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Abstract. The Axiom of Determinacy holds in the inner model
L(R) assuming Martin’s Maximum for partial orderings of size c.

1. Introduction

A theorem of Neeman gives a particularly elegant sufficient condition
for a set B of reals to be determined: B is determined if there is a triple
(M, τ,Σ) which captures B in the sense that M is a model of a sufficient
fragment of set theory, τ is a forcing term in M with respect to the
collapse of some Woodin cardinal δ of M to be countable, and Σ is an
ω + 1-iteration strategy for M such that

B ∩N [g] = i(τ)g,

whenever i : M → N is an iteration map by Σ, and g is generic over
N for the collapse of i(δ). The core model induction, subject of the
forthcoming book [16], is a method pioneered by Woodin for construct-
ing such triples (M, τ,Σ) by induction on the complexity of the set B.
It seems to be the only generally applicable method for making fine
consistency strength calculations above the level of one Woodin car-
dinal. We employ this method here to establish that the Axiom of
Determinacy holds in the inner model L(R) from consequences of the
maximal forcing axiom MM(c), or Martin’s Maximum for partial order-
ings of size c. The particular consequences we use are the saturation
of the nonstationary ideal on ω1, and the simultaneous reflection prin-
ciple WRP(2)(ω2) asserting that for any stationary subsets S and T of
[ω2]ω there is an ordinal δ < ω2 so that S ∩ [δ]ω and T ∩ [δ]ω are both
stationary in [δ]ω.

Theorem 1. WRP(2)(ω2) plus NS saturated implies ADL(R).

Corollary 2. MM(c) implies ADL(R).
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This theorem, obtained in late 2000, builds on Woodin’s proof of PD
from the same hypotheses (9.85 of [25]), and represents the first proof
of the consistency of the Axiom of Determinacy from Forcing Axioms.
The first author subsequently obtained the same conclusion in [22] from
a single failure of square (and hence from PFA) building on Woodin’s
theorem that PFA together with an inaccessible gives AD in the Solovay
model. Unlike that proof, which relies on covering lemmas to produce
the models required for the induction step, we use the generic embed-
ding derived from the saturated ideal. This has its precedents in the
first author’s proof of ∆∼

1
2 determinacy from a presaturated ideal on ω1

together with a measurable cardinal, and in Woodin’s proof, via the
core model induction, of ADL(R) from an ω1-dense ideal on ω1.

While our theorem represents the best known lower bound for the
consistency strength of MM(c), this principle is believed to be much
stronger. In Chapter 6 we discuss some results suggesting that the
arguments here cannot take us much farther than ADL(R), and some
extensions of the main theorem which could plausibly yield an equicon-
sistency result at the level of ω2 Woodin cardinals from modified hy-
potheses.

Acknowledgement. Some of the arguments presented here have their
origin in [26], written under the supervision of Hugh Woodin. The
second author would like to thank him for his guidance and support.

2. Framework of the induction

Let us recall some terminology from [22]

Definition 3. Let U ⊆ R, and k < ω. Let N be countable and
transitive, and suppose δ0, ..., δk, S, and T are such that

(a) N |= ZFC ∧ δ0 < ... < δk are Woodin cardinals,
(b) N |= S, T are trees which project to complements after the

collapse of δk to be countable, and
(c) there is an ω1 +1-iteration strategy Σ for N such that whenever

i : N → P is an iteration map by Σ and P is countable, then
p[i(S)] ⊆ U and p[i(T )] ⊆ R \ U .

Then we say that N is a coarse (k, U)-Woodin mouse, as witnessed by
S, T,Σ, δ0, ..., δk.

Definition 4. W ∗
α denotes the following assertion. If U ⊆ R, and there

are scales ~φ and ~ψ on U and R\U respectively such that ~φ∗, ~ψ∗ ∈ Jα(R),

where ~φ∗ and ~ψ∗ are the sequences of prewellorders associated to the
scales, then for all k < ω and x ∈ R there are N,Σ such that
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(1) x ∈ N , and N is a coarse (k, U)-Woodin mouse, as witnessed
by Σ, and

(2) Σ � HC ∈ Jα(R).

Our core model induction will show that

V [g] |= ∀α W ∗
α,

whenever g ⊂ Col(ω, ω1) is V -generic. From W ∗
α we get a version of

mouse capturing by fine-structural mice. Let us recall the relevant
definitions from [22]. To any Σ1 formula θ(v) we associate formulae
θk(v) for k ∈ ω, such that θk is Σk, and for any γ and any real x,

Jγ+1(R) |= θ[x]⇔ ∃k < ωJγ(R) |= θk[x].

Our fine-structural witnesses are as follows.

Definition 5. Suppose θ(v) is a Σ1 formula (in the language of set
theory expanded by a name for R), and z is a real; then a (θ, z)-witnesss
is an ω-sound, (ω, ω1, ω1 + 1)-iterable z-mouse N in which there are
δ0 < ... < δ9, S, and T such that N satisfies the formulae expressing

(a) ZFC,
(b) δ0, ..., δ9 are Woodin,
(c) S and T are trees on some ω × η which are absolutely comple-

menting in V Col(ω,δ9), and
(d) For some k < ω, p[T ] is the Σk+3-theory (in the language with

names for each real) of Jγ(R), where γ is least such that Jγ(R) |=
θk[z].

Definition 6. Wα is the assertion: if θ(v) is Σ1, z ∈ R, and Jα(R) |=
θ[z], then there is a (θ, z)-witness N whose associated iteration strat-
egy, when restricted to countable iteration trees, is in Jα(R).

We have

Lemma 7. Assume W ∗
α holds; then

(a) Jα(R) |= AD, and
(b) Wα holds if α is a limit ordinal.

See [22] for a proof of (b), which is essentially Woodin’s mouse set theo-
rem for L(R). Part (a) is an easy exercise for our intended reader.1 We
note that Wα easily implies other forms of capturing by fine-structural
mice, and in particular:

1It follows directly from Neeman’s theorem in [12], but one doesn’t need that
much firepower. The results of Martin-Steel [9], together with Woodin’s genericity
iterations (see [20]), give it easily.
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Lemma 8. Assume Wα holds; then if a is countable transitive, and
b ⊆ a, b is ordinal definable from parameters in a ∪ {a} over some
Jγ(R), where γ < α, then there is a a-premouse M such that b ∈ M,
and Jα(R) |=M is ω1-iterable.

In our proof of W ∗
β+1, we get the capturing mice we need in V [g][G],

where G ⊂ (P (ω1)/NS)V is generic over V [g]. We then use an induc-
tively maintained resemblance between V [g] and V [g][G] to find these
mice in V [g]. This leads us to a second induction hypothesis.

Definition 9. Iα is the assertion: whenever h × G is Col(ω, ω1) ×
(P (ω1)/NS)V -generic over V , there is a Σ1 embeddings

π : Jα(R)V [h] → Jα(R)V [G][h]

such that π � ωα is the identity.

An easy consequence of Lemma 7(a) and our induction hypotheses
together is

Lemma 10. Assume Iα holds Let g×G be Col(ω, ω1)× (P (ω1)/NS)V -
generic over V , and suppose V [g] |= W ∗

α; then AD holds in Jα(R)V [g],
and in Jα(R)V [G][g].

We shall see later that AD holds in Jα(R)V [G] as well; see 39.
As mentioned above, we shall be proving that W ∗

α holds in V [g], by
induction on α. Clearly, the only stages which matter are the critical
ones, where

Definition 11. An ordinal β is critical just in case there is some set
U ⊆ R such that U and R \ U admit scales in Jβ+1(R), but U admits
no scale in Jβ(R).

Once again, we are identifying a scale with the sequence of its prewellorder-
ings here. Clearly, we need only show that W ∗

β+1 holds whenever β is
critical, in order to conclude that W ∗

α holds for all α. It follows from
[23] that if β is critical, then β + 1 is critical. Moreover, if β is a
limit of critical ordinals, then β is critical if and only if Jβ(R) is not
an admissible set. Letting β be critical, we then have the following
possibilities

(1) β = η + 1, for some critical η;
(2) β is a limit of critical ordinals, and either

(a) cof(β) = ω, or
(b) cof(β) > ω, but Jβ(R) is not admissible;

(3) α = sup({η < β | η is critical }) is such that α < β,
and either

(a) [α, β] is a Σ1 gap, or
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(b) β − 1 exists, and [α, β − 1] is a Σ1 gap.

We shall call (3) the admissible case, because it corresponds precisely
to crossing a Σ1 gap whose initial ordinal is admissible.

The hypothesis Iα is not used as an input in the arguments of the
admissible case but is produced as an output. On the other hand, it is
used in the inadmissible case. Iα originates in [26], where it is part of
a proof that the saturation of NS and WRP(2)(ω2) imply W ∗

α for α the
first admissible over the reals. Our argument here follows the overall
structure of [26] pretty closely. What we add are some techniques for
getting past admissible ordinals using hybrid strategy mice. These
techniques were also used in [22].

A final remark on the organization of our proof. It might perhaps
be more natural to think of ourselves as proving that W ∗

α holds in V ,
for all α. As in any core model induction, given a critical ordinal β,
the first step toward W ∗

β+1 in V is to find a (hybrid) mouse operator J

which codes up truth at the level of the first pointclass Σ∼
Jβ(R)
n having

the scale property. In order to prove W ∗
β+1, we then need to capture

truth over Jβ(R) in full, and for this we need to construct the “k-
many -J-Woodins” operators MJ

k , for all k. These “successor steps”
are where core model theory (relativised to J) comes in. The core
model theory in our argument requires that J first be extended to
H(ω3), in a way that is consistent with its images π(J) under NS-
generic ultrapower maps. The extension to H(ω2) is equivalent to
an extension to H(ω1)V [g]. It is at this point that we must consider
W ∗
γ in V [g], where γ < π(β) for some NS-generic π. Extending J

involves showing that π(β) is independent of the NS-generic, and W ∗
γ

and holds in V [g] at all γ ≤ π(β). This subinduction in V [g] leading
to an extension of J is also where Iγ is used.

3. The successor step

The successor step in a core model induction is the step from a model
operator J to the one J-Woodin operator. There are two important
sorts of model operators for which one needs to make this step, the
mouse operators and the hybrid mouse operators. We shall consider
only mouse operators in this section, but the proof works without much
change for model operators in general. We shall consider hybrid mouse
operators in the last section of the paper.

