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Abstract

We correct some errors in Normalizing iteration trees and comparing iter-
ation strategies. The corrections preserve the overall structure of the paper,
but they do involve nontrivial changes at various points.

1 Introduction

NITCIS purports to show that background-induced iteration strategies normalize
well and have strong hull condensation, and that those two properties suffice to
compare iteration strategies. There are (related) problems in both parts of the proof.
Both have to do with what happens near λE in an iteration that uses E. They stem
from the fact that if E on the M -sequence is backgrounded by E∗, then the factor
map from Ult(M,E) to iE∗(M) is only the identity up to λE, and not at λE.

Our solution to these problems involves replacing the class of normal iteration
trees by a slightly different class of iteration trees. We call trees in the new class
λ-separated. There is an accompanying strengthening to the requirements on the
background extenders in a background construction. With these two changes, the
main arguments of NITCIS become fully correct.

In section 1, we discuss an error in the NITCIS proof that background-induced
strategies normalize well. What the proof actually shows is that, granted the strength-
ened background condition, such strategies normalize well on stacks of λ-separated
trees, in a sense that is appropriate for such trees. We show in [1] that background-
induced strategies do actually normalize well on arbitrary stacks of normal trees, but
the proof involves a strategy comparison, so the result is not available while the basic
theory that goes into strategy comparison is being developed.
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In section 2 we discuss an error in the NITCIS proof of (∗)(P,Σ).1 We then show
that the NITCIS proof yields a variant of (∗)(P,Σ) in which the strategy Σ acts on
stacks of λ-separated trees.

We assume throughout that the reader is familiar with NITCIS.2

2 Background-induced strategies may not normal-

ize well

There is a λ-error in the NITCIS proof that background-induced strategies normalize
well. Let M = MC

ν,k and
Σ = Ω(M,C,Σ∗)

be the strategy for M induced by C and Σ∗.3 Let 〈T ,U〉 be a stack by Σ, and let
〈T ∗, (πU)∗〉 be the stack by Σ∗ you get from lifting. NITCIS claims thatW (T ∗, (πU)∗)
is the lift of W (T ,U). But the proof it gives has an error, which stems from the fact
that the factor map from Ult(M,E) to iE∗(M) is not the identity at λ(E).4

To see this in a simple case, let E be on the M -sequence, and T = 〈E〉, and let
U be a tree on M || lh(E) such that the stack 〈T ,U〉 is by Σ. The claim in NITCIS is
that W (T ,U) is by Σ. In this special case, W (T ,U) starts out with U , then finishes
with an image of E, so part of the claim is that U is by Σ. Let us suppose that E
needs no resurrecting, and E∗ is its background. Let

π : Ult(M,E)→ iE∗(M)

be the natural copy map. ΣT (U) is defined by looking at how πU is lifted via iE∗(C)
in Ult(V,E∗), and following Σ∗T ∗ there. So we need to see that the lift U∗ of U via C
to a tree on V is by Σ∗, and what we know is that the lift (πU)∗ of πU using iE∗(C)
to a tree on S is by the tail Σ∗T ∗ . But for F such that

λ(E) < lh(F ) < lh(E),

1Here (∗)(P,Σ) is (essentially) the statement that no strategy disagreements, and no extender
disagreements involving extenders on the backgrounded side, show up when you compare (P,Σ)
with a level (MC

ν,k,Ω
C
ν,k) of a construction C done in a universe where P is countable and Σ is

universally Baire.
2References below are to the online version dated Oct. 2019.
3We are assuming V is strongly uniquely iterable via Σ∗.
4Precisely, the error is located on p. 164, in the middle of the proof of Claim 4.44, in the

statement “the part of the lifting and resurrecting maps acting on F does not change from α to

z(γ)”. That is fine if lh(F ) < λ(E
Wγ
α ), but it is not the case when λ(E

Wγ
α ) < lh(F ) < lh(E

Wγ
α .
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there is no connection between the C-background of F and the iE∗(C)-background
of π(F ), so U∗ and (πU)∗ may have no connection.

In this very simple case, the Condensation Theorem of NITCIS ( see also[2])
shows that U is by Σ.5 But if U is on M rather than M || lh(E), and M has extenders
overlapping lh(E), then Condensation does not apply.

There are various ways one might attempt to repair this error. One is to use
the strategy-extension theorem of Schlutzenberg and the author, according to which
every iteration strategy Σ acting on normal trees that has strong hull condensation
can be extended uniquely to a strategy acting on stacks of normal trees that has
strong hull condensation and normalizes well.6 Here one defines ΣT (U) by choosing
the unique branch that is consistent with Σ(W (T ,U)). The problem here is that one
can no longer show that Σ moves itself to its tails, which is essential for a theory of
strategy mice.7

There are other ways to attempt a repair that look good for a while, but fall
short. Before we describe a repair that seems to work, let us look at the second
major λ-error in NITCIS.

3 Comparing iteration strategies incorrectly

The proof of (∗)(P,Σ) in NITCIS also has a problem. We now outline enough of the
proof that the problem will become visible.

For each 〈ν, k〉 ≤lex 〈ν0, k0〉, we have have a normal tree W∗ν,k on P whose last

model extends MC
ν,k. We have a normal tree U on M = Mν0,k0 by Ω = Ω(C,M,Σ∗),

and we must see that U is by ΣT ,M .8 We let W∗0 = W∗ν0,k0 . For γ < lh(U), we let

S∗γ =MU∗
γ . We have the lifting map

ψUγ : MU
γ →M

Cγ
ηγ ,lγ

,

5For each α < lh(E) such that ρ(M |α) = λ(E), we have apply the Condensation Theorem to
π : M |α→ Ult(M |α,Eπ � λ(E∗)). Of course, we need a comparison process to prove Condensation
for the levels of C, but the proof is part of an induction, so this is not actually a problem.

6The extension to infinite stacks is due exclusively to Schlutzenberg.
7For example, suppose Σ is for M , S ∈ M is a tree by Σ, and iT : M → N is an iteration map

by Σ. Why would iT (S) be by ΣT ? If ΣT (i(S)) has been defined by the lifting procedure, then this
works, because the background embedding i∗ on V moves the process whereby S was justified as
being by Σ in the appropriate way. If ΣT (i(S)) is being justified by the normalization W (T , i(S)),
then this justification seems to have nothing to do with how S was justified.

8We are ignoring some minor points.
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where Cγ is the construction of S∗γ . We set

W∗γ =WS∗γ
ηγ ,lγ

.

We have also the embedding normalizations Wγ = W (W∗0 ,U). The burden of the
proof is to construct inductively tree embeddings

Φγ : Wγ →W∗γ .

There is a λ-error in the step from Φγ to Φγ+1.
Again, we are given EUγ , and set F = Fγ = σγ(E

U
γ ), where σγ : MU

γ → Rγ =

MWγ

z(γ).
9 We set

Hγ = ψUγ (EUγ )

= tγ(F ).

