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Abstract

This is a continuation of [2]. We outline a proof that a good background
construction done in a strongly uniquely iterable universe yields mouse pairs
whose iteration strategies normalize well.

1 Introduction

We assume the reader is familiar with [1], and the corrections to it in [2].
For simplicity, let us assume AD+. Let (P,Σ) be a level of some good background

construction C, done inside some coarse Γ-Woodin pair (N∗,Σ∗). From [2] we have
that Σ is defined on stacks of plus trees, has strong hull condensation, and normal-
izes well with respect to stacks of λ-separated trees. This implies that (P,Σ) can
be compared with other such pairs. In this note, we shall outline a proof that Σ
normalizes well with respect to arbitrary stacks of plus trees.

The proof has two parts. First, we extend the class of plus trees slightly, by
weakening the normality requirement to a property we call quasi-normality. We then
show directly that Σ quasi-normalizes well, by tracing through how Σ is derived from
Σ∗. Basically, we are just recording what the flawed proof of Theorem 4.41 in [1]
actually shows. We then use this result and a phalanx comparison argument to show
that Σ normalizes well.

2 More plus trees

We wish to enlarge the class of plus trees from [2] ever so slightly. Henceforth, we
shall call trees in the larger class plus trees as well.

Notation. If G is a plus extender, let us set lh(G) = lh(G−). We have been calling
this ordinal γ(G), but the formulae look more familiar if we call it lh(G).
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Definition 2.1 Let M be a premouse, then a plus tree on M is a system 〈T, 〈Eα |
α + 1 < lh(T )〉, 〈Mα | α < lh(T )〉〉 with the usual properties of an iteration tree,
except:

(a) either Eα is on the Mα-sequence, or Eα = F+ for some F on the Mα-sequence,

(b) if α < β, then

(i) ν(Eα) ≤ ν(Eβ), and

(ii) if Eα is of plus type, then lh(Eα) < ν(Eβ).

(c) T -pred(α + 1) is the least β such that crit(ETα ) < ν(Eβ) or β = α + 1, and

(d) MT
α+1 = Ult(P,ETα ), where β is as in (c), and P �MT

β is as long as possible.

Definition 2.2 A plus tree T is normal iff whenever α < β < lh(T ) − 1, then
lh(ETα ) < lh(ETβ ).

The plus trees of [2] are precisely the normal ones. We call the conjunction of
(b), (c), and (d) quasi-normality.

To see what’s going on, suppose T is a plus tree in which the plus case never
occurs. Thus ν(Eα) = λ(Eα). Clause (b) in 2.1 then just weakens the usual length-
increasing clause in normality to “λ-nondecreasing”. It is easy to see that T breaks
up into disjoint maximal finite intervals α, α + 1, ....α + n in which

λ(Eα+i) ≤ λ(Eα+i+1) < lh(Eα+i+1) < lh(Eα+i)

for all i < n. (Of course n = 0 is possible.) At the end of such an interval we get
lh(Eα+n) < lh(Eα+n+1), which implies that lh(Eα+n) < λ(Eα+n+1). We call [α, α+n]
a maximal delay interval.

It may seem pointless to consider such trees, because given a maximal delay
interval [α, α+ n], we could have just skipped using Eα, ..., Eα+n−1, and taken Eα+n
out ofMT

α to continue the iteration. Doing this everywhere would produce a normal
iteration tree S with the same last model as T , differing only in that the nontrivial
delay intervals in T are eliminated. We call S the normal companion of T , and write
S = T n. So why bother with T , why not just use T n?1

1If T -pred(β + 1) = α + k where k > 0, and ¶ �MTα+k is what Eβ is applied to in T , then

one can check that P is a point in the lh(Eα+k)-dropdown sequence of MTα . So we did not need
Mα+1, ...,Mα+n to form future models of T n.
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The answer is that we are considering trees by some iteration strategy Σ. It
may happen that T is by Σ, but its normal companion is not. In the strategy-
comparison proof, we have to live with the possibility that this happens when Σ
is a background-induced strategy. In general, it happens because the factor map
σ : Ult(M,E) → iE∗(M) is not the identity at λ(E), so coherence at the M -level is
not mirrored by coherence at the background extender level.