Our proof builds on the proofs of the following theorems.

Theorem 12 (Steel, [18]). Assume there is a measurable cardinal and
a presaturated ideal on ω1; then ∆∼

1
2 determinacy holds.
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Theorem 13 (Woodin, [25][9.85]). (Woodin) Assume WRP(2)(ω2) and
that NS is saturated; then PD holds, and continues to hold in the
universe after ω2 is collapsed.

Roughly, the proof of the first theorem supplies the core model theory
we need, and the proof of the second shows how to integrate the core
model theory into a core model induction.

Woodin’s argument shows inductively that H(ω3) is closed under
the M#

n mouse operator for each n < ω. We shall give the proof in
somewhat greater generality. Roughly, rather than doing the first ω
steps of a core model induction, we will be doing the general succes-
sor step. For that, we need to have as data an operator J such that
H(ω3) is closed under J ; we then show that H(ω3) is closed under MJ,]

1 .

(M ]
1(a) = MJ,]

1 (a), for J(P) = rud(P).) Here we shall just consider the
case that J is a first order mouse operator. In the last section we shall
be forced to consider more general J .

Since it requires only a little additional work, we shall assume only
WRP(2)(ω2), there is a presaturated ideal on ω1, and 2ω1 ≤ ω2. Woodin
has shown that WRP(2)(ω2) and the saturation of NS together imply
that 2ω1 ≤ ω2; see 30 below. We believe that in fact WRP(2)(ω2)
together with a presaturated ideal on ω1 should be enough for our
argument, but have not checked that carefully. See 31 below.

The properties of our initial mouse operator J that make the general
successor step possible are that it

(1) J condenses well,
(2) J relativises well,
(3) J determines itself on generic extensions, and
(4) I-generic embeddings move J to itself.

Here I is our presaturated ideal. We now explain these properties. The
reader should keep in mind the example Jn(b) = M ]

n(b), which has all of
them. That it has property (4) is one of the main things our induction
will show.

We need to consider premice over some transitive set b, with a distin-
guished parameter a ∈ b. In this context, we shall always in this paper
assume that b is selfwellordered, that is, equipped with a wellorder that
is (uniformly over all b under consideration) rudimentary in a.2 The
language L0 of such relativized premice is the language of premice, to-
gether with an additional constant symbols ḃ and ȧ for the set thrown
in at the bottom and its distinguished element.

2We are essentially working with b’s which are sets of ordinals, and sweeping
some codings under the rug.
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Iterations of a relativized premouse M are always by extenders on
its coherent sequence, all of which have critical points above ḃM . A
relativised premouse M is countably iterable if whenever π : N → M
is L0- elementary with N countable then N is ω1 + 1 iterable. Fix
b transitive. Any two sound countably iterable premice over b which
project to b are comparable (see [20]). (Their possibly different pa-
rameters are irrelevant at this point.) The lower part closure of b is
defined as the union of all b-premice N which are countably iterable,
sound, and satisfy ρω(M) = b. Lp(b) can be regarded as a countably
iterable b-premouse in its own right, over any a ∈ b. We sometimes
write Lpa(b) when we want to think of it this way, but we shall drop
the superscript a when it is safe to do so.

Definition 14. Let ν ≥ ω1 be regular, and a ∈ H(ν). Let ϕ be an
rQ-sentence of L0. Suppose that for any transitive, selfwellordered
b ∈ H(ν) such that a ∈ b, there is a countably iterable premouse M
over b with parameter a such that M |= ϕ; then we set

Jϕ(b) = Lpa(b)|γ,
where γ is least such that Lpa(b) |= ϕ. We call the map b 7→ Jϕ(b) a
(first order) (ν, a) mouse operator. We say that Jϕ is defined on the
H(ν)-cone above a.

Remark 15. In some contexts, the countable iterability requirement
we have imposed above is too onerous. For example, if H(ω1) is closed

under sharps, then ω1-iterability is enough to identify the true M ]
1. We

don’t need full ω1+1 iterability. This fact will be important for us when
we consider mice in V [h], for h generic over Col(ω, ω2). Our hypotheses
are consistent with V = L[A] for some A ⊆ ω3, so they do not imply

that M ]
1 is ω1 +1 iterable in V [h]. (An iteration to make A generic will

provide a counterexample.) We do have to consider countable mice in
V [h], in order to show the mouse operators in smaller models behave
well. However, we don’t need to consider mouse operators in V [h], so
we can stick with the ω1 + 1 iterability requirement of 14.

An important property of first order mouse operators is that they
condense well, in the sense of the following lemma.

Lemma 16. Let J be a first order mouse operator with parameter
a. Let b ∈ dom(J), and let π : M → J(b) be rQ-elementary, with
π(c) = b, and π � TC(a ∪ {a}) being the identity; then c ∈ dom(J),
and M = J(c).

One theme of this paper is that simultaneous reflection can be used
to lift closure under certain operations from P (ω1) to P (ω2). In [25],
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Woodin gives a proof that under WRP(2)(ω2), closure of P (ω1) under
sharps entails closure of P (ω2) under sharps. His proof of Theorem 10
involved analogous arguments for the M#

n operation. The following is
a straighforward generalization to first order mouse operators. There
is a related argument in [27], where it is shown that under WRP(2)(ω2),
ω1-Universally Baire self-justifying systems are ω2-Universally Baire.
What is key to all the arguments is that the function being extended
from P (ω1) to P (ω2) condenses well.

Definition 17. For regular cardinals κ < λ, we say that Mouse Reflec-
tion holds at (κ, λ) iff for every a ∈ H(κ), every (κ, a)-mouse operator
can be extended to a (λ, a)-mouse operator. If λ = κ+, we say that
Mouse Reflection holds at κ.

Lemma 18. WRP(2)(ω2) implies Mouse Reflection at ω2.

Proof. Let J = Jϕ be a first order mouse operator with parameter a
defined on the H(ω2) cone above a. Fix a transitive, selfwellordered
b in H(ω3) such that a ∈ b. We must show that there is a countably
iterable b-premouse with parameter a that satisfies ϕ.

For σ ∈ [b]ω such that a ∈ σ, let bσ be the transitive collapse of σ,
and let aσ be the collapse of a.

Claim. For club many σ ∈ [b]ω, there is a countably iterable bσ-
premouse M, with parameter aσ, such that M |= ϕ.

Proof. If not, then one-set stationary reflection for [b]ω gives us an
X ⊆ b such that |X| = ω1, TC(a∪ {a}) ⊆ X, and for stationary many
σ ∈ [X]ω the conclusion of the claim fails. But let bX be the collapse
of X, and note that a is fixed by this collapse. Let N = Jϕ(bX). It is
clear that for club many σ ∈ [X]ω, there is a countable Y ≺ N such
that Y ∩X = σ. For such σ, the collapse of Y is anM as in the claim.
Contradiction. �

For c ∈ dom(J), let T J(c) = {〈ψ, t〉 | t ∈ c<ω∧ψ ∈ L0∧J(c) |= ψ[t]}.
Since J(c) projects to c, it is coded by T J(c). Our goal is to define the
appropriate theory to be T J(b). To this end, for t ∈ [b]<ω and ψ(v) an
L0 formula, put

Sψ,t = {σ ∈ [b]ω | tσ ∈ T J(bσ)}.

Claim. For any ψ, t, one of Sψ,t and S¬ψ,t contains a club in [b]ω.

Proof. Otherwise we can find X ⊆ b such that |X| = ω1, t ∈ X,
TC(a ∪ {a}) ⊆ X, and both Sψ,t and S¬ψ,t are stationary in [X]ω.
Let bX be the transitive collapse of X, and tX the image of t under
the collapse. The collapse fixes a. Arguing as in the first claim, we
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see that if J(bX) |= ψ[tX ], then Sψ,t contains a club in bX ]ω, and if
J(bX) |= ¬ψ[tX ], then S¬ψ,t contains a club in [bX ]ω. In either case, we
have a contradiction. �

Now we put

〈ψ, t〉 ∈ T ⇔ Sψ,t contains a club in [b]ω.

It is easy to see that T is the theory with parameters of a countably
iterable b-premouse M with parameter a satisfying ϕ. �

Remark 19. We believe that with more work, one can show that
simultaneous reflection for pairs of stationary subsets of ω2 implies
Mouse Reflection at ω2.

Definition 20. Let J be a (ν, a)-mouse operator, and let M be a b-
premouse with parameter a; then we say M is J-level-closed iff when-
ever η < ξ < ν and ξ is a cardinal of M, then J(M|ξ)EM.

For any (ν, a)-mouse operator J and set b in its domain there is a cor-
responding minimal J-level-closed premouse LJ(b), obtained by con-
catenating extender sequences. A condensation argument shows that
LJ(b) is a bone-fide b-premouse with parameter a. It has ordinal height
o(LJ(b)) = ν, and it is countably iterable.

If they are defined on the H(ν) cone above a, then J ], J∗, and Jwn
are themselves (ν, a)-mouse operators. The reader should see [22] and
[16] for background.

Definition 21. A (ν, a)-mouse operator J relativises well iff

(1) there is a formula θ(u, v, w, z) such that whenever b, c ∈ dom(J), b ∈
c, and N is a transitive model of ZFC− such that J(c) ∈ N ,
then J(b) ∈ N and J(b) is the unique x ∈ N such that N |=
θ[x, a, b, J(c)], and

(2) if b ∈ dom(J) and η is a cutpoint of J(b), then J(J(b)|η) is not
a proper initial segment of J(b).

We shall only be dealing with operators that relativize well. Clause
(2) is used in the proof of

Lemma 22. Suppose that J is a (ν, a) mouse operator that relativises
well; then for all b ∈ dom(J), J(b) is ν-iterable.

Proof. We show that J(b) is iterable by the strategy of choosing the
unique cofinal branch b of T such that Q(b, T )E J(M(T )). The usual
reflection argument shows that this works. �



10 JOHN STEEL AND STUART ZOBLE SEPTEMBER 16, 2008

If J relativizes well, then a J-level-closed premouse that satisfies
ZFC− is fully closed under J . Because of this, we shall sometimes say
“J-closed” when we mean “J-level-closed”. Note that if n ≤ ω and the
M ]

n operator is total on H(ν), then it is a (ν, 0)-mouse operator that
relativizes well. Another very useful property of the M ]

n operator is
that it determines itself on generic extensions, in the following sense.

