(H) is a limit cardinal of H; then H �M .

6.7 Some successful background constructions

Let us assume Theorem 7.3, the Bicephalus Lemma, throughout this section.
In the AD+ context, we get that Γ-Woodin constructions do not break down.

Theorem 6.70 Assume AD+, let (N∗, δ, S, T,�,Σ∗) be a coarse Γ-Woodin tuple,
and let C be a least branch �-construction in L[N∗, S, T,�] with all FCν ∈ N∗; then

276



C is not pathological in L[N∗, S, T,�]. In fact, letting M = MC
ν,k, and letting Ω be

the canonical extension of ΩCν,k to all M-stacks in HC; then

1. (M,Ω) is a least branch hod pair, with scope HC,

2. (*)(M,Ω), and

3. M has a core; that is, p(M) is solid and universal.

Proof. We have a coarse strategy pair 〈(N, ~FC ,Σ),Σ∗〉 such that V N
δ = V N∗

δ , so
by 6.37, 6.65, and the Bicephalus Lemma, C is not pathological in L[N∗, S, T,�].

The canonical extension Ω of ΩCν,k is just the strategy for M induced by lifting to
N∗ and using Σ there. Σ acts on all stacks of trees in HC, not just those in N∗, and
we don’t need that the stack is in N∗ to define its lift to N∗.

Since Σ∗ witnesses that L[N∗, S, T,�] is strongly uniquely (ω1, ω1) iterable in V ,
it has strong hull condensation, normalizes well, and moves to its tails under its own
iteration maps. (See 4.21 and 4.32.) By our work in Chapter 3 (see 4.41 and 4.49),
Ω has strong hull condensation and normalizes well. By the proof of 6.32, whenever
s is a stack by Ω with last model Q, then Σ̇Q ⊆ Ωs. Thus (M,Ω) is an lbr hod pair.

That (1) implies (2) is Theorem 6.49. That (1) implies (3) is Theorem 6.57.
�

We have shown that least branch constructions done in a coarse Γ Woodin model
do not break down, but we are missing a proof that such constructions go far enough;
that is, a proof of HPC. Borrowing 7.3 from the next chapter, we do get

Theorem 6.71 Assume AD+; then LEC implies HPC.

Proof. It is enough to show that whenever (P,Σ) is a pure extender mouse pair
with scope HC, then there is an lbr hod pair (Q,Ψ) with scope HC such that Σ is
definable from parameters over (HC,∈,Ψ).

So fix (P,Σ), and let (N∗, δ, S, T,�,Φ) be a coarse Γ-Woodin tuple, with P count-
able inN∗ and Code(Σ) in Γ. Let C be the maximal �- construction of L[N∗, S, T,�],
with last pair

(Q,Ψ) = (MC
δ,0,Ω

C
δ,0).

Note here that C does not break down, by 6.57 and 7.3. Since Φ has scope all of
HC, it induces an extension of Ψ with scope HC. We call this extension Ψ as well.

Now let D be the pure extender L[E] construction of Q, where nice extenders
from the Q-sequence are used as backgrounds. By 6.57 and 7.3, D never breaks
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down, and each (MD
ν,k,Ω

D
ν,k) is a pure extender pair in Q, and hence can be canon-

ically extended to such a pair in N∗. Working in N∗, we can compare (P,Σ) with
each (MD

ν,k,Ω
D
ν,k). Because the background extenders of D are assigned background

extenders over N∗ by C, we can repeat the proof of (*)(P,Σ), so (P,Σ) iterates past
(MD

ν,k,Ω
D
ν,k), provided it iterates strictly past all earlier levels of D.

By the Q-filtered backgrounding again, (P,Σ) cannot iterate past (MD
δ,0,Ω

D
δ,0). It

follows that (P,Σ) iterates to some (MD
ν,k,Ω

D
ν,k). This is true in N∗, but it is also

true in V of (P,Σ) and the canonical extension (M,Ω) of (MD
ν,k,Ω

D
ν,k), because N∗

is sufficiently correct. But then Σ is projective in Ω, and Ω is projective in Ψ, so we
are done. �

Remark 6.72 We do not see how to show that under AD+, HPC implies LEC. That,
together with 6.71, suggests that one should try to prove HPC by proving the osten-
sibly stronger LEC.

We now look at constructions done in a model of the Axiom of Choice, under
strong large cardinal hypotheses. Here we must assume unique iterability. We shall
show that under such assumptions, least branch constructions can produce hod pairs
(M,Ω) such that M |= “there is a subcompact cardinal”.

Definition 6.73 A cardinal κ is subcompact iff for all A ⊆ Hκ+, there are µ,B,
and j such that

(a) µ < κ and B ⊆ Hµ+,

(b) j : (Hµ+ ,∈, B)→ (Hκ+ ,∈, A) is elementary, and

(c) µ = crit(j).

Subcompactness was introduced by Jensen. It is interesting in part because it can
be represented by short extenders24, but it is strong enough that if κ is subcompact,
then ¬�κ. The main theorem of [37] is that in iterable pure extender models, ¬�κ
if and only if κ is subcompact. If κ is subcompact, then the set

S = {iE(µ+) | E is a superstrong (µ, κ)-extender}
is stationary in κ+.25 Jensen showed that in iterable pure extender models, the
stationarity of S is equivalent to subcompactness. (See [37].)

24Let E be the (µ, κ)-extender of j; then iE also satisfies (b) and (c) of 6.73.
25To see this, let A be a given club, apply the definition to get j and µ, and then let E = Ej�κ.
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Subcompactness is close to the limit of the large cardinal properties that can be
represented by short extenders, and it is thus close to the limit of the large cardinal
properties exhibited in the strategy mice whose theory is developed in this book.

The large cardinal hypothesis of the following theorem is just beyond those that
can be captured by short extenders.

Theorem 6.74 Suppose

(i) j : V → N is elementary, κ = crit(j), and δ = j(κ),

(ii) Vδ ∪ {Ej�δ} ⊆ N ,

(iii) IHµ,δ holds, where µ < κ, and

(iv) w0 is a wellorder of Vκ, w = j(w0), and C is a maximal least branch w-
construction above µ.

Then C is not pathological, and

(a) MC
δ,0 |= κ is subcompact, and

(b) MC
δ,0 |= there are arbitrarily large superstrong cardinals.

Proof. That C is not pathological follows from 6.66 and the Bicephalus Lemma.
Thus M = MC

δ,0 exists. We show first that κ is subcompact in M
Let A ⊆ (κ+)M and A ∈M . It will be enough to show that δ is j(A)-subcompact

in j(M).
Our choice of w guarantees that j(w)∩Vδ = w. It follows then that j(C)�〈δ, 0〉 =

C. Thus
M = M

j(C)
δ,0 .

But this implies that
M = j(M)|〈δ, 0〉.

To see that, let us call η a β-closure point of C iff η = o(MC
η,0), η < β, and η is a

cardinal of MC
β,0. Note that this implies MC

η,0 �MC
β,0. The set Bβ of β-closure points

of C is closed in β. If β is a cardinal of V , it is club in β. But then
BCκ = j(BCκ ) ∩ κ

= B
j(C)
δ ∩ κ

= BCδ ∩ κ,
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so κ ∈ BCδ , so δ ∈ Bj(C)
j(δ) , or in other words, δ is a closure point of j(C). That implies

M = j(M)|〈δ, 0〉.
Let

E = {(a,X) | a ∈ [δ]<ω ∧X ∈ P ([κ]|a|)M ∧ a ∈ j(X)}
be the length δ extender of j, restricted to M .

Claim. If η ≤ δ and E�η is whole, then the trivial completion of E�η is on the
j(M)-sequence.

Proof. We prove this by induction on η. Suppose we know it for β < η, and let
F be the trivial completion of E�η, and γ = iMF (κ+,M). Assume first that η < δ. We
have that Ult(M,F ) = Ult(M,E�η), and there is a natural factor embedding

σ : Ult(M,F )→ Ult(M,E)
such that σ�η = id, and σ(η) = δ. Since η is a limit cardinal of Ult(M,F ), we have
that η is a limit cardinal of M . Using the Condensation lemma 6.69 applied to σ,
we get that

Ult(M,F )|〈γ,−1〉 = Ult(M,E)�〈γ,−1〉 = M�〈γ,−1〉.
Since η is a cardinal of M , there must be a stage of C at which we have M |〈η, 0〉 =
MC

ν,0. After this stage, no projectum drops strictly below η, and stages which project
to η are initial segments of M . Thus there is a ν such that

(M<ν)C = M |〈γ,−1〉.
But then (M<ν , F, ∅) is an lpm. (Coherence we verified above, and the Jensen initial
segment condition holds by our induction hypothesis.) Moreover, F has a background
certificate that shifts w to itself, namely Ej�µ, for µ the least inaccessible cardinal
strictly greater than η. By the Bicephalus Lemma,

MC
ν,0 = (M<ν , F, ∅).

Since η is a cardinal of M and MC
ν,0 projects to η, MC

ν,0 � M . Thus F is on the
M -sequence. Since η < δ, it is on the j(M)-sequence.

Now we take the case η = δ, that is, F = E. Again, let γ = iME (κ+,M) = i
M |δ
E (κ+,M

be the length of the Jensen completion of E. The factor embedding from Ult(M,E)
to j(M) has critical point ≥ γ, and thus Ult(j(M)|γ,E) agrees with j(M) strictly
below γ. E satisfies the Jensen initial segment condition by the claim applied to
η < δ. To get a background certificate E∗ for E in N , simply take

E∗ = j1(Ej�δ)�λ,
where j1 = j(j) and λ is the least inaccessible of N above δ. This clearly works, so
by the Bicephalus Lemma, E is on the sequence of j(M). �

Let iE : (M |κ+,M , A) → Ult((M |κ+,M , A), E) = (j(M)|| lh(E), B) be the canoni-
cal fully elementary embedding. Let σ : Ult((M,A), E)→ (j(M), j(A)) be the factor
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embedding. Since crit(σ) = lh(E) and σ is elementary, we see that (j(M)|| lh(E), B) ≺
(j(M)||δ+,j(M), j(A)). Thus E witnesses that δ is j(A)-subcompact in N .

To see that δ is a limit of superstrong cardinals in M , it is enough to see that
M |κ |= “there are arbitrarily large superstrong cardinals”, for then we can apply
j to this fact. But κ is subcompact in M , and it is quite easy to see that if κ is
subcompact, then Vκ |= “there are arbitrarily large superstrong cardinals”.

�

281



7 Phalanx iteration into a backgrounded construc-

tion

In this chapter we prove that there are no nontrivial iterable bicephali, and we
prove Lemma 6.64, thereby completing the proofs of theorems 6.70 and 6.74. Both
results involve showing that certain bicephali and phalanxes iterate into background
constructions in the same way that ordinary lbr hod pairs do.

We shall also use such a phalanx-comparison argument to show that if (M,Ω) is an
lbr hod-pair such that M |= ZFC + “there are arbitrarily large Woodin cardinals”,
then whenever g is P-generic over M , M [g] |= “ UBH holds for all nice, normal
iteration trees that use extenders from ĖM with critical points strictly above |P|M”.
That implies that Ω determines itself on generic extensions of M . We shall use this
in the next section to show that if λ is a limit of cutpoint Woodin cardinals in M ,
and N is a derived model of M below λ, then HODN is an Ω-iterate of M .

7.1 The Bicephalus Lemma

Definition 7.1 An lpm-bicephalus is a structure B = (B,∈, ĖB, Σ̇B, F,G) such that
both (B,∈, ĖB, Σ̇B, F, ∅) and (B,∈, ĖB, Σ̇B, G, ∅) are extender-active least branch pre-
mice. We say that B is nontrivial iff F 6= G.

We shall usually drop “lpm” from “lpm-bicephalus”.
We think of B as a structure in the language with ∈ and predicate symbols

Σ̇, Ė, Ḟ , and Ġ. We let
B− = (B,∈, ĖB, Σ̇B, ∅, ∅)

be the lpm obtained by removing both top extenders. (To be pedantic, B and B− have
different languages.) The degree of B is zero, i.e. k(B) = 0. For ν < o(B) = ô(B),
we set B|〈ν, l〉 = B−|〈ν, l〉. The extender sequence of B is ĖB together with ḞB and
ĠB; it’s not actually a sequence.

A B-tree is a tuple 〈ν, k, T 〉 such that 〈ν, k〉 ≤lex 〈ô(B), 0〉, and T is a weakly
normal tree on B|〈ν, k〉. That is,MT

0 = B|〈ν, k〉, the extenders used in T are length-
increasing and nonoverlapping along branches, and ETα must come from the sequence
of MT

α . If MT
α is a bicephalus, this means that the extenders from ĖMα together

with ḞMα and ĠMα are eligible. A B-stack is a sequence 〈(νi, ki,i ) | i ≤ n〉 such that
〈ν0, k0,0 〉 is a B-tree, and 〈νi+1, ki+1, Ti+1〉 is aM∞(Ti)-tree. A complete strategy for
B is a strategy Ω defined on all B-stacks s by Ω such that s ∈ N , for some set N . N
is called the scope of Ω.
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Definition 7.2 A bicephalus pair is a pair (B,Ω) such that B is an lpm-bicephalus,
and Ω is a complete strategy for B.

Tail strategies are given by Ωs(t) = Ω(sat). We use Ωs,N and ΩN as before. We
write Ω− for ΩB− , the complete strategy for B− induced by Ω.

We can define the notions of normalizing well, having strong hull condensation,
and being self-consistent for bicephalus pairs just as we did before.

The main theorem about bicephali is that there aren’t any interesting ones.

Theorem 7.3 Let (B,Ψ) be a bicephalus pair, where Ψ has scope HC. Suppose
that L(Ψ,R) |= AD+. Suppose also that Ψ normalizes well and has strong hull
condensation, and that (B,Ψ) is self-consistent; then ḞB = ĠB.

Proof. Let us assume toward contradiction that ḞB 6= ĠB.
We work in L(Ψ,R). Fix an inductive-like pointclass Γ0 with the scale property

such that Ψ is coded by a set of reals in Γ0 ∩ Γ̌0. We then fix a “coarse Γ0-Woodin”
tuple (N∗,Σ∗, δ∗, τ), as in theorem 10.1 of [54]. So N∗ |= δ∗ is Woodin, and Σ∗

is an (ω1, ω1) iteration strategy for N∗|δ∗, and fixing a universal Γ0 set U , i(τ)g =
U ∩ i(N∗)[g] for all g on Col(ω, i(δ∗)), whenever i is an iteration map by Σ∗. We also
have that the restriction of Σ∗ to trees that are definable over N∗|δ∗ is in N∗. We

can assume that there is an ~F such that

(a) N∗ |= ~F is coarsely coherent,

(b) δ∗ is Woodin in N∗ via extenders from ~F , and

(c) N∗ |= “I am strongly uniquely ~F -iterable for stacks of trees in Vδ∗ .”

Working now in N∗, let C be the ~F -maximal least branch hod pair construction
done in N∗. The construction lasts until we reach some 〈ν, k〉 < 〈δ∗, 0〉 such that
(†)ν,k fails, or until we reach 〈ν, k〉 = 〈δ∗, 0〉. Let 〈η0, l0〉 be this 〈ν, k〉. We write

Mν,l = MC
ν,l and Ων,l = ΩCν,l,

for 〈ν, l〉 ≤ 〈η0, l0〉.
We now compare (B,Ψ) with itself, by comparing two versions of it with (Mν,l,Ων,l).

The result will be two trees Sν,l and Tν,l, each on B and by Ψ. We show that only
the two B sides move in our coiteration, and that no strategy disagreements show
up. This is done by induction on 〈ν, l〉. It is not possible for our coiterations to
terminate because B is nontrivial, so we end up with B iterating past MC

η0,l0
. This

leads to a contradiction.
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Let C be a premouse. For η < ô(C), we let ECη = ĖCη , and for η = ô(C), we let

ECη = Ḟ C. If C is a bicephalus, and η < ô(C), then we set ECη = ĖCη . If η = ô(C), we
leave ECη undefined.

Fix 〈ν, l〉, and suppose we have defined Sµ,k and Tµ,k for all 〈µ, k〉 <lex 〈ν, l〉. (The
trees are empty until C has gone well past 0].) We define normal trees S = Sν,l and
T = Uν,l on B by induction. At stage α, we have Sα and T α with last models

C =MSα
∞ and D =MT α

∞ .
We do not assume lh(Sα) = lh(T α).

Case 1. (Mν,l,Ων,l) � C and (Mν,l,Ων,l) �D.

In this case, we must have that either (Mν,l,Ων,l) � C, or the branch of Sν,l to C has
dropped, because C is a bicephalus and Mν,l is not. Similarly on the D side. (Our
claim 0 below implies we never get “half” of a bicephalus lining up with an Mν,l.)
We stop the construction of Sν,l and Tν,l, and go on to Sν,l+1 and Tν,l+1.

Case 2. Otherwise.

Here the main claim is

Claim 0. There is a γ such that

(a) Mν,l|〈γ, 0〉 is extender-passive,

(b) Mν,l|〈γ, 0〉 = C|〈γ,−1〉 = D|〈γ,−1〉, and (Ων,l)〈γ,0〉 = ΨSα,〈γ,−1〉 = ΨT α,〈γ,−1〉,
and

(c) at least one of C|〈γ, 0〉 and D|〈γ, 0〉 is extender-active.

We defer proof of Claim 0 for now.
Let γ = γ(α) be the unique γ as in Claim 0. We get Sα+1 and T α+1 as follows.

Let η = o(Mν,l|〈γ, 0〉). Let
C =MSα

ξ and D =MT α
τ .

Suppose η < o(C), or η = o(C) but C is not a bicephalus, because [0, ξ]S dropped.
We set

ES
α+1

ξ = ECη ,

if ECη 6= ∅, with Sα+1 then determined by normality. If ECη = ∅, then Sα+1 = Sα.
Similarly, if η < o(D) or D is not a bicephalus, then we set

ET
α+1

τ = EDη ,
if EDη 6= ∅, with T α+1 then determined by normality. If EDη = ∅, then T α+1 = T α.
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If η = o(C) and C is a bicephalus, then if ET
α+1

τ has already been determined, we
let ES

α+1

η be the first of Ḟ C and ĠC that is different from ET
α+1

τ . If also o(D) = η

and D is a bicephalus, then we set ES
α+1

ξ = Ḟ C, and

ET
α+1

τ =

{
ḞD if ḞD 6= ḞC
ĠD otherwise.

Our definitions guarantee that if one of ESξ and ETτ is a top extender of a bi-
cephalus, then ESξ 6= ETτ .

This finishes the definition of Sα+1 and T α+1. The limit steps in the construction
of Sν,l and Tν,l are determined by Ψ. Note that α < β ⇒ γ(α) < γ(β); that is, the
common lined up part keeps lengthening.

Eventually, we reach Case 1 above, and the construction of Sν,l and Tν,l stops.
(B,Ψ) has iterated strictly past (Mν,l,Ων,l), in two ways. As in the proof of 6.50,
this implies (†)ν,l. (When l = −1 as well.) It follows then that

η0 = δ∗ and l0 = 0.
However, (B,Ψ) cannot iterate past Mδ∗,0, by the usual universality argument. Note
here that we have (†)ν,−1 for all ν < δ∗, so the extenders added to the Mν,−1 are
unique, and the universality argument applies. This contradiction completes the
proof, modulo Claim 0.

Proof of Claim 0. (Sketch) We repeat the proof of Theorem 5.11. Virtually nothing
changes, so we shall just mention the main points here.

The main change is the following. We used many times in the proof of 5.11
that for premice Q and R, and Σ an iteration strategy for Q, there is at most one
iteration tree T by Σ such that R�Mα(T ) for α+1 = lh(T ), and R 5MT

α whenever
α+ 1 < lh(T ). This uniqueness for normal iterations past a given R clearly fails for
bicephali; let Q = B and R = Ult(B, ḞB). What saves us is that in our siuation,
with Q = B and R some initial segment of Mν,l, the trees Sν,l and Tν,l are being
defined together in a way that completely specifies which extender to use at each
step on both sides, whether that extender is from the top pair of a bicephalus or not.
Moreover, this specification is absolute.