Here tγ = t
Φγ
z(γ) is the last t-map of Φγ. We have by induction that ψUγ = tγ ◦ σγ,

which justifies the displayed equalities. We let

G = resγ(Hγ)

be the resurrection of Hγ in the construction of S∗γ , and G∗ be the background
extender in S∗γ for G. Thus

G∗ = EU
∗

γ .

Letting ν = U -pred(γ + 1), and assuming for simplicity that U does not drop here,
we get

W∗γ+1 = iG∗(W∗ν ).

We can also show that W∗γ+1 uses G. This is our avenue toward Φγ+1, which will
associate F to G.

Let
α = α(Wγ, F ),

so that Wγ+1 = W (Wν ,Wγ, F ).10 We have the problem inherited from the last
section, that Σ may not normalize well in the W -sense, so showing that Wγ+1 is by
Σ doesn’t do any good. But let’s assume we have somehow shown that Σ normalizes
well; there is still a problem.

9z(γ) = lh(Wγ)− 1. σγ comes from the embedding normalization process.
10α(S, F ) is the least ξ such that F is on the sequence ofMSξ . Equivalently, it is the least ξ such

that lh(F ) < lh(ESξ ), or ξ + 1 = lh(S).
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For simplicity, assume there is no resurrection, so that G = Hγ. We need to be
able to set

Φγ+1 � α + 1 = Φγ � α + 1,

and
tγ+1
α (F ) = G.

Let
τ = α(W∗γ , G).

We must have G = E
W∗γ+1
τ , uγ+1(α) = τ , and vγ+1(α) = vγ(α). So in order for Φγ+1

to be a tree embedding, we must have

vγ(α) ≤W ∗γ τ.

Claim 5.22 of NITCIS purports to show this, but what the proof really shows is that
either vγ(α) ≤W∗γ τ , or vγ(α) ≤W ∗γ τ + 1. 11

In this no-resurrection case, if τ is not above vγ(α) in W∗γ , then Proposition 5.2

of NITCIS shows that we must have λ(E
W∗γ
τ ) = λ(G) < lh(G) < lh(E

W∗γ
τ ). This

implies we are past superstrongs a little. But there is a fine-structural variant of the

problem in which λ(E
W∗γ
τ ) < λ(H).12 In Jensen indexing, the fine-structural variant

seems to occur just past strong cardinals.

4 λ-separated trees

The normalization problem stems from the fact that if σ : Ult(M,E) → iE∗(M) is
the factor map, then σ is not the identity on all extenders indexed in M before E,
because λE < σ(λE).13 One might think that ms-indexing would avoid the problem
if we are working below superstrongs, but it does not. If ν(E) is a limit ordinal and
a generator of E∗, then ν(E) < σ(ν(E)), so σ is not the identity on the extenders
that are ms-indexed before E.

11The author of NITCIS had some awareness of this problem. Proposition 5.2 and Lemma 5.6
make some reference to it. But then he seems to have just hand-waved his way past it at the the
crucial points in the proofs of 5.6 and 5.22.

12The problem occurs in the proof of Lemma 5.6, in the proof of Claim 5.8.1 at the bottom of
page 196. The proof neglects the possibility that it is α1 + 1 that is on the branch that realizes the
uncoring map.

13One cannot strengthen the background extender demand to λE = λE∗ in general, for then not
all whole initial segments of E will be on the M -sequence.
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We do not face the problem if we are working in ms-indexing, and E has a largest
generator. This may seem like a very special case, but it turns out that we can always
compare premice iterating only by extenders having a largest generator, and we don’t
have to move to ms-indexing to do it.

Definition 4.1 Let M be a premouse, and E be an extender on the M-sequence;
then

(1) E+ is the extender with generators λE ∪ {λE} that represents i
Ult(M,E)
F ◦ iME ,

where F is the order zero total measure on λE in Ult(M,E),

(2) ν(E+) = λE,

(3) γ(E+) = lh(E), and

(4) o(E+) = (lh(E)+)Ult(M,E+).

Definition 4.2 G is of plus type iff G = E+, for some extender E that is on the
sequence of a Jensen premouse. In this case, we let G− = E.

o(E+) is where the order zero measure on λE of Ult(M,E) would be ms-indexed.
It is easy to code E+ as an amenable subset of lh(E) that is Σ0 over M | lh(E), and

of course, E is Σ0 over (M || lh(E), E+). So E and E+ have the same information,
and it would be pointless to change definitions so that it is (M || lh(E), E+) that is a
premouse. We won’t do that. However, we will strengthen the background extender
requirement, by a condition that implies E∗ backgrounds not just E, but E+.

Definition 4.3 A good w-construction is a sequence C = 〈(Mν,k, F
∗
ν )〉 satisfying the

properties of Definition 2.41 of NITCIS, except that

(a) whenever Mν,0 = (M,F ) is active, and F ∗ = F ∗ν is the associated background
extender for F , then iF ∗(M) |= λF is not measurable , and

(b) F ∗ν is minimized, in Mitchell order and then w, among extenders F ∗ satisfying
(a).

We say a background extender F ∗ for F is λ-minimal iff (a) holds, that is, iF ∗(M) |=
λF is not measurable .

6



A maximal good w-construction is one that is active whenever possible. A good
w-construction may not actually be a w-construction in the sense of NITCIS, since in
(b) we are minimizing with respect to a more restrictive requirement on F ∗. But this
is an extremely minor difference. The notions related to background constructions
from NITCIS still apply.

Notice that any background construction C = 〈Mν,k, F
∗
ν 〉 can be transformed to a

good one D = 〈Mν,k, G
∗
ν〉 with the same models. For if F ∗ is the background extender

in C for F , which is being added to M , and iF ∗(M) |= λF is measurable , then in
iF ∗(V ) we have a background E∗ for the order zero total measure on λF of iF ∗(M).
For η the least inaccessible above λF , Vη ⊆ iF ∗(V ), so η is still the least inaccessible
above λF in iF ∗(V ). So Vη ⊆ Ult(V,E∗) holds in iF ∗(V ), and hence in V . But then
we can take G∗ = iE∗(F

∗). It is easy to see that G∗ still backgrounds F , and is
λ-minimal.

λ-minimality for F ∗ implies that it backgrounds F+:

Theorem 4.4 Let F ∗ = F ∗ν be a λ-minimal background for F in the construction
C, where F is the last extender of M = MC

ν,0; then F ∗ ∩ ([λF + 1]<ω ×M) = F+.

We defer the proof of this theorem to the last section. It involves a phalanx
comparison argument, one similar to the proof of “closure under initial segment”
from FSIT.

We wish to consider iteration trees that are allowed to use extenders of the form
E+, where E is on the coherent sequence of the current model. To unify notation, if
E is an extender on the sequence of some premouse, let us set

(i) ν(E) = λ(E) = ν(E+),

(ii) γ(E) = lh(E) = γ(E+),

(iii) E− = E, and

(iv) o(E) = (lh(E)+)Ult(M,E) = o(E+).