Definition 23. Let J be a (ν, a)-mouse operator; we say that J deter-
mines itself on generic extensions iff for all b in the H(ω1)-cone over
a, and all g that are P-generic over J(b) for some P ∈ rud(b), we have
that J(b)[g] = J(〈b, g〉).

Notice here that J(b)[g] can be regarded as a premouse over 〈b, g〉,
because the forcing is small with respect to extenders on the sequence of
J(b). Definition 23 requires that so regarded, J(b)[g] is just J(〈b, g〉. It
is clear that if the M ]

n operator is defined on H(ω1), then it determines
itself on generic extensions.

It is shown in [21][section 4] that under AD, every mouse operator
on H(ω1) determines itself on generic extensions in some H(ω1) cone.

Although we stated definition 23 in terms of generic extensions of
countable models that exist in V , condensation leads to extendibilty
beyond V :

Lemma 24. Let a ∈ H(ω1), and let J = Jϕ be a first order (ν, a)-
mouse operator, where ν ≥ ω1 is regular. Suppose that J � H(ω1)
relativizes well and determines itself on generic extensions. Let h be
V -generic over some partial order of size < ν; then V [h] satisfies “for
any c in the H(ν) cone over a, there is a c-premouseM with parameter
a such that M |= ϕ, and M is ν-iterable.

Proof. Let θ be the formula witnessing that J relativises well. Let
τ ∈ H(ν) be a term such that c = τh. Let b be in the H(ν)V cone over
a with τ ∈ b.

The canonical re-arrangement of J(b)[h] is a 〈b, h〉-premouse with
parameter a satisfying ϕ. For if not, we can find in V a countable
elementary submodel N of V such that forcing over N yields g, where
J̄(b̄)[g] does not re-arrange to a premouse satisfying ϕ. But J̄ ⊆ J �
H(ω1) because J condenses well. Since J determines itself on generic
extensions, we have a contradiction.

Let N be the canonical re-arrangement of J(b)[h]. Let θ be the
formula witnessing that J � H(ω1) relativises well. let M |= ZFC−

be transitive, with b, h ∈ M . A Lowenheim-Skolem argument like
that in the last paragraph shows that there is a unique c-premouseM
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satisfying ϕ such that for some (equivalently all) transitive S |= ZFC−,
S |= θ[M, a, c,N ]. This is our desired M. �

If ν = ω1 in V [h], the premouse M in the conclusion of 24 may
not be ω1 + 1-iterable in V [h]. See remark 15 above. It is, however,
definable in V [h] from J � V and c, uniformly over all V [h]. Thus we
write

M = Jh(c)

for the c-premouse satisfying ϕ and obtained from J as above. If ν > ω1

in V [h], we get

Corollary 25. Under the hypotheses of 24, if ν > ω1 in V [h], then
Jh is a (ν, a) mouse operator extending J , and Jh relativizes well, and
determines itself on generic extensions.

Definition 26. Let I be a presaturated ideal on ω1, and suppose
2ω1 = ω2. Let a ∈ H(ω1), and let J be a (ω3, a) mouse operator
that relativizes well and determines itself on generic extensions. We
say that J is I-absolute iff whenever π : V → Ult(V,G) is a generic em-
bedding associated to some (I+,⊆)-generic G, and JG is the extension
of J to V [G] given by corollary 25, then

π(J) � H(ω1)V [G] = JG � H(ω1)V [G].

If J is I-absolute, then in fact π(J) ⊆ JG in full, by a simple
Lowenheim-Skolem argument based on the condensation property of
J .

Definition 27. Let J be a (ν, a)-mouse operator, and let b ∈ dom(J);
then

(1) J ](b) is the minimal active, countably iterable, J-level-closed
b-premouse, if there is one.

(2) J∗(b) = (J ])](b), if it exists.
(3) For n ≥ 1, Jwn (b) = MJ,]

n (b) is the minimal active, countably it-
erable, J-level-closed b-premouse satisfying “there are nWoodin
cardinals above o(b)”, if there is one. We put Jw(b) = Jw1 (b).

If they are defined on the H(ν) cone above a, then J ], J∗, and Jwn
are themselves (ν, a)-mouse operators. The reader should see [22] and
[16] for background.

The successor step in a core model induction is the step from J-
closure to Jw-closure. We are ready now to execute it, in the case that
our given J is a first order mouse operator.

Theorem 28. Suppose that I s a presaturated ideal on ω1, 2ω1 = ω2,
and Mouse Reflection holds at ω2. Let a ∈ H(ω1), and suppose that J
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is a first order (ω3, a)-mouse operator that relativizes well, determines
itself on generic extensions, and is I-absolute; then Jw is a first order
(ω3, a)-mouse operator that relativizes well, determines itself on generic
extensions, and is I-absolute.

Proof. We first take a smaller step.

Claim 1. J ] is an (ω3, a) mouse operator that relativizes well, deter-
mines itself on generic extensions, and is I-absolute.

Proof. Let G be V -generic over (I+,⊆), and

π : V →M = Ult(V,G)

be the generic embedding. We have that M is closed under ω-sequences

in V [G], π(ωV1 ) = ωV2 , π(ωV3 ) = ωV3 = ω
V [G]
2 , and

V [G] |= {α | π(α) = α} is stationary in ω2.

By corollary 25, there is in V [G] a unique (ω
V [G]
2 , a)-mouse operator

JG extending J . Because J is I-absolute, V [G] |= π(J) � H(ω1) =
JG � H(ω1). It follows from this that

π(J) ⊆ JG.

For take any c ∈ dom(π(J)); then c ∈ π(H(ω3)) ⊆ H(ω2)V [G], so c ∈
dom(JG). If JG(c) 6= π(J)(c), then by a simple Skolem hull argument
in V [G], using condensation for JG in V [G] and for π(J) in M , we get
a countable b such that JG(b) 6= π(J)(b). This is a contradiction.

Now let b be in the H(ω1)-cone over a of V . We wish to show
that in V , J(b)] exists and is countably iterable. This is basically a
well known result of Kunen, but we sketch a proof for completeness.
Setting θ = ωV3 , we have in V [G]

π : LJθ (b)→ LJθ (b),

with a stationary set of fixed points. We leave it to the reader to show
that ωV1 and ωV2 are inaccessible cardinals in LJ(b). Let κ0 = ωV1 , and
let

U0 = {A ⊆ κ0 | A ∈ LJ(b) ∧ κ0 ∈ π(A)}.

Let µ = (κ+
0 )L

J (b), and

M0 = (LJµ(b),∈, U0).
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M0 is an amenable structure by an argument of Kunen. Let Mα be
the α-th iterate of M0 by U0 and its images. We show by induction

on α < ω
V [G]
1 that Mα has the form (LJµα(b),∈, Uα), where µα is a

cardinal of LJθ (b). At the same time we define maps iβ,α : LJθ (b)→ LJθ (b)
extending the iteration map from Mβ to Mα, and “realization maps”

πα : LJθ (b)→ LJθ (b),

with π0 = π, such that for all β < α

πβ = πα ◦ iβ,α.

If α is a limit ordinal, then iβ,α is the direct limit map, and πα(iβ,α(x)) =
πβ(x) for all x. Note that πα embeds the direct limit into LJθ (b), and
thus the direct limit does indeed have the form LJθ (b), by the fact that
J condenses well. We let

iα,α+1 : LJθ (b)→ Ult(LJθ (b), Uα)

be the ultrapower map, and

πα+1(iα,α+1(f)(κα)) = πα(f)(κα),

where κα = crit(Uα) = i0,α(κ0). This works so long as Uα is the
ultrafilter derived from πα, that is, crit(πα = κα, and for X ⊆ κα in
LJθ (b),

(∗)X ∈ Uα ⇔ κα ∈ πα(X).

Again, the fact that J condenses well then yields that Ult(LJθ (b), Uα) =
LJθ (b), as desired.

We omit the proof that crit(πα) = κα. To see (*), let ν < µ0,
W = U0 ∩ LJν (b), and f : κ0 → P (κ0) ∩ LJν (b). Let c, τ be such that

π(c) = c, and for all ξ < κ0, f(ξ) = τL
J
θ (b)[c](ξ) ∩ κ0. Then

LJθ (b) |= ∀ξ < κ0((τ [c](ξ) ∩ κ0 ∈ W )↔ κ0 ∈ τ [c](ξ)).

This fact is preserved by i0,α, and from that, we easily get (*).
So for b in the H(ω1) cone over a of V , V [G] |= J ](b) exists, and is

ω2 iterable. (The iterations that do not drop are linear, so we can go

to ω
V [G]
2 . This uses 24 for iterations that do drop.) LetM = J ](b)V [G],

and let h be V -generic over Col(ω, ω2) and such that G ∈ V [h]. Our
proof shows thatM is definable in V [h] from b and JV : it is the unique
putative J(b)] that is linearly ω1-iterable by its last extender in a way
that moves the LJ(b) to itself. It follows thatM∈ V , and it is easy to
see that it is countably iterable in V . So for b in the H(ω1) cone over
a of V , V |= J ](b) exists.
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Now let b ∈ H(ω2)V . Since b ∈ H(ω1)M , we have an N such that
M |= N = π(J)](b). Since J is I-absolute, this gives

V [G] |= N = (JG)](b),

with N being ω2-iterable in V [G]. As in the last paragraph, this gives
that N is definable from JV and b in V Col(ω,ω2 , so N ∈ V , and V |=
N = J ](b).

Finally, J ] can be extended to H(ω3)V by Mouse Reflection at ω2.
It is easy to see that J ] relativizes well, determines itself on generic

extensions, and is I-absolute. Indeed, the proof that it is I-absolute is
part of our proof that that J ] is defined on H(ω2)V . �

Claim 2. J∗ is an (ω3, a) mouse operator that relativizes well, deter-
mines itself on generic extensions, and is I-absolute.

Proof. J∗ = (J ])], so we can just use the proof of claim 1, with J ]

replacing J . �
We are ready to prove that Jw an (ω3, a) mouse operator that rela-

tivizes well, determines itself on generic extensions, and is I-absolute.
We show first that it is an (ω1, a) mouse operator. The proof is parallel
to that in the step from J to J ], but now the core model theory is too
involved to be reproduced, so we must just quote it.

Let b be in the H(ω1) cone over a. Let C ⊆ ω2 code 〈H(ω2), I〉. We
work in the model

N = LJ
]

ω2
[C].