For example, suppose Σ = Ω(C,M,Σ∗); that is, Σ is a strategy for M induced by
the construction C and the strategy Σ∗ for V . Suppose E is on the M -sequence and
E∗ is the background for E. If λ(E) ≤ λ(F ) < lh(F ) < lh(E), and T = 〈E,F 〉, then
T n = 〈F 〉. Assuming no resurrection, the lift of T uses E∗, then the background
σ(F )∗ for σ(F ), where σ : Ult(M,E)→ iE∗(M) is the factor map. σ(F )∗ is provided
by the construction iE∗(C). The lift of T n uses F ∗, provided by C. There is no
connection between σ(F )∗ and F ∗. By the coherence of C, F ∗ is still a background
for F in iE∗(C), but the background-induced strategy does not use it when lifting
trees that extend T . Because of this, one might have some U normally extending T
of length ω such that Σ(U) 6= Σ(Un).

In general, any plus tree T can be reduced to a normal plus tree by eliminating
maximal delay intervals. Here a maximal delay interval is a maximal finite interval
α, α + 1, ....α + n in which no Eα+i for i < n is of plus type, and

λ(Eα+i) ≤ ν(Eα+i+1) < lh(Eα+i+1) < λ(Eα+i),

for all i < n. Eliminating such intervals produces a normal plus tree T n that has
essentially the same models as T . The important difference is that we may have that
T is by some iteration strategy Σ, while T n is not.

In a normal plus tree, Mα agrees with all Mβ for α < β up to, but not at, lh(Eα).
In an arbitrary plus tree, the agreement is up to lh(Eα+k), where α + k is the last
point in the delay interval to which α belongs which is < β.

If C is a good background construction, then plus trees on M = MC
ν,k can be

lifted to V . The resulting system is

lift(T ,M,C) = 〈T ∗, 〈ηξ, lξ | ξ ≤ ξ0〉, 〈ψξ | ξ ≤ ξ0〉〉.

Here 〈η0, l0〉 = 〈ν, k〉 and ψ0 = id. The agreement properties of the lifting maps are
given by

Proposition 2.3 For α < β,

(1) ψβ � ν(ETα ) = resα ◦ψα � ν(ETα ), and

(2) if ETα is of plus type, then
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(a) ψβ � lh(ETα ) + 1 = resα ◦ψα � lh(ETα ) + 1, and

(b) either

(i) ψβ � o(ETα ) + 1 = resα ◦ψα � o(ETα ) + 1, or

(ii) lh(ETα ) < crit(ETα+1) < ν(ETα+1) < o(ETα ).

This is the same agreement we stated for the plus trees of [1]. It still holds because
although the lh(ETα ) may decrease strictly in delay intervals, the ν(ETα ) are always
non-decreasing.

In Theorem 4.3, we show that if Σ is background-induced, then T is by Σ iff T n

is by Σ. Once we have proved this, we can just work with strategies that have this
property, and forget about non-normal plus trees and their delay intervals. But in
order to prove 4.3, we need to consider the action of Σ on non-normal plus trees.

3 Quasi-normalizng stacks of plus trees

What the argument of [1] does show is that background-induced strategies quasi-
normalize well.

Definition 3.1 Let T be a plus tree on M of length ξ + 1, and F an extender on
the MT

ξ sequence.

(a) α(T , F ) is the least γ such that F is on the MT
γ -sequence.

(b) α0(T , F ) is the least γ such that lh(F ) < ν(ETγ ), or ETγ is of plus type and
lh(F ) < lh(ETγ ), or γ = ξ.

(c) β(T , F ) is the least γ such that crit(F ) < ν(ETγ ) or γ = ξ.

α(T , F ) is what was called α(T , F ) in [1]. It can also be characterized as the least
γ such that γ = ξ, or lh(F ) < lh(ETγ ). Clearly, α(T , F ) ≤ α0(T , F ). If α(T , F ) <
α0(T , F ), then α0(T , F ) is in a delay interval that begins with α(T , F ). This interval
may end with α0(T , F ), or continue beyond it.