Definition 4.5 Let M be a premouse, then a plus-tree on M is a system 〈T, 〈Eα |
α + 1 < lh(T )〉, 〈Mα | α < lh(T )〉〉 with the usual properties of an iteration tree,
except:

(a) either Eα is on the Mα-sequence, or Eα = F+ for some F on the Mα-sequence,

(b) if α < β, then γ(Eα) < γ(Eβ), and
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(c) T -pred(α + 1) is the least β such that crit(ETα ) < ν(Eβ) or β = α + 1, and

(d) MT
α+1 = Ult(P,ETα ), where β is as in (c), and P �MT

β is as long as possible.

We say the “plus case” occurs at α if Eα is of plus type. Thus an ordinary normal
iteration tree on M is a plus-tree in which the plus case never occurs. At the other
extreme, we have

Definition 4.6 A λ-separated iteration tree on M is a plus-tree T on M such that
every ETα has plus type.

It may seem that clause (c) of Definition allows generators to move along branches
of T . The worry would be the case that β = ξ + 1, where Eξ = F+ for some F . But
in this case, the only important generators of Eξ are in λF ∪{λF}. Generators below
λF = ν(Eξ) are not moved by (c). λF itself has no total measures in Mβ, and hence
in Mα. The partial measures on λF are all indexed below lh(F ) = γ(Eξ) ≤ γ(Eα).
Thus Eα is not moving any important generators of Eξ. It is quite possible that
crit(Eα) < λ(Eξ), however.

Remark 4.7 It should be possible to show that if T is a plus tree, then there is
an “equivalent” Jensen normal tree S. The models of S would be coded versions of
the models of T . This should be essentially some small fragment of Fuchs’ work on
translating between ms and Jensen indexing.

Remark 4.8 Regardless of the last remark, we don’t want to think of plus trees as
Jensen normal trees, because of the way we are using a good background construction
to induce an iteration strategy. For our purposes below, hitting E-then-F , where F
is the order zero measure on λE of Ult(M,E), is lifted to hitting just the background
E∗ for E. If we then want to hit some extender G on Ult(M,E) with λE < crit(G) <
iF (λE), then the background G∗ for G has to come from Ult(V,E∗). We can’t demand
that E∗ be strong enough that G∗ is an extender over V .

The agreement of models in a plus tree is given by

Proposition 4.9 Let U be a plus tree; then for α < β < lh(U), E = EUα and
F = EUβ ,

(a) MU
α agrees with MU

β below γ(E),

(b) E− is indexed at γ(E) on the MU
α sequence, but γ(E) is a cardinal of MU

β ,
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(c) γ(E) < ν(F ),

(d) if o(E) ≤ ν(EUα+1), then MU
β agrees with Ult(MU

α , E
U
α ) below o(E), and

(e) if ν(EUα+1) < o(E), then γ(E) < crit(EUα+1), and γ(E) is a cutpoint of MU
α+1,

and U = U � (α+1)_W, where W is a tree above γ(E) on some level ofMU
α+1

that projects to γ(E).

We omit the elementary proof. For the most part, what we need is that the γ(EUα )’s
are strictly increasing, and measure the agreement between successive extender se-
quences. The o(EUα ) may strictly decrease at points, but only in the limited way
described in (e).

Let us also record the agreement between maps in a copying construction.

Proposition 4.10 Let M and N be premice, π : M → N be elementary, and U on
M be a plus tree. Let πα : MU

α →MπU
α be the copy map; then for α < β,

(1) πα � γ(EUα ) + 1 = πβ � γ(EUα ) + 1, and

(2) if the plus case occurs at α, then either

(i) πα � o(EUα ) + 1 = πβ � o(EUα ) + 1, or

(ii) γ(EUα ) < crit(EUα+1) < ν(EUα+1) < o(EUα ).

One can compare with the levels of a background construction via a λ-separated
trees.

Lemma 4.11 Let P be a countable pure extender premouse, and let Σ be a univer-
sally Baire iteration strategy for P defined on λ-separated trees. Let C be a back-
ground construction, and suppose that P iterates strictly past MC

ν,k via a λ-separated

tree by Σ, for all 〈ν, k〉 < lex〈η, n〉; then P iterates past MC
η,n via a λ-separated tree

that is by Σ.

Proof. The standard proof works pretty much word-for-word. First we reduce to
the case n = 0 and M = Mη,0 is active, with last extender E. Then we define the
unique λ-separated U = T + we can hope works by induction: EUα = G+, where G
is the least disagreement between MU

α and M , and Σ is used to extend U at limit
steps. We have to see that we never reach an α such that M || lh(E)�MU

α , but E is
not on the MU

α-sequence.
Suppose this happens at α. Let j = iE∗ be the background embedding for E, and

κ = crit(E). Then κ <j(U) j(κ), and i
j(U)
κ,j(κ) = j �MU

κ . Let G = E
j(U)
ξ , where ξ + 1 is
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the immediate successor of κ on the branch (κ, j(κ)]j(U). Both G and E are initial
segments of Ej, so G is compatible with E. The first initial segment of G that is not

inMj(U)
j(κ) is G−. The first initial segment of E that is missing is E. Thus E = G−, and

hence E is on the sequence ofMj(U)
ξ . But U � α+1 = j(U) � α+1 uses only extenders

H such that γ(H) < lh(E), so α ≤ ξ. Moreover, lh(E) ≤ γ(E
j(U)
α ) ≤ γ(EUξ ) = lh(E),

so ξ = α, and E is on the MU
α-sequence, a contradiction. �

Remark 4.12 We can compare two iterable premice by λ-separated trees, but it is
not exactly comparison by least disagreement. For example, let N = Ult(M,E), and
let D be the order zero total measure of N on λE. On the M -side, we would first hit
E+, that is, E-then-D. Then on the N-side we would hit D+. Then on the M -side
we hit iE+(D)+, etc. The models line up after ω steps in this process.

We also have universality at a Woodin.

Lemma 4.13 Let δ be Woodin, let P be a countable pure extender premouse, and
let Σ be a δ+-universally Baire iteration strategy for P defined on λ-separated trees.
Let C be a maximal background construction below δ of either the ordinary or the
good variety; then there is a ν, k such that MC

ν,k exists (i.e. C has not broken down

yet), and MC
ν,k is a Σ-iterate of P via a λ-separated tree.

Proof. Again, the standard proof works. Let us take the case C is required to be
good. If the lemma fails, we have a λ-separated tree U on P by Σ of length δ + 1,
with last model Q extending MC

δ,0. Let b = [0, δ)U . Because δ is Woodin, we have
j : V → N with crit(j) = κ, and for ξ+1 ∈ b with U -pred(ξ+1) = κ, ξ+1 ∈ j(b), and
Vη ⊆ N for η the least inaccessible above ξ + 1. Let G = EUξ . We can also arrange
that j(Mδ,0) agrees with Mδ,0 past γ(G). But then Ej � η is a good background
extender for G− (i.e., it is a background extender for the full G). By maximality and
the Bicephalus Lemma, G− is on the Mδ,0 sequence, contradiction. �

5 Tree embeddings and strong hull condensation

Tree embeddings and extended tree embeddings of plus trees are defined in exactly
the way they were in the special case that the trees are normal, except that we allow
extenders in T that are not of plus-type to be mapped to extenders that are. That
is, for Φ = 〈u, v, 〈sα | α < lh(T )〉, 〈tα | α + 1 < lh(T )〉〉 a tree embedding of T into
U , we allow (but do not demand)

EUu(α) = tα(ETα )+,
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to hold when ETα is not of plus type. If the plus case does occur at α in T , then our
demand is

ETα = F+ ⇒ EUu(α) = tα(F )+.