Because J∗(C) exists, N |= ZFC, and letting Ω be the critical point
of the last extender of J∗(C), Ω behaves in N enough like a measur-
able cardinal that the core model theory of [18], relativised to J , goes
through. Let Kc,J(b) be the result of the J-relativized Kc-construction
over b of length Ω. (See [16].3) It is enough to show that Kc,J(b)
reaches an active level P satisfying “there is a Woodin cardinal”. That
is because the first such P is countably iterable in N , and hence count-
ably J-iterable4 in V because H(ω2) ⊆ N . It follows that P can be

re-arranged as a countably iterable putative MJ,]
1 (b).

3J is fed into the model being constructed as a model operator, meaning that
if the current model in the construction is P, and we are not adding an extender,
then the next model is the core of Q, where Q = J(P) unless some proper initial
segment of J(P) projects strictly across o(P), in which case Q is the first such
initial segment of J(P). Strictly speaking, the levels of Kc,J(b) are not b-premice,
but hybrid b-premice relative to the model operator F J , where F J(P) is the Q we
just described. See [16].

4This means that the iterations move F J correctly. See [16].
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But if the Kc,J(b) construction does not reach such a P , then in N ,
KJ(b) exists, and has the basic properties of the unrelativized K from
[18]. Since I is a presaturated ideal in N , the argument of [18][section
7] leads to a contradiction. This shows that Jw is an (ω1, a) mouse
operator. It is easy to see that it relativizes well and determines itself
on generic extensions, using those properties of J .

We now extend Jw to an I-absolute (ω2, a) operator. Let b be in the
H(ω2) cone over a. Let

π : V →M = Ult(V,G)

be the generic embedding associated to G ⊆ I+. Let P be such that

M |= P = M
π(J),]
1 (b).

Claim. P is in V , and countably iterable in V .

Proof. Let h be V -generic over Col(ω, ω2), and such that G ∈ V [h].
In V [h], P is ω1-iterable by the following strategy Σ: pick the unique
cofinal branch b of T such that Q(b, T ) E (J ])h(M(T )). To see that
Σ works, note that it works in V [G], because M and V [G] have the
same reals, and π(J) ⊆ JG. But H(ω2)V [G][h] = H(ω1)V [h], and (J ])G

determines (J ])h on H(ω1)V [h]. A simple Lowenheim Skolem argument
for the forcing from V [G] to V [h] shows that if Σ fails in V [h], it fails in
V [G]. Thus Σ works in V [h]. Note that Σ is definable from J ], which
is in V .

If Q,Λ have in V [h] the properties of P ,Σ just described, then work-
ing in J∗(〈P ,Q〉), where both P and Q are ω1 +1-iterable, we can com-
pare them. This shows Q = P . It follows that P is definable in V [h]
from b and (J∗)V , and thus P ∈ V by the homogeneity of Col(ω, ω2).
For a similar reason, Σ � V ∈ V , and witnesses that P is countably
iterable (in fact ω3-iterable) in V . �

Thus Jw extends to an (ω2, a) mouse operator, and our proof showed
that it is I-absolute. By Mouse Reflection at ω2, Jw extends to an
(ω3, a) mouse operator. The extension relativises well and determines
itself on generic extensions, because these properties depend only on
J � H(ω1. It is I-absolute, because this property depends only on
J � H(ω2).

This completes the proof of theorem 28. �

We have at once
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Corollary 29. Suppose there is a presaturated ideal on ω1, and 2ω1 =
ω2, and Mouse Reflection holds at ω2; then for all n < ω and all
b ∈ H(ω3), M ]

n(b) exists, and is countably iterable. Thus PD holds,
and continues to hold in V [H] whenever H is V -generic for a poset of
size ≤ ω2.

4. An aside on 2ω1 = ω2

We digress briefly in order to prove the following theorem, due to
Woodin and implicit in [25] (see Thm. 9.82 for example).

Lemma 30. Assume WRP(2)(ω2) and NS saturated; then

2ω = 2ω1 = δ∼
1
2 = ω2.

Proof. A theorem of Todorcevic (see Thm 6.4 of [6]) gives 2ω ≤ ω2

under WRP(ω2). The idea is that there is always an injection from 2ω

into any club subset C of [ω2]ω, and under WRP(ω2) there is such a
club of size ω2, namely

C =
⋃
δ<ω2

Cδ

where each Cδ be a club of size ω1 in [δ]ω. Now, NS saturated gives
closure of P (ω1) under the dagger operation and WRP(2)(ω2) lifts this
closure to P (ω2) as in Lemma 18 below. For B ⊆ ω2, we write L[B,U ]
for the minimal model with one measurable cardinal over B described
by B†. We construct a function B : ω2 → P (ω1) as follows. Let B(0) ⊂
ω1 be such that ω

L[B]
1 = ω1. Given B � γ, let (Xξ | ξ < ω1) enumerate

those nonstationary sets X ∈ L[B � γ, U ] which are stationary in
L[B � γ, U ]. Let B(γ) code a sequence of clubs disjoint from the Xξ

as well as a surjection from ω1 to γ. Every subset of ω2 in the final
L[B,U ] is in L[B � γ, U ] for some γ < ω2, so L[B,U ] thinks that NS is
saturated, and computes ω2 correctly. Since L[B,U ] has a measurable
cardinal, it follows from 3.17 of [25] that δ∼

1
2 = ω2 in L[B,U ], and thus

2ω = ω2 in V , and we are left to show that 2ω1 ≤ ω2.
For this, let G be V -generic over (NS,⊆), and let j : V → M '

Ult(V,G) be the generic embedding. We have ωV2 = ω
V [G]
1 and ωV3 =

ω
V [G]
2 by the ω2-c.c. Thus

j(ωV2 ) = ωM2 ≤ ω
V [G]
2 = ωV3 .

But j is continuous at ω2, so

j(ωV2 ) < ωV3 .

But M |= 2ω = ω2, and M contains all the reals of V [G], so CH holds
in V [G]. On the other hand, if V thinks that f is an injection of ω3
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into P (ω1), then V [G] thinks that f enumerates ω2 distinct subsets of
ωV1 , contrary to CH. �

The hypothesis that 2ω ≤ ω2 is not needed for corollary 29, and
probably not for theorem 28, though we have not checked the latter
carefully. The following little lemma lets us drop the hypothesis.

Lemma 31. Suppose I is a presaturated ideal on ω1 and J is an (ω3, a)-
mouse operator, where a ∈ H(ω2). Suppose that J ] is an (ω2, a)-mouse
operator; then there is a B ⊂ ω2 such that

(1) H(ω2)L
J (B) is fully elementary in H(ω2)

(2) Ī = I ∩ LJ(B) ∈ LJ(B) and
(3) LJ(B) |= Ī is a presaturated ideal on ω1.

Proof. We inductively fold in all of the necessary data into B, which we
regard as a function from ω2 to P (ω1). Let B(0) code a, and be such

that ω
L[B(0)]
1 = ω1. Let δ < ω2, and suppose B � δ has been defined.

We let B(δ) code Wδ and Iδ, where Iδ in turn codes

I ∩ J#(B � δ)

and Wδ ∈ [P (ω1)]ω1 has the following property: if c ∈ M#(B � δ) and
φ(x, y) is a formula of the language of set theory so that

H(ω2)V |= φ[c, d]

for some d, then there is such a d coded (in some simple way) by an
element of Wδ.

Finally, we let

Ī =
⋃

δ < ω2Iδ.

It is easy to check (1)-(3) of the lemma. �

5. Iα and Cohen forcing

In this section, we discuss our resemblance hypothesis Iα, and we
prove some lemmas on Cohen forcing over models of AD that are rele-
vant to its formulation.

5.1. The role of Iα. In section 3, we proved PD by a ”cycling” ar-
gument, first closing H(ω1) under a mouse operator, then lifting this
closure to H(ω2) and finally to H(ω3). One idea of [26] is that the
main obstacle to continuing this ”cycling” argument through the levels
of L(R) is the lack of homogeneity of the forcing P (ω1)/NS. In order
to make the H(ω1) to H(ω2) step, we need at least enough homogene-
ity that for J the current mouse operator on H(ω1)V , π(J) � H(ω2)V

is independent of the NS-generic embedding π. J will be definable
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at some level of L(R)V , and πG(J) at some level of L(R)V [G]. This
makes it natural to relate the L(R) of the homogeneous extension by
Col(ω, ω1) that of an extension by P (ω1)/NS × Col(ω, ω1). This lat-
ter model V P (ω1)/NS×Col(ω,ω1) is a Cohen extension of V P (ω1)/NS, and
a ccc extension of V Col(ω,ω1) if NS is saturated. The author of [26]
believed that the existence of an embedding between the L(R) of these

models together with our hypotheses would yield ADL(R). That is, he
conjectured the following weakening of our main theorem:

Assume WRP(2)(ω2) and NS saturated. Suppose that
wheneverG ⊂ P (ω1)/NS is V -generic and g ⊂ Col(ω, ω1)
is V [G]-generic there is an embedding

π̄ : L(R)V [g] → L(R)V [G][g]

which is Σ1 and fixes ordinals. Then AD holds in L(R).

On the other hand, it was also known that if the induction were to
succeed in proving AD in L(R), and that this persists after collapsing
ω2, then we would have such an embedding. This follows easily from
results of Foreman and Magidor ([3]) and Woodin ([2],[25]) that we
shall use later in a similar way to prove Iα. We therefore give the
argument here. Let us first recall the Foreman-Magidor results.

Definition 32. ([3]) A partial ordering P is reasonable iff for all ordi-
nals α, [α]ω ∩ V is stationary in V P.

All proper posets are reasonable, and thus all ccc posets are reason-
able.

Definition 33. ([2]) A set B of reals is κ-universally Baire just in
case there are trees T and U on some ω × γ such that p[T ] = B, and
whenever P has cardinality < κ, then V P |= p[T ] = R \ p[U ]. We call
T and U κ-absolute complements in this situation.