Definition 7.4 Let R be a premouse, and suppose S and T are normal iteration
trees on M of lengths α + 1 and β + 1 respectively such that

(a) α is the least ξ such that R�MS
ξ ,

(b) β is the least ξ such that R�MT
ξ ,

(c) S and T are by Ψ, and
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(d) the extenders used in S and T are chosen according to the rules above, with R
playing the role of Mν,l.

Then we call (S, T ) the (R,Ψ)- coiteration.

Subclaim A.

(1) If R0 �R1, and (Si, Ti) is the (Ri,Ψ)-coiteration, then S0 is an initial segment
of S1 and T0 is an initial segment of T1.

(2) If S0 and S1 are transitive models of ZFC such that B, R ∈ Si and Ψ ∩ Si ∈ Si
for i = 0, 1, and S0 |= (S, T ) is the (R,Ψ ∩ S0)-coiteration, then S1 |= (S, T )
is the (R,Ψ ∩ S1)-coiteration.

Proof. This is obvious. �

Let us assume that Claim 0 is true for 〈η, k〉 <lex 〈ν, l〉. Let 〈γ∗, k∗〉 be least 〈γ, k〉
such that either (Mν,l|〈γ, k〉, (Ων,l)〈γ,k〉) 6= (C|〈γ, k〉,ΨSα,〈γ,k〉), or (Mν,l|〈γ, k〉, (Ων,l)〈γ,k〉) 6=
(D|〈γ, k〉,ΨT α,〈γ,k〉). We show first that we are not in the bad case for extender dis-
agreement.

Subclaim B. It is not the case that k∗ = 0 and ḞMν,l|〈γ0,0〉 6= ∅.

Proof. Suppose otherwise, and let F = ḞMν,l|〈γ∗, 0〉.
We claim first that l = 0. For suppose l = k + 1. F cannot be on the sequence

of Mν,k, since otherwise Sν,k would agree with Sν,l on all extenders used with length
< lh(F ), and similarly for Tν,k and Uν,l. But this would mean Claim 0 failed at 〈ν, k〉,
contrary to our induction hypothesis. It follows that Mν,k is not sound. That implies
that Mν,k is the last model of Sν,k, along a branch that dropped to Mν,l. Similarly,
Mν,k is the last model of Tν,k, along a branch that dropped to Mν,l. Let α be least

such that Mν,l�M
Sν,k
α and β be least such that Mν,l�M

Tν,k
β . From Subclaim A(1),

we see that Sν,l = Sν,k�(α + 1) and Tν,l = Tν,k�(β + 1). Thus Mν,l is the last model
of Sν,l and Tν,l, contradiction.

But then F must be the last extender of Mν,0, for otherwise F is on the sequence
of some Mη,k with η < ν, and Claim 0 would fail at 〈η, k〉, contrary to induction
hypothesis.

So suppose that Mν,0 is extender-active, with last extender F . Suppose S = Sαν,0
and T = T αν,0 have last models C and D respectively, and

(Mν,−1,Ων,−1) = (C|〈ν,−1〉,ΨS,〈ν,−1〉) = (D|〈ν,−1〉,ΨT ,〈ν,−1〉).
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So (S, T ) is the (Mν,−1,Ψ)-coiteration. We want to show that F is on the sequences
of C and D, and not as a top extender of a bicephalus in either case. For this, let

j : V → Ult(V, FCν )
be the canonical embedding, and κ = crit(j). (V = N∗ at this moment.) We have
that Mν,−1 � j(Mν,−1) by coherence. (Note j(Mν,−1)|ν is extender passive.) j(S, T )
is the (j(Mν,−1),Ψ) coiteration, because j(Ψ) ⊆ Ψ. So by Subclaim A, S is an initial
segment of j(S) and T is an initial segment of j(T ).

We have that MS
κ = Mj(S)

κ and j�MS
κ = i

j(S)
κ,j(κ), so F is compatible with the

first extender G used in [κ, j(κ)]j(S). Mν,−1 �Mj(S)
j(κ) , so G cannot be a proper initial

segment of F . But F is not on the sequence ofMj(S)
j(κ) , so F cannot be a proper initial

segment of G. Hence F = G. Since S = j(S)�(ξ + 1), where C =MS
ξ , we have that

F is on the sequence of C.
Similarly, F is on the sequence of D, and used in j(T ). But then applying our

observation above in j(V ), we see that it is not the case that C is a bicephalus and F
is one of its top extenders, or that D is a bicephalus and F is one of its top extenders.

�

By Subclaim B, we may assume that
Mν,l|〈γ∗, k∗〉 = C|〈γ∗, k∗〉 = D|〈γ∗, k∗〉,

but there is a strategy disagreement. The situation is symmetric, so we may assume
(Ων,l)〈γ∗,k∗〉 6= ΨT α,〈γ∗,k∗〉.

Let
M = Mν,l|〈γ∗, k∗〉.

We consider first the case that M = Mν,l, then we reduce to this case using the
pullback consistency of Ψ. We derive a contradiction in the case M = Mν,l by
repeating the proof of Theorem 5.11. We shall try to keep the notation close to that
in the proof of 5.11.

Let (S, T ) be the (M,Ψ)-coiteration of B. So M is an initial segment of both last
models, but Ων,l 6= ΨT ,M . Note that M is an lpm, not a bicephalus. We suppose for
simplicity that our strategies diverge on a single weakly normal tree U on M . That
is, letting

Ω = (Ων,l)〈γ∗,k∗〉,

U is by both Ω and ΨT ,M , but
Ω(U) 6= Ψ(〈T ,U〉).

Let b = Ω(U). For γ < lh(U) we have the embedding normalizations
Wγ = W (T ,U�(γ + 1)) and Wb = W (T ,Uab).

These are defined just as they were for trees on premice of the ordinary or least
branch variety. The fact that U is only weakly normal affects nothing. We adopt all
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the previous notation; for example, Rγ is the last model of Wγ, and σγ : MU
γ → Rγ

is the natural map.
Ω is defined by lifting to V . Let

lift(U ,Mν,l|〈γ∗, k∗〉,C) = 〈U∗, 〈ητ , lτ | τ < lhU〉, 〈ψUτ | τ < lhU〉〉.
Here 〈η0, l0〉 = 〈ν, l〉 and ψU0 = id . Let

Sγ =MU∗
γ ,

and for 〈µ, k〉 ≤lex 〈ν, l〉 let
(V∗µ,k,W∗µ,k) = the (Mµ,k,Ψ)-coiteration of B,

For γ < lh(U) or γ = b, let
(V∗γ ,W∗γ) = (V∗ηγ ,lγ ,W

∗
ηγ ,lγ )

Sγ .

So if [0, γ]U does not drop in model or degree, (V∗γ ,W∗γ) = iU
∗

0,γ((S, T )).
We define by induction tree embeddings Φγ from Wγ into W∗γ , for γ < lh(U) or

γ = b, just as before. Let
Φγ = 〈uγ, 〈t0,γβ | β ≤ z(γ)〉, 〈t1,γβ | β < z(γ)〉, pγ〉.

Let us just say a few words about how to obtain Φγ+1, because this is where the
main point lies.

We have tγ : Rγ → Nγ, whereNγ is the last model ofW∗γ . Let F = σγ(E
U
γ ), and let

µ = U -pred(γ+1). (Sadly, we can’t use “ν” for this ordinal.) SoWγ+1 = W (Wµ, F ).
Let us assume for simplicity that (µ, γ + 1]U is not a drop in model or degree. Let

resγ = (σηγ ,lγ [Mηγ ,lγ |〈lhψUγ (EUγ ), 0〉])Sγ ,
and let

G = resγ(t
γ(F )).

We have tγ ◦ σγ = ψUγ , so G = resγ(ψ
U
γ (EUγ ). Let G∗ be the background extender for

G provided by iU
∗

0,γ(C), so that
Sγ+1 = Ult(Sµ, G

∗).
Since we are not dropping,

W∗γ+1 = iG∗(W∗µ),

where iG∗ = iU
∗

µ,γ+1. The main thing we need to see is that G is used in W∗γ+1.

Let P = Nγ|〈lh(tγ(F ), 0〉, θ be least such that P �MV∗γ
θ , and τ least such that

P �MW∗γ
τ . Let (V∗∗γ ,W∗∗γ ) be the (resγ(P ),Ψ)-coiteration of B. By the counterpart

of Lemma 5.6,

(i) W∗∗γ extends W∗γ�(τ + 1),

(ii) letting ξ = lhW∗∗γ − 1, G is on the MW∗∗γ
ξ sequence, and not on the MW∗∗γ

α

sequence for any α < ξ,

(iii) τ ≤W ∗∗γ ξ, and ı̂
W∗∗γ
τ,ξ �(lh t

γ(F ) + 1) = resγ �(lh tγ(F ) + 1), and
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(iv) similarly for V∗∗γ vis-a-vis V∗γ .

P, resγ(P ), and Nµ all agree up to dom(G), so
resγ(P )|〈lh(G),−1〉� iG∗(Nµ),

and iG∗(Nµ)|〈lh(G), 0〉 is extender-passive, by coherence. We then get that V∗∗γ is
an initial segment of V∗γ+1, W∗∗γ is an initial segment of W∗γ+1 and G is used in both
V∗γ+1 and W∗γ+1. It matters here that resγ(P ) is a premouse, not a bicephalus, so
both trees are forced to use G by our rules.

Now let M = Mν,l|〈γ∗, l∗〉, where 〈γ∗, l∗〉 <lex 〈ô(Mν,l), l〉. Let
〈ν0, l0〉 = Resν,l[M ] and π = σν,l[M ].

(Ων,l)M is defined by (Ων,l)M = Ωπ
ν0,l0

. By induction, the (Mν0,l0 ,Ψ) coiteration is a
pair (V∗,W∗) such that Mν0,l0 is the last model of W∗, and Ων0,l0 = ΨW∗,Mν0,l0

. By
the counterpart of Lemma 5.6, the last drop along the main branch of W∗ was to
M , and the branch embedding is the resurrection map π, that is,

π = ı̂W
∗

ξ,θ : M →Mν0,l0 .
Here ξ is least such that M �MW∗

ξ , so the (M,Ψ) coiteration (S, T ) of B is such
that

W∗�(ξ + 1) = T .
But then

ΨT ,M = (ΨW∗,Mν0,l0
)ı̂
W∗
ξ,θ

= (Ων0,l0)π

= (Ων,l)M .
The first equality holds because Ψ normalizes well and has strong hull condensation,
and is therefore pullback consistent.

This finishes our proof of 7.3.
�

Corollary 7.5 Assume IHκ,δ, and there are infinitely many Woodin cardinals below
κ. Let w be a wellorder of Vδ, let C be a w-construction above κ; then C gives rise
to no nontrivial bicephali. That is, if 〈ν,−1〉 < lh(C), then C satisfies (†)ν,−1.

7.2 Proof of Lemma 6.64

Let us assume AD+ throughout this section. Our proof of 6.64 follows closely the
proof of Theorem 5.11. We begin by discussing tree embeddings and normalization
for psuedo-trees.

Let (M,Λ) be an lbr hod pair, and let
K = transitive collapse of hM“(α0 ∪ q),
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where q is a finite set of ordinals, and let
π : K →M

be the collapse map. So π is elementary, and α0 ≤ crit(π). The assumptions of 6.64
imply that α0 is a cardinal of K, so we assume this. We have a pullback iteration
strategy

Σ = Λ(id,π)

for (M,K,α)), obtained by using id : M →M and π : K →M to lift S on (M,K,α0)
to a tree T = (id, π)S on M , then choosing the branch chosen by Λ. That is

Σ(S) = Λ((id, π)S).
Σ is actually a strategy for a stronger iteration game than the usual game pro-

ducing a normal tree on a phalanx. Namely, Σ wins G0, where in G0 the opponent,
player I, plays not just the extenders ESγ , but also decides whether nodes are unsta-
ble. We demand that if I declares θ unstable, then he must have declared all τ <S θ
unstable, and 0 ≤S θ, and [0, θ]S does not drop in model or degree. We then set
αθ = sup iS0,θ“α0 and letMS

θ+1 be the transitive collapse of hMSθ “(αθ∪ iS0,θ(q)). I must

then declare θ + 1 to be stable, and take his next extender fromMS
θ+1. If I declares

θ to be stable, he must take his next extender from MS
θ . The rest of G0 is as in the

normal iteration game. Let us call a play V of G0 in which no one has yet lost a
psuedo iteration tree on (M,K,α0).

The psuedo-tree occurring in the proof of 6.57 was a play of G0 in which I followed
certain rules for picking his extenders and declaring nodes unstable. But for now,
we do not assume I is playing in any such special way.

Remark 7.6 We can generalize G0 much further, to a game in which I is allowed to
gratuitously drop to Skolem hulls whenever he pleases. With some minimal condi-
tions, Ψ will pull back to a strategy for this game. We don’t need that generality, so
we won’t go into it.

Let us define strong hull condensation. The changes we need to make in order to
accomodate psuedo-trees are straightforward, but we may as well spell them out.

If T is a psuedo-tree on (M,K,α0), then we set
stab(T ) = {β < lh(T ) | β is T -stable }.

We let Ext(T ) be the set of extenders used, and T ext the extender tree of T . T is
determined by stab(T ) and Ext(T ). (Psuedo-trees are normal, and their last nodes
are stable, by definition.). If β is an unstable node of T , we write

αTβ = sup(iT0,β“α0).

Definition 7.7 For T a psuedo-tree, we put ξ ≤∗T η iff
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(a) ξ ≤T η, or

(b) there is a γ ≤T η such that ξ and γ are stable roots of T , and ξ − 1 ≤T γ − 1.

In case (b), we let iTξ,η : MT
ξ →MT

η be given by

ı̂Tξ,η = ı̂Tγ,η ◦ (τ−1 ◦ iTξ−1,γ−1 ◦ σ),
where σ : Mξ →Mξ−1 and τ : Mγ →Mγ−1 are the maps from the Skolem hulls.

Notice that iTξ,γ = (τ−1 ◦ iTξ−1,γ−1 ◦σ) is total in case (b), because iT0,γ−1(q) is in ran(τ).
Recall here that for θ unstable,

αTθ = αθ = sup iT0,θ“α,
and

Mθ+1 = collapse of hMθ
“(αθ ∪ i0,θ(q)).

So in case (b), we also get that iξ−1,γ−1�αξ−1 = iξ,γ�αξ−1. Here is a diagram:

MT
η

MT
γ−1 MT

γ

MT
ξ−1 MT

ξ

MT
0 MT

1

σ

τ

ı̂0,ξ−1

ı̂ξ−1,γ−1

ı̂1,ξ

ı̂ξ,γ

ı̂γ,η

Thus the stable roots of T have a branch structure themselves, with 1 at its root.
As before, a tree embedding will have u, v, t, and s maps. The u maps connect

exit extenders, but we shall also define them at unstable α such that ETα+1 exists.
v(α) is the least ξ on the branch in ≤∗T to u(α) such thatMT

α is naturally embedded
into MU

ξ . The t and s maps are the corresponding maps on models.

Definition 7.8 Let T and U be (normal) psuedo-iteration trees on (M,K,α0). A
tree embedding of T into U is a system

〈u, 〈sβ | β < lh T 〉, 〈tβ | β + 1 < lh T ∧ β ∈ stab(T )〉, p〉
such that
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1. α ∈ dom(u) iff α ∈ stab(T ) and α + 1 < lh(T ) or α /∈ stab(T ) and α + 2 <
lh(T ). For any α, β, α < β ⇒ u(α) < u(β), and for α ∈ dom(u),

(a) α ∈ stab(T )⇔ u(α) ∈ stab(U), and

(b) if α /∈ stab(T ), then u(α) = rt(u(α + 1))− 1.

2. p : Ext(T ) → Ext(U) is such that E is used before F on the same branch
of T iff p(E) is used before p(F ) on the same branch of U . Thus p induces
p̂ : T ext → U ext.

3. Let v : lh T → lhU be given by v(0) = 0, v(λ) = supα<λ v(α) for λ a limit, and

v(α + 1) =

{
u(α) + 1 if α ∈ stab(T )

v(α) + 1 otherwise.

Then v preserves ≤∗T , and

(i) α ∈ stab(T )⇔ v(α) ∈ stab(U), and

(ii) α ∈ dom(u)⇒ v(α) ≤∗ u(α).

4. For any β,
sβ : MT

β →MU
v(β)

is total and elementary. Moreover, for α <∗T β,
sβ ◦ ı̂Tα,β = ı̂Uv(α),v(β) ◦ sα.

In particular, the two sides have the same domain. Further, if β is unstable,
then

sβ(αTβ ) = αUv(β)

5. For α ∈ dom(u),
tα = ı̂Uv(α),u(α) ◦ sα,

and if α ∈ stab(T ), then
p(ETα ) = tα(ETα )

= EUu(α).

6. If β /∈ stab(T ),
sβ+1 = σ−1 ◦ sβ ◦ τ,

where τ : MT
β+1 → MT

β and σ : MU
v(β)+1 → MU

v(β) are the Skolem hull maps.

(Note v(β + 1) = v(β) + 1 when β is unstable, by 3 above.) In other words,
sβ+1 agrees with sβ on αTβ , and maps the collapse of iT0,β(q) to the collapse of
iU0,v(β)(q).
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7. If β = T -pred(α + 1) (and hence α ∈ stab(T ) ∩ dom(u)) , then letting β∗ =
U-pred(u(α) + 1),

v(β) ≤∗U β∗ ≤∗U u(β),

and
sα+1([a, f ]PETα ) = [tα(a), ı̂Uv(β),β∗ ◦ sβ(f)]P

∗

EU
u(α)

,

where P �MT
β is what ETα is applied to, and P ∗�MU

β∗ is what EUu(α) is applied
to.

Here is a diagram that goes with the last clause of the definition, in the case that
α + 1 and β are both T -unstable.

MT
α+2 MU

v(α+2)

MT
α+1 MU

v(α+1)

MU
u(β+1)

MU
β∗ MU

β∗+1

MT
β MU

v(β)

MT
β+1 MU

v(β+1)

sα+2

sα+1

sβ

sβ+1

ı̂Tβ+1,α+2 ETα

iU
v(β),β∗

EU
u(α)

ı̂U
β∗+1,v(α+2)

iU
v(β+1),β∗+1

Remark 7.9 The slightly new feature is the following. If Ψ: T → U is a tree
embedding of psuedo-trees, and N is a stable root of T , and P is a stable root
immediately above it in T , then we want Ψ to lift the process whereby we got the
embedding from N to P of T . This embedding came from an ultrapower of the
backup model M for N . To make it possible to copy such ultrapowers, Ψ must have
associated (M,N) to (M∗, N∗), where N∗ is a stable root of U , and M∗ is its backup
model. This leads to clause 7 in the definition.
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The agreement of maps in a tree embedding is given by

Lemma 7.10 Let 〈u, 〈sβ | β < lh T 〉, 〈tβ | β + 1 < lh T ∧ β ∈ stab(T )〉, p〉 be a tree
embedding of T into U ; then for ξ < β < lh(T )

(a) if ξ ∈ stab(T ), then sβ� lh(ETξ ) + 1 = tξ� lh(ETξ ) + 1.

(b) if ξ /∈ stab(T ) and ξ+1 < β, then sβ� inf(αTξ , lh(ETξ+1)+1) = tξ� inf(αTξ , lh(ETξ+1)+
1).

The proof is an easy induction that we omit here. Part (a) comes from the fact
that sβ agrees with the map from lh(ETξ ) + 1 to lh(EUu(ξ)) + 1 that is an input for the

Shift Lemma. In case (a), that map is tξ. In case (b) the same proof shows that sβ
agrees with tξ+1 on lh(ETξ+1) + 1. But it is easy to see that tξ agrees with tξ+1 on αTξ
when ξ is unstable. (They may disagree at αTξ .) This gives us (b).

Definition 7.11 Let Σ be a winning strategy for II in G0; then Σ has strong hull
condensation iff whenever U is a psuedo-tree according to Σ, and there is a tree
embedding from T into U , then T is according to Σ.

Lemma 7.12 Let (M,Λ) be an lbr hod pair, let π : K → M with crit(π) ≥ α and

K = hK“(α ∪ q) for some finite set q of ordinals. Let Σ = Λ(id,π) be the pullback
strategy for II in the game G0 on (M,K,α); then Σ has strong hull condensation.