Definition 5.1 T is a psuedo-hull of U iff there is a tree embedding from T into U .

For future reference, let us record the agreement properties of the maps in a tree
embedding.

Definition 5.2 Let T be a plus tree, and α < lh(T ); then

νTα = sup{τξ | ξ < α},

where

τξ =

{
γ(ETξ ) + 1 if the plus case occurs in T at ξ

λ(ETξ ) otherwise.

Since the ν(ETξ ) increase with ξ, νTα = sup{ν(ETξ ) + 1 | ξ <T α}. MT
α is generated

from ordinals strictly less than νTα and points in the range of the branch embedding
from the last drop on [0, α]T .

Proposition 5.3 Let T and U be plus trees on M , and let Φ = 〈u, v, 〈sα | α <
lh(T )〉, 〈tα | α + 1 < lh(T )〉〉 be a tree embedding from T into U ; then

(1) If α + 1 < lh(T ), then sα agrees with tα on νTα .

(2) If α < β < lh(T ), then sβ agrees with tα on γ(ETα ) + 1.

(3) If α < β, then sα agrees with sβ on νTα .

(4) If α < β and β + 1 < lh(T ), then tβ agrees with tα on νTα+1.

It follows from (4) that if the plus case occurs at α, then tα agrees with all later
tβ on γ(ETα ). In fact, they agree on o(ETα ), except in the irrevocable-dropping case
γ(ETα ) < crit(ETα+1) < o(ETα ). If the plus case does not occur at α, then we might
have tα disagreeing at λ(ETα ) = ν(ETα ) with tα+1.

Definition 5.4 A complete strategy for a premouse M is a strategy defined on finite
stacks of plus trees on M .

We care most about the part of a complete strategy that acts on finite stacks of
λ-separated trees.
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Definition 5.5 Let Σ be a complete iteration strategy for a premouse M . Then Σ
has strong hull condensation iff whenever s is a stack of plus trees by Σ with last
model N , and U is a plus tree on N by Σs,N , then for any plus tree T on N ,

(a) if T is a psuedo-hull of U , then T is by Σs,N , and

(b) if Φ: T → U is an extended tree embedding, with last t-map π : Q→ R �MU
α

then Σs_〈T 〉,Q = (Σs_〈U�(α+1)〉,R)π.

Theorem 5.6 Let N∗ |= ZFC + “C is a good background construction”. Let Σ∗

be (ω, θ)-iteration strategy for (N∗, ~FC). Suppose that 〈ν, k〉 < lh(C), and Σ is the
complete iteration strategy for MC

ν,k induced by Σ∗. Suppose finally that Σ∗ has strong
hull condensation; then Σ has strong hull condensation.

The proof is the same as that in NITCIS. Given that T is a psuedo-hull of U , we
show that T ∗ is a psuedo-hull of U∗, where T ∗ and U∗ are the lifts of T and U to trees
on N∗. The reader might worry at this point that allowing EUu(α) = tα(Eα)+ weakens
the connection between exit extenders required for the proof. However, it does not,
basically because when G is put on the sequence of MC

<ν by a good construction, G
and G+ have the same background extender G∗.

We can easily λ-separate any plus tree as follows.

Definition 5.7 Let T be a plus tree on M . We define a λ-separated tree U = T s,
along with maps

πα : MT
α →MU

α

by: π0 = id , and

EUα =

{
πα(ETα ) if ETα is of plus type,

πα(ETα )+ otherwise,

and πα+1 is the natural copy map from Ult(P,ETα ) to Ult(πβ(P ), EUα ), where β =
T -pred(α + 1) = U-pred(α + 1), and P �MT

β is what ETα is applied to.

T is a psuedo-hull of T s, via the maps u = v = id, and sα = tα = πα. So if Σ is
induced by a good background construction, then T is by Σ iff T s is by Σ. We don’t
need 5.6 for this, however, because the lifts of T and T s under a good background
construction are essentially the same. For let U = T s, and let πα : MT

α →MU
α come

from the λ-separation process. Let lift(T ,M,C) = 〈T ∗, 〈ηξ, lξ | ξ ≤ ξ0〉, 〈ψξ | ξ ≤ ξ0〉〉
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and lift(U ,M,C) = 〈U∗, 〈νξ, kξ | ξ ≤ ξ0〉, 〈φξ | ξ ≤ ξ0〉〉. An routine induction shows
that ET

∗
α = EU

∗
α , and ψα = φα ◦ πα for all α. Thus

T ∗ = (T s)∗,

and
T is by Ω(C,M,Σ∗) iff T s is by Ω(C,M,Σ∗).

Remark 5.8 If T is a Jensen-normal plus tree14, then T s can be re-arranged as a
Jensen normal tree U . When T s uses F+ in one step, U uses F , and then in the next
step the order zero measure on λF in the ultrapower.

6 Background-induced strategies normalize rea-

sonably well

Let C be a good background construction, and let T be a plus tree on M = MC
ν,k.

We can lift T to a normal tree T ∗ on V in the usual. The resulting system is

lift(T ,M,C) = 〈T ∗, 〈ηξ, lξ | ξ ≤ ξ0〉, 〈ψξ | ξ ≤ ξ0〉〉.

Here 〈η0, l0〉 = 〈ν, k〉 and ψ0 = id. The successor step in the lifting process is given
by: we have

ψα : MT
α →MCα

ηα,lα ,

where Cα = iT
∗

0,α(C). Let E

E = (ETα )−.

So E is on theMT
α sequence. Let resα be the map that resurrects ψα(E) in Cα. We

then set
ET

∗

α = Cα-background extender for resα ◦ψα(E).

Theorem 4.4 tells us that, because Cα is good, ET
∗

α is actually a background extender
for (resα ◦ψα(E))+. This lets us define ψα+1 in the usual way.

The agreement properties of the lifting maps are given by

Proposition 6.1 For α < β,

(1) ψβ � ν(ETα ) = resα ◦ψα � ν(ETα ), and

14Meaning that if E is used before F along a branch, then λE ≤ crit(F ). Plus trees as defined
here must be ms-normal. In [1] we relax slightly the length-increasing requirement in ms-normality.
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(2) if the plus case occurs at α, then

(a) ψβ � γ(ETα ) + 1 = resα ◦ψα � γ(ETα ) + 1, and

(b) either

(i) ψβ � o(ETα ) + 1 = resα ◦ψα � o(ETα ) + 1, or

(ii) γ(EUα ) < crit(EUα+1) < ν(EUα+1) < o(EUα ).

The fact that the plus case leads to increased agreement is what motivates our focus
on good background constructions and λ-separated trees.