Of course, we can speak of κ-universally Baire relations on reals as
well. If B is κ universally Baire, and T, U are κ-absolute complements
such that p[T ] = B, and G is V -generic for a poset of size < κ, then we
write BG for p[T ] ∩ V [G]. The notation is justified because if T ∗, U∗

is another such complementing pair, then p[T ] = p[T ∗] holds in V [G].
Foreman and Magidor note that if B is an equivalence relation on R,
then BG is an equivalence relation on RV [G] ([3][3.3]). It is also easy to
see that if B is a prewellorder of R, then BG is a prewellorder of RV [G].
Foreman and Magidor show

Theorem 34. ([3][3.4]) Let B be a κ-universally Baire prewellorder of
R, and let G be V generic over a reasonable poset of size < κ; then for
every x ∈ RV [G] there is a y ∈ RV such that BG(x, y)) and BG(y, x).
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That is, every BG-equivalence class has a representative in V . In
fact, [3][3.4] shows that if B is a thin equivalence relation, then every
BG equivalence class has a representative in B. One can show that
the equivalence relation generated by a prewellorder with the Baire
property is thin.

Theorem 35. Assume NS saturated and WRP(2)(ω2). Assume ADL(R)

holds in V [g] whenever g ⊂ Col(ω, ω1) is V -generic. Suppose G and g
are the factors of generic filter on P (ω1)/NS×Col(ω, ω1). Then there
is a fully elementary embedding

π : L(R)V [g] → L(R)V [G][g],

and any such embedding satisfies π � θL(R) = id. Moreover, ADL(R)

holds in V and in the universe after collapsing ω2.

Proof. By Lemma 30, we have 2ω1 = ω2. Thus from the perspective of
V [g] the algebra B = (P (ω1)/NS)V has size ω1.

Claim 1. In V [g] |= (P (ω1)/NS)V has the countable chain condition.

Proof. Otherwise there is a condition p ∈ Col(ω, ω1) which forces that

some ḟ enumerates an antichain of length ωV2 . On cardinality grounds

there must be a condition q ≤ p which decides ω2 of the values of ḟ ,
a contradiction as two of these values must therefore be compatible by
saturation of NS in V . �

Now, since 2ω1 = ω2 and P (ω2) is closed under sharps, we have R#

in V [g]. By 9.83 of [25] then we have that R# exists and L(R) |= AD
in the universe after collapsing ω2. This uses WRP(2)(ω2). Now we
may assume there is h ⊂ Col(ω, ω2) which is V [G][g] generic and so
that V [G][g][h] = V [h̄] for some h̄ ⊂ Col(ω, ω2). The argument of 5.2
of [2] now shows that there are definable trees S, T in V [g] such that
p[S] = R# and p[T ] = R \ R# in V [h̄]. These trees belong to V, V [g],
and V [G][g] by homogeneity and it can be argued that p[S] = R# in
the sense of each model. Thus there is a fully elementary embedding5

π : L(R)V [g] → L(R)V [G][g].

We also have that from the perspective of V [g], every set of reals in
L(R) is ω+

1 -Universally Baire and hence B-Universally Baire as 2ω1 =
ω2.

5The argument of this paragraph can be recast using mice; essentially we are
crossing the weak gap (δ∼

2
1, θ)

L(R), and we can do it using the techniques of Lemma

66 below.
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Now suppose π is such an embedding and fix α less than the θ of
L(R)V [g]. There is a prewellordering �∈ L(R)V [g] (with associated
equivalence relation ') of length α in V [g], together with S, T such
that

(1) p[S] =� in V [g]
(2) p[S] = π(�) in V [G][g]
(3) p[S] = R \ p[T ] in V [g][G].

Since π(α) is the length of π(�) we must show that p[S]V [G][g] has
length α. This follows from the Foreman-Magidor theorem 34.

�

The preceding remarks suggest that we add the existence of approx-
imations to such an embedding to the induction hypothesis. This was
how [26] came to formulate Iα. In the next section we shall use W ∗

α

and Iα to get Iα+ω. If α is not in the range of πNS this will give W ∗
α+ω

easily. Otherwise the arguments of section 3 will produce the required
witnessing structures.

5.2. L(R) and Cohen Forcing. Recall that the ordinal height of the
transitive structure Jα(R) is ωα, and that the new sets of reals appear-
ing in Jα+1(R) are precisely the new sets which are first order definable
over Jα(R), that is

P (R) ∩ Jα+1(R) = P (R) ∩ Σ∼
1
ω(Jα(R)).

We say that α begins a gap if there is no β < α with Jβ(R) a Σ1

elementary (with real parameters) submodel of Jα(R).

Lemma 36. Suppose h ⊂ Col(ω, κ) is V -generic and α begins a gap
in L(R)V [h]. Suppose Jα(R)V [h] |= AD; then there is a unique pair α0, ψ
such that α0 that begins a gap in L(R), and

ψ : Jα0(R)→ Jα(R)V [h]

is Σ1 elementary.

Proof. There are uniformly Σ1 definable functions

fα : [ωα]<ω × R→ Jα(R)

which are surjective. Using these we define a Σ1 function F as follows.
Given a real x, decode a sequence (x0, ..., xn) of reals and a real y and
suppose there is a finite sequence t such that

Jα(R) |= φy(0)((x0, ..., xn), fα(t, ŷ))

where ŷ(n) = y(n + 1) and (φk | k < ω) enumerates Σ1 formulae with
two free variables. Let t∗ be the Brouwer-Kleene least such t and set
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F (x) = fα(t∗, ŷ). F is a uniformly Σ1 partial map and if α begins a gap
then F as defined over Jα(R) is surjective. Let M = F [RV ] where F is
computed in Jα(R) of V [g]. By the homogeneity of Col(ω, κ), R∩M =

RV . Because (Σ
Jα(R)
1 )V [h] has the scale property, M ≺Σ1 Jα(R)V [h]. It

follows that M ' Jα0(R)V for some ordinal α0, and the inverse of the
collapse is the desired map ψ. �

Lemma 37. Suppose α is an inadmissible limit ordinal which begins a
gap.

(1) There is a surjective function f : R → Jα(R) which is ∆1 de-
finable over Jα(R) from a real z0.

(2) If A ∈ P (R) ∩ Jα+1(R) then A is projective in a set D ∈ P (R)
which is ∆1 definable over Jα(R) from a real.

(3) If ∆∼2k+1(Jα(R))-determinacy holds then the pointclasses

Π∼2k+2(Jα(R) and Σ∼
Jα(R)
2k+3

have the scale property.

Proof. Inadmissibility of Jα(R) together with a Skolem hull argument

gives a Σ∼
Jα(R)
1 map g : R → ωα which is cofinal. Using the uniform

Σ1 Skolem function this can be turned into the desired map f . For (2)
note that every such A can obtained from a ∆1 set of the form

D = {(x, x1, ..., xk) ∈ Rk+1 | Jα(R) |= φ(x, f(x1), ..., f(xk), f(r))}
by taking projections and complements, for some Σ0 formula φ and
real r. Part (3) follows from the second periodicity theorem. See [23]
for further details. �

Let g×G be V -generic over the product Col(ω, ω1)×P (ω1)/NS. In
order to relate L(R)V [g] to L(R)V [g][G], we must at the same time relate
L(R)V [G] to L(R)V [G][g]. Now V [G][g] comes from V [G] by adding just
one Cohen real. The following lemma, due to Woodin and H. Friedman,
establishes the level-by-level relationship between the two L(R)’s that
we need. See [8] for other results in this vein.

Lemma 38. Suppose Jα(R) |= AD and α begins a gap. Suppose
g ⊂ Col(ω, ω) is Cohen generic over V ; then there exists a unique
Σ1 elementary embedding

j : Jα(R)→ Jα(R)V [g]

such that

j � α = identity.

Furthermore, if all Σ∼
Jα(R)
1 sets of reals have the Baire property, then j

is Σ2-elementary.
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Proof. The reader of [8][section 5] will easily adapt it so as to ob-
tain this localization. Nevertheless, we sketch a proof for the sake of
completeness.

We think of the reals as ωω. For p ∈ ω<ω let Np denote the neighbor-
hood determined by p. Let B denote the σ-algebra of sets of reals in
L(R) which have the Baire property. Let B denote the quotient algebra
B/I where I is the ideal of meager sets. Clearly the map

π : Col(ω, ω)→ B
be defined by π(p) = [Np] is a dense embedding so if g ⊂ Col(ω, ω) is
V -generic then g induces an ultrafilter Ug on B. That is, a set A is in
Ug if and only if A ∩Np is comeager in Np for some p ∈ g.

In V [g] we form the ultrapower Ult(Jα(R), Ug) using functions be-
longing to Jα(R). We may assume that these functions are total with
domain R. We first show that Ult(Jα(R), Ug) is well-founded. Assume

a condition p forces that ([ḟn]) is a decreasing sequence in the ultra-
power. For s ∈ ω<ω define a condition ps ∈ Col(ω, ω), a set As, and a
function fs all in Jα(R) such that

(a) p ⊆ p∅
(b) {ps_n | n ∈ ω} is a maximal antichain below ps
(c) As ⊂ Ns is comeager in Ns,

(d) ps Col(ω,ω) ḟlh(s) = fs.
(e) s ⊂ t,s 6= t, and x ∈ At implies ft(x) ∈ fs(x).

By the Baire Category Theorem⋂
n<ω

⋃
lh(s)=n

As 6= ∅

so there are x, h ∈ ωω so that x ∈ Ah�n for every n < ω and hence
{fh�n(x) | n < ω} is an ∈-decreasing sequence, giving the desired con-
tradiction. Thus the ultrapower has a transitivization M .

Los’ theorem for Σ0 formulae comes from almost-everywhere uni-
formization:

Claim. Suppose A ⊂ R×R and A ∈ Jα(R); then there is a continuous
function f and a comeager set D ⊆ dom(f) such that if x ∈ D and
there is y such that (x, y) ∈ A then (x, f(x)) ∈ A.

This standard result is proved by unfolding the Banach-Mazur game.
It yields

Claim. For any functions f1, ..., fn ∈ Jα(R) and Σ0 formula φ,

Ult(Jα(R), Ug) |= φ([f1], ..., [fn])
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if and only if

{r ∈ R | Jα(R) |= φ(f1(r), ..., fn(r))} ∈ Ug.

This follows by the usual induction. For the existential step, we may
assume that β < α begins a gap and Jβ(R) |= ∃Y φ(Y, f(x)), for all
x in some set B ∈ Ug. Let F ∈ Jα(R) map R onto Jβ(R). Let A
denote the set of (x, y) such that φ(F (y), f(x)) holds in Jβ(R), let
h∗ uniformize this A as in the claim, and set h(x) = F (h∗(x)). By
induction, φ([h], [f ]) holds in the ultrapower, as desired.