Proof.(Sketch.) This is like the proof of 4.10. If U is a play by Σ, and T is a
psuedo-hull of U , then (id, π)T is a psuedo-hull of (id, π)U . �

Definition 7.11 does not have the clause on pullback strategies that is part of the
definition of strong hull condensation for ordinary strategies. This is just because we
don’t have a use for it. We believe that Lemma 7.12 holds for the stronger property.

We turn now to normalization.
Let G be the game in which I and II play G0 until someone loses, or I decides that

they should play the game G+(N,ω, ω1) for producing finite stacks of weakly normal
trees on the last model N of their play of G0. Clearly, we can pull back Λ via (id, π)
to a winning strategy for II in this game. We again call this strategy Σ, and write

Σ = Λ(id,π)

for it.
Let M,K,α0, q, and π be as above. Let V be a psuedo-tree on (M,K,α0) with

last model N , and s = 〈(νi, ki,Ui)|i ≤ n〉 an N -stack. We can define the embedding
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normalizationW = W (V , s) in essentially the same way that we did when no psuedo-
trees were involved. For example, suppose that s consists of just one normal tree U
on N . Being the last model, N has been declared stable in V . We define

Wγ = W (V ,U�(γ + 1))
by induction on γ. Each Wγ is a psuedo-tree with last model Rγ, and we have
σγ : MU

γ → Rγ. We also have tree embeddings
Ψν,γ : Wν →Wγ,

defined when ν <U γ. Ψν,γ is partial iff (ν, γ]U drops somewhere. We call its u-map
φν,γ, and its t-maps are πν,γξ .

We set W0 =W . The successor step is given by
Wγ+1 =Wγ�(θ + 1)a〈F 〉aiF“(W≥βν ),

where F = σγ(E
U
γ ), θ = αF is the least stable node of Wγ such that F is on the

MWγ

θ -sequence,and ν = U -pred(γ + 1). Let

β(Wν ,Wγ, F ) =

{
least η such that crit(F ) < λWν

η if there is such an η

lh(Wν)− 1 otherwise.

Set β = β(Wν ,Wγ, F ). It is easy to see that β ≤ θ, and
Wν�β + 1 =Wγ�β + 1 =Wγ+1�β + 1.

This is because between ν and γ, all the Wη used the same extenders E such that
λ(E) < lh(Fν).

Let us assume for simplicity that (ν, γ+1]U does not drop. We have φ : lh(Wν)→
lh(Wγ+1) given by, for ξ ∈ stab(Wν),

φ(ξ) =

{
ξ if ξ < β

(θ + 1) + (ξ − β) otherwise.

For η ≤U ν, we let φη,γ+1 = φ ◦ φη,ν . A node η of Wγ+1 is stable just in case η ≤ θ
and η is stable as a node ofWγ, or η = φ(ξ), where ξ is stable as a node ofWν . (The
stable nodes are just those having exit extenders, so there is no other reasonable
choice here.) For ξ < β, πν,γ+1

ξ is the identity. We define by induction on ξ ≥ β the

models MWγ+1

ϕ(ξ) and maps πξ : MWν
ξ →MWγ+1

ϕ(ξ) as before.
For example, suppose ξ = β. We let

MWγ+1

θ+1 = Ult(MWν
β , F ),

and let πβ be the canonical embedding, so that

πβ = i
Wγ+1

β,θ+1.

If β is stable in Wν , then E
Wγ+1

θ+1 = πβ(EWν
β ), and

MWγ+1

θ+2 = Ult(P,E
Wγ+1

θ+1 ),
where P is the appropriate initial segment of some MWν

τ . We determine πβ+1 using
the Shift Lemma as before. (I.e., πβ+1([a, f ]) = [πθ+1(a), πτ (f)] if τ 6= β, or if
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τ = β and crit(F ) ≤ crit(E
Wγ+1

θ+1 ). Otherwise, πβ+1([a, f ]) = [πθ+1(a), f ].) So nothing
changes.

On the other hand, if β is unstable in Wν , then θ + 1 is unstable in Wγ+1. We
set

(αθ+1)Wγ+1 = sup i
Wγ+1

0,θ+1“(α0),

and as we must,

MWγ+1

θ+2 = collapse of HullM
Wγ+1
θ+1 (αθ+1 ∪ i

Wγ+1

0,θ+1(q)).

Let σ be the uncollapse map. Let τ : MWν
β+1 → M

Wν
β be the uncollapse map. Note

that Wν�(β + 2) =Wγ�(β + 2) =Wγ+1�(β + 2) in the present case. We set
πβ+1 = σ−1 ◦ πβ ◦ τ.

If β + 2 = lh(Wν) then we are done defining Wγ+1 and Ψν,γ+1. If not, we set

E
Wγ+1

θ+2 = πβ+1(EWν
β+1). We have λWν

β = inf(αWν
β , λ(EWν

β+1)), and we set

λ
Wγ+1

θ+1 = inf(α
Wγ+1

θ+1 , λ(E
Wγ+1

θ+2 )).

It is easy to see that MWγ+1

θ+2 |λθ+1 = MWγ+1

θ+1 |λθ+1. (We are ignoring the anomalous
case here.)26 We also have

π�λWν
β = πβ+1�λ

Wν
β ,

which is the agreement we need to continue defining Wγ+1 and Ψν,γ+1.
Let us check that Ψν,γ+1 satisfies the clauses in Definition 7.8 that are relevant

so far. These involve the behavior of its maps at α ≤ β if β is stable in Wν , and at
α ≤ β + 1 otherwise.

Clause (1) is clear. The v-map of Ψν,γ+1 is given by

v(ξ) =

{
ξ if ξ ≤ β

(θ + 1) + (ξ − β) otherwise.

We can then see that (3) of 7.8 holds. The case to check here is (3) at β and possibly
β + 1. But v(β) = β, and β ∈ stab(Wν) iff β ∈ stab(Wγ+1), so (i) holds. (ii) holds
at β because v(β) = β <Wγ+1 θ+ 1 = φ(β). If β /∈ stab(Wν), then v(β + 1) = β + 1,
and β + 1 ≤∗Wγ+1

θ + 2 = φ(β + 1), so (ii) holds at β + 1.
Clause (4) is trivial at this stage, because sα = id for α ≤ β, and for α = β + 1

if β is unstable. Clause (5) is also trivial at α < β, because all maps are then the

identity. At β, it only applies if β is stable, and then it amounts to πβ = i
Wγ+1

β,θ+1,
which is indeed how we defined πβ. If β is unstable in Wν , then clause (5) requires

that πβ+1 = ı̂
Wγ+1

β+1,θ+2 ◦ sβ+1. But sβ+1 = id , and πβ+1 = σ−1 ◦ ı̂Wγ+1

β,θ+1 ◦ τ = ı̂
Wγ+1

β+1,θ+2,
so (5) is satisfied.

26λ
Wξ
α is an agreement ordinal. It corresponds to λ(ET

α ) = λTα+1 in normal trees T .
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The rest of the definition proceeds as above, defining πξ : MWν
ξ →MWγ+1

φ(ξ) using
the Shift Lemma and the appropriate earlier πτ . If ξ is unstable in Wν , we then go
on to define πξ+1 : MWν

ξ+1 →M
Wγ+1

φ(ξ+1) as we did above. At limit steps, we take direct
limits.

This gives us Wγ+1 and Ψν,γ+1 : Wν → Wγ+1. At limit ordinals λ, we let Wλ be
the direct limit of theWν for ν <U λ, under the Ψν,µ. Finally, W (V ,U) =Wγ, where
γ + 1 = lh(U).

If V is a psuedo-tree and s_〈U〉 is a maximal normal stack on the last model of
V , then

W (V , s_〈U〉) = W (W (V , s), σU),

where σ is the natural embedding from the last model of V to the last model of
W (V , s) that we get from the normalization process. That is, we normalize stacks
“bottom up”.

Remark 7.13 One might look at normalizing stacks of psuedo-trees, but we are not
doing that. W(V , s) is defined only when s is a stack of ordinary trees.

This finishes our discussion of the normalization W (V , s), for V a psuedo-tree on
(M,K,α), and s a maximal stack on the last model of V . We say that strategy Σ
for the game G normalizes well iff whenever 〈V , s〉 is according to Σ, then W (V , s)
is according to Σ.

Lemma 7.14 Let (M,Λ) be an lbr hod pair, and K, π, q, α0 be as above. Let Σ =

Λ(id,π); then Σ normalizes well.

Proof.(Sketch.) If V is a psuedo-tree, and U is a normal tree on the last model
of V , let us write

(id, π)〈V ,U〉 = 〈(id, π)V , σU〉,
where σ is the copy map acting on the last model of V . Just for the space of this proof,
to keep things straight, let’s write Ŵ for the embedding normalization operation on
psuedo-trees defined above.

Λ itself normalizes well. But normalizing commutes with copying in this context,
as it did in the case of ordinary iteration trees. That is

(id, π)Ŵ (V ,U) = W ((id, π)〈V ,U〉).
So

Ŵ (V ,U) is by Σ ⇔ (id, π)Ŵ (V ,U) is by Λ

⇔ W ((id, π)V , σU) is by Λ

⇔ 〈id, π)V , σU〉 is by Λ

⇔ 〈V ,U〉 is by Σ ,
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as desired. See the proof of Theorem 4.4. �

Let us turn now to the proof of Lemma 6.64. We were given an lbr hod pair
(M,Σ), but it works better with the current notation to call that pair (M,Λ), so
let’s make that switch. We are also given K,α0, π, and q as above. We have the
pullback strategy

Σ = Λ(id,π)

for G on (M,K,α0), and Σ normalizes well and has strong hull condensation. We have
a coarse Γ-Woodin tuple (N∗, δ∗, ...,�,Σ∗) such that Code((M,Λ)) ∈ Γ, and C is a �-
construction in N∗ such that (M,Λ) iterates to (MC

η0,j0
,ΩCη0,j0

). For 〈η, j〉 ≤ 〈η0, j0〉,
we set 27

Vη,j = tree of minimal length whereby (M,Λ) iterates past (Mη,j,Ωη,j).
We also had psuedo-trees Sη,j on (M,K,α0) formed by certain rules.

Definition 7.15 For an lpm R, we say that (T ,V) is the (Σ,Λ, R)-coiteration ( of
(M,K,α)) with M) iff

(a) T is a psuedo-tree by Σ on (M,K,α) with last model P ,

(b) V is a normal tree by Λ on M with last model Q,

(c) R � P and R � Q, and T and V are of minimal length such that this is true,
and

(d) stability (and hence the next model) in T is determined by the rules we have
given: θ is unstable iff [0, θ]T does not drop, and eTθ = eVτ for some τ .

We remark that the internal strategy Σ̇R is relevant in (c), but no external strat-
egy agreement is relevant. (c) tells us that V and W proceed by hitting the least
extender disagreement with R, and that the corresponding R-extenders are all empty.

We had fixed 〈ν0, k0〉 ≤lex 〈η0, j0〉 such that for each 〈η, j〉 <lex 〈ν0, k0〉, the
(Σ,Λ,Mη,j)-coiteration (M,K,α0) with M exists, and moreover, the last model on
both sides is strictly longer than Mη,j, and no external strategy disagreements show
up on either side.28 We are trying to show that the (Σ,Λ,Mν0,k0)-coiteration exists,
and that no external strategy disagreements show up on the (M,K,α0) side. That
is,

Lemma 7.16 Let T be an initial segment of Sν0,k0 with stable last node, and let N0

be the last model of T ; then either

27We called it Uη,j before, but Vη,j works better now. j0 was formerly k0.
28We called this pair 〈ν, l〉 before, but we want to free up those letters for other use below.
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(1) (N0,ΣT ) � (Mν0,k0 ,Ων0,k0), or

(2) (Mν0,k0 ,Ων0,k0) � (N0,ΣT ), or

(3) there is a nonempty extender E on the N0 sequence such that, setting τ = lh(E),

(i) Ė
Mν0,k0
τ = ∅, and

(ii) (ΣT )〈τ,−1〉 = (Ων0,k0)〈τ,0〉.

Proof. Suppose T and N0 are a counterexample. Since (1) and (2) fail, there is
a least disagreement between (N0,ΣT ) and (Mν0,k0 ,Ων0,k0), and since (3) fails, the
least disagreement either involves a nonempty extender from Mν0,k0 , or is a strategy
disagreement.

Suppose first that (3) fails because there is a nonempty extender on the Mν0,k0

side at the least disagreement between (N0,ΣT ) with (Mν0,k0 ,Ων0,k0). As in the proof
of the Bicephalus Lemma, we can reduce to the case that k0 = 0, and the least
disagreement involves F = ḞMν0,0 , with F 6= ∅. Letting V = Vν0,0, we then have that
(T ,V) is the (Σ,Λ,Mν0,−1)- coiteration. Let P and Q be the last models of T and
V . So

(Mν0,−1,Ων0,−1) = (P |〈ν0,−1〉,ΣT ,〈ν0,−1〉) = (Q,ΛV,〈ν0,−1〉).

Let
j : N∗ → Ult(N∗, FCν0

)

be the canonical embedding, and κ = crit(j). We have that Mν0,−1 � j(Mν0,−1) by
coherence. (Note j(Mν0,−1)|ν0 is extender passive.) j(T ,V) is the (Σ,Λ, j(Mν0,−1))
coiteration, because j(Λ) ⊆ Λ, and hence j(Σ) ⊆ Σ. So V is an initial segment of
j(V). But then T is an initial segment of j(T ), because the relevant conditions for
declaring stability are the same in N∗ and j(N∗).

We have thatMT
κ =Mj(T )

κ and j�MT
κ = i

j(T )
κ,j(κ), so F is compatible with the first

extender G used in [κ, j(κ)]j(T ). Mν0,−1 �Mj(T )
j(κ) , so G cannot be a proper initial

segment of F . But F is not on the sequence of Mj(T )
j(κ) , so F cannot be a proper

initial segment of G. Hence F = G, and F is used in j(T ). Since T = j(T )�(ξ + 1),
where P =MT

ξ , we have that F is on the sequence of P , contradiction.
So we may assume that we have J �Mν0,k0 such that

J �N0,
but there is a strategy disagreement, that is

(Ων0,k0)J 6= ΣT ,J .
Note that (J, (Ων0,k0)J) and (J,ΣT ,J) are lbr hod pairs. (In the case of (J,ΣT ,J), this
is because the pair is elementarily embedded, as a mouse pair, into some iterate of
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(M,Λ).) Thus the two strategies are determined by their actions on normal trees,
and we can fix a single normal tree U on J of limit length such that (Ων0,k0)J(U) 6=
ΣT ,J(U). Again we consider first the case that J = Mν0,k0 , then we reduce to this
case using the pullback consistency of Σ. Let Ω = Ων0,k0 and

b = Ω(U).
We derive a contradiction in the case J = Mν0,k0 by repeating the proof of The-

orem 5.11. Large stretches of that proof can be simply copied, and that is basically
what we are going to do. We shall try to condense things enough that the new points
stand out. We have set up the notation to mimic that in the proof of 5.11. To make
the correspondence better, let us now set

W∗η,j = Sη,j,
and forget about our prior S notation.

Let
lift(U ,Mν0,k0 ,C) = 〈U∗, 〈ητ , lτ | τ < lhU〉, 〈ψUτ | τ < lhU〉〉.

Remembering to forget our previous use of “S”, for γ < lh(U) or γ = b, let
Sγ =MU∗

γ ,

N0
γ = M

Sγ
ηγ ,lγ

= M
iU
∗

0,γ(C)

ηγ ,lγ
,

so that
ψUγ :MU

γ → N0
γ

is elementary. For γ + 1 < lhU , let resγ be the map resurrecting ψUγ (EUγ ) inside Sγ,
namely

resγ = (σηγ ,lγ [Mηγ ,lγ |〈lhψUγ (EUγ ), 0〉])Sγ .

We have Mν0,k0 =MU
0 = N0

0 , and ψU0 = identity. For 〈η, j〉 ≤lex i
U∗
0,γ(〈ν0, k0〉), we

let (W∗η,j)Sγ = iU
∗

0,γ(〈µ, l〉 7→ W∗µ,l)η,j and (Vη,j)Sγ = iU
∗

0,γ(〈µ, l〉 7→ Vµ,l)η,j. Note that

iU
∗

0,γ(Λ) ∩ Sγ = Λ ∩ Sγ, so that the VSγη,j and (W∗η,j)Sγ are by Λ and Σ, respectively.
Set

(W∗γ ,Vγ) = (W∗ηγ ,lγ ,Vηγ ,lγ )
Sγ ,

for γ < lhU or γ = b. Let z∗(γ) + 1 = lh(W∗γ), and put

Nγ =MW∗γ
z∗(γ).

So W∗0 = T is our psuedo-tree on (M,K,α0) by Σ. Its last model is N0, and
Mν0,k0 = J = N0

0 �N0. We want to normalize 〈T ,U〉, but it may not be a maximal
stack, so we replace U with U+. This yields a maximal normal stack, so our theory
of embedding normalization applies to it. Set

Wγ = W (W∗0 ,U+�(γ + 1))
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for γ < lhU , and

Wb = W (W∗0 , (U+)ab).

SoW0 =W∗0 = T . TheWγ’s are all by Σ, because Σ normalizes well and U+�(γ+1)
is by ΣT ,N0 . Since Σ normalizes well, it is enough to show that Wb is by Σ, for then
ΣT ,N0(U+) = b, so ΣT ,J(U) = b, as desired. Since Σ has strong hull condensation, it
is enough to show

Sublemma 7.16.1 Wb is pseudo-hull of W∗b .

Proof. As before, we define by induction on γ, for γ < lh(U) or γ = b, tree embed-
dings

Φγ : Wγ →W∗γ .

Let
Φγ = 〈uγ, 〈sγβ | β ≤ z(γ)〉, 〈tγβ | β < z(γ)〉, pγ〉.

Φγ can be extended, in that vγ(z(γ)) ≤∗W ∗γ z
∗(γ), and we let

tγ = i
W∗γ
vγ(z(γ)),z∗(γ) ◦ s

γ
z(γ)

be the final t-map of the extended tree embedding. Letting Rγ = MWγ

z(γ) we have
that

tγ : Rγ → Nγ.

Again, the rest of Φγ is actually determined by tγ. It is also determined by uγ, and
by pγ.

The embedding normalization process gives us extended tree embeddings
Ψν,γ : Wν →Wγ,

defined when ν <U γ. We use φν,γ for the u-map of Ψν,γ, so that φν,γ : lh(Wν) →
lh(Wγ), the map being total if (ν, γ]U does not drop in model or degree. We let πν,γτ
be the t-map t

Ψν,γ
τ , so that

πν,γτ :MWν
τ →MWγ

φν,γ(τ)

elementarily, for ν <U γ and τ ∈ domφν,γ. Let also:

• σ1
η :MU+

η → Rη be the embedding normalization map,

• σ0
η : MU

η →MU+

η be the copy map,29

• ση = σ1
η ◦ σ0

η,

29σ0
η may only be elementary as a map into some proper initial segment of Rη.
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• Fη = ση(E
U
η ), and

• ξ̄η = least α such that Fη is on the MWη
α sequence.30

Thus Wγ+1 = W (Wν ,Wγ, Fγ), where ν = U -pred(γ + 1).
We also have an extended tree embedding Ψ∗ν,γ : W∗ν →W∗γ defined when ν <U γ

and (ν, γ]U does not drop. The maps of Ψ∗ν,γ are all restrictions of iU
∗

ν,γ, so we don’t
give them special names. As before, we maintain by induction that the diagram

Wγ W∗γ

Wν W∗ν

Φη

Ψν,γ

Φν

Ψ∗ν,γ

commutes, in the appropriate sense.
Our induction hypothesis is

Induction Hypothesis (†)γ.

(1) (a) For ν < η ≤ γ, Φν�(ξ̄ν + 1) = Φη�(ξ̄ν + 1).

(b) For all η ≤ γ, tη is well defined; that is, vη(z(η)) ≤∗W ∗η z
∗(η).

(c) For ν < η ≤ γ, sηz(η)�(lhFν + 1) = resν ◦ tν�(lhFν + 1).

(2) Let ν < η ≤ γ, and ν <U η, and suppose that (ν, η]U does not drop; then
Φη ◦Ψν,η = Ψ∗ν,η ◦ Φν .

(3) For ξ ≤ γ, ψUξ = tξ ◦ σξ.