The embedding normalization W (T ,U) of a stack of plus trees is defined just as
it was for stacks of normal trees. Letting Wγ = W (T ,U � γ + 1) and F = Fγ, one
has

Wγ+1 = W (Wν ,Wγ, F )

= (W � α + 1)_〈F 〉_iF“W≥βν

where ν = U -pred(γ + 1), and

α = α(Wγ, F )

= least ξ such that F− is on the MWγ

ξ -sequence,

and

β = β(Wγ, F )

= least ξ such that crit(F ) < ν(E
Wγ

ξ ) or ξ = α(Wγ, F ).

One has by induction that Wν � β + 1 = Wγ � γ + 1. Moreover, if β + 1 < lh(Wν),

then β+ 1 < lh(Wγ) and γ(EWν
β ) ≥ γ(E

Wγ

β ), so that ν(EWν
β ) ≥ ν(E

Wγ

β ). This means

that β = β(Wν , F ); that is, F gets applied to an initial segment of MWν
β in Wγ+1,

and β = Wγ+1-pred(α + 1).
The construction of W (T ,U) gives us partial tree embeddings

Φν,η : Wν →Wη

for ν <U η, defined on an appropriate initial segment of Wν .
What the “proof” of Theorem 4.41 of NITCIS actually shows is that the iteration

strategy induced by a good background construction normalizes well on stacks of the
form 〈T ,U〉, where T is λ-separated and U is a plus tree.
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Theorem 6.2 Let Σ∗ witness that V is strongly uniquely iterable, and let C be a
good background construction. Let M = MC

ν,k and Σ = Ω(C,M,Σ∗) be the strategy
for M induced by C and Σ∗. Let 〈T ,U〉 be a stack by Σ such that

(a) T is λ-separated, and

(b) U is a plus tree;

then W (T ,U) is by Σ.

Proof. We just take things far enough in the NITCIS proof to see that the error in
the proof of Claim 4.44 has been fixed. Our notation matches that of NITCIS.

Let T be on MC
ν0,k0

, and

lift(T ,Mν0,k0 ,C) = 〈T ∗, 〈ηTξ , lTξ | ξ ≤ ξ0〉, 〈ψTξ | ξ ≤ ξ0〉〉.

Let

lift(ψTξ0U ,M
iT
∗

0,ξ0
(C)

ηTξ0
,lTξ0

, iT
∗

0,ξ0
(C)) = 〈U∗, 〈〈ηUξ , lUξ 〉 | ξ < lhU〉, 〈ρξ | ξ < lhU〉〉.

Let τξ :MU
ξ →M

(ψTξ0
)U

ξ be the copy map, and

ψUξ = ρξ ◦ τξ,

so that
ψUξ :MU

ξ → Qξ,

where Qξ is the appropriate model in iU
∗

0,ξ(C). We show that W (T ,U) lifts to an initial
segment of W (T ∗,U∗). This is done by induction: setting Wγ = W (T ,U � γ + 1)
and W∗γ = W (T ∗,U∗ � γ + 1), and

lift(Wγ,Mν0,k0 ,C) = 〈S∗γ , 〈〈η
γ
ξ , l

γ
ξ 〉 | ξ < lhWγ〉, 〈ψγξ | ξ < lhWγ〉〉.

we show that S∗γ =W∗γ� lhWγ. Thus S∗γ is by Σ∗, soWγ is by Σ. With γ+1 = lh(U),
this is what we want. The overall plan is summarized in the diagram:

Wγ S∗γ �W∗γ

Wν S∗ν �W∗ν

lift

Φν,γ

lift

Φ∗ν,γ

15



Here Φν,γ and Φ∗ν,γ are the tree embeddings we get from the two embedding normal-
ization processes.

We have by induction that the diagram holds at all ξ ≤ γ, and that

ψξz(ξ) ◦ σξ = ψUξ

for all ξ ≤ γ.15 Part of this is that 〈ηUγ , lUγ 〉 = 〈ηγz(γ), l
γ
z(γ)〉. We define

〈η, l〉 = 〈ηUγ , lUγ 〉 = 〈ηγz(γ), l
γ
z(γ)〉,

F = σγ(E
U
γ ),

H = ψγz(γ)(F )

= ψUγ (EUγ ),

G = res
Cγ
z(γ)

H (H), and

G∗ = BCγ
z(γ)(G).

Here we are writing BD(K) for the background extender associated to a completely
resurrected K by a construction D. We are also letting

resDη,l,E = σD
η,l[M

D
η,l|γ(E)]

be the map that resurrects E− from stage 〈η, l〉 inside D. (This map also resurrects
all of E in the plus case.) Note here

Remark 6.3 If MD
η,l| lh(E) = MD

θ,n| lh(E), then resDη,l,E = resDθ,n,E. (Since between

〈η, l〉 and 〈θ, n〉 there can be no level projecting < lh(E).) So we may write resDE for
the common value.

We have
G∗ = EU

∗

γ .

So Wγ+1 = W (Wν , F ) and W∗γ+1 = W (W∗ν , G∗), where ν = U -pred(γ + 1) =
U∗-pred(γ + 1). We must see that Wγ+1 lifts to W∗γ+1, in a way that the diagram
above (with γ replaced by γ + 1) commutes. The main thing here is to show that
the background extender associated to the lift of F is G∗. That was Claim 4.44 of
NITCIS, where the λ-error occurred. Our assumption that T is λ-separated enters
into the correct proof.

15σξ : MUξ →M
Wξ

z(ξ) comes from embedding normalization.
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More precisely, let
α = α(Wγ, F ),

and
K = ψγα(F ).

Claim 6.4 (a) G = resC
γ
α

K (K),

(b) G∗ = BCγα(G), and

(c) α = α(W∗γ , G∗).

Proof.. Let us assume α + 1 < lh(Wγ). The case they are equal is similar. Wγ was
formed by inserting the Fξ for ξ < γ into images of W0, moreover γ(Fξ) < γ(Fγ) for
all ξ < γ. It follows from the way that embedding normalization works that

α ∈ ran(uΦ0,γ ).

Since the plus case occurred everywhere in W0, the plus case occurs at α in Wγ. It
follows from 6.1(2) that

ψγz(γ) � γ(E) = resC
γ
α

E ◦ψ
γ
α � γ(E),

where E = E
Wγ
α .16 But γ(F ) < γ(E), so

H = ψγz(γ)(F )

= resα ◦ψα(F )

= resC
γ
α

E (K).

The second line here uses 6.1(2)(a), which applies because the plus case occurs at α
in Wγ.

Let E1 = resC
γ
α

E (E), θ be such that E1 is the top extender of MCγα
θ,0 . To prove (a),

it is enough to see that
resC

γ
α

θ,0,H(H) = G.

But let E∗1 = BCγα(E1) = E
W∗γ
α , and fix ξ such that E∗1 = FCγα

ξ . By coherence of the
background sequences, Cγ

α and Cγ
z(γ) have the same background extenders with index

η < ξ. This implies

MCγα
µ,k = M

Cγ
z(γ)

µ,k

16This is where we use λ-separation. Without it the agreement would only be up to λ(E), and
the argument would break down when λ(E) < lh(F ) < lh(E).
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for all 〈µ, k〉 <lex 〈θ, 0〉. That implies in turn that

resC
γ
α

θ,0,H = res
Cγ
z(γ)

θ,0,H .