It follows at once that the ultrapower map j : Jα(R) → M is Σ1

elementary. We leave it to the reader to check that the standard terms
for reals correspond to continuous functions on R, and thus RM = RV [g].
It follows that M = Jγ(R)V [g], for some γ.

In Jα(R) any well-ordered union of meager sets is meager. It follows
that for any ordinal η and function f : R→ η in Jα(R) there is a dense
set D ⊂ Col(ω, ω) such that f is constant on a comeager subset of Np

for any p ∈ D. It follows that γ = α and that j � ωα is the identity.

Finally, suppose all Σ∼
Jα(R)
1 sets of reals have the Baire property. We

show that Los’ theorem holds for Σ1 formulae, so that j is Σ2 elemen-
tary, as desired. So suppose φ is Σ1, and

Jα(R) |= ∃Y φ(Y, f(x)),

for comeager many x in Np, where p ∈ g. Say this holds for all x ∈ B,
where B is Borel and comeager in Np. Let us assume α is a limit ordinal
for simplicity; otherwise we use Jensen’s S-hierarchy. For β < α, put

x ∈ Bβ ⇔ Jβ(R) |= ∃Y φ(Y, f(x)).

The prewellordering x1 ≤ x2 iff µβ(x1 ∈ Bβ) ≤ µβ(x2 ∈ Bβ) is Σ1 over
Jα(R), so it has the Baire property, and thus by Kuratowski-Ulam some
Bβ is nonmeager in Np, and thus comeager on some Nq with p ⊆ q. By
density, there is such a β, q with q ∈ g. We can now find the desired
witness function h for φ, f so that h ∈ Jβ+1(R). �

The following lemma shows one way we shall use these results.

Lemma 39. Assume Iα holds, and that α begins a gap in V Col(ω,ω1).
Let h ×H be Col(ω, ω1) × (P (ω1)/NS)V -generic over V , and suppose
V [h] |= W ∗

α; then

(1) there is a unique Σ1 embedding from Jα(R)V [H] to Jα(R)V [H][h]

that fixes all ordinals,
(2) there is a unique ordinal α0 that begins a gap in V , and Σ1

embedding from Jα0(R)V to Jα(R)V [h].

Thus AD holds in Jα0(R)V , in Jα(R)V [h], in Jα(R)V [H], and in Jα(R)V [H][h].
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Proof. We have AD in Jα(R)V [h] and Jα(R)V [H][h] by Lemma 10. More-
over, the embedding given by Iα shows that α begins a gap in V [H][h].
V [H][h] is a Col(ω, ω) extension of V [H], so Lemma 36 gives a unique

Σ1 embedding from Jγ(R)V [H] to Jα(R)V [H][h], for some γ that begins
a gap in V [H]. But then AD holds in Jγ(R)V [H], so we can apply our
lemma 38 to see that γ = α, and the embedding is the identity on the
ordinals.

Finally, α0 and the embedding of (2) are just what we get when we
apply 36 to the Col(ω, ω1)-extension from V to V [h]. �

5.3. The Baire property for Σ∼
Jα(R)
1 . We present a sufficient con-

dition for the pointclass Γ = Σ∼
Jα(R)
1 to have the Baire property. The

condition is implicit in Solovay’s theorems on the Baire property for Σ1
2

sets. We assume that α begins a gap, Jα(R) |= AD, and cof(α) > ω.6

We define
CΓ(x) = R ∩OD<α

x ,

that is, for reals x, y we put y ∈ CΓ(x) if there is β < α such that y is
ordinal definable over Jβ(R) from the parameter x.7 Similarly

CΓ(a) = P (a) ∩ODJα(R)
a∪{a}

for a countable transitive set a. Because we have Wα,

CΓ(a) = LpΓ(a)

is the result of stacking all mice projecting to a and having ω1-iteration
strategies belonging to Jα(R). A transitive set M is Γ-closed if a ∈M
implies CΓ(a) ∈ M . The model LΓ[x] is the minimal transitive model
of height ω1 which contains x and is Γ-closed. Finally, we say that
ω1 is Γ-inaccessible to reals iff CΓ(x) is countable for all reals x, or
equivalently,

ω
LΓ[x]
1 < ω1

for all reals x.
The classical argument of Solovay in the case Γ = Σ1

2 yields

Lemma 40. Assume Jα(R) |= AD, α begins a gap, cof(α) > ω and ω1

is Γ-inaccessible to reals where Γ = Σ∼
Jα(R)
1 ∩ P (R); then

(1) Γ has the Baire Property.
(2) ω1 is Γ-inacessible to reals in V [g] whenever g is Cohen generic

over V .

6In the case that cof(α) = ω or α is a successor, the facts that the class of sets
with the Baire property is closed under countable unions is enough for us.

7If Jα(R) is admissible, then CΓ is the largest thin Γ set, but we don’t know
whether this is true in general.
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Proof. Let A be a set in Γ. Let x be a real such that A is Σ1-definable
over Jα(R) from x. Let N be a rank initial segment of LΓ[x] containing
its reals. There are comeager many Cohen generics over N so if each
one lands in R \ A we’re finished. Assume therefore that there is g0

which is Cohen generic over N with g0 ∈ A. Let β < α be least such
that Jβ(R) |= g0 ∈ A. Let β1 = β + ω and let T be the tree of the
scale on the universal Σ1(Jβ1(R)) set. Note that N is a rank initial
segment of L[T,N ]. Now assume toward a contradiction that there
exists a sequence of open dense sets Dn ⊆ R such that

g ∈
⋂
n∈ω

Dn ⇒ g ∈ (¬A)Jβ(R).

Then for any real z coding N , the model Jβ1(R) satisfies the sentence
asserting the existence of g0, {Dn | n ∈ ω} and β satisfying

(1) g0 is Cohen generic over the model coded by z
(2) g0 ∈ AJβ(R)

(3) g ∈
⋂
n∈ωDn ⇒ g ∈ (¬A)Jβ(R)

This is a Σ1 sentence and so it holds in L[T, z] by absoluteness. Thus
for every g which is L[T, z]-generic, g ∈ (¬A)Jβ(R). Now, g0 is generic
over L[T,N ]. Let G be generic over L[T,N ][g0] for Col(ω,N). Then
g0 is generic over L[T,N ][G]. But G codes N which is a contradiction.
Thus by the Baire Property there is a condition p such that g ∈ AJβ(R)

for comeager many g below p. Let O be the union of all neighborhoods
which have this property. We claim that A \ O is meager. Otherwise
there is an LΓ[x, y] generic g which lands in A \ O where y codes the
opern set O. But A \ O is Σ1 so the preceeding analysis produces a q
such that comeager many g below q land in A \ O, a contradiction as
Nq ⊆ O. For part (2) note that we interpret Γ in V [g] as (Σ1(Jα(R))∩
P (R))V [g]. Let τ be a standard term for a real. It suffices to show that
CΓ(τg) is countable. Assume otherwise. Thus we may assume that
there is a single Σ1 formula ψ(x, y, z) and a condition p which forces
that {rη | η < ω1} is a distinct sequence of reals where

rη = {n < ω | Jα(R)V [g] |= ψ(η, n, τg)}.

Let z be a real coding τ and let φ(η, q, n) be the Σ1 formula which
asserts that q ≤ p, z codes a term τ and

q Col(ω,ω) ψ(η, n, τ).

Setting r∗η = f [{(q, n) | φ(η, q, n)}] where f : Col(ω, ω) × ω → ω is a
fixed bijection we see that each r∗η belongs to CΓ(z) and that they are
distinct, contradicting our hypotheses. �
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6. The Induction Step in the Inadmissible Case

We now handle the induction step in the uncountable cofinality, in-
admissible case. This was the case labelled (2)(b) in case breakdown 2.
The countable cofinality inadmissible case (2)(a) is similar but simpler,
so we omit it. The general successor case (1) involves no ideas beyond
those in section 3, so again, we omit it.

We assume for the rest of this section that NS is saturated, and
WRP(2)(ω2) holds. We fix for the remainder of the section an α such
that Iα holds, and for some (equivalently all) g generic over Col(ω, ω1):

(1) V [g] |= W ∗
α, and

(2) V [g] |= α has uncountable cofinality, and Jα(R) is inadmissible.

Our goal is to prove that Iα+1 holds, and that W ∗
α+1 holds in V [g].

6.1. The map πNS � α0. If G is any V -generic over P (ω1)/NS, then
we let

πG : V → Ult(V,G)

be the canonical embedding into the generic ultrapower. One byprod-
uct of the proof of our main theorem is that πG � ΘL(R) is independent
of G. As we go along, we are showing that πG(γ) is independent of G
for certain γ. In particular, for any Col(ω, ω1)-generic g, let α0 be the
ordinal beginning a gap in V that is given by 39, and

τ g : Jα0(R)V → Jα(R)V [g]

the unique Σ1 map. By homogeneity, τ g � (R× ωα0) is independent of
g, and so we may omit the superscript g when we are only concerned
with this part of τ g. Of course, Jα0(R) is the Σ1 hull of (R×ωα0). We
have

Lemma 41. Let G be P (ω1)/NS-generic over V ; then

(a) πG � ωα0 = τ � ωα0,
(b) πG(α0) ≥ α, and
(c) if πG(α0) = α, then for all P (ω1)/NS generic H, πH(α0) = α.

Proof. Let g be such that g×G is Col(ω, ω1)×P (ω1)/NS generic. Let
π witness Iα, and let

ψ : Jα(R)V [G] → Jα(R)V [G][g]

be the Cohen ultrapower map. ψ is Σ1 elementary, and the identity on
ordinals. We have then

τ g = π−1 ◦ ψ ◦ (πH � Jα0(R)V ),
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because both sides yield Σ1 embeddings of Jα0(R)V ) into Jα0(R)V [h].
Since ψ and π are the identity on ordinals, we have (a).

For (b), let β be least such that πG(β) ≥ α, and suppose α0 < β
toward contradiction. Let γ end the gap in V that begins with α0. If
β ≤ γ, then [πG(α0), πG(β)] is a gap in V [G] by the elementarity of πG,
and α is inside it, so α does not begin a gap in V [G], contradiction.
Suppose γ < β. Let x be a real in V and ϕ(v) a Σ1 formula such
that Jγ+1(R)V |= ϕ[x], but Jα0(R) 6|= ϕ[x]. Using τ g = π−1 ◦ ψ ◦
(πG � Jα0(R)V ), we see that Jα(R)V [g] |= ϕ[x]. But this contradicts the
elementarity of τ g.