(4) For all ν < γ, N∗ν agrees with Nγ strictly below lhGν . Gν is on the N∗ν -sequence,
but lhGν is a cardinal of Nγ. W

∗∗
ν is an initial segment of W ∗

γ �(v
γ(ξ̄γ) + 1).

Let us check that the embeddings in clause (3) fit together plausibly. tξ : Rξ → Nξ,
and ψUξ : MU

ξ → N0
ξ � Nξ. But σξ : MU

ξ → Kξ � Rξ, so indeed the embeddings fit
together plausibly.

30We called this ordinal αη before, but that would clash with our notation for exchange ordinals
in psuedo-trees.
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We shall explain the terms in clause (4) shortly. The precise meaning of clause
(2) can be given by writing it out in terms of the component maps, as we did in (d)
in the proof of 5.11. We leave it to the reader to do that.

We now describe how to obtain Φγ+1 from the Φα for α ≤ γ.
We have tγ : Rγ → Nγ, where Nγ is the last model of W ∗

γ . Let F = Fγ, and let
ν = U -pred(γ + 1). So Wγ+1 = W (Wν ,Wγ, F ). Let us assume for simplicity that
(ν, γ + 1]U is not a drop in model or degree. Let

• H = Hγ = tγ(F ),

• Q = Nγ|〈lh(H), 0〉,

• G = Gγ = resγ(H), and

• G∗ = background extender for G in iU
∗

0,γ(C).

We have tγ ◦ σγ = ψUγ , so G = resγ(ψ
U
γ (EUγ )), so

Sγ+1 = Ult(Sν , G
∗).

Since we are not dropping, W ∗
γ+1 = iG∗(W

∗
ν ), where iG∗ = iU

∗
ν,γ+1. The first thing we

need to see is that G is used in W ∗
γ+1.

Lemma 5.6 on capturing resurrection embeddings works also for our system of
psuedo-trees:

Claim 0. Let τ be least in stab(W∗γ) such that Q �MW∗γ
τ , and θ least such that

Q �MVγ
θ . Let (W∗∗γ ,V∗∗γ ) be the (Σ,Λ, resγ(Q))-coiteration of (M,K,α0) with M ;

then

(i) W∗∗γ extends W∗γ�(τ + 1),

(ii) letting ξ = lh(W∗∗γ ) − 1, G is on the MW∗∗γ
ξ sequence, and not on the MW∗∗γ

α

sequence for any α < ξ,

(iii) τ ≤W ∗∗γ ξ, and ı̂
W ∗∗γ
τ,ξ �(lh(tγ(F )) + 1) = resγ �(lh(tγ(F )) + 1), and

(iv) similarly for V∗∗γ vis-a-vis Vγ.

Proof. (Sketch.) Part (iv) literally follows from Lemma 5.6 31, because the Vη,j do
not depend on the W∗η,j. For parts (i)-(iii), one simply repeats the proof of 5.6.

Item (i) includes the agreement on stability declarations and next models. The
point is that the (Σ,Λ, resγ(Q))-coiteration reaches models extending Q on both sides

31Apart from the fact that we are now dealing with a least branch construction.
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by the proof of Lemma 5.6. Let η be least such that η ≤W ∗∗γ ξ and Q�MW∗∗γ
η . We

have that from the proof of 5.6 that

ı̂
W ∗∗γ
η,ξ �(lh t

γ(F ) + 1) = resγ �(lh t
γ(F ) + 1).

The proof also shows that either η = ξ, or the first ultrapower taken in (η, ξ]W ∗∗γ
involves a drop in model or degree. In either case, η is stable in W∗∗γ . Let also δ

be least such that Q �MV∗∗γ
δ . We then have that (W∗∗γ �(η + 1),V∗∗γ �(δ + 1)) is the

(Σ,Λ, Q) coiteration. But Q � Nγ, so this is an initial segment of the (Σ,Λ, Nγ)
coiteration, that is, of (W∗γ ,Vγ). This implies η = τ and δ = θ. �

Let

• ξγ = lh(W∗∗γ )− 1

• τγ = least τ such that Q�MW∗γ
τ and τ is stable in W∗γ , and

• N∗γ =MW∗∗γ
ξγ

.

With these definitions, clause (4) of (†)γ now makes sense. Note W∗γ�τγ + 1 =
W∗∗γ �τγ + 1, and ξγ is the least stable α of W∗∗γ such that G is on the sequence of

MW∗∗γ
α .
Q, resγ(Q), and Nν all agree up to dom(G), so

resγ(Q)|〈lh(G),−1〉� iG∗(Nν) = Nγ+1,
and iG∗(Nν)|〈lh(G), 0〉 is extender-passive, by coherence. (W∗∗γ ,V∗∗γ ) is the resγ(Q)
coiteration, so G is on the sequence of the last model on both sides. We then get
that V∗∗γ is an initial segment of Vγ+1, W∗∗γ is an initial segment of W∗γ+1 and G is
used in both Vγ+1 and W∗γ+1.

We define
Φγ+1�ξ̄γ + 1 = Φγ�ξ̄γ + 1,

and this is ok becauseWγ�(ξ̄γ+1) =Wγ+1�(ξ̄γ+1) andW∗γ�vγ(ξ̄γ+1) =W∗γ+1�v
γ+1(ξ̄γ+

1). We set
uγ+1(ξ̄γ) = ξγ,

so that
pγ+1(F ) = G.

Let us set ξ̄ = ξ̄γ and ξ = ξγ.
Let

β = β(Wν ,Wγ, F ) = Wγ+1-pred(ξ̄ + 1),

and
β∗ = W ∗

γ+1-pred(ξ + 1).
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Let us verify that β∗ is located where it should be in W∗γ+1 according to Definition
7.8. Basically, we just run through the proof of Sublemma 5.15.1, taking into account
the stability structure now present. So let

• κ̄ = crit(EUγ ), and P̄ =MU
γ |κ̄+ =MU

ν |κ̄+ = dom(EUγ ),

• κ = crit(F ), and P =MWν
β |κ+ =MWγ

β |κ+ =MWγ+1

β |κ+ = dom(F ), and

• κ∗ = crit(G), and P ∗ = dom(G).

In these formulae, the successor cardinals are evaluated in the corresponding models,
of course. Recall here that Wν�β + 1 =Wγ�β + 1 =Wγ+1�β + 1.

Claim 1. σν agrees with σγ on lh(EUν ), and σν(P̄ ) = σγ(P̄ ) = P .

Proof. We have that σ0
ν agrees with σ0

γ on lh(EUν ) by the agreement of copy maps, and
σ1
ν agrees with σ1

γ on lh(σ0(EUν )) by the agreement of the embedding normalization
maps in W (T ,U+). (Cf. 3.49.) This proves the first part. But P̄ �MU

ν |λ(EUν ), so
σν(P̄ ) = σγ(P̄ ), and σγ(E

U
γ ) = F , so σγ(P̄ ) = P . �

Claim 2. tν(P ) = tγ(P ) = P ∗, and tν�P = tγ�P .

Proof. Because [ν, γ + 1)U does not drop, whenever MU
ν | lh(EUν ) � X �MU

ν , then
ρ(X) > κ̄. This implies that whenever Rν | lh(Fν) � X � Rν , then ρ(X) > κ. It
follows that

resν �(t
ν(P ) ∪ {tν(P )}) = id.

If ν < γ, we also get for the same reason
resγ �(t

γ(P ) ∪ {tγ(P )}) = id.
This implies

tγ(P ) = resγ ◦tγ(P ) = dom(resγ ◦tγ(F )) = dom(G) = P ∗.
But also ψUγ �λ(EUν ) = resν ◦ψUν �λ(EUν ) by the properties of conversion systems. So
we get

tγ(P ) = tγ ◦ σγ(P̄ )

= ψUγ (P̄ )

= resν ◦ψUν (P̄ )

= resν ◦tν ◦ σν(P̄ )

= tν(P ).
The same calculation shows that tγ�P = tν�P . �

Claim 3. If β is stable in Wν , and β < z(ν), then vν(β) ≤∗W ∗ν β
∗ ≤∗W ∗ν u

ν(β).

Consider the diagram
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MW∗ν
uν(β)

MW∗ν
η

MWν
β MW∗ν

vν(β)

tνβ

sνβ

ı̂vν(β),η

ı̂η,uν(β)

By 7.10, tν agrees with tνβ on MWν
β |λ(EWν

β ), and P �MWν
β |λ(EWν

β ), so
tνβ(P ) = P ∗.

Let η ∈ [vν(β), uν(β)]Wν be least such that either η = uν(β) or crit(̂ıη,uν(β)) > κ∗.
Thus

ı̂vν(β),η ◦ sνβ(P ) = P ∗,

and all extenders used in W∗ν �η + 1 have length < κ∗.

We claim that λ(E
W∗ν
η ) > κ∗. If η = uν(β), this holds because κ < λ(EWν

β ), and

tνβ preserves that fact. If η < uν(β), then κ∗ < crit(̂ıη,uν(β)) < λ(E
W∗ν
η ), so again our

claim is correct. The claim tells us that β∗ ≤ η.
On the other hand, if α < η and α is stable in W∗ν , then lh(E

W∗ν
α ) < κ∗. This is

true by definition for those α such that α+ 1 ≤∗W ∗ν η, but the lengths of these special

Eα are cofinal in {lh(E
W∗ν
α ) | α < η ∧ α ∈ stab(W∗ν )}. This tells us that if α < η and

α is stable, then α < β∗.
We claim η = β∗. What is left to rule out is that β∗ is unstable, and β∗ + 1 = η.

Supposing this holds, we get that β = θ + 1, where θ is unstable in Wν . We have
αWν
θ ≤ κ because F is applied to MWν

β . Thus sνβ(κ) ≤ sνβ(αWν
θ ) = α

W∗ν
vν(θ). But

α
W∗ν
β∗ = sup(i

W∗ν
vν(θ),β∗“α

W∗ν
vν(θ)). It follows that

α
W∗ν
β∗ ≤ i

W∗ν
vν(θ),β∗ ◦ s

ν
θ(κ) = κ∗.

But then G is not applied to MW∗ν
β∗ in W∗γ+1, contradiction. �

Claim 4. If β = z(ν), then vν(β) ≤∗W ∗ν β
∗ ≤∗W ∗ν z

∗(ν).

Proof. If β = z(ν), then β must be stable. The proof of Claim 3 then works with
small changes. �

Note that Claims (3) and (4) imply that if β is stable in Wν , then β∗ is stable in
W∗ν .
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Claim 5. If β is unstable in Wν and β + 1 < z(ν), then β∗ is unstable in W∗ν , and
vν(β) ≤∗ β∗ ≤∗ uν(β) in W∗ν .

Proof. Let λ = λWν
β = inf(αWν

β , λ(EWν
β+1)). By 7.10, tν agrees with tνβ on MWν

β |λ.

Since P �MWν
β |λ, we have again

tνβ(P ) = P ∗.
Let η ∈ [vν(β+1), uν(β+1)]Wν be least such that either η = uν(β+1) or crit(̂ıη,uν(β+1)) >
κ∗. Thus

ı̂vν(β+1),η ◦ sνβ+1(P ) = P ∗,

and all extenders used in W∗ν �η + 1 have length < κ∗.
Note that sνβ�α

Wν
β = sWν

β+1, and κ < αWν
β . All extenders used in [vν(β + 1), η]W ∗ν

have critical point below the current image of sνβ+1(κ), hence below the current image

of sνβ(αWν
β ). Thus all these extenders are moving up the current image of the phalanx

indexed at (vν(β), vν(β + 1)). It follows that η = γ + 1, where γ is unstable in W∗ν ,
and vν(β) ≤∗ γ ≤∗ uν(β).

It is now easy to see that γ = β∗, so that Claim 5 holds. �

Claim 6. If β is unstable in Wν and β + 1 = z(ν), then β∗ is unstable in W∗ν , and
vν(β) ≤∗W ∗ν β

∗ ≤∗W ∗ν z
∗(ν)− 1.

Proof. The proof of Claim 5 works here. �
We let vγ+1(ξ̄ + 1) = ξ + 1. We need to see

Claim 7. ξ̄ + 1 ∈ stab(Wγ+1) if and only if ξ + 1 ∈ stab(W∗γ+1.

Proof. We have that
ξ̄ + 1 ∈ stab(Wγ+1)⇔ β ∈ stab(Wν)

⇔ β∗ ∈ stab(W∗ν )

⇔ ξ + 1 ∈ stab(W∗γ+1).
The first line holds because Φν,γ+1 is a tree embedding. The second line was proved
in Claims (3)-(6). Toward the last line, suppose first that β∗ ∈ stab(W∗ν ). Since
W∗ν �β∗+1 =W∗γ+1�β

∗+1, and Vν uses the same extenders of length < o(P ∗) as Vγ+1

does, we get that β∗ ∈ stab(W∗γ+1). But β∗ ≤∗ ξ+ 1 inW∗γ+1, so ξ+ 1 ∈ stab(W∗γ+1).
Conversely, suppose β∗ is unstable in W∗ν . The agreement noted in the last

paragraph shows that β∗ is unstable in W∗γ+1. Now recall that (W∗∗γ ,V∗∗γ ) is the
(Σ,Λ, resγ(Q)) coiteration. Letting ρ + 1 = lh(V∗∗γ), we have that G is on the

sequence of MV∗∗γ
ρ , but not on the sequence of any earlier model. It follows that

Vγ+1�(ρ+ 1) = V∗∗γ ,
and

EVγ+1
ρ = G.
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Since β∗ is unstable in W∗γ+1, we have τ such that

MVγ+1
τ =MW∗γ+1

β∗ .

But then G must be applied to MVγ+1
τ in Vγ+1, leading to

MVγ+1

τ+1 =MW∗γ+1

ξ+1 ,
so that ξ + 1 is unstable in W∗γ+1, as desired. �

The map sγ+1

ξ̄+1
of Φγ+1 is given by the Shift Lemma, as clause (7) in the definition

of tree embeddings requires. If ξ̄ + 1 is unstable in Wγ+1, this also determines sγ+1

ξ̄+2
.

The rest of Φγ+1 is determined by
uγ+1(φν,γ+1(η)) = iG∗(u

ν(η)).
uγ+1 preserves stability, because uν and φν,γ+1 do, and iG∗ is elementary. One must
check that the associated vγ+1 also preserves stability. Here we use proposition 6.63.
Let φ = φν,γ+1. In general, vγ+1(φ(η)) = sup iG∗“v

ν(η). However, if φ(η) is a stable
limit ordinal in Wγ+1, then η is stable in Wν , so cof(η) = cof(φ(η)) = ω. But then
cof(vν(η)) = ω, so iG∗ is continuous at vν(η). Thus vγ+1(φ(η)) = iG∗(v

ν(η)), hence
vγ+1(φ(η)) is stable in W∗γ+1 by the elementarity of iG∗ .

This proves Sublemma 7.16.1. �

That in turn proves Lemma 7.16, or what is the same, Lemma 6.64 of Chapter
5. �

7.3 UBH holds in hod mice

In this section, we adapt the proof in [51] that a form of UBH is true in pure extender
models. We show thereby that whenever (M,Ω) is an lbr hod pair with scope HC,
and Ω is Suslin-co-Suslin in some model of AD+, then UBH for nice, normal iteration
trees holds in M . As in the pure extender case, the proof involves a comparison of
phalanxes of the form Φ(T ab) and Φ(T ac).

We shall use this theorem to show that if (M,Ω) is as above, and λ is a limit of
Woodin cardinals in M , then for each ξ < λ there is a term τ ∈M such that for all
g generic over M for a poset belonging to M |λ,

τ g = ΩM |ξ ∩ (M |λ)[g].
This generic interpretability result is important in showing that the HOD of the
derived model of M below λ is an iterate of M |λ. It has other uses as well.

Definition 7.17 Let M be a premouse such that M |= ZFC−; then an M -nice tree
is a normal iteration tree T on M such that for all α < lh(T ),

(1) MT
α |= “ETα is a nice extender”, and
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(2) ETα = F � lh(ETα ), for some F on the sequence of MT
α .

Notice here that if T is M -nice, then ETα cannot be on the sequence of MT
α , be-

cause in Jensen-indexed premice, the extenders of the sequence are never nice. Nev-
ertheless, if (M,Σ) is a mouse pair and T is an M -nice tree on M,Σ), then the pairs
in T have the extender and strategy agreement properties that a tree using exten-
ders from the sequences would have. That is, is α < β, then (Mα,ΣT �α+1)| lh(ETα ) =
(Mβ,ΣT �β+1)| lh(ETα ). 32

Theorem 7.18 Assume AD+, and let (M,Ω) be a least branch hod pair with scope
HC. Suppose M |= ZFC−, and Ω is coded by a Suslin-co-Suslin set of reals. Let δ be
a cutpoint of M , µ > δ a regular cardinal of M , and let T be an M-nice tree such
that

(a) T has all critical points > δ, and

(b) T ∈ (M |µ)[g], for some g that is M-generic over Col(ω, δ);

then
M [g] |= T has at most one cofinal, wellfounded branch.

Remark 7.19 Our proof of this theorem can be extended without much more work
to cover plus two trees T , as does the theorem of [51] it generalizes. We don’t see
how to make it work for arbitrary non-dropping trees.

Proof. Suppose not. Let Ṫ ∈ M |µ be the M -least name such that 1 forces Ṫ
to be a counterexample. Let g be M -generic over Col(ω, δ), and T = Ṫ g. T is
countable in M |µ[g]. Let

π : N →M |µ

be elementary, and such that crit(π) > δ, and N is pointwise definable from ordinals
≤ δ. Thus Ṫ ∈ ran(π). Let

π̂ : N [g]→ (M |µ)[g]

be the canonical extension of π, and let
π̂(S) = T .

By assumption, T has distinct, cofinal, wellfounded branches in (M |µ)[g], so we have
b, c such that

N [g] |= b and c are distinct cofinal, wellfounded branches of S.

32lh(ET
α ) is inaccessible in MT

α , so it is not an index.
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Let Φ(Sab) be the phalanx (〈MS
α | α < lh(S)〉_〈MS

b 〉, 〈lh(ESα ) | α < lh(S)〉). We
get an iteration strategy for Φ(Sab) by finding maps with sufficient agreement that
embed its models into M .

Claim 0. There are πα, γα for α < lh(S), and πb, such that πb and the πα are the
identity on δ + 1, and for all α,

(1) πb : MS
b →M |µ,

(2) πα : MS
α →M |γα, and

(3) πα� lh(ESα ) = πb� lh(ESα ).

Proof. The proof is given, under slightly different strength hypotheses on the ETα , in
[51, §3]. See especially the proof of Theorem 3.3.33 �

Our iteration strategy for Φ(Sab) is then just the pullback of Ω under the πα, for
α < lh(S) or α = b. Call this strategy Ψ.

Similarly, we have

Claim 1. There are σα, ξα for α < lh(S), and σc, such that σc and the σα are the
identity on δ + 1, and for all α,

(1) σc : MS
c →M |µ,

(2) σα : MS
α →M |ξα, and

(3) σα� lh(ESα ) = σc� lh(ESα ).

We then get an iteration strategy for the phalanx Φ(Sac) by pulling back Ω under
the maps σα, for α < lh(S) or α = c. Call this iteration strategy Σ.

Let (N∗,Σ∗, δ∗) be a coarse Γ Woodin model, where Ω is coded by a Γ∩ Γ̌ set of
reals. We assume that the various countable objects we have encountered so far are
countable in N∗. In particular, M [g], Φ(Sab), Φ(Sac), and the maps from claims (1)
and (2) are countable in N∗. Let C be a maximal w-construction below δ∗ in N∗. We

33Here is a sketch. The copy maps ψα : MS
α → MT

α |µ are all restrictions of π, as is the copy
map ψb : MS

b → MT
b |µ. (µ is fixed by the maps of T .) Letting να = supψα“ lh(ES

α ), we have
να < lh(Eα)T . Using Condensation inside MT

α , we then get ξα < lh(ET
α ) and φα : MS

α →MT
b |ξα

such that φα agrees with ψα, and hence π, on lh(ES
α ). The φα are in MT

b . An absoluteness
argument done in the wellfounded modelMT

b then gives us the Claim, but withMT
b replacing M .