Finally,

res
Cγ
z(γ)

θ,0,H = res
Cγ
z(γ)

η,l,H ,

so we are done with (a) of 6.4. Our proof also showed (b).
The proof of (c) in NITCIS works here too. �

�

7 Comparing iteration strategies correctly

The problem in going from Φγ to Φγ+1 that we identified in Section 3 stemmed from
the fact that the conclusion of Proposition 5.2 in NITCIS is not quite strong enough
for the purpose. The unwanted disjunct in this conclusion can be eliminated if we
are starting with a λ-separated tree.

Proposition 7.1 Let S be a λ-separated tree on some premouse, let δ ≤S η, and
suppose that P�MS

η , but P 5MS
σ whenever σ <S δ. Suppose also that P ∈ ran(̂ıSδ,η).

Let

α = least ξ such that P �MS
ξ

= least ξ such that o(P ) < γ(ESγ ) or ξ = η,

and
β = least ξ ∈ [0, η]S such that o(P ) < crit(̂ıSξ,η) or ξ = η.

Then β ∈ [δ, η]S, and α = β. (We allow δ = η, with the understanding ı̂δ,δ is the
identity.)

Proof. By Proposition 4.9, for any ξ < η, P �MS
ξ iff γ(ESξ ) > o(P ). So the two

characterizations of α are equivalent. Clearly, P �MS
β , and thus α ≤ β. We have

that o(P ) ≥ γ(ESσ ) for all σ <S δ, and hence for all σ <S δ whatsoever. So δ ≤ α,
and β ∈ [δ, η]S.

Suppose α < β; then o(P ) < γ(ESα ), so o(P ) < γ(ESσ ) where σ is least such that
α ≤ σ and σ + 1 ≤S β. But S is λ-separated, so

o(P ) < γ(ESσ ) < iEσ(crit(Eσ)).
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Since δ ≤ σ and P ∈ ran(̂ıSδ,η), we have o(P ) < crit(ESσ ), which contradicts our
definition of β.

Thus α = β, and we are done. �

Remark 7.2 If S is merely normal, it can happen that β = α + 1 and λ(ESα ) <
o(P ) < lh(ESα ). This was the problem discussed in Section 3.

Let us return now to the situation in Section 3, in order to see that the problem
has been fixed.

Let (P,Σ) be a pure extender pair, in the sense that Σ has strong hull condensa-
tion, and normalizes well for stacks of the form 〈T ,U〉, where T is λ-separated and
U is an arbitrary plus tree. We assume P is countable and Σ is UB. Let C be a good
background construction.

By Lemma 4.11, we may assume that for each 〈ν, k〉 ≤lex 〈ν0, k0〉, we have a
λ-separated tree W∗ν,k on P whose last model extends MC

ν,k. We have a plus tree U
on M = Mν0,k0 by Ω = Ω(C,M,Σ∗), and we must see that U is by ΣT ,M .17 We let
W∗0 =W∗ν0,k0 . For γ < lh(U), we let S∗γ =MU∗

γ . We have the lifting map

ψUγ : MU
γ →M

Cγ
ηγ ,lγ

,

where Cγ is the construction of S∗γ . We set

W∗γ = (W∗ηγ ,lγ )
S∗γ .

We have also the embedding normalizations Wγ = W (W∗0 ,U). The burden of the
proof is to construct inductively extended tree embeddings

Φγ : Wγ →W∗γ .

By strong hull condensation, we get that Wγ is by Σ, for all γ. Since Σ normalizes
reasonably well, U is by Σ, as desired.

We are given EUγ , and set F = Fγ = σγ(E
U
γ ), where σγ : MU

γ → Rγ =MWγ

z(γ). We
set

H = ψUγ (EUγ )

= tγ(F ).

17Again, we ignore relatively minor points, such as the possibility that U is on a proper initial
segment of M .
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Here tγ = t
Φγ
z(γ). We have by induction that ψUγ = tγ ◦σγ, which justifies the displayed

equalities. We let

G = res
S∗γ
H (H)

be the resurrection ofH in the construction of S∗γ , andG∗ be the background extender
in S∗γ for G. Thus

G∗ = EU
∗

γ .

Letting ν = U -pred(γ + 1), and assuming for simplicity that U does not drop here,
we get

W∗γ+1 = iG∗(W∗ν ).

We can also show that W∗γ+1 uses (G−)+; that is G if G is of plus-type, and G+ if it
is not.

Let
α = α(Wγ, F ),

so that Wγ+1 = W (Wν ,Wγ, F ). Let us assume α + 1 < lh(Wγ). The case α + 1 =
lh(Wγ) is similar, but uγ(α) must be replaced by z∗(γ), which is fine because Φγ is
an extended tree embedding. As in our normalizing well proof, we have that the plus
case occurs at α in Wγ.

18

Let
τ = α(W∗γ , H).

Claim. τ ∈ [vγ(α), uγ(α)]W∗γ .

Proof. Let
P =MWγ

z(γ)| lh(F ) =MWγ
α | lh(F−),

and
Q = tγz(γ)(P ) = M

Cγ
ηγ ,lγ
| lh(H−).

We have o(P ) < γ(E
Wγ
α ), so because the plus case occurred at α inWγ, 5.3(4) implies

Q = tγα(P ).

But this means
Q = ı̂

W∗γ
vγ(α),uγ(α) ◦ s

γ
α(P ),

so Q ∈ ran(̂ı
W∗γ
vγ(α),uγ(α). By Proposition 7.1, we get τ ∈ [vγ(α), uγ(α)], as desired. �

18W0 is λ-separated, and the Fξ for ξ < γ satisfy γ(Fξ) < γ(F ).
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If G = H, then enables us to set uγ+1(α) = τ . The rest of the definition of Φγ+1

is as in NITCIS.
If G 6= H, so that the resurrection map resH of S∗γ is nontrivial, then we proceed

as in NITCIS. Let θ be such that G− is the last extender predicate of M
Cγ
θ,0 . We set

W∗∗γ = (W∗θ,0)S
∗
γ .

The proof of Lemma 5.6 of NITCIS shows that

W∗∗γ � τ + 1 =W∗γ � τ + 1,

and
resH = ı̂

W∗∗γ
τ,ξ ,

where ξ + 1 = lh(W∗∗γ ). The λ-error in the proof of 5.6 is no longer present, because
all the W∗η,n are λ-separated.19

We go on from this point as in NITCIS.

8 Proof of Theorem 4.4

In this section we prove 4.4. It might seem at first that one could avoid doing that
by strengthening the λ-minimality requirement on a background extender E∗ for E.
Why not just make it part of the definition that E∗ must background E+? The
problem is of course that such background constructions may not produce enough
mouse pairs. The NITCIS proof that there are strategy mice with subcompacts,
granted the existence of a Hom∞ iteration strategy for a pure extender premouse
with a long extender on its sequence, or granted large cardinals in V and strong
unique iterability, would have a gap. The NITCIS proof that LEC implies HPC would
have a gap. We would have a comparison theorem for the mouse pairs reached by
such constructions, but no strong evidence that they reach many lbr hod pairs.