For (c), we show first that all (Σ∼
Jα(R)
1 )V [G] sets have the Baire prop-

erty. Let Γ = (Σ
Jα(R)
1 )V [G]. We wish to show that in V [G], ω1 is

Γ-inaccessible to reals. Letting Γ0 = (Σ
Jα0 (R)
1 )V , it is enough to show

that in V , ω1 is Γ0-inaccessible to reals. If not, there is in V a real
x such that every countable ordinal is the order type of a wellorder
in CΓ0(x). Applying πG to this fact, we have y ∈ CΓ(x)V [G] coding a
wellorder of ω of order type ωV1 . Applying π−1 ◦ ψ to this fact, we see
that y ∈ V [g], and y is ordinal definable in V [g] from x. But then
y ∈ V , a contradiction. �

Having shown πG(γ) independent of G, we may use πNS(γ) to de-
note the common value of all πG(γ). So at the moment, πNS � α0 is
determined, and it is the Skolem hull map τ .

Let us say that a pointclass has the Baire property just in case all
sets of reals belonging to it have the Baire property. Our proof of the
last lemma gives

Lemma 42. Let g ×G be Col(ω, ω1)× P (ω1)/NS-generic; then

(1) if πH(α0) = α, then (Σ∼
Jα0 (R)
1 )V has the Baire property, and

(2) in any case, each of the pointclasses

(a) (Σ∼
Jα(R)
1 )V [G],

(b) (Σ∼
Jα(R)
1 )V [G][g], and

(c) (Σ∼
Jα(R)
1 )V [g]

has the Baire property in its respective model.

Proof. We showed (1) in proving the last lemma.
(2)(a) follows from (1) in the case that πG(α0) = α by elementarity.

But if πG(α0) > α, then AD in Jα0(R)V gives us AD, and hence the
Baire property, for all sets in Jα+1(R)V [G]. So this gives (2)(a) in any
case.

We get (2)(b) from (2)(a) and part (2) of Lemma 40.
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For (2)(c), we show that ω1 is Γ-inaccessible to reals in V [g], where

Γ = (Σ
Jα(R)
1 )V [g]. If not, there is a real x ∈ V [g] such that every

countable ordinal has a counting that is OD(x) over some Jβ(R)V [g],

where β < α. Applying πg, we have that ω1 is not (Σ
Jα(R)
1 )V [G][g]-

inaccessible to reals in V [G][g], contrary to (2)(b). �

6.2. The plan. The following diagram helps illustrate the steps of our
proof.

Jα0(R)
τg //

πG
�� ''

Jα(R)V [g]

π
��

Jα(R)V [G]

ψ
// Jα(R)V [G][g]

j
��

Jα∗(R)V [G][g][h]

Here g × G is an arbitrary Col(ω, ω1) × P (ω1)/NS generic, and h ⊂
Col(ω, ωV2 ) is V [G][g]-generic. Of course, V [G][g][h] could be reorga-
nized as V [h̄] for another Col(ω, ωV2 )-generic. Jα(R)V [G] and Jα(R)V [G][g]

are connected via the Cohen ultrapower map ψ. The map π is given by
Iα, and τ g is the Σ1 hull map of 36. It may be that α0 is a discontinu-
ity point of πG, so in general, πG is only Σ1 elementary as a map from
Jα0(R) to Jα(R)V [G]. If πG(α0) = α, then the map is fully elementary.

Our first burden is to define an appropriate level α∗ of the L(R) of
V Col(ω,ω2) and to construct j. We shall show that α∗ and j � ωα are
independent of g,G and h, using the fact that α has a “name” provided
by any witness to its inadmissibility in V [g]. We will use j and α∗ to
show that π is in fact Σ2-elementary.

The proof then breaks into cases. If πG(α0) = α for some (equiv-
alently all) G, then α0 is inadmissible and begins a gap in L(R)V , so
we have from [22] a natural mouse operator J on H(ω1)V coding up
Σ1 truth over Jα0(R). We can extend J to H(ω2) using πG and π; at
this point we use j, and the fact that π is Σ2-elementary, to see that
πG(J) � H(ω2)V is independent of G. By Mouse Reflection, J extends
to H(ω3)V . We can now use the core model theory of Theorem 28 to
get the mice needed for W ∗

α+1 in V [g], and to prove Iα+1.
If πG(α0) > α, then since V |= W ∗

α0
, V [G] |= W ∗

α+1, so V [G][g] |=
W ∗
α+1 by the elementarity of the Cohen ultrapower. So we don’t need

core model theory to get the new mice, but we do need to get them
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in V [g], rather than in V [G][g]. This is done with an induction that
shows at the same time that π and j are fully elementary.

6.3. Lifting Jα(R)V [G][g] to V Col(ω,ω2).

Lemma 43. There is a function l : ω1 → (α0 + 1) such that whenever
G is P (ω1)/NS-generic over V , then α = [l]G.

Proof. Let {Sξ, lξ | ξ < ω1} be such that {Sξ | ξ < ω1} is a maximal
antichain in P (ω1)/NS, lξ : ω1 → (α0 +1), and Sξ forces lξ to represent
α in the generic ultrapower. Define l(η) = lξ(η) where ξ is least such
that η ∈ Sξ. It’s easy to see that l is as desired. �

We fix l as in the lemma. By lemma 42, we may assume that for all

β, Σ∼
Jl(β)(R)

1 has the Baire property.

Let F be the uniform Σ1 function for levels of L(R), as described in
the proof of 36.

We use “∀∗σ” to abbreviate ”for a club of σ ∈ [ω2]ω”. If σ ∈ [ω2]ω,
then otp(σ) is the image of σ under transitive collapse, that is, its
order-type. For a ⊆ σ<ω, aσ is the image of a under the collapse of σ.

Lemma 44. There is a term for an ordinal α∗ such that V Col(ω,ω2) |= α∗

begins a gap, and for any p ∈ Col(ω, ω2), standard term for a real τ ,
and Σ1 formula φ, the following are equivalent:

(1) p Col(ω,ω2) Jα∗(R) |= φ(F (τ))
(2) ∀∗σ pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F (τσ))

Proof. We define a name for a structure

Ṁ = (Ṁ, ∈̇M, =̇M)

as follows. For p ∈ Col(ω, ω2) and τ, τ̄ standard terms for reals

(a) (p, τ) ∈ Ṁ if and only if

∀∗σ pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= F (τσ) exists,

(b) (p, (τ, τ̄)) ∈ ∈̇M if and only if

∀∗σ pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= F (τσ) ∈ F (τ̄σ),

• (c)[] (p, (τ, τ̄)) ∈ =̇M if and only if

∀∗σ pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= F (τσ) = F (τ̄σ).

By (τ, τ̄) above we really mean the term for the ordered pair. No-

tice that because Σ∼
Jl(β)(R)

1 has the Baire property, we can understand

pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= ϕ(τ) to mean that ϕ(τh) is true in
Jl(σ∩ω1)(R), for comeager many generics h such that pσ ∈ h. We prove
the following Los-type assertion.
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Claim 45. For a condition p, terms τ1, ..., τk, and a Σ1 formula φ the
following are equivalent.

(1) p Col(ω,ω2) τ1, ..., τk ∈ Ṁ ∧ Ṁ |= φ(τ1, ..., τk)
(2) ∀∗σ pσ Col(ω,otp(σ)) Jh(σ∩ω1)(R) |= φ(F (τσ1 ), ..., F (τσk )).

Proof. Note that p Col(ω,ω2) τ ∈ Ṁ if and only if (p, τ) ∈ Ṁ . The
atomic cases follow easily. We handle negation as follows. Assume
φ(τ1, ..., τk) is ¬ψ(τ1, ..., τk), ψ is Σ1, and the equivalence above holds for
ψ(τ1, ..., τk). Assume first that p Col(ω,ω2) Ṁ |= φ(τ1, ..., τk). Assume
toward a contradiction that there is a stationary set A0 ⊂ [ω2]ω such
that for σ ∈ A we have

¬pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F (τσ1 ), ..., F (τσk )).

Thus by refining pσ and pressing down we find a q below p and a
stationary subset A ⊂ A0 such that σ ∈ A implies

qσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= ψ(F (τσ1 ), ..., F (τσk )).

Similarly we get a stationary set B and a condition r below q such that
for σ ∈ B we have

rσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F (τσ1 ), ..., F (τσk )).

We now find an ordinal γ < ω2 above r so that A∩ [γ]ω and B∩ [γ]ω are
both stationary in [γ]ω. Let (σξ | ξ < ω1) be a continuous, exhaustive
chain in [γ]ω and let Ā = {ξ | σξ ∈ A} and similarly define B̄. Let
GA, GB ⊂ P (ω1)/NS be V -generic with Ā ∈ GA and B̄ ∈ GB. Let
g ⊂ Col(ω, γ) be generic over both V [GA] and V [GB] with r ∈ g. Thus

Jα(R)V [GA][g] |= ψ(F ((τ1 � γ)g), ..., F ((τk � γ)g))

and

Jα(R)V [GB ][g] |= φ(F ((τ1 � γ)g), ..., F ((τk � γ)g)).

By hypothesis there are Σ1 embeddings

π̄A : Jα(R)V [g] → Jα(R)V [GA][g]

and

π̄B : Jα(R)V [g] → Jα(R)V [GB ][g].

Thus Jα(R)V [g] satisfies

ψ(F ((τ1 � γ)g), ..., F ((τk � γ)g)) ∧ ¬ψ(F ((τ1 � γ)g), ..., F ((τk � γ)g)),

which is the desired contradiction. The other direction of the negation
case follows similarly.
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We now treat the unbounded existential case. For the nontrivial
direction suppose for a club of σ ∈ [ω2]ω that

pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= ∃x φ(x, F (τσ)).

For simplicity we assume there is only one parameter. For a real z, the
set

{x | φ(F (x), F (z))},
as interpreted in a level of L(R) beginning a gap, is the projection of the
tree of the Σ1-scale on this set. We let lw(z) denote witness obtained
from the leftmost branch of this tree. A key point is that there is a Σ1

formula ψ so that ψ(u, z) holds if and only if u = lw(z). We define a
term lw(τ) as follows. For a condition q and a pair n,m ∈ ω we put
the term (q, (n,m)) (abusing notation) in lw(τ) if and only if for a club
of σ,

qσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τσ)(n) = m.