Pulling back under iTb , we get the Claim itself.
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compare Φ(Sab) with Φ(Sac) by defining, for each ν, l, the (Ψ,Σ,MC
ν,l)-coiteration

(of Φ(Sab) with Φ(Sac)). This is a pair of psuedo trees (Uν,laWν,l,Uν,laVν,l) according
to Ψ and Σ respectively, obtained by iterating away least disagreements with MC

ν,l,
as in the proof of Theorem 6.57. The process of moving a phalanx up is a little
different, so let us look at it briefly.

The first phase in the coiteration consists in moving Φ(Sab) and Φ(Sab) up by an
ordinary normal iteration tree onM |δ = N |δ. Note δ is a cutpoint of ofN =MS

0 , and
Ψ and Σ both agree with Ωδ,0 for trees on N |δ. We let U = Uν,l be the unique normal
tree on N |δ that is by Ω〈δ,0〉 and has last model P = Mν,l|〈δ0, 0〉, with the strategy
agreement ΩU ,P = (ΩCν,l)〈δ0,0〉. There is such a U by Theorem 6.45. We assume here
that 〈ν, l〉 is large enough that (N |δ,Ω〈δ,0〉) does not iterate past (Mν,l,Ων,l). We wish
now to define W =Wν,l and V = Vν,l.

Thinking of U as a tree on N , its last model is
Q =MU

τ0
=MW

0 =MV
0 .

P = Q|δ0 is a cutpoint initial segment of Q, and Q is pointwise definable from the
ordinals < δ0. (In most cases, τ0 = δ0.) Letting E be the branch extender of iU0,τ0 ,
we move up our two phalanxes by setting, for α < θ,

• MW
α =MV

α = Ult(MS
α, E),

• ρα = i
MSα
E (lh(ESα )),

• MW
θ = Ult(MS

b , E), and

• MV
θ = Ult(MS

c , E).

The rest of W and V will be psuedo-trees on the phalanxes (〈MW
ξ | ξ ≤ θ〉, 〈ρξ |

ξ < θ〉) and (〈MV
ξ | ξ ≤ θ〉, 〈ρξ | ξ < θ〉). A root of W or V is an ordinal ξ ≤ θ.

If ξ = θ, the root is stable, and if ξ < θ the root is unstable. At any stage, the
current last models of W and V are stable. If MW

γ is the current last model of W
at some stage, then we let EWγ be the first extender on its sequence that is part of
a disagreement with MC

ν,l. Similarly on the V side. We show that the corresponding

extender on MC
ν,l is empty, and no strategy disagreements ever show up. If there is

no disagreement, the construction of Wν,l is complete, and similarly on the V side.
We shall also have ordinals λWα and λVα that tell us what model in W or V we

should apply a given extender to.34 If α is stable in W and EWα exists (that is, the
construction of W is not finished), then

λWα = λ(EWα ).

34Again, these correspond to λTα+1 when T is normal.
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If α is unstable inW , then there is a least stable γ ≥ α. Suppose again EWγ exists, as
otherwise the construction of W is done. Since α is unstable, we will have a unique
unstable root η < θ such that η ≤W α, and [η, α]W will not drop. We then set then
we set

λWα = inf(iWη,α(ρη), λ(EWγ )).

Similarly for λVα. The extenders used in W have increasing λ’s, so if α < β, then
MW

α |λWα =MW
β |λWα . 35

Now let us look at the general successor step. Suppose MW
γ is the current last

model of W , and hence is stable. Let
E = EWγ

be the least disagreement between MW
γ and Mν,l. Again, we are assuming such

an agreement exists, it is not a strategy disagreement, and it does not involve an
extender on the Mν,l sequence. Set

λWγ = λ(E),
and for unstable α such that γ is the least stable above α, let λWα be defined as above.
Let κ = crit(E), and α be least such that κ < λWα . We set α = W -pred(θ + 1). If
α is stable we just proceed as usual, creating one new modelMW

γ+1, which is stable.
Similarly, if α is unstable but Ult(Mα, E) does not occur in V , we create only one
new model, and it is stable.36 So suppose α is unstable, and Ult(MW

α , E) does occur
in V .

Let β be least such that α < β and β is stable. (E.g. if α < θ, then β = θ.) For
0 ≤ ξ ≤ (β − α), we set

MW
(γ+1)+ξ = Ult(MW

α+ξ, E).

If ξ < (β−α), we declare that γ+1+ξ is unstable, and we declare that γ+1+(β−α)
is stable. γ + 1 + (β − α) is the new last node of W , from which we shall take the
next extender.

By induction, we have that for every node ξ of W , there is a unique root τ ≤ θ
such that τ ≤W ξ. If ξ is unstable, then so is τ ; that is, τ < θ. Moreover, if ξ is
unstable, then [τ, ξ)W does not drop in model or degree, and λWξ ≤ iW0,ξ(ρτ ).

At limit steps in the construction of W , we use Ψ to pick a branch a of the form
[τ, γ)W , where τ ≤ θ is a root. We take γ to be stable unless every ξ ∈ a is unstable
( so a does not drop), and MW

γ is a model of V . (Equivalently, eWγ = eVη , for some
η.) In this case, we declare γ to be unstable. For ξ such that τ + ξ ≤ θ, we set

MW
γ+ξ = Ult(MW

τ+ξ, E),

35For example, suppose there is a ξ such that λ(EW
θ ) ≤ ρξ, and let ξ be the least such. Then

λ(EW
θ ) < ρξ, and EW

θ is actually on the MW
ξ sequence. If ξ < α ≤ θ, then λWα = λWξ , and the net

effect of our definition of the λ’s is that no extender will ever be applied later to MW
α .

36At this point, we already know what extenders with length ≤ lh(E) are used in V.
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where E is the branch extender of a. If τ + ξ < θ), then γ + ξ is unstable, and
γ + (θ − τ) is stable. We take the next extender from MW

γ+(θ−τ).
The construction of V proceeds in completely parallel fashion; indeed, nothing in

our situation has distinguished b from c. Although the constructions of W and V
determine stability by looking at each other, the reader can check that there is no
circularity: when it comes time to determine whether γ is stable in W , the relevant
part of V is already determined.

As in §6.2, the maps πα, for α < lh(S) or α = b, yield a pullback strategy for a
more general iteration game on Φ(Sab). We also call this strategy Ψ. In the more
general game, I makes stability declarations and creates new models according to the
rules above. Of course, there are no Mν,l and V in the setting of the general game.
I picks the next extender E freely (subject to normality), and if E is to be applied
to an unstable Mα, I may decide whether Ult(Mα, E) is stable as he pleases. If he
decides against stability, he must create new models as above. At limit γ such that
the branch to γ II has chosen consists of unstable nodes, I is again free to decide
whether γ is stable. If he decides for unstability, he must create new models in the
way we have described.

Similarly, the σα for α < lh(S) or α = c yield a pullback strategy Σ for the more
general game on Φ(Sac).

Remark 7.20 Our process of moving phalanxes up amounts to a step of full nor-
malization. We could have used a step of embedding normalization instead, and
thereby arranged that our W and V are actually normal iteration trees on N . W
and V would then be meta-iterates of S_b and S_c, in the sense of [48]. That paper
contains a proof of Theorem 7.18 that rests on the theory of meta-iteration trees.

Let us consider how the coiteration can terminate. Let
Z = ThN(δ),

and
Z0 = ThQ(δ0) = iU0,τ0(Z).

Q is pointwise definable from ordinals < δ0, so it is completely determined by Z0.
All critical points in S are above δ, so Z = ThM

S
α(δ) for all α < lh(S), and also for

α = b or α = c. Thus for all ξ ≤ θ,
Z0 = ThM

W
ξ (δ0) = ThM

V
ξ (δ0).

Moreover, for all η, the critical points of EWη or EVη (if they exist) are > δ0.
Motivated by this, let us call 〈ν, l〉 relevant iff

(a) (Q|δ0,ΩU ,〈δ0,0〉) = (MC
ν,l|〈δ0, 0〉, (ΩCν,l)〈δ0,0〉),
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(b) δ0 is a cardinal cutpoint of MC
ν,l, and

(c) for no proper initial segment R of MC
ν,l do we have Z0 = ThR(δ0).

Let us call 〈ν, l〉 exact iff it is relevant, and Z0 = ThM
C
ν,l(δ0).

If 〈ν, l〉 is relevant, then neither Wν,l nor Vν,l can reach a last model that is a
proper initial segment of Mν,l. Let us state explicitly the lemma on stationarity of
background constructions we have been using

Lemma 7.21 If 〈ν, l〉 is relevant, then in the (Ψ,Σ,MC
ν,l) coiteration, no strategy

disagreements show up, and no nonempty extender on the MC
ν,l side is part of a least

disagreement.

Proof. (Sketch.) This proof is like the proofs of 5.11 and 7.16 we gave earlier. We
show that the strategies Ψ and Σ normalize well and have strong hull condensation,
in the appropriate senses. We then show there are no strategy disagreements by
taking a candidate disagreement at some U on some stable model MW

γ , letting
b = (Ων,l)J(U), and showing that the normalization of 〈W�γ + 1,U_b〉 tree-embeds
into a psuedo-tree by Ψ. This involves an inductive construction like that in the
proofs of 5.15.1 and 7.16.1. �

Claim 2. There is an exact 〈ν, l〉 <lex 〈δ∗, 0〉.

Proof. Otherwise 〈δ∗, 0〉 is relevant, so the (Ψ,Σ,MC
δ∗,0) coiteration produces

(W ,V) with last models extendingMC
δ∗,0. This contradicts the universality ofMC

δ∗,0.
�

Now let 〈ν, l〉 be the unique exact pair. Z0 contains statements which collectively
assert that ρω = OR, and ThMν,l(δ0) = Z0, so l = 0. We have also that Mν,0 |= ZFC−.
Z0 is Σ1 over Mν+1,0, so ρ(Mν+1,0) = δ0.

Let W =Wν,0 and V = Vν,0 have lengths γ0 and γ1.

Claim 3. MW
γ0

=MV
γ1

= Mν,0; moreover, the branches of W and V to γ0 and γ1 do
not drop.

Proof. Neither side can iterate to a proper initial segment of Mν,0 because 〈ν, 0〉
is relevant. Neither side can iterate strictly past Mν,0 because 〈ν, 0〉 is exact. �

Let η0 ≤W γ0 and η1 ≤V γ1 be the roots of the two trees below γ0 and γ1. Let
i0 : Q→MW

η0
and i1 : Q→MV

η1
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be the embeddings given by the fact that Z0 = ThM
W
η0 (δ0) = ThM

V
η1 (δ0). These are

just the lifts under iU0,τ0 of the branch embeddings iS0,η0
and iS0,η1

. We have that

iWη0,γ0
◦ i0 = iVη1,γ1

◦ i1,
since both embeddings are the embedding given by Q being the transitive collapse
of HullMν,0(δ0).

We now get a contradiction using the hull and definability properties in Mν,0 as
usual.

Definition 7.22 For M an lpm, we say that M has the definability property at α iff
α is first order definable over M from some ordinals b ∈ [α]<ω, and write Def(M,α)
in this case. We say that M has the hull property at α iff whenever A ⊂ α and
A ∈M , there is a B ∈M such that B is definable over M from some b ∈ [α]<ω, and
B ∩ α = A. We write Hp(M,α) in this case.

Claim 4. η0 = η1.

Proof. Suppose otherwise. Let
j0 : MS

η0
→ Ult(MS

η0
, E) =MW

η0
,

and
j1 : MS

η1
→ Ult(MS

η1
, E) =MV

η1

be the canonical embeddings. Suppose first that η0 and η1 are incomparable in S,
and let F = ESα and G = ESβ , where α + 1 ≤S η0, β + 1 ≤S η1, α 6= β, and
S-pred(α+ 1) = S-pred(β + 1) = ξ. We may assume lh(F ) < lh(G), or equivalently,
α < β. Let λ = sup{λ(ESν ) | ν + 1 ≤S ξ}. Letting κ0 = crit(F ), we have

κ0 = least µ ≥ λ such that ¬Def(MS
η0
, µ).

Because the generators of j0 (i.e. the generators of E) are contained in δ0, we get
j0(κ0) = least µ ≥ j0(λ) such that ¬Def(MW

η0
, µ)

= least µ ≥ j0(λ) such that ¬Def(Mν,0, µ).
To see the first line, note that ¬Def(MS

η0
, κ0) because F was used on the branch to η0,

and j0 is fully elementary so it preserves this. On the other hand, and µ < j0(κ0) is
of the form j0(f)(a), where f is definable overMS

ξ from ordinals < λ, and a ∈ [δ0]<ω.
The second line comes from using iWη0,γ0

to move up to MW
γ0

= Mν,0. Note for this
that j0(κ0) < j0(lh(F )) = ρα, and ρα ≤ crit(iWη0,γ0

) because α < η0. Similarly, letting
κ1 = crit(G), we get

j1(κ1) = least µ ≥ j1(λ) such that ¬Def(MV
η1
, µ)

= least µ ≥ j1(λ) such that ¬Def(Mν,0, µ).
So j0(κ0) = j1(κ1). But κ0, κ1 < lh(F ), and j0�(lh(F ) + 1) = j1�(lh(F ) + 1), so
κ0 = κ1.
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It is not hard to see that
lh(F ) = least cardinal µ > κ0 such that Hp(MS

η0
, µ),

and
lh(G) = least cardinal µ > κ0 such that Hp(MS

η1
, µ).

Here cardinals are in the sense of MS
η0

and MS
η0

, of course.37 Using iWη0,γ0
◦ j0 and

iVη1,γ1
◦j1 to move up to Mν,0, and considering the hull property there, we get as above

that j0(lh(F )) = j1(lh(G)). But j0(lh(F ) = j1(lh(F )), so lh(F ) = lh(G). However,
G was used strictly after F in S, so lh(F ) < lh(G), contradiction.38

We are left to consider the case η0 <S η1. Let G be the extender used in [0, η1)S
and applied toMS

η0
. Let κ1 = crit(G), and let λ = sup{λ(ESα ) | α+ 1 ≤S η0} be the

set of generators of MS
η0

. Then again,

j1(κ1) = least µ ≥ j1(λ) such that ¬Def(MV
η1
, µ)

= least µ ≥ j1(λ) such that ¬Def(MV
γ1
, µ).

Note that γ0 is stable, and η0 is unstable, so η0 <W γ0. Let F be the extender used
in [η0, γ0)W and applied to MW

η0
. Let

κ0 = crit(F ).
If κ0 < j1(λ), then κ0 < ρα for some α < η0, so F should have been applied to an
earlier model of W . Thus j1(λ) ≤ κ0, and since MW

η0
has the definability property

everywhere above j1(λ), using iWη0,γ0
we see that κ0 is the least µ ≥ j1(λ) such that

¬Def(Mν,0, µ). Thus
κ0 = j1(κ1).

But F = EWη for some η ≥ θ, so
j1(lh(G)) < sup

α<θ
ρα < λ(F ).

An easy induction shows that MW
η does not project strictly below supα < θρα, so

we get that F �j1(lh(G)) ∈ Ult(MW
η0
, F ), so the hull property fails in Ult(MW

η0
, F ) at

j1(lh(G)). Moving up by iWη0,γ0
, the hull property fails in Mν,0 at j1(lh(G)).

However,MS
ξ1

does have the hull property at lh(G). This gives Hp(MV
η1
, j1(lh(G))),

and thus Hp(Mν,0, j1(lh(G)), noting here that crit(iVη1,γ1
) ≥ j1(lh(G)). This is a con-

37Proof: for µ a cardinal such that κ0 < µ < lh(F ), F �µ yields a subset of µ that is not definable
in MS

α+1 = Ult(MS
ξ , F ) from ordinals < µ, as otherwise the factor embedding would show F �µ is

in its own ultrapower. On the other hand, every point inMS
α+1 is definable from ordinals < lh(F ).

Since crit(iSα+1,η0) > lh(F ), we get the first line displayed. The second is proved in parallel fashion.
38We could also identify lh(F ) as the least ordinal > κ0 definable in MS

η0 from ordinals < κ0.
This uses that lh(F ) is not a critical point in T , which follows from niceness. That would let
us avoid the hull property in proving 7.18. The hull property seems to be needed in proving the
plus-two version of 7.18.
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tradiction. �

Claim 5. η0 < θ.

Proof. Otherwise η0 = η1 = θ. Let F be the first extender used in b − c and G
the first extender used in c− b. We get a contradiction just as we did in the proof of
Claim 4, in the case η0 and η1 were S-incomparable. �

Now let s be the increasing enumeration of the extenders used in (η0, γ0)W and t
the increasing enumeration of the extenders used in (η0, γ1)V . We show by induction
on ξ that s(ξ) = t(ξ). For given that s�ξ = t�ξ, we have that Ult(MW

η0
, s�ξ) is

pointwise definable from supα<ξ λ(s(α)), so s(ξ) is the least whole initial segment of
the extender of the natural embedding from Ult(MW

η0
, s�ξ) to Mν,0. t(ξ) is the least

whole initial segment of the same extender, so s(ξ) = t(ξ).
Thus s = t. But this implies that γ0 and γ1 are unstable, a contradiction. That

completes the proof of Theorem 7.18. �
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8 HOD in the derived model of a hod mouse

In this chapter, we show that if D is the derived determinacy model associated to a
hod pair (M,Σ), then HODD is a least branch premouse. This is Theorem 8.8 below.
The proof also shows that HODD is an initial segment of an iterate of M . This implies
that, under an iterability hypothesis, there are determinacy models whose HOD has
a fine structure, and yet is rich enough to satisfy “there is a subcompact cardinal”.
This is Theorem 8.11 below.

We must assume here some of the basic facts about universally Baire sets, homo-
geneously Suslin sets, and derived determinacy models. The material covered in [52]
is more than sufficient. See also [17].

We show in section 5 that reasonably closed hod mice satisfy V = K, in a certain
natural sense. We then close the chapter with a short survey of further results on
the structure of HOD in determinacy models that have been proved by the methods
of this book.

8.1 Generic interpretability

We shall need the following generic interpretability theorem. Its proof follows the
same basic outline as Sargsyan’s proof of the corresponding fact for rigidly layered
hod pairs below LSA.( See [30] and [32].) 39

Theorem 8.1 (Generic interpretability) Assume AD+, and let (P,Σ) be an lbr hod
pair with scope HC, and such that Σ is coded by a Suslin-co-Suslin set of reals. Let

P |= ZFC− + δ is Woodin;
then there is a term τ ∈ P such that whenever i : P → Q is the iteration map
associated to a non-dropping P -stack s by Σ, and g is Col(ω,< i(δ))-generic over Q,
then

i(τ)g = Σs,<i(δ)�HCQ[g].

Proof. For ξ < η < δ and k < ω, we shall define a term τξ,k,η such that whenever g is
P -generic over Col(ω, η), then τ gξ,k,η = Σ〈ξ,k〉�HCP [g]. We then take τ to be the join

of the τξ,k,η. Clearly then τ g = Σ<δ�HCP [g] whenever g is Col(ω,< δ) generic over
P . It will be clear that this property of τ is preserved by Σ-iteration.

39The main difference is that our mice have extenders overlapping Woodin cardinals, which means
we can’t use Q-structures to determine Σ on small generic extensions of (M,Σ) in the way Sargsyan
did. It is at this point that we use Theorem 7.18 on UBH in M [g]. The proof of that theorem used
a phalanx comparison, as any proof of generic interpretability at the level of extenders overlapping
Woodin cardinals would probably need to do.
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So fix ξ < η < δ and k < ω. Let g be P -generic over Col(ω, η). We shall define
Σ〈ξ,k〉�HCP [g] from ξ, k, P |δ and g. The definition will be uniform in g, giving us the
desired term.

Let µ = (η+)P . We may assume that µ is a cutpoint of P . For if not, let
E be the first extender on the P -sequence such that crit(E) < µ < lh(E), and
set Q = Ult(P,E). Then µ is a cutpoint of Q, HCP [g] = HCQ[g], and by strategy
coherence, Σ〈E〉,〈ξ,k〉 = Σ〈ξ,k〉. A definition of Σ〈E〉,〈ξ,k〉�HCQ[g] from Q|iE(δ), ξ, k, and

g will then give the desired definition of Σ〈ξ,k〉�HCP [g]. So we assume µ is a cutpoint
of P .