β(T , F ) is just what was called that in [1].
Let T be a plus tree and F be a plus extender such that F− is on the sequence

of last model of T .2 Let
α = α0(T , F−).

2We are allowing the possibility that F = F−.
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We define the quasi-normalization V = V (T , F ) by

V � α + 1 = T � α + 1,

and
MV

α+2 = Ult(P, F ),

where P is the appropriate initial segment of MT
β , for β = β(T , F ), and defining

MV
α+1+ξ for ξ > β by copying, just as we did in the W -case. Heuristically,

V (T , F ) = T � (α + 1)_〈F 〉_iF“T >crit(F ).

This is the same formula that defined W (T , F ) in [1] and [2]. In the case that T
is an ordinary normal tree, all that has changed is the meaning of α. It is easy to
see that if T is normal, then W (T , F ) is the normal companion of V (T , F ). But it
could be that [α− 1, α] is a nontrivial delay interval in V (T , F ), so even for normal
T , it is possible that V (T , F ) 6= W (T , F ).

More generally, if S and T are plus trees on M , and F is a plus extender such that
F− is on the sequence of the last model of S, and α = α0(S, F−) and β = β(S, F ),
and T � β + 1 = S � β + 1, and if β < lh(T ), then dom(F ) = MT

β |η for some
η < λ(ETβ ). We define

V (T ,S, F ) = S � (α + 1)_〈F 〉_iF“T >crit(F ).

Again, this is the same formula that defined W (T ,S, F ), but the meaning of α
has changed. If T and S are normal, then W (T ,S, F ) is the normal companion of
V (T ,S, F ). The delay intervals in V (T ,S, F ) are just those in (S � α + 1)_〈F 〉,
together with the images of delay intervals in T .

Definition 3.2 Let T and U be plus trees on M ; then a tree embedding of T into
U is a system Φ = 〈u, v, 〈sα | α < lh(T )〉, 〈tα | α + 1 < lh(T )〉〉 satisfying the same
properties required by [2] in the case T and U are normal.

Remark 3.3 It can happen that a non-normal plus tree T is tree embedded into
a normal plus tree U . In this case, if [α, α + 1] is a delay in T , then u(α) + 1 =
v(α + 1) <U u(α + 1). It can also happen that T is normal and U is not.

The agreement properties of the component maps in a tree embedding are like
those listed in 5.3 of [2]. That is, letting

νTα = sup{τξ | ξ < α},

5



where

τξ =

{
lh(ETξ ) + 1 if the plus case occurs in T at ξ

λ(ETξ ) otherwise,

we have

Proposition 3.4 Let T and U be plus trees on M , and let Φ = 〈u, v, 〈sα | α <
lh(T )〉, 〈tα | α + 1 < lh(T )〉〉 be a tree embedding from T into U ; then

(1) If α + 1 < lh(T ), then sα agrees with tα on νTα .

(2) If α < β < lh(T ), then sβ agrees with tα on ν(ETα ) + 1, and on lh(ETα ) if α
ends a maximal delay interval.

(3) If α < β, then sα agrees with sβ on νTα .

(4) If α < β and β+1 < lh(T ), then tβ agrees with tα on ν(ETα ), and on lh(ETα )+1
if α ends a maximal delay interval.

Notice that if ETα is of plus type, then α ends a maximal delay interval, so we have
the greater agreement between tα and future s and t maps given by (2) and (4).
There is a natural tree embedding Φ of T into V (T ,S, F ). If T is normal and
Φ∗ : T → W (T ,S, F ) is the natural map, then Φ is essentially the same as Φ∗,
modulo some re-indexing.

Finally, if T is a plus tree, and U is a plus tree on the last model of T , then we
define V (T ,U) by induction on lh(U), just as in the W -case. Setting Vξ = V (T ,U �
ξ + 1), we have

Vγ+1 = V (Vν ,Vγ, Fγ),

where ν = U -pred(γ + 1) and Fγ = σγ(E
U
γ ), for σγ : MU

γ →M
Vγ
z(γ) the natural map.