We have observed above that the additional λ-minimality requirement on E∗ does
not restrict the possible E at all. Theorem 4.4 says that the requirement that E∗

background E+ is also not restrictive, because in fact it follows from λ-minimality.

Proof of 4.4. The proof resembles the proof of closure under initial segment in section
10 of FSIT. Let F ∗ = F ∗ν be a λ-minimal background for F in the construction C,
where F is the last extender of M = MC

ν,0. background for F . We assume that M is
a pure extender premouse. This simplifies the phalanx comparison.

19The error in the NICIS proof of 5.6 occurs in the proof of Claim 5.8.1. It could be that α1 + 1
is in the interval in question.
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Let κ = crit(F ), and

G = {(a,X) | a ∈ [λF + 1]<ω ∧X ∈M ∩ P ([κ]|a|) ∧ a ∈ iVF ∗(X)}.

Our goal is to show that G = F+. Assume toward contradiction that G 6= F+. Let

N = Ult(M,G)|(λ+
F )Ult(M,G).

If G = F+, then o(N) = lh(F ), but for all we know now, lh(F ) < o(N) is possible.
The factor embedding from Ult(M,G) to iF ∗(M) has critical point ≥ o(N), so N �

iF ∗(M). Note also that lh(F ) is a passive stage in iF ∗(M), because F ∗ was a Mitchell-
minimal background for F .

For η < κ+,M , the fragment Gη = G ∩ ([λF + 1]<ω ×M |η) belongs to N , by the
usual Kunen argument. The Gη are constructed cofinally in o(N), so we can code G

by a predicate Ĝ that is amenable to N . The following are simple first order facts
in the theory of (N, Ĝ):

(*) ] There is a largest cardinal ν, moreover

(1) ν is a cutpoint and a generator of G,20

(2) Ult(N,G) |= ν is not measurable,

(3) (ν+)Ult(N,G�ν) is not active in Ult(N,G), and

(4) G is not of plus type.

The structure (N, Ĝ) has an iteration strategy Σ that we get from C. We can
replace (N, Ĝ) by a countable elementary submodel of itself, and Σ by an (ω, ω1 + 1)
iteration strategy for that model that has the weak Dodd-Jensen propety relative to
some enumeration ~e. We assume this has been done, and call the new objects N , G,
Ĝ, and Σ.

Let ν be the largest cardinal of N , and

P0 = Q0 = (N, Ĝ),

and
P1 = Ult(P0, G � ν).

We are going to compare the phalanx (P0, P1, ν) with Q0. The resulting tree on the
phalanx we call T , with models Pξ =MT

ξ , and the tree on Q0 we call U , with models

20That is, ν(G) 6= [a, f ]NG when a ⊂ ν(G) and f ∈ N . This follows from the fact that λF < λF∗ .
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Qξ =MU
ξ . At the same time, we lift T to a tree T ∗ with models P ∗ξ , and embeddings

πξ : Pξ → P ∗ξ . Here π0 = id , and

P ∗1 = Ult(P0, G),

with π1 being the natural factor map. The trees T ∗ and U are according to Σ.
T is not literally an iteration tree on P0, since G � ν is not on the P0-sequence,

but we will use iteration tree notation for it. In particular, 0 <T 1, and iT0,1 = iG�ν .
The non-dropping iterates of P0 in the trees T , T ∗, and U all satisfy the elemen-

tary property (∗). P0 also satisfies the “weak initial segment condition”, in that
whenever H is a whole proper initial segment of G � ν(G), then (the Jensen comple-
tion of) H is indexed on the P0 sequence. We have to deal with the possibility that
this could fail for iterates of P0.

The comparison proceeds by iterating away least disagreements. In this connec-
tion, if Pξ = (R, Ĥ) is such that [0, ξ]T has not dropped, and Q is the current model

on the U -side, and R �Q, then ETξ = H unless Q = (R, Ĥ). In the latter case, the
comparison is over.

If ETξ exists, T -pred(ξ+ 1) = least β such that crit(ETξ ) < ν(ETβ ). Here ν(ETβ ) =

λ(ETβ ), or ν(ETβ ) is the largest cardinal of MT
β , and ETβ is coded by the image of Ĝ

along [0, β]T . In this latter case, ν(ETβ ) cannot be equal to crit(ETα ), because clause
(2) above was preserved along [0, β]T .

Claim 1. The comparison terminates.

Proof. This is not completely routine, because the weak initial segment condition
may fail for iterates of (N, Ĝ). Important generators are not moved along branches,
so the usual proof gives us some countable α and η + 1, ξ + 1 such that

α = T -pred(η + 1) = U -pred(ξ + 1),

and for H = ETη and K = ETξ , dom(H) = dom(K) and H and K are compatible.
This is impossible unless one of H and K is the image of G along the branch to its
model.

Case 1. [0, η]T does not drop, and H is coded by the top predicate of Pη.

Let µ be the largest cardinal of H. We have that µ is a cutpoint of H, a generator
of H, and for γ = (µ+)Ult(Pη ,H�µ), γ is not active in (Ult(Pη, H). It follows that the
Jensen completion of H could not appear on the sequence of a Jensen premouse,
because the Jensen initial segment condition fails for it.

Subcase 1A. [0, ξ]U does not drop, and K is coded by the top predicate of Qξ.
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H 6= K, because otherwise the comparison was finished before we used them.
Suppose K is a proper initial segment if H. We then have that πη ◦ iU0,ξ is a Σ0

elementary, cardinal preserving map from Q0 = P ∗0 into P ∗η . (It is Σ0 in the language

with a predicate for Ĝ.) But letting ν be the largest cardinal of N , πη ◦ iU0,ξ(ν) <

iT
∗

0,ξ(ν). This contradicts the ~e-minimality of Σ.21 If H is a proper initial segment of
K, then iT0,η is Σ0 and cardinal preserving from P0 = Q0 into Qξ, and iT0,η(ν) < iU0,ξ(ν),
where ν is the largest cardinal of N . Again, this contradicts the ~e-minimality of Σ.

Subcase 1B. Subcase 1A does not hold.

We then have that Qξ| lh(K) is a Jensen premouse. By the initial segment con-
dition, if H = K � ν(H) + 1, then H− is a whole proper initial segment of K, so H−

is indexed on the Qξ-sequence at γ(H), and γ(H) < lh(K). This implies H− is on
the sequence of Qω1 , and hence on the sequence of Pω1 , contrary to the fact that H
was used in T . Thus K must be a proper initial segment of H.

Suppose first that K is a proper initial segment of H � µ. Let ν be the largest
cardinal of N , and i = iT0,η, so that i(ν) = µ. For any τ < ν such that G � τ is
whole, the Jensen completion of G � τ is on the N sequence. It follows that for any
τ < sup i“ν such tht H � τ is whole, the Jensen completion of H � τ is on the Pη
sequence. Since K is not on the Pη sequence, we must have

sup i“ν ≤ λK < i(ν).