Let w be the canonical wellorder of P |δ, and working in P , let C be a w-
construction of length δ that is above µ, and such that

(i) Each FCν is a P -nice extender, and

(ii) C adds extenders whenever possible, subject to (i).

Our background condition has the consequence that for any T on MC
ν,k, the

iteration tree T ∗ on P that is part of lift(T ,Mν,k,C) is a P -nice tree. So by 7.18, if
T ∈ P [g], then UBH holds for T ∗.

We also have CBH for P -nice trees S on P such that S ∈ P . This is because S
induces naturally a tree S+ with the same tree order that uses extenders from the
P -sequence. We have that b = Σ̇P (S+) is defined, in P , and wellfounded as a branch
of S+. But then b is wellfounded as a branch of S.40 Thus in P , the ΩCν,l are total.

In P , they are induced by Σ̇P , but Σ̇P ⊆ Σ, and Σ is total on V . So Σ induces a
total-on-V strategy Ω∗ν,l for Mν,l such that ΩCν,l ⊆ Ω∗ν,l. The Ω∗ν,l are Suslin-co-Suslin
in V because Σ is. Since they are induced by Σ, they have strong hull condensation
and normalize well. In fact, each (MC

ν,l,Ω
∗
ν,l) is an lbr hod pair in V . Moreover,

V |= AD+, so in V we can carry out the comparisons needed to see each (Mν,l,Ω
∗
ν,l)

has a core. Thus (Mν,l,Ων,l) has a core in P , and C does not break down in P .

Claim 1. In P , there is a ν < δ such that (P |〈ξ, k〉, Σ̇P
〈ξ,k〉) iterates to (MC

ν,k,Ω
C
ν,k).

Proof. Suppose not. Working in P , we claim that for all 〈ν, l〉 such that ν <
δ, (P |〈ξ, k〉, Σ̇P

〈ξ,k〉) iterates strictly past (Mν,l,Ων,l). This almost follows from the
comparison theorem 6.45. However, to simply quote 6.45, we would need to know
that Σ̇P

〈ξ,k〉 is < δ universally Baire in P . That is part of the theorem we are proving
now. Nevertheless, the proof of 6.45 works here. The consequence of universal

40With very little work, one can show that the trivial completion of ES
α is on the sequence of

MS
α, so that we can take S+ = S.
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Baireness we need is just that if T is a normal tree by Σ̇P
〈ξ,k〉, and i : P → Q is an

iteration map by Σ with crit(i) > ξ, then i(T ) is by Σ̇P
〈ξ,k〉. This much is true by the

strategy coherence of Σ.
But then (P |〈ξ, k〉, Σ̇P

〈ξ,k〉) iterates past Mδ,0 in P . This contradicts universality
at Woodin cardinals, Theorem 2.53. �

Let T be the normal tree by Σ̇P
〈ξ,k〉 whose last model is MC

ν,k given by claim 1,

and let i : P |〈ξ, k〉 →Mν,k be its canonical embedding.

Claim 2. ΣT ,Mν,k
= Ω∗ν,k.

Proof. The proof that the two strategies agree on all trees in P actually shows
that they agree on all trees in V . [ Let U be by both strategies, and b = Ω∗ν,k(T ).
Let U∗ be the tree according to Σ that is part of lift(U ,Mν,k,C); again, we do not
need U ∈ P to make sense of lifting. Then W (T ,Uab) is a psuedo-hull of iU

∗

b (T )
by our previous calculations. However, iU

∗

b (T ) is by Σ〈ξ,k〉 by strategy coherence, so
W (T ,Uab) is by Σ〈ξ,k〉 because Σ〈ξ,k〉 normalizes well, so b = ΣT ,Mν,k

(U).] �

Now let U be a normal tree on P |〈ξ, k〉 of limit length that is according to Σ〈ξ,k〉,
and such that U is countable in P [g]. We wish to find Σ〈ξ,k〉(U) in P [g], and define
it from the relevant parameters. But Σ〈ξ,k〉 is pullback consistent, so

Σ〈ξ,k〉(U) = b iff ΣT ,Mν,k
(iU) = b

iff Ω∗ν,k(iU) = b.
So it will be enough to show

Claim 3. If S is countable in P [g], of limit length, and by Ω∗ν,k, and b = Ω∗ν,k(S),
then b ∈ P [g]. Moreover, b is uniformly definable over P [g] from S and C.

Proof. Let S∗ be the P -nice tree on P that it part of lift(S,Mν,k,C). It is enough
to show b ∈ P [g], and to define there from the relevant parameters, uniformly.

We know from 7.18 that in P [g], S∗ has at most one cofinal, wellfounded branch.
Since all critical points in S∗ are strictly above µ, we can think of S∗ as a P -nice
tree on P [g]. Then by [19], since S∗ is countable in P [g], it has exactly one cofinal
wellfounded branch b in P [g]. Moreover, again by [19], S∗ is continuously illfounded
off b. It follows that b = Σ(S∗), and therefore b = Ω∗ν,k(S), as desired. �

This completes the proof of Lemma 8.1. �

8.2 Mouse limits

Assume AD+, and let (M,Ω) be a mouse pair with scope HC. Suppose s and t are
stacks by Ω on M with last models P and Q such that M -to-P and M -to-Q do
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not drop. By 6.54 and Dodd-Jensen, we can then find stacks u and v by Ωs and
Ωt with a common last model such that neither stack drops getting to N , and such
that Ωsau = Ωtav. By Dodd-Jensen, for any such s, t, u, and v, iu ◦ is = iv ◦ it, where
these are the the iteration maps in question. Thus we have a well-defined direct limit
system.

Definition 8.2 Let (P,Σ) be a mouse pair; then

(1) F(P,Σ) is the collection of all (Q,Ψ) such that there is an P -stack s by Σ with
last model Q, such that P -to-Q does not drop, and Ψ = Σs.

(2) For (Q,Ψ) ∈ F(P,Σ), π(P,Σ),(Q,Ψ) : P → Q is the unique iteration map given
by any and all stacks by Σ.

(3) M∞(P,Σ) is the direct limit of F(P,Σ) under the π(Q,Ψ),(R,Φ).

(4) π(P,Σ),∞ : P →M∞(P,Σ) is the direct limit map.

Of course, M∞(P,Σ) = M∞(Q,Ψ) for all (Q,Ψ) ∈ F(P,Σ). Clearly, if (P,Σ) ≡∗
(Q,Ψ), then M∞(P,Σ) = M∞(Q,Ψ).41 Thus M∞(P,Σ) ∈ HOD, being definable
from the rank of (P,Σ) in the mouse order. In fact, this is true uniformly, in the
sense that letting

(1) me(α) = X iff there is a pure extender pair (P,Σ) of mouse rank α such that
X = M∞(P,Σ), and

(2) mh(α) = X iff here is a least branch hod pair (P,Σ) of mouse rank α such that
X = M∞(P,Σ),

we have
me,mh ∈ HOD.

Assuming ADR+HPC, one can show that HOD = L[mh]. This is not a very useful
representation however, as it does not seem to lead to a fine structure for HOD. We
do not know whether L[me] has any natural identity, assuming say ADR + LEC.

Another simple fact worth noting is

Proposition 8.3 (AD+) Let (P,Σ) and (P,Ψ) be mouse pairs with scope HC such
that (P,Σ) is mouse-equivalent to (P,Ψ) and π(P,Σ),∞ = π(P,Ψ),∞; then Σ = Ψ.

41The converse is also true; see [63][Proposition 2.2].
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Proof. By our comparison theorems, the two pairs have a common iterate (Q,Ω).
Let i : (P,Σ)→ (Q,Ω) and j : (P,Ψ)→ (Q,Ω) be the two iteration maps. Then

π(Q,Ω),∞ ◦ i = π(P,Σ),∞

= π(P,Ψ),∞

= π(Q,Ω),∞ ◦ j.
This implies that i = j. But then by pullback consistency, Σ = Ωi = Ωj = Ψ, as
desired. �

Thus assuming AD+, every mouse pair with scope HC is ordinal definable from
a countable sequence of ordinals. On the other hand, a mouse pair (P,Σ) such that
θ0 ≤ o(M∞(P,Σ)) cannot be ordinal definable from a real.

In order to compute HOD, we must relate different mouse limits. The concept of
fullness helps do that.

Definition 8.4 Assume AD+, and let (P,Σ) be a mouse pair with scope HC. We
say that (P,Σ) is full iff Σ is Suslin-co-Suslin, and

(a) P |= ZFC−, P has a largest cardinal δ, and k(P ) = 0, and

(b) whenever s is a P -stack by Σ with last model Q, and the branch P -to-Q of s
does not drop, and is : P → Q is the iteration map, then there is no mouse pair
(R,Φ) such that Φ is Suslin-co-Suslin, Q�ct R, ρ(R) ≤ is(δ), and ΦQ = Σs.

This notion is sometimes called mouse-fullness.42 43 The following lemma ex-
plains its importance in relating mouse limits to one another.

Lemma 8.5 Let (P,Σ) and (N,Ψ) be mouse pairs of the same type such that (P,Σ) ≤∗
(N,Ψ), and suppose that (P,Σ) is full; then letting γ = o(M∞(P,Σ))

M∞(P,Σ) = M∞(N,Ψ)|γ,
and γ is a successor cardinal cutpoint of M∞(N,Ψ).

Proof. Let (P,Σ) be full, and suppose that (P,Σ) ≤∗ (N,Ψ). Comparing the two
leads to (Q,Λ) a nondropping, normal iterate of (P,Σ) and (R,Φ) a normal iterate
of (N,Ψ) such that (Q,Λ) � (R,Φ). By perhaps taking one additional ultrapower
on the N side, we can arrange that Q is a cutpoint of R. But then o(Q) ≤ ρ(R),

42It is customary to define fullness for P itself, and then say that Σ is fullness-preserving iff (P,Σ)
is full in the sense of our definition.

43OD-fullness is the intensionally stronger requirement that whenever (Q,Ψs,Q) is as in (b) of
8.4, and A is a bounded subset of o(Q) that is ordinal definable from (Q,Ψs,Q), then A ∈ Q. Under
an appropriate mouse capturing hypothesis, the two are equivalent.
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and consequently N -to-R does not drop in U . Because the iterations did not drop,
we have M∞(P,Σ) = M∞(Q,Λ) and M∞(N,Ψ) = M∞(R,Φ).

But o(Q) is a successor cardinal cutpoint of R, and o(Q) ≤ ρ(R). Also, Λ = ΦQ.
It follows then that M∞(Q,Λ) is a successor cardinal cutpoint of M∞(R,Φ), and
that o(M∞(Q,Λ) ≤ ρ(M∞(R,Φ). �

Corollary 8.6 (AD+) Let (P,Σ) and (N,Ψ) be full mouse pairs; then
(P,Σ) ≤∗ (N,Ψ) iff o(M∞(P,Σ)) ≤ o(M∞(N,Ψ))

iff M∞(P,Σ) �ct M∞(N,Ψ).

8.3 HOD as a mouse limit

We shall show that in the derived model of a hod mouse, HOD can be represented
as a mouse limit.

We shall need the following notions associated to derived models. Working in
ZFC, suppose that λ is a limit of Woodin cardinals. Let g be Col(ω,< λ)-generic
over V . We set

R∗g =
⋃
{R ∩ V [g(�ω × α)] | α < λ},

and

Hom∗g = {p[T ] ∩ R∗g | ∃α < λ(V [g�(ω × α)] |= T is < λ-absolutely complemented }.

The symmetry of the forcing tells us that R∗g = R∩L(R∗g,Hom∗g). The sets in Hom∗g
are those that have < λ-homogeneously Suslin representations in some intermediate
collapse, which is is equivalent to having a < λ-universally Baire representation in
some intermediate collapse because λ is a limit of Woodin cardinals. Homogeneous
Suslinity implies determinacy for sets in Hom∗g, and with more work, that every set
in Hom∗g has a scale in Hom∗g. Stationary tower forcing helps us pass from absolute
definitions to absolutely complementing trees. In the end, we get

Theorem 8.7 (Woodin) (ZFC) Suppose λ is a limit of Woodin cardinals, and let
g be Col(ω,< λ)-generic over V ; then

L(R∗g,Hom∗g) |= AD+,
and

A ∈ Hom∗g ⇔ (L(R∗g,Hom∗g) |= A is Suslin and co-Suslin),

for all A ⊆ R∗g.
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The theorem was proved by Woodin in the late 1980s, as part of a more general
theorem known as the Derived Model Theorem. See for example [52].

We want to look at the derived model construction in the case that our ground
model is a least branch hod mouse. What we get is

Theorem 8.8 Assume AD+, and let (M,Ψ) be an lbr hod pair with scope HC, and
such that Ψ is coded by a Suslin-co-Suslin set of reals. Suppose

M |= ZFC + λ is a limit of Woodin cardinals.
Let g be Col(ω,< λ)-generic over M ; then

L(R∗g,Hom∗g) |= ADR.
and

(a) if λ is a limit of cutpoints in M , then then there is an iteration map i : M →
M∞(s) coming from a stack s on M |λ by Ψ such that

HODL(R∗g ,Hom∗g) = L[M∞(s)|i(λ)],
and

(b) if κ < λ is least so that o(κ) ≥ λ in M , then there is an iteration map i : M →
M∞(s) coming from a stack s on M |λ by Ψ such that

HODL(R∗g ,Hom∗g) = L[M∞(s)|i(κ)].

Proof. The techniques here are pretty well known. Let (M,Ψ) and g be as in the
hypotheses. For ν < λ, let

Ψg
〈ν,k〉 = Ψ〈ν,k〉�HCM(R∗g).

Fixing a coding of elements of HC by reals, we can identify Ψg
〈ν,k〉 with a subset of

R∗g. Our first two claims say that the Ψg
〈ν,k〉 witness that HPC holds in L(R∗g,Hom∗g).

Claim 1. If ν < λ, then Ψg
〈ν,k〉 ∈ Hom∗g.

Proof. Let h = g∩Col(ω,< ν+). In M [h] we have, for each µ < λ, a term τ such
that for all l that are Col(ω, µ)-generic over M [h],

τ l = Ψ〈ν,k〉�HCM [h][l].
For the specific such term τ given to us by Theorem 8.1, it is not hard to see that
for all sufficiently large γ,

M [h] |= there are club many generically τ -correct hulls of Vγ.
That is, in M [h], whenever N is countable and transitive, and

π : N [h]→ (M |γ)[h]
is elementary, and everything relevant is in ran(π), and

π(〈τ̄, µ̄〉) = 〈τ, µ〉,
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then for any l that is Col(ω, µ̄)-generic over N ,
τ̄ l = Ψ〈ν,k〉 ∩ HCN [l].

The proof of this is similar to the proof of Theorem 5.1 of [54]. Working in M , let C
be the background construction and

i : M |〈ν, k〉 →MC
η,k

be the iteration map by Ψ〈ν,k〉 that is described in τ . Let C̄ = π−1(C) and ī = π−1(i),
etc. So these are described in τ̄ . Suppose U is according to τ̄ l. Let

W = liftN (̄iU)
be the nice tree on N that is given to us by τ̄ l. W is countable and nice in N [h, l],
so by 7.18, it picks unique cofinal wellfounded branches there. This implies that W
is continuously illfounded off the branches it chooses. But then πW is continuously
illfounded off the branches it chooses, so πW is by Ψ. But lifting commutes with
copying, so

πW = π liftN (̄iU)

= liftM((π ◦ ī)U)

= liftM(iU).
Note here that π is the identity on the base model of U , so π ◦ ī agrees with π(̄i) = i
on the base model of U . This gives the last equality.

So liftM(iU) is by Ψ, and hence iU is by (ΩCη,k)
h,l. But we saw in the proof of 8.1

that this means iU is by the tail strategy(Ψ〈ν,k〉)T ,MC
η,k

, where T is the tree giving

rise to i. Since Ψ〈ν,k〉 is pullback consistent, U is by Ψ〈ν,k〉, as desired.
It is easy to go from a club of < λ-generically τ -correct hulls to a < λ-absoutely

complemented tree projecting to τh whenever h is < λ-generic. (See [52].) This
proves Claim 1. �

Claim 2. The Ψg
〈ν,k〉, for ν < λ are Wadge-cofinal in Hom∗g.

Proof. Let η < λ and
M [g�(ω × η)] |= T and T ∗ are < λ-absolute complements.

Let η < δ < λ, and M |= δ is Woodin. Let µ = (δ++)M . Put π ∈ I iff there is a
non-dropping, normal iteration tree U on M |µ such that

(i) U is by Ψg
〈µ,0〉, with last model N ,

(ii) all critical points in U are strictly above η, and

(iii) π : M [g�(ω × η)]→ N [g�(ω × η)] is the lift of the iteration map.

Standard arguments show that for x ∈ R∗g,
x ∈ p[T ]⇔ ∃π ∈ I(x ∈ p[π(T ∩ (ω × δ+,M))]).
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This shows that p[T ] is projective in Ψg
〈µ,0〉. This easily implies the claim. �

Claim 3. Let η be a successor cardinal of M , and η < λ; then (M |η,Ψg
〈η,0〉) is a full

lbr hod pair in L(R∗g,Hom∗g).

Proof. (M |η,Ψ〈η,0〉) is an lbr hod pair in V , so (M |η,Ψg
〈η,0〉) is an lbr hod pair in

L(Hom∗g,R∗g). We must see that (M |η,Ψ〈η,0〉) is full. In short, this is true because
non-dropping iterations of M |η carry the rest of M along on top, and the resulting
iterates of M can compute truth in the derived model of M by consulting their own
derived models.44

Let us fill in our sketch. Suppose toward contradiction that in L(R∗g,Hom∗g) we
have

(i) an M |η-stack s by Ψ〈η,0〉 with last model Q, such that the branch M |η-to-Q of
s does not drop, and

(ii) an lbr hod pair (R,Φ) such that Φ is Suslin-co-Suslin, Q �ct R, ρ(R) < o(Q),
and ΦQ = Ψs,Q.

Let (R,Φ) be the minimal such pair in the mouse order, and let
TR = ThRk+1(ρ(R) ∪ p(R)),

where k = k(R), be the theory coding the core of R.
Since η is a cardinal of M , s is in fact an M -stack, and regarding it this way,

it has a last model S such that Q � S, and the branch M -to-S of s does not drop.
Since o(Q) is a cardinal of S and ρ(R) < o(Q), if TR ∈ S then TR ∈ Q. But then
ρ(R)+,R < o(Q) because TR collapses it, and ρ+,R(R) is not a cardinal of Q for the
same reason. But Q�R, contradiction. We conclude that TR /∈ S.

However, working in V now, we can find an R∗g-genericity iteration of S|λ by Ψs

so that all its critical points are strictly above o(Q). Let W be the final model of
this genericity iteration; then we have h being Col(ω,< λ) generic over W so that

R∗h = R∗g.
Moreover, as in Claim 2, the strategies (Ψs)

h
〈ν,k〉 for ν < λ are Wadge cofinal in Hom∗h,

and clearly (Ψs)
h
〈ν,k〉 = (Ψs)

h
〈ν,k〉. It follows that

Hom∗h = Hom∗g.
Thus we realized our derived model of M as a derived model of its iterate W .

We show that TR is ordinal definable in L(R∗g,Hom∗g) from Q and (ΨQ)h. But
by generic interpretability, (ΨQ)h is definable in W (R∗h) from parameters in W . By

44We are showing that (M |η,Ψ〈η,0〉) is not just mouse-full, but OD-full. But we are in the derived
model of a mouse, where the two are equivalent, so that is not surprising.
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the homogeniety of the forcing, we then get that TR ∈ W , and hence TR ∈ S,
contradiction.

So working in L(R∗g,Hom∗g), let (P,Σ) be an lbr hod pair of minimal mouse rank

such that Q �ct P , ΣQ = Ψs,Q, and ρ(P ) < o(Q). Let TP = ThPk+1(ρ(P ) ∪ p(P )).
The following claim finishes our proof.

Subclaim 3.1. TP = TR.

Proof. We work in L(R∗g,Hom∗g). Since (R,Φ) and (P,Σ) are mouse minimal with
respect to the same property, they have a common iterate (N,Λ), via normal trees
T and U that do not drop along their main branches. Because neither side drops,
we have

k(R) = k(N) = k(P ).