Definition 3.5 Let 〈T ,U〉 be a stack of plus trees; then V (T ,U) is the quasi-
normalization of 〈T ,U〉. For longer stacks s, the quasi-normalization V (s) is defined
“bottom up”: V (s_〈U〉) = V (V (s), πU), for π the t-map on last models, with direct
limits under the associated tree embeddings for s of limit length.

Remark 3.6 It is easy to see that if T is λ-separated, then for any plus tree U on
its last model, V (T ,U) = W (T ,U).

Definition 3.7 A complete (η, θ) iteration strategy for M with scope Hδ is an it-
eration strategy for M defined on stacks of length < η consisting of plus trees in
Hδ.
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Definition 3.8 Let Σ be a complete (η, θ)-iteration strategy for M ; then

(1) Σ quasi-normalizes well for 2-stacks iff whenever 〈T ,U〉 is a 2-stack of plus
trees by Σ such that U has last model Q, then

(a) V (T ,U) is by Σ, and

(b) letting V = V (T ,U) have last model R, and π : Q→ R be the last σ-map
of the quasi-normalization, we have that Σ〈T ,U〉,Q = (ΣV,R)π.

(2) Σ quasi-normalizes well iff all its tails Σs quasi-normalize well for 2-stacks.

Clearly, if Σ quasi-normalizes well, then so do all its tail strategies. In fact, the tails
quasi-normalize well for finite stacks. (See [1], section 4.1.)

Remark 3.9 If T is λ-separated, then V (T ,U) = W (T ,U). Thus a strategy that
quasi-normalizes well must normalize well in the usual W -sense for stacks of λ-
separated trees.

Using the proof of Theorem 6.2 from [2] (which corrects the the proof of Theorem
4.41 in [1], we get

Theorem 3.10 Let C be a good background construction done in the universe of
some coarse Γ-Woodin pair (N∗,Σ∗). Let M be a model of C, and Σ = Ω(C,M,Σ∗)
be the induced complete (η, θ) strategy; then Σ quasi-normalizes well.

Notice here that Σ∗ is defined only on stacks of normal trees, while Σ is defined
on stacks of merely quasi-normal trees. This is not a problem, because whenever T
is quasi-normal, then lift(T ,M,C)0 is normal.

Proof. (Sketch.) The proof is the same as the proof given in [2] for the case that
T is λ-separated. Let us adopt all the notation there, and jump to the place where
the repair of [1] occurred, namely, the proof of Claim 6.4 in [2]. We have now

α = α0(Vγ, F ),

and we are assuming α + 1 < lh(Vγ) for definiteness. We let

E = EVγα ,

and what we need to see is that

ψγz(γ) � lh(E) = resC
γ
α

E ◦ψ
γ
α � lh(E).

We no longer know that the plus case occurs at α in Vγ, as we did in the case that
T is λ-separated. But we have set α = α0(Vγ, F ), instead of α = α(Vγ, F ), so either
lh(F ) < ν(E), or E is of plus type and lh(F ) < lh(E). In both cases, Proposition

2.3 implies that ψγz(γ) � lh(E) = resC
γ
α

E ◦ψγα � lh(E). �
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4 Mouse pairs

We have extended the scope of our iteration strategies so that they act on stacks
of plus trees, in the new sense. So strong hull condensation is a stronger prop-
erty. Nevertheless, the old proof show that background-induced strategies have the
property.

Theorem 4.1 Let N∗ |= ZFC + “C is a background construction”. Let Σ∗ be

a (η, θ)-iteration strategy for (N∗, ~FC). Suppose that 〈ν, k〉 < lh(C), and Σ =
Ω(C,MC

ν,k,Σ∗) is the complete iteration strategy for MC
ν,k induced by Σ∗. Suppose

finally that Σ∗ has strong hull condensation; then Σ has strong hull condensation.

Definition 4.2 (M,Ω) is a pure extender pair with scope Hδ iff

(1) M is a pure extender premouse, and M ∈ Hδ,

(2) Ω is a (δ, δ)- iteration strategy for M , defined on stacks of plus trees,

(3) Ω has strong hull condensation, and

(4) Ω quasi-normalizes well.