Thus ν is singular in N , and letting

γ = (ν+)Ult(N,G�ν) = sup iNG�ν“κ
+,N ,

we have that γ < o(N). Let S be the first level of N above γ that projects to ν.
Letting X ⊂ κ and X ∈ N , we have that

iG�ν(X) = hS(β, p(S)),

where hS is the canonical Skolem function. This fact is preserved by i, so iH�µ(i(X)) =
hi(S)(i(β), p(i(S)). But this means

iK(i(X)) = hi(S)(i(β), p(i(S))) ∩ λK .

Noting that i(β) < λK and ran(i) is cofinal in dom(K), we see that lh(K) has
cardinality λK in Pη. But K was used in U before we reached Pη, so lh(K) is a
cardinal in the lined up part of Pη, and hence in Pη. This is a contradiction.

21We may assume e0 = ν.
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Thus we must have λK = µ. Let i = iTη+1,ω1
and j = iUξ+1,ω1

be the branch tails.
µ < crit(i), and µ is not measurable in Pη+1, so µ is not measurable in Pω1 , so µ is
not measurable in Qω1 . But µ = λK is measurable in Qξ+1. It follows that EUξ+1 is
the order zero measure on λK , and ξ+ 1 <U ξ+ 2 <U ω1, so that K-then-ETξ+1 is the
initial segment of the extender of iTα,ω1

with generators µ+ 1. This implies that

H = K-then-ETξ+1,

so H is of plus type. But G is not of plus type, and this propagates under iT0,η.

Case 2. [0, ξ]U does not drop, and K is coded by the top predicate of MU
ξ .

This case is completely parallel to Case 1.
This proves Claim 1. �
Now let θ + 1 = lh(T ) and τ + 1 = lh(U).

Claim 2. Pθ = Qτ , neither [0, θ]T nor [0, τ ]U drops, and iT0,θ = iU0,τ .

Proof. By standard Dodd-Jensen arguments, using of course πθ : Pθ → P ∗θ at various
points. �

Claim 3. 1 ≤T θ.

Proof. Suppose not. Let η + 1 ≤T θ with T -pred(η + 1) = 0, and ξ + 1 ≤U τ with
U -pred(ξ+ 1) = 0. Let H = ETη and K = EUξ . We reach the same contradictions we
reached in the proof that the comparison process terminates. �

Now let ξ + 1 ≤U τ and U -pred(ξ + 1) = 0, and let K = EUξ . By claims 2 and 3,
G � ν = K � ν. (It is easy to see ν ≤ λK .) G � ν is not in P1, hence not in Pθ, hence
not in Qξ+1. So the Jensen completion of K � ν is not in Ult(Qξ, K). K cannot itself
be the Jensen completion of K � ν, since this is not in Q0 by hypothesis, hence not in
any later Qξ. It follows that K is coded by iU0,ξ(Ĝ). Since crit(K) = κ = crit(G), and
G had the weak initial segment condition below ν, we must have ξ = 0 and K = G.

It follows that ν is not measurable in Qτ , hence not measurable in Pθ. Since ν is
measurable in P1, ET1 must be the order zero measure on ν, and G � ν-then-ET1 is
an initial segment of the extender of iT0,θ. But then

G = G � ν-then-ET1 ,

so G is of plus type, contradiction.
This completes the proof of Theorem 4.4. �
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9 Mouse pairs

The repairs above mean that we need to change the basic definitions of pure extender
pairs and least branch hod pairs a bit. The definitions need to axiomatize proper-
ties that we get directly from a background construction, and axiomatize enough
properties that we can prove a comparison theorem.22

The iteration strategies need to be defined on at least the λ-separated trees.
They have strong hull condensation and normalize well for stacks of λ-separated
trees. (Presumably for countable stacks.) As we saw above, that determines their
action on plus trees, and in fact on countable stacks of plus trees. The strategy on
λ-separated trees is enough for comparison. This suggests

Definition 9.1 (M,Ω) is a pure extender pair with scope Hδ iff

(1) M is a pure extender premouse, and M ∈ Hδ,

(2) Ω is a (δ, δ)- iteration strategy for M , defined on stacks of plus trees,

(3) Ω has strong hull condensation, and

(4) if s is a stack of λ-separated trees by Ω with last model N , and 〈T ,U〉 is a stack
by Ωs such that T is λ-separated, then W (T ,U) is by Ωs,N , and Σs_〈T ,U〉 =
Ωπ
s_〈W (T ,itU)〉, for π the embedding normalization map.

Good background constructions yield such pairs, by the corrected NITCIS. Ω is
determined by its action on single λ-separated trees.23 We care most about δ = ω1

under AD+, and under those hypotheses, and two such pairs can be compared.

Conjecture. Assume AD+ and let (M,Ω) be a pure extender pair with scope HC;
then Ω normalizes well.

At the moment, we believe we can prove this, by combining a strengthening of
the direct-from-backgrounds proof with phalanx comparison argument. It’s not clear
how much hangs on the conjecture. For example, it seems likely that normalizing

22Definitions 9.1 and ?? below do not quite capture enough of what we get directly from a
background construction. They are modified in [1].

23For example, let 〈T ,U〉 be a stack of plus trees. We saw above that T is by Ω iff T s is by Ω. Let
P be the last model of T and Q the last model of T s, and π : P → Q the natural map. By strong
hull condensation again, ΩT ,P = ΩπT s,Q. So we just need to know whether πU is by ΩT s,Q. But T s
is λ-separated, so this holds iff W (T s, πU) is a plus tree by Ω, i.e. iff W (T s,U)s is a λ-separated
tree by Ω.
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well for stacks of λ-separated trees is enough for the construction of optimal Suslin
representations.

Least branch premice must be defined so that the strategy on λ-separated trees
is inserted in the strategy predicate. One could go further and add the strategy on
plus trees, or stacks of plus trees, but this is determined by the strategy on single
λ-separated trees in a way the model can unravel. This leads to

Definition 9.2 (M,Ω) is a least branch hod pair with scope Hδ iff

(1) M is a least branch premouse, and M ∈ Hδ,

(2) Ω is a (δ, δ)- iteration strategy for M , defined on stacks of plus trees,

(3) Ω has strong hull condensation,

(4) if s is a stack of λ-separated trees by Ω with last model N , and 〈T ,U〉 is a stack
by Ωs such that T is λ-separated, then W (T ,U) is by Ωs,N , and Σs_〈T ,U〉 =
Ωπ
s_〈W (T ,itU)〉, for π the embedding normalization map, and

(5) if s is a stack of plus trees by Ω with last model N , then Σ̇N ⊆ Ωs,N .

Again, good background constructions yield such pairs, by the corrected NITCIS.
In this strategy mouse context, the proof that the levels of a good background

construction are least branch hod pairs, which is done by induction, has to fold in
a proof of Theorem 4.4. This is somewhat similar to the way solidity, universality,
and condensation were all proved for (MC

ν,k,Ων,k)
C) as part of an induction.

The results of NITCIS go through with these changes.24
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