Let k be the common value. Let i = iT and j = iU be the two main branch
embeddings. Because Q is a cutpoint on both sides, and o(Q) is Σk-regular on both
sides45, we get that

i�o(Q) = j�o(Q).

But then ρ(R) = least α such that i(α) ≥ ρ(N) = least α such that j(α) ≥ ρ(N).
So ρ(R) = ρ(P ). Also

i(p(R)) = p(N) = j(p(P )).

Since i and j are elementary (hence Σk+1 elementary), we get that i“TR = TN = j“TP ,
so TR = TP . �

This proves Claim 3. �

We define in L(R∗g,Hom∗g):
F = {(P,Σ) | (P,Σ) is a full lbr hod pair.}

For (P,Σ), (Q,Ψ) ∈ F ,
(P,Σ) ≺∗ (Q,Ψ) iff ∃(R,Φ)[(R,Φ) �ct (Q,Ψ) ∧ (P,Σ) iterates to (R,Φ)].

If (P,Σ) ≺∗ (Q,Ψ), then
π(P,Σ),(Q,Ψ) : P → R�ct Q

is the iteration map. By Dodd-Jensen, it is well-defined, that is, independent of the
choice of stack witnessing that (P,Σ) iterates to some (R,Φ) �ct (Q,Ψ). The π’s
commute, and ≺∗ is directed by Lemma 8.5, so we have a direct limit system. Set

M∞ = direct limit of (F ,≺∗) under the π(P,Σ),(Q,Ψ),
and let

π(P,Σ),∞ : P →M∞

45Otherwise ρk(R) < o(Q) or ρk(P ) < o(Q), contrary to minimality.
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be the direct limit map. Another way to characterize M∞ is that it is the lpm N of
minimal height such that for all (P,Σ) ∈ F , M∞(P,Σ) �ct M∞. Our two definitions
of π(P,Σ),∞ are consistent with one another..

Let us write
Θ = o(Hom∗g)

= sup{|W | | W is a prewellorder of R∗g in Hom∗g }.
Θ is also the Wadge ordinal of Hom∗g.

Claim 4. o(M∞) ≤ Θ.

Proof. This follows immediately from Claim 1. �
Clearly Θ ≤ θL(R∗g ,Hom∗g). In fact

Claim 5. o(M∞) = Θ = θL(R∗g ,Hom∗g).

Proof. We need only show that θL(R∗g ,Hom∗g) ≤ o(M∞). The proof is essentially due
to G. Hjorth. (See [10].)

Let τ < θL(R∗g ,Hom∗g), and let f : R∗g → τ be a surjection. f is ordinal definable in
L(R∗g,Hom∗g) from some B ∈ Hom∗g, and by Claim 2, we can take our B to be of the
form (Ψg

〈η,0〉, z) for some cardinal η of M and some real z ∈ R∗g. By amalagamating
the fz associated to all possible z, we can eliminate z from the definition.

So we can fix
B = Ψg

〈η,0〉,

where η is a cardinal of M , and
f : R∗g → τ

a surjection, and a formula ϕ(u, v, w) and ordinal α such that
f(x) = ξ iff Lα(R∗g,Hom∗g) |= ϕ[x, ξ, B].

Let M0 = Ult(M,E), for E the first extender on M overlapping η, if there is one.
Let M0 = M otherwise. Let

δ0 = least δ > η such that M0 |= δ is Woodin.
So η and δ0 are cutpoints of M0. Letting N = M0|(δ+

0 )M0 and Φ = Ψ〈E〉,N or Φ = ΨN

as appropriate, we have that (N,Φ) ∈ F . We shall show that
π(N,Φ),∞(δ0) ≥ τ.

Remark 8.9 Let θ(B) be the sup of the lengths of OD(B) prewellorders of R, in
L(R∗g,Hom∗g) of course. Since α and ϕ are arbitrary so far, we are showing that
π(N,Φ),∞(δ0) ≥ θ(B). We believe that a little more work shows that π(N,Φ),∞(δ0) =
θ(B). See [63] for more along these lines.
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To see this, it is more convenient to consider the relativised direct limit system
Fη(N,Φ), in which all iterations must be strictly above η. It is not hard to see that
Fη(N,Φ) is directed. Let Mη

∞(N,Φ) be its direct limit, and πη(N,Φ),∞ be the direct
limit map. We shall show

τ ≤ πη(N,Φ),∞(δ0).

Since Fη(N,Φ) is a subsystem of the full F(N,Φ), this is enough.
Working in V , let

R∗g = {xi | i < ω},

and let s be a run of G+(N,ω, ω1) by Φ that is cofinal in Fη(N,Φ), so that
Nω = Mη

∞(N,Φ),
where Nω is the direct limit along s, and is0,ω = πη(N,Φ),∞. Let N0 = N , and Nk be

the last model of s�k, for k > 0. Let δk = is0,k(δ0). We can arrange that whenever
i < k, then xi ∈ Nk[H], for some H that is generic over Nk for the extender algebra
at δk.

We have N0 �
ct M0. The stack s is according to ΨM0 , so thinking of s as a stack

on M0, and letting Mk be the last model of s�k in this context, we have
Nk �

ct Mk,
and

ik,l : Mk →Ml

the iteration map given by s, for k, l ≤ ω.
Now we do the usual dovetailed R∗g- genericity iterations, iterating each (Mk,Ψs�k,Mk

),
strictly above δk to (Qk,Ωk), and arranging that L(Hom∗g,R∗g) is also a derived model
of Qk. Let

jk : Mk → Qk

be the map of the R∗g genericity iteration, and let
σk,l : Qk → Ql

be the copy map, which exists because we dovetailed the genericity iterations to-
gether. ( See for example the proof of Theorem 6.29 of [66] for the details of this
well-known construction.) Here is a diagram.
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Q0 Qk Qω

M0 Mk Mω

N0 Nk Nω

σ0,k σk,ω

i0,k ik,ω

i0,k ik,ω

j0 jk jω

id id id

We have for each k < ω a Qk-generic hk such that R∗hk = R∗g and Hom∗hk = Hom∗g.
The latter holds because for each ξ < λ, the critical points in jk are eventually above
jk(ξ), and the initial segment of the iteration that gets us to this point acts only
on some M |γ for γ < λ. This tells us that (Ωk)

hk
〈jk(ξ),0〉 is projective in Ψg

〈γ,0〉. That

implies Hom∗hk ⊆ Hom∗g. The reverse inclusion comes from the fact that each Ψ〈γ,0〉
is a pullback of some Ω〈ξ,0〉.

Note that we have for each k < ω a term Ḃk ∈ Qk such that
Ḃ
Qk[l]
k = B

for all l that are Col(ω,< λ) generic over Qk and such that R∗l = R∗g. Moreover,

σk,n(Ḃk) = Ḃn

for k < n < ω. This follows from 8.1, the fact that all embeddings in the diagram
above have critical point > η, and strategy coherence. Let Wk be the extender
algebra of Qk at δk, and put

ξ ∈ Yk iff Qk |=∃b ∈Wk[b 
 (Col(ω,< λ) 
 ξ̌ is the

least γ such that Lα̌(Hom∗
Ġ
,R∗

Ġ
) |= ϕ[ẋ, γ, Ḃk])]

Because Wk has the δk-chain condition in Qk,
Qk |= |Yk| < δk.

Now we define an order preserving map
p : τ → πη(N,Φ),∞(δ0) = i0,ω(δ0).

Let ξ < τ , and pick any x such that f(x) = ξ. Let k < ω be sufficiently large that

(i) x = xi for some i < k, and

(ii) for k ≤ m ≤ n < ω, σm,n(α) = α and σm,n(ξ) = ξ.
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Since Qω is wellfounded, we can find such a k. By (i), x is Wk-generic over Qk. It
follows that ξ ∈ Yk; say that

ξ = the γ-th element of Yk
in its increasing enumeration. We then set

p(ξ) = ik,ω(γ) = σk,ω(γ).
We must check that p(ξ) is independent of the choice of x, and that p is order

preserving. For this, let f(y) = τ . Let kx,ξ and ky,τ be as in (i) and (ii) above,
for (x, ξ) and (y, τ) respectively. Let γx,ξ and γy,τ be the corresponding γ‘s. Taking
n ≥ max(kx,ξ, ky,τ ), we have ξ, τ ∈ Yn, and

ξ = the σkx,ξ,n(γx,ξ)-th element of Yn.
This is because σkx,ξ,n(ξ) = ξ. Similarly,

τ = the σky,τ ,n(γy,τ )-th element of Yn.
So

ξ ≤ τ iff ikx,ξ,n(γx,ξ) ≤ iky,τ ,n(γy,τ )

iff ikx,ξ,ω(γx,ξ) ≤ iky,τ ,ω(γy,τ ),

as desired. This proves Claim 5. �

From the fact that Θ = θL(R∗g ,Hom∗g) we get at once that L(R∗g,Hom∗g) ∩ P (R∗g) =
Hom∗g. Thus in L(R∗g,Hom∗g), all sets are Suslin, and therefore we get

Claim 6. L(R∗g,Hom∗g) |= ADR.

Suppose that (P,Σ) ∈ F , and let τ = o(M∞(P,Σ)). The proof of Claim 5
showed that for some γ < λ, (M |γ,Ψg

〈γ,0〉) ∈ F and τ < o(M∞(M |γ,Ψg
〈γ,0〉)). But

this implies that (P,Σ) ≤∗ (M |γ,Ψg
〈γ,0〉). It follows then that the iterates of proper

initial segments of (M |λ,ΨM |λ) are ≺∗-cofinal in F .
This gives

Claim 7. There is a stack s on M |λ of length ω that does not drop along its main
branch, with canonical embedding is : M →M∞(s), such that

(a) for n < ω, s�n ∈ (HC)L(R∗g ,Hom∗g),

(b) M∞ �M∞(s), and

(c) if λ is a limit of cutpoints in M , then is(λ) = o(M∞), and

(d) if κ is the least < λ-strong of M , then is(κ) = o(M∞).
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Proof. Let 〈(Pi,Λi) | i < ω〉 be ≺∗-increasing and cofinal in F . Let (M,Ψ) =
(Q0,Φ0). Given s�i with last model (Qi,Φi), let s(i) be a normal tree on Qi that
comes from comparing (Pi,Λi) with some cardinal initial segment below λ of (Qi,Φi)
that is strictly greater that than (Pi,Λi) in the mouse order. There is such an initial
segment by the remarks above. Let (Qi+1,Φi+1) be the last pair of s(i).

We do the comparison in such a way that (Pi,Λi) iterates to a cutpoint (N,Ω)
of (Qi+1,Φi+1). It follows that is�i+1,∞ agrees with the iteration map π(N,Ω),∞ on N .
This tells us that

π(Pi,Λi),∞“o(Pi) ⊆ is�i+1,∞(o(N)).

This implies that M∞ �M∞(s). Also, N is a cutpoint, so o(N) is below the least
< λ-strong of Qi+1, if there is one. Thus o(M∞) ≤ is�0,∞(κ), where κ is the least
< λ-strong, if there is one.

The cutpoint successor cardinal initial segments (N,Ω) of (Qi,Φi) below λ are all
in F , and so o(M∞)(N,Ω) = is�i,∞(o(N)) < o(M∞) for such (N,Ω). It follows that

o(M∞) = sup{is�i,∞(o(N)) | i < ω ∧N �ct Qi|λ}.
So if λ is a limit of cutpoints in M , and hence in each Qi, then we get is(λ) = o(M∞).
If κ is the least strong to λ in M , we get is(κ) = o(M∞). �

Claim 8. HODL(R∗g ,Hom∗g) = L[M∞].

Proof. Let us write HOD for HODL(R∗g ,Hom∗g), and θ for θL(R∗g ,Hom∗g). It is clear that
M∞ ∈ HOD, so what we must show is that HOD ⊆ L[M∞].

We use here

Lemma 8.10 (Woodin) Assume ADR + V = L(P (R); then there is a definable
(from no parameters) set A ⊆ θ such that HOD = L[A].

Fix A as in the lemma, and let ϕ(v) be such that
ξ ∈ A iff L(R∗g,Hom∗g) |= ϕ[ξ].

It is enough to show that A ∈ L[M∞]. For that, let s be a stack as in Claim 7, and
let (Qi,Φi) be the last model of s�i. Let κi be the least < λ-strong of Qi if there is
one, and otherwise let κi = λ. We define Ai ⊆ κi by

ξ ∈ Ai iff is�i,∞(ξ) ∈ A.
We claim that Ai is definable over L[Qi|κi], uniformly in i. The definition is displayed
in the following equivalence: for any ξ,

ξ ∈ Ai
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if and only if
L[Qi|κi] |=∀α, h[(h is Col(ω,< κi)-generic and α is a cardinal cutpoint of Qi|kappai)

⇒ L(R∗h,Hom∗h) |= ϕ[π(ξ)],where

π = π
L(R∗h,Hom∗h)

(Qi|α,Λ),∞ , for Λ = (Σ̇Qi)hQi|α.]

Let us write the display above as L[Qi|κi] |= ϕ0[ξ].
We give the well-known proof of the equivalence. Let α > ξ be a cutpoint of Qi.

Via an R∗g-genericity iteration of Qi above α, we can find
σ : Qi → S

and h generic over S for Col(ω,< σ(κi)) such that
L(R∗g,Hom∗g) = L(R∗h,Hom∗h).

The only slight wrinkle here is that if κi < λ, out genericity iteration must weave in
infinitely many steps at which we move the image of κi up by an extender with that
critical point. Note S|α = Qi|α, and the two are assigned the same strategy in their
respective pairs. Call that strategy Λ.

We then get that
L[Qi|κi] |= ϕ0[ξ] iff L[S|σ(κi)] |= ϕ0[ξ]

iff π(Qi|α,Λ),∞(ξ) ∈ A
iff ξ ∈ Ai,

as desired.
Since is�k,s�l is elementary, we get that is�k,s�l(Ak) = Al whenever k < l. This

implies that is�k,∞(Ak) = A for all k. But then A is definable over L[M∞(s)|is�0,∞(κ0)]
by the same formula that defined A0 over L[Q0|κ0]. So A ∈ L[M∞], as desired. �

Claim 8 completes the proof of Theorem 8.8.
�

By combining Theorem 8.8 with our earlier results on the existence of hod pairs
with large cardinals, we get

Theorem 8.11 Suppose there is j : V → M with crit(j) = κ and Vj(κ)+1 ⊆ M .
Suppose IHµ,j(κ) hold for some µ < κ, and that there are λ < ν < κ such that λ is
a limit of Woodin cardinals, and ν is measurable. Then there is a Wadge cut Γ in
Hom<λ such that L(Γ,R) |= ADR, and

HODL(Γ,R) |= GCH + there is a subcompact cardinal.

Proof. Under the hypotheses of 8.11, we have shown in Theorem 6.74 that there
is an lbr hod pair (M,Ψ) with scope HC such that for some λ, M |= “λ is a limit of
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cutpoint Woodins, and there is a subcompact < λ.” Moreover, we have that Code(Ψ)
is Hom<λ. So we can apply 8.8, and we get that the HOD of the derived model
D(M,< λ) is an iterate of M , and satisfies “there is a subcompact cardinal”. But
then via an R-genericity iteration M -to-M∗, we can realize D(M∗, < λ) as L(Γ,R),
for some Γ ( Hom<λ. This proves the theorem.

�

8.4 HOD mice satisfy V = K

We shall show that if (H,Ω) is an lbr hod pair such that H |= ZFC+ “there are
arbitrarily large Woodin cardinals”, then in a certain natural sense, H |= V = K.
This sense derives from the definition of K below one Woodin cardinal that uses
thick sets at a regular cardinal, as in [13]. The definition has a generically absolute
version, so that in a certain sense, H = KH[g], whenever g is set-generic over H.

Pure extender mice do not in general satisfy even V = HOD, much less V = K.
The basic problem is that they may not know how to iterate themselves.46 In this
respect, strategy mice are more natural; they know who they are, so to speak.

Definition 8.12 Let α be a regular cardinal, and P be a premouse; then we say P
is α+-universal iff

(1) P |= “ α is the largest cardinal”,

(2) o(P ) = α+, and

(3) {η | EP
η 6= ∅} is not stationary in α+.

Of course, P determines α, so we write α = αP . We say that P is universal iff P
is α+-universal, where α = αP . One could make these definitions in the case α is
singular, or α is subcompact, but then some complicating cases arise.

Lemma 8.13 Let (P,Σ) be a mouse pair with scope Hλ, where λ is a limit of Woodin
cardinals, and suppose that whenever π : Q → P is elementary, and Q is countable,
then Σπ is < λ-universally Baire. Suppose also that P is α+-universal, where α+ < λ;
then (P,Σ) is full.

46See [38], [39], and [45] for results on the extent to which V = K and V = HOD hold in pure
extender mice.
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Proof. Suppose not, and let (Q,Λ) be a nondropping iterate of (P,Σ), and let

(Q,Λ)�ct(R,Ψ), where (R,Ψ) is a mouse pair with scope Hλ such that ρ(R) < o(Q).
Let

i : P → Q

be the iteration map, so that i(α) is the largest cardinal of Q, and ran(i) is α-club in
o(Q). Our plan is to use i to pull back R to a mouse that collapses o(P ), as one does
in the arguments that show � fails when one has sufficiently strong embeddings.

For this, we need the condensation results of [65]. Those results were proved
under AD+ for mouse pairs with scope HC. They apply here because they are first
order requirements on P , so it is enough to see that they hold for countable Q such
that there is an elementary π : Q→ P . But then our hypotheses imply that (Q,Σπ)
is extends to a mouse pair with scope HC in the derived model of V below λ, so we
can apply [65] in that derived model.

Assume first that k(R) = 0 and R is passive, and let p = p1(R). For ξ < o(Q) let
γξ be least such that hR|γξ“(i(α) ∪ p) ∩ [ξ, o(Q)) 6= ∅. Let

Nξ = transitive collapse of hR|γξ“(i(α) ∪ p),
and let

πξ : Nξ → R|γξ
be the anticollapse. Letting τξ = crit(πξ), it is easy to see that πξ(τξ) = o(P ), and
Nξ ∈ Q. In fact, if τξ is not an index on the P -sequence, then by [65],

Nξ �Q.
By the non-subcompactness clause of universality, we have an α-club C ⊆ ran(i)
such that for all ξ ∈ C, ξ = τξ and ξ ∈ ran(i). For ξ ∈ C, ρ(Nξ) = ρ1(Nξ) = i(α),
and

p(Nξ) = π−1
ξ (p).

For ξ < η with both in C, we have a natural
σξ,η : Nξ → Nη,

determined by σξ,η�τξ = id , and σξ,η(p(Nξ)) = p(Nη). The full R is just the direct
limit of the Nξ, for ξ ∈ C, under the σξ,η.

Now we pull back to P . Let D be an α-club in o(P ) such that i“D ⊆ C. For
ξ ∈ D, let Mξ � P be such that

i(Mξ) = Ni(ξ),
and let

ϕξ,η : Mξ →Mη

be given by ϕξ,η = i−1 ◦ σξ,η ◦ i. Note here that Ni(ξ) is definable from i(ξ) as the
first level of Q collapsing i(ξ) to i(α), so Ni(ξ) ∈ ran(i), and Mξ is the first level of P
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collapsing ξ to α. Note also that
ϕξ,η(p(Mξ)) = p(Mη).

Letting M be the direct limit of the Mξ and r be the common value of ϕξ,∞(p(Mξ)),
for ξ in D, we see that hM“(α ∪ r) contains α+, which is a contradiction.

If k(R) = 0 but R is active, the proof is similar. The important point is that
crit(ḞR) > o(Q), because Q is a cutpoint of R. Thus we do not get involved with
protomice, and the condensation result of [65] applies. If k(R) > 0, then again
the proof is similar, again using the condensation result of [65]. We use the fact
that rΣk+1 over R is the same as Σ1 over the mastercode structure Rk to find our
approximations Nξ to R.

�

Definition 8.14 Let P be universal, and α = αP . Then

(1) Γ is thick iff there is an α-club set C ⊆ α+ such that C ⊆ Γ.

(2) P has the definability property at β iff for all thick sets Γ, β ∈ HullP (Γ ∪ β).

(3) P has the hull property at β iff for all thick sets Γ, letting N be the transitive
collapse of HullP (Γ ∪ β), P (β)P = P (β)N .