Good background constructions yield such pairs, by the arguments in [1],[2], and
this note.

If (M,Ω) is a pure extender pair, then the restriction of Ω to stacks of λ-separated
trees is determined by its action on single λ-separated trees. The action of Ω on single
plus trees is determined by its action on λ-separated trees, as in [1] for the case of
normal plus trees.3 This then determines the action of Ω on arbitrary stacks of plus
trees, since Ω quasi-normalizes well.

We have not yet shown that the strategy in a pure extender pair must normalize
well in the standard W -sense. This follows from

Theorem 4.3 Assume AD+, and let (P,Σ) be a pure extender pair with scope HC.
Let T be a plus tree on P ; then

(a) T is by Σ iff T n is by Σ, and

(b) if T is by Σ, then ΣT = ΣT n.

3We can define T s for arbitrary plus trees as in [1, 5.7], and we have that T is a psuedo-hull of
T s, so T is by Ω iff T s is by Ω. In fact, for Ω induced by a good background construction, T and
T s lift to the same tree on the background universe.
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Proof.(Sketch.) Let T be of minimal length so that the theorem fails. Let b = Σ(T )
and c = Σ(T n). We compare the two phalanxes Φ(T _b) and Φ((T n)_c), thinking
of them as phalanxes of mouse pairs, and the comparison as involving comparison of
iteration strategies. It suffices to line up the strategies acting on λ-separated trees,
and a λ-separated iteration into a level of the construction in a background universe
that captures the two strategies will do that, by [2].

Note that the models in T that do not appear in T n are not models that we ever
apply an extender to in the comparison process. So in effect, for S = T n, we are
comparing Φ(S_b) with Φ(S_c), using ΣT_b and ΣS_c to iterate the two phalanxes.4

We reach a contradiction as in the proof from [1] that UBH holds in strategy mice.
Note here that Σ has the Dodd-Jensen property, because strong hull condensation
implies pullback consistency. The Dodd-Jensen part is actually a little simpler here,
because we don’t need to lift the tree on either phalanx. �

As a corollary, we get that pure extender pairs normalize well in the sense of [1].

Corollary 4.4 Assume AD+, and let (P,Σ) be a pure extender pair with scope HC.
Let s be a stack of normal plus trees on P with last model N , and let 〈T ,U〉 be a
stack of normal plus trees on N by Σs with last model Q; then

(a) W (T ,U) is by Σs, and

(b) letting W = W (T ,U) have last model R, and π : Q → R be the last σ-map of
the embedding normalization, we have that Σs_〈T ,U〉,Q = (Σs_〈W〉,R)π.

Proof. Since Σ quasi-normalizes well, V (T ,U) is by Σs. So by Theorem 4.3, V (T ,U)n

is by Σ. But W (T ,U) = V (T ,U)n, so we have (a). We get part (b) from clause
(1)(b) in Definition 3.8 and clause (b) in 4.3. �

Remark 4.5 We haven’t thought much about how one would normalize a stack of
non-normal plus trees. Probably the natural thing is just to normalize the stack of
their normal companions.

Least branch premice must be defined so that the strategy on λ-separated trees
is inserted in the strategy predicate. One could go further and add the strategy on
plus trees, or stacks of plus trees, but this is determined by the strategy on single
λ-separated trees in a way the model can unravel. This leads to

4We can move up phalanxes in the comparison process by the method of the UBH proof in [1], or
we can form meta-trees on S_b and S_c. The former amounts to using a step of full normalization
when you move up, and the latter amounts to using a step of embedding normalization when you
move up.
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Definition 4.6 (M,Ω) is a least branch hod pair with scope Hδ iff

(1) M is a least branch premouse, and M ∈ Hδ,

(2) Ω is a (δ, δ)- iteration strategy for M , defined on stacks of plus trees,

(3) Ω has strong hull condensation,

(4) Ω quasi-normalizes well, and

(5) if s is a stack of plus trees by Ω with last model N , then Σ̇N ⊆ Ωs,N .

Again, good background constructions yield such pairs, by [1] and [2]. Theorem 4.3
and Corollary 4.4 hold for such pairs.
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