(4) DefP =
⋂
{HullP (Γ) | Γ is thick }.

(5) P is very sound iff P = DefP .

It is easy to see that P has the definability property at all β < γ iff γ ⊆ DefP . Thus
P is very sound iff P has the definability property at all β < α+. Every α+-universal
P has the definability property at all β ∈ [α, α+), because the critical point of any
π : N → P is a cardinal of P . Thus P is very sound iff P has the definability property
at all β < α.

The following is a uniqueness lemma for very sound hod pairs. We shall formulate
it as a first order fact about least branch hod mice. One could abstract the first order
properties of such mice that we shall use in its proof, but we are not going to do
that.

Lemma 8.15 (AD+) For any lbr hod pair (W,Ψ) with scope HC, the following is
true in W : whenever (P,Σ) and (Q,Λ) be lbr hod pairs with scope Hλ, where λ is
a limit of Woodin cardinals, and P and Q are α+-universal and very sound, where
α < λ, then (P,Σ) = (Q,Λ).

336



Proof. We work inside W . Let Σ0 and Λ0 be the restrictions of Σ and Λ to Vδ, where
α < δ < λ and δ is Woodin. We show that (P,Σ0) = (Q,Λ0), and since δ is arbitrary,
this is enough. Let w be a wellorder of Vδ, and let C be the maximal w-construction.
C does not break down before it has reached non-dropping iterates of (P,Σ0) and
(Q,Λ0). Let (M,Ω) be the first pair in C that is a non-dropping iterate of one of
these two, and assume without loss of generality that it is (P,Σ0) that iterates to
(M,Ω), while (Q,Λ0) iterates past (M,Ω), perhaps not strictly.

Let T be the normal tree on P with last model M , and
i : P →M

the canonical embedding. i is given by an extender all of whose measures concentrate
on bounded subsets of α, so i is continuous at points of cofinality α. It follows that
ran(i) is α-club in o(M). Let U be the tree whereby Q iterates past M , with last
model R such that

M �ct R.

By 8.13, (P,Σ) is full, so branch Q-to-R of U does not drop, and we have an iteration
map

j : Q→ R.

Note that the generators of j are contained in i(α), because i(α) is the largest
cardinal of M . (In the worst case, the branch Q-to-R uses a last extender F such
that lh(F ) = o(M), but even then, λ(F ) = o(M).) Note also that j is continuous at
α, because α is regular but not measurable in Q.

We claim that M = R. For if not, j(α) ≥ o(M). But j(α) has cofinality (in V )
α, while o(M) has cofinality α+. Thus we have some β < α such that o(M) ≤ j(β).
But

j(β) ⊆ {j(f)(a) | f ∈ Q|α ∧ a ∈ [i(α)]<ω}.

For each f ∈ Q|α, let
γf = sup{j(f)(a) | a ∈ [i(α)]<ω ∧ j(f)(a) < o(M)}.

Since o(M) is regular in R, γf < o(M). Since o(M) is the sup over f of the γf , the
V cofinality of o(M) is ≤ α. This is a contradiction.

So M = R, and thus i(α) = j(α). By the continuity of i and j at points of
cofinality α, we have an α-club set C ⊆ α+ such that i(ξ) = j(ξ) for all ξ ∈ C. This
implies that HullP (C) is isomorphic to HullQ(C). By very soundness, P = HullP (C)
and Q = HullQ(C). So P = Q, and then i = j because the two agree on the
generating set C. But then Σ0 = Ωi = Ωj = Λ0.

�
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Lemma 8.16 (AD+) Let (W,Ψ) be an lbr hod pair with scope HC, and suppose W |=
“there are no 1-extendible cardinals”. Working inside W , let α be regular but not
subcompact, and α < λ, where λ is a limit of Woodin cardinals. Let P = W |α+ and
Σ = ΨP ; then (P,Σ) is very sound.

Proof. We work in W . It is enough to see that P has the definability property at
all β < α. So suppose β is least such that P does not have the definability property
at β.

Claim 1. P has the hull property at all γ < β.

Proof. Let γ < β, and let C ⊆ o(P ) such that letting H be the transitive collapse of
HullP (C ∪ γ), P (γ)H 6= P (γ)P . Equivalently,

γ+,H < γ+,P = γ+.
Let π : H → P be the anticollapse, and note that crit(π) > γ by the definability
property at γ. Both (H,Σπ) and (P,Σ) are α+-universal. Letting δ > α be Woodin,
and C be a a construction of length δ that uses nice background extenders from
the W -sequence having critical points above α, the proof of Lemma 8.15 shows that
there is a pair (M,Ω) of C such that both (P,Σ) and H,Σπ) iterate to (M,Ω).

Let i and j be the two iteration maps. There is an α-club D in α+ such that
i�D = j�D. We can find c ∈ D<ω such that π−1(c) = c, and a Skolem term τ such
that τP [c] = γ. But then τH [c] = γ, so i(γ) = i(τP [c]) = τM [i(c)] = τM [j(c)] =
j(τH [c]) = j(γ).

It follows that i(γ+) = j(γ+,H). But i is continuous at γ+ and j is continuous at
γ+,H , so γ+,H must have cofinality γ+, contradiction. �

Claim 2. P has the hull property at β.

Proof. By Claim 1, β is a cardinal of P . Again, suppose toward contradiction that
we have

π : H → P

with ran(π) thick and crit(π) ≥ β and β+,H < β+,P = β+. We want to use the
comparison argument in the first claim, but there is a problem if β has measurable
cofinality in H or P . To deal with this, we simply take an ultrapower. Namely, set

G =

{
H if H |= cof(β) is not measurable,

Ult(H,U) if H |= U is the order 0 measure on cof(β),

and

Q =

{
P if P |= cof(β) is not measurable,

Ult(P,U) if P |= U is the order 0 measure on cof(β).
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(We mean to take ultrapowers here if β is itself measurable.) Let i0 : P → Q and
j0 : G → H be the canonical embeddings (possibly the identity, of course). Let
Φ = ΣQ and let Λ = (Σπ)G be the strategies for Q and G.

Again, we have a construction C, and a level (M,Ω) of C such that both (Q,Φ)
and (G,Λ) iterate into (M,Ω). Let i1 : Q → M and j1 : G → M be the iteration
maps. Let i = i1 ◦ i0 and j = j1 ◦ j0. So i is an iteration map from P to M , and j is
an iteration map from H to M .

There is an α-club D in α+ such that i�D = j�D, and π�D is the identity. Since
P has the definability property at all ξ < β, we have i�β = j�β.

If β has non-measurable cofinality in P and H, then i and j are continuous at
β, so i(β) = j(β). This implies i(β+) = j(β+,H), which gives the same cofinality
mismatch as before.

But more generally, let us just note that i1 is continuous at β = sup(i0“β) and
j1 is continuous at β = sup(j0“β). So

i1(β) = i1(sup(i0“β))

= sup(i1 ◦ i0“β)

= sup(j1 ◦ j0“β)

= j1(sup(j0“β))

= j1(β)).
So i1(β+,Q) = j1(β+,G), and i1 and j1 are continuous at successor cardinals, so β+,Q

has the same V -cofinality as β+,G. But β+,G ≤ β+,H , so it has V -cofinality ≤ β. On
the other hand, β

,Q = β+, since the map A 7→ i0(A) ∩ β is one-to-one on P (β) ∩ P ,
and β+,P = β+. So we still have our cofinality mismatch, contradiction. �

Now since P does not have the definability property at β, we have π : H → P
such that ran(π) is thick, and β = crit(π). But H|β+ = P |β+, and π ∈ P because we
are working in W , and P = W |α+. Thus W |= “π is a 1-extendibility embedding”.
This is contrary to our hypotheses on W . �

Remark 8.17 It seems likely that no lbr hod mouse can satisfy “there is a 1-
extendible cardinal”, but we have not proved this.

The following definition is meant to be employed inside hod mice satisfying ZFC
and having arbitrarily large Woodin cardinals.

Definition 8.18 Let P be a least branch premouse and α be a cardinal; then we say
P is K-like at α iff P is α+-universal and very sound, and for δ the least Woodin
cardinal > α, there is a Σ such that (P,Σ) is an lbr hod pair with scope Hδ+.
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Theorem 8.19 (AD+) Let (H,Ω) be an lbr hod pair with scope HC, and suppose
H |= ZFC+ “there are arbitrarily large Woodin cardinals, and there are no 1-
extendible cardinals”. Let g be generic over H for a poset of size < ν in H, and
let α be a successor cardinal of H above ν; then in H[g], the following are equivalent:

(1) P is K-like at α,

(2) P = H|α+.

Proof. Lemmas 8.15 and 8.16 show that the equivalence is true in H itself. In
H[g] we must work above the size of the forcing.47 We leave it to the reader to think
through that case. �

Definition 8.20 We say that Kν exists iff

(1) for every successor cardinal α > ν, there is a unique lpm Kν(α) such that
Kν(α) is K-like at α, and

(2) if ν < α < β and α, β are successor cardinals, then Kν(α) �Kν(β).

If Kν exists, then we set Kν =
⋃
αK

ν(α).

So a hod mouse H as in the theorem satisfies V = K0 = Kν for all ν. It
follows that H satisfies V = HOD. In set generic extensions of H, H = Kν for all
sufficiently large ν, so H ⊆ HODH[g]. Thus H is the generic HOD, or gHOD, of its
generic multiverse.48 It follows that P |= V = HOD.

This should be compared with

Theorem 8.21 (Woodin [68]) Assume ADR + V = L(P (R)); then HOD |= V =
HOD, and HOD|θ is the generic HOD of its own generic multiverse.

This result is significantly more general than what we have proved, in that it
applies to ADR models that have iteration strategies for mice with long extenders,
and are therefore beyond the HOD analysis we have developed here. Our proof that
HOD |= V = HOD does have extra information in it, in the short-extender region to
which it applies.

47This is provably necessary, because of the local nature of “K-like at α”. If δ0 < δ1 are Woodin
cardinals, and if j : H →M ⊆ H[g] comes from a Pδ1 -stationary tower ultrapower, it will be initial
segments of M that are K-like at α < j(δ0) in the sense of H[g].

48See [9].
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8.5 Further results

Our analysis of HOD in the derived model D of a HOD mouse was based on the fact
that D |= HPC. (This was the content of the first two claims in the proof of Theorem
8.8.) We used further facts about the way we had derived D, but with more work,
one can avoid an appeal to them. Thus we get

Theorem 8.22 ([63]) Assume ADR and HPC; then Vθ ∩ HOD is the universe of a
least branch premouse.

Concerning the mouse capturing hypothesis of this theorem, we have

Theorem 8.23 ([63]) Assume AD+; then

(a) if HPC holds, then for any Γ ⊆ P (R), L(Γ,R) |= HPC, and

(b) if LEC holds, then for any Γ ⊆ P (R), L(Γ,R) |= LEC, and

(c) if there is an ω1 iteration strategy for a countable pure extender premouse with a
long extender on its sequence, then for any Γ ⊆ P (R) such that L(Γ,R) |= NLE,
we have L(Γ,R) |= LEC, and hence L(Γ,R) |= HPC.

Part (c) is pretty strong evidence that AD+ + NLE implies LEC, and hence HPC.
Whether this is in fact true is perhaps the main open problem in the theory to which
this book contributes. Parts (a) and (b) suggest that one ought to try to prove
this via an induction on the Wadge hierarchy, and that is a natural thing to try on
other counts, too. There are partial results in this direction, but the situation is in
sufficient flux that it seems wisest not to attempt a discussion of them.

The proof of 8.22 gives a characterization of the Solovay sequence in terms of the
Woodin cardinals in HOD.

Definition 8.24 For any set X, θ(X) is the least ordinal α such that there is no
ordinal definable surjection of X onto α.

If there is an ordinal definable map from X onto X×X, then θ(X) is the supremum
of the surjective images of X under maps that are ordinal definable from some
parameter in X. This is our case of interest.

Definition 8.25 (AD+.) The Solovay sequence 〈θα | α ≤ Ω〉 is given by
θ0 = θ(R),
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and if θα < θ, then

θα+1 = θ(R ∪ {A}), for any (all) A of Wadge rank θα,

θλ =
⋃
α<λ

θα.

Ω is the least β such that θβ = θ.

Assuming AD+, if θα < θ, then
θα+1 = θ(P (θα)).

This is easy to see, using the Coding Lemma and the fact that every set of reals of
Wadge rank θα is θα-Suslin. The Solovay sequence is an important feature of any
model AD+, one that is tied to the pattern of scales in the model. It is definable, so
it is in HOD. In fact, it has a natural identity within HOD.

Assume ADR + HPC. The proof of 8.22 then gives a canonical least branch
premouse H whose universe is V HOD

θ . We have shown in the last section that in fact
H is definable over (V HOD

θ ,∈), as the union of all universal, very sound premice. Let
us say that δ is a cutpoint of HOD iff δ is a cutpoint of H, in the sense that there
is no extender E on the H-sequence such that crit(E) < δ ≤ lh(E).49 It is east to
see that if δ is Woodin and a cutpoint of HOD, then there are no extenders on the
H-sequence with critical point δ.

Theorem 8.26 ([63]) Assume ADR + V = L(P (R)) + HPC; then the following are
equivalent:

(1) δ is a cutpoint Woodin cardinal of HOD,

(2) δ = θ0, or δ = θα+1 for some α.

In particular, θ0 is the least Woodin cardinal in HOD.

That θ0 and the θα+1 are Woodin in HOD is due to Woodin, cf. [15]. Woodin
also proved an approximation to the statement that they are cutpoints of HOD
(unpublished). The rest of (2)→ (1), and all of (1)→ (2), comes from [63].

One can characterize the next Woodin cardinal of HOD in terms of a modified
Solovay sequence. The following definition is due to Grigor Sargsyan.50

49Presumably, every extender in HOD that coheres with the H-sequence is actually on that
sequence, but no one has actually proved this, so far as we know.

50One might call this the Sargsyan sequence.
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Definition 8.27 Assume AD+. We set
η0 = θ(ωω) = θ0,

ηα+1 = θ(ωκ), where κ = (ηα)+,HOD,

ηλ =
⋃
α<λ

ηα.

One can show

Theorem 8.28 ([63]) Assume ADR + HPC; then for any δ < θ, δ is a successor
Woodin cardinal of HOD iff δ = ηα+1 for some α.

Of course, “successor Woodin” means “least Woodin above some ordinal”. The
Sargsyan sequence may grow more slowly than the Solovay sequence. Assuming
ADR+HPC, Theorem 8.28 implies that this happens if and only if HOD has extenders
overlapping Woodin cardinals.

It is also interesting to see what strong determinacy theories are true in the
derived models of lbr hod pairs (P,Σ) such that P reaches reasonably large cardinals.
There are some results in this direction in [63].

The key to the theorems above is an analysis of optimal Suslin representations for
mouse pairs. That in turn rests on a strengthening of strong hull condensation that
[48] calls very strong hull condensation. Roughly speaking, this property amounts
to condensation under weak tree embeddings, a more general kind of tree embedding
than the kind we have defined in 3.27.51 [48] shows

Theorem 8.29 ([48]) Assume AD+, and let (P,Σ) be a mouse pair with scope HC;
then Σ has very strong hull condensation.

Given a stack 〈T ,U〉 on P with last model Q, there is a natural attempt X(T ,U)
at a normal tree on P with last model Q. We say that Σ fully normalizes well iff
whenever 〈T ,U〉 is by Σ, thenX(T ,U) exists and is by Σ, and Σ〈T ,U〉 = ΣX(T ,U). (See
[48].) The construction of X(T ,U produces a weak tree embedding from X(T ,U)
into W (T ,U). Thus Theorem 8.29 yields

Corollary 8.30 ([48]) Assume AD+, and let (P,Σ) be a mouse pair with scope HC;
then

51In a weak tree embedding, the connection between exit extenders required by 3.27(d) is loosened.
Rather than require that tα(ET

α ) = EU
u(α), we require that tα(ET

α ) be connected to EU
u(α) inside

MU
u(α) via a sequence of fine structural hulls. This sequence of hulls is an abstract version of the

sequence that occurred in Claim 3.3 of our proof of full normalizability of trees of length two.
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(a) Σ fully normalizes well, and

(b) Σ is positional.

From the proof of Corollary 8.30 we obtain a normal tree U(P,Σ) on P that has
last model M∞(P,Σ), and is such that all its countable weak hulls are by Σ. This
then gives us a Suslin representation for the fragment of Σ that is actually used in
forming M∞(P,Σ): to justify a countable tree T on P , we search for a weak tree
embedding of T into U(P,Σ).

Not all of Σ is actually used in forming M∞(P,Σ). Let us call a normal tree T
relevant iff T is by Σ, and there is a normal S by Σ such that T ⊆ S, and S has
a last model Q, and the branch P -to-Q does not drop. Call a P -stack s relevant
if for i + 1 < dom(s), the branch of Ti(s) to M∞(Ti(s)) does not drop, and for

i + 1 = dom(s), Ti(s) is relevant. Let Σrel be the restriction of Σ to relevant trees.

The Σ-iterations that go into forming M∞(P,Σ) are all relevant, so Σrel is what
we need to construct M∞(P,Σ) and U(P,Σ). Moreover, U(P,Σ) acts as a kind of

universal tree by Σrel, in that all countable trees by Σrel can be weakly embedded
into it. This leads to

Theorem 8.31 ([63]) Assume AD+, and let (P,Σ) be a mouse pair with scope HC.

Let κ be the cardinality of o(M∞(P,Σ)), and let Code(Σrel) be the set of reals coding

stacks by Σrel; then

(a) Code(Σrel) and its complement are κ-Suslin, and

(b) Code(Σ) is not α-Suslin, for any α < κ.

In particular, κ is a Suslin cardinal.

Part (b) of the Theorem 8.31 follows at once from the Kunen-Martin theorem,
and the fact that there is a wellfounded relation W on R of rank at least o(M∞(P,Σ))
such that W is arithmetic in Code(Σ). [Let (t, b)W (s, a) iff s and t are stacks by Σ
with last models M and N , s ⊆ t, P -to-N does not drop, and itM,N(a) > b.]

The one can show the irrelevant part of Σ is also Suslin, but perhaps not o(M∞(P,Σ))-
Suslin. (It is possible that M∞(P,Σ) = P , because there are no non-dropping itera-
tions of P !) So one gets

Theorem 8.32 ([63]) Assume AD+, and let (P,Σ) be a mouse pair with scope HC.
and let Code(Σ) be the set of reals coding stacks by Σ; then Code(Σ) and its comple-
ment are Suslin.
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Note here that since Σ is total on stacks by Σ, if Code(Σ) is β-Suslin, then so is
its complement.

Theorem 8.31 implies that |o(M∞(P,Σ))| is a Suslin cardinal.52 With more work
along the same lines, one can show that for any cutpoint τ of M∞(P,Σ), |τ | is a
Suslin cardinal. In recent unpublished work, S. Jackson and G. Sargsyan have shown
that all Suslin cardinals arise below o(M∞(P,Σ)) arise this way. So we have

Theorem 8.33 (Jackson, Sargsyan, S.) Assume AD+, let (P,Σ) be a mouse pair,
and let κ ≤ o(M∞(P,Σ)). The following are equivalent:

(a) κ is a Suslin cardinal,

(b) κ = |τ |, where τ is a cutpoint of M∞(P,Σ) or τ = o(M∞(P,Σ)).

The proof that (a) implies (b) by Jackson and Sargsyan shows that if κ is a
regular Suslin cardinal, then κ itself is a cutpoint of M∞(P,Σ). It is open whether
that is also true for the other Suslin cardinals, the problematic case being when κ is
the next Suslin cardinal after some regular Suslin cardinal.

The correspondence between iteration strategies and definable scales is central to
descriptive inner model theory. Theorem ?? captures one aspect of it.
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M∞(P,Σ), 321
mouse pair, 240
ms-ISC, 25

NLE (no long extenders), 15
normalizes well, 134, 135

ΩUBH
~F

,ΩUBH
n, ~F , 197

ΩCν,k, 197

Ω(π,ν,k), 186
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Solovay sequence, 341
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stab(T ), 290
strategy coherence, 39, 186
strong hull condensation, 139
strongly uniquely θ-iterable, 44, 145
subcompact cardinal, 12, 278

tree embedding
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definition, 90
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