We need to see that for a club of σ ∈ [ω2]ω

pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τ)σ = lw(τσ).

We will then have

pσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F ((lw(τ)σ), F (τσ))

for each such σ as desired. Assume otherwise. We extract a condition
q below p, integers n,m1,m2, an ordinal γ < ω2 above q and stationary
sets A,B ⊂ [γ]ω such that for σ ∈ A we have

qσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τσ)(n) = m1

and for σ ∈ B we have

qσ Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τσ)(n) = m2.

As in the negation case we get generics GA, GB ⊂ P (ω1)/NS and
g ⊂ Col(ω, γ) such that

Jα(R)V [GA][g] |= lw((τ � γ)g)(n) = m1

and

Jα(R)V [GB ][g] |= lw((τ � γ)g)(n) = m2.

Using π̄ we get a contradiction. This completes the proof of the claim.
�
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Now let h ⊂ Col(ω, ω2) be V -generic. In V [h] we form a structure

(M,E) = (Ṁh/=̇h, ∈̇h/=̇h).

An easy argument which uses the fact that the club filter on P ([ω2]ω)
is countably complete shows that M is wellfounded, and so there is an
isomorphism

i : (M,E)→ (N,∈),

for some transitive set N . The construction of the function F we have
used is such that for any real r there is a real r̂ obtained from r so that
F (r̂) = r and r, r̂ are Turing equivalent. Thus for any standard term
for a real τ , there is a term τ̂ so that

τ̂h = τ̂h.

It follows that RN = RV [h]. By claim 45, N satisfies the sentence
asserting that it is a level of L(R) and thus N = Jα∗(R) in V [h], for
some ordinal α∗ (which would seem to depend on h). We finish the
proof of lemma 44 by showing that the following are equivalent for a
Σ1 formula φ, a condition p ∈ Col(ω, ω2) and a standard term for a
real τ .

(1) p  Ṁ |= φ(τ)
(2) p  Jα∗(R) |= φ(F (τ))

Note that Ṁ |= F (τ̂) = τ so J∗α(R) |= F (i(τ̂) = i(τ). Since i(τ̂) = τ
we see that i = F , which gives the equivalence above. The equivalence
shows that Jα∗(R)V [h] is Σ1-generated by its reals, so that α∗ begins a
gap in V [h]. �

If h is Col(ω, ω2)-generic over V , then we write α∗(h) for the ordinal
given by lemma 44. We shall eventually show α∗(h) is independent of
h.

Lemma 46. Let g be Col(ω, ω1)-generic over V , and suppose that
g ∈ V [h], where h is Col(ω, ω2)-generic over V ; then there is a Σ2-
elementary embedding

π2 : Jα(R)V [g] → Jα∗(h)(R)V [h].

Proof. We consider first the case that h = g× k, where k is Col(ω, ωV2 )
generic over V [g]. The proof of 44 generalizes trivially from Col(ω, ω2)
to Col(ω, ω1)× Col(ω, ω2), and shows that the ordinal

α∗ = α∗(h) = α∗(g × k)
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that begins a gap in V [g][k] and satisfies the natural variant of the
Los property recorded in the statement of 44. We show that Jα(R)V [g]

Σ2-embeds into Jα∗(R)V [g][k].
Since Jα(R)V [g] is pointwise Σ1-definable from its reals, it is enough

to show that whenever x is a real in V [g] and ϕ(v) is a Σ2 formula,
then

Jα(R)V [g] |= ϕ[x]⇔ Jα∗(R)V [g][k] |= ϕ[x].

We show this first for ϕ(v) a Σ1 formula. Suppose Jα∗(R)V [g][k] |=
ϕ[x]. Let x = ρg, where ρ is a standard Col(ω, ω1) term for a real. Let

(p, q)  Jα∗(ġ×k̇)(R) |= ϕ(ρġ),

with (p, q) ∈ g × k. Applying 44, we have a club C of σ ∈ [ω1 × ω2]ω

such that, letting σ0 = {ξ | ∃ν〈ξ, ν〉 ∈ σ} and σ1 = {ν | ∃ξ〈ξ, ν〉 ∈ σ},
we have

(p, qσ)  Jl(σ0∩ω1)(R) |= ϕ[(ρσ0)ġ],

where the forcing is Col(ω, σ0∩ω1)×Col(ω, otp(σ1)). Thus the forcing
is essentially Cohen forcing. Note that σ0 is transitive, pσ0 = p, and
ρσ0 = ρ ∩ σ0, for club many σ. We have by WRP(2)(ω2) a γ < ω2 such
that C is club in [ω1×γ]ω, and q ∈ γ<ω. Now let G be such that g×G
is Col(ω, ω1) × P (ω1)/NS-generic over V . (It doesn’t matter whether
G ∈ V [h].) Los theorem for the generic ultrapower by G gives

V [G] |= (p, q)  Jα(R) |= ϕ[ρġ],

which gives

V [G][g] |= q  Jα(R) |= ϕ[x],

where the forcing is Col(ω, γ), and hence essentially Cohen forcing.

Since Σ∼
Jα(R)
1 has the Baire property in V [G][g], we get that

Jα(R)V [G][g] |= ϕ[x],

and hence

Jα(R)V [g] |= ϕ[x],

as desired.
The proof just given works equally well for Π1 formulae ϕ, and so

it gives the desired equivalence for Σ1 formulae. That in turn gives
us a unique Σ1 elementary embedding π2 : Jα(R)V [g] → Jα∗(R)V [g][k].
We want to show π2 is Σ2-elementary. For that, it suffices to show
that Σ2 formulae about a real x go down, and since α∗ begins a gap in
V [g][k], we may assume the outer quantifier is witnessed by a real. Let
x = ρg = µg×k. We have

Jα∗(R)V [g][k] |= ϕ[ρg, νg×k],



34 JOHN STEEL AND STUART ZOBLE SEPTEMBER 16, 2008

where ν is a canonical term for a real, and ϕ(v) is Π1. Let (p, q) force
this. As before, we get a γ < ω2 such that for club many σ ∈ [ω1×γ]ω,

(p, qσ)  Jl(σ0∩ω1)(R) |= ϕ[(ρσ0)ġ, (νσ)ġ×k̇].

Again, let G be such that g×G is Col(ω, ω1)×P (ω1)/NS generic over
V . We have

V [G] |= (p, q)  Jα(R) |= ϕ[ρġ, ν ġ×k̇],

which gives

V [G][g] |= q  Jα(R) |= ϕ[x, ν̂],

where ν̂ is a Col(ω, γ) term obtained from ν and g. Let k0 be Col(ω, γ)-
generic over V [G][g], and let z = νg×k0 . We have

V [G][g][k0] |= Jα(R) |= ϕ[x, z].

But then

V [g][k0] |= Jα(R) |= ϕ[x, z]

because g×k0 is equivalent to a Col(ω, ω1) generic over V , and we have

Iα. Since Σ∼
Jα(R)
1 has the Baire property in V [g], 38 gives

V [g] |= Jα(R) |= ∃zϕ[x, z],

as desired.
Thus we have a unique Σ2 elementary

π2 : Jα(R)V [g] → Jα∗(g×k)(R)V [g][k].

Let ϕ, x be a witness to the inadmissibility of α in V [g]; that is, ϕ(u, v)
is Σ1, x ∈ R ∩ V [g], and α is the least ordinal β such that Jβ(R)V [g] |=
∀u ∈ Rϕ[x]. Since π2 is Σ2 elementary, ϕ, x witness the inadmissibility
of α∗(g × k) in V [g][k], so that ϕ, x gives us a “name” for α∗(g × k).

We now show α∗(h) is independent of h. It is enough to show
α∗(h1) = α∗(h2) whenever h1 and h2 are Col(ω, ω2)-generic, and V [h1] =
V [h2]. We may re-arrange hi so that hi = gi × ki, where gi × ki is
Col(ω, ω1) × Col(ω, ω2)-generic. Let ϕi, xi be an inadmissibility wit-

ness for α in V [gi]. Since Σ
Jα(R)
1 has the Baire property in V [gi], we

have that in V [g1][g2], both ϕ1, x1 and ϕ2, x2 are inadmissibility wit-
nesses for α. Let g3 = g1 × g2, and let k3 on Col(ω, ω2) be such that
V [g3][k3] = V [h1] = V [h2]. By what we just showed, both ϕ1, x1 and
ϕ2, x2 are inadmissibility witnesses for α∗(g3× k3) in V [h1] = V [h2]. It
follows that α∗(h1) = α∗(g3 × k3) = α∗(h2), as desired.

This finishes the proof of lemma 46. �

Henceforth we write α∗ for the common value of all α∗(h).
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Lemma 47. Let g×G be Col(ω, ω1)×P (ω1)/NS generic over V , and
suppose g,G ∈ V [h], where h is Col(ω, ω2) generic over V ; then there
is a unique Σ1 elementary

j : Jα(R)V [G][g] → Jα∗(R)V [h].

Moreover, π2 = j ◦ π.

Proof. In V [h], Jα∗(R) |= AD, and α∗ begins a gap. Moreover,
V [h] = V [k] where k is Col(ω, ωV2 ) generic over V [G][g]. Thus by
lemma 36, there is a unique γ beginning a gap in V [G][g] and a unique
Σ1-elementary

j : Jγ(R)V [G][g] → Jα∗(R)V [h].

It will be enough to show γ = α. (We then get π2 = j ◦ π because the
maps are determined by their restrictions to reals.)

To see γ = α, in V [g] let B be the prewellordering associated to a

Σ
Jα(R)
1 norm on a universal Σ

Jα(R)
1 set of reals. B has length α. In

V [h], let C be the set with the same definition, but over Jα∗(R). Since

Σ
Jα∗ (R)
1 has the scale property in V [h], there are definable-in-V [h] trees

T, U projecting to C and its complement. By homogeniety, T and U
are in V . Because π2 exists, T and U project to B and its complement
in V [h]. It follows that

V [g] |= B is ω2-universally Baire.

But G is generic over V [h] for a reasonable forcing, so by the Foreman-
Magidor theorem 34, every level of C with a representative in V [G][g]
has a representative in V [g]. The order type of C ∩ V [G][g] is just γ,
and the order type of B = C ∩ V [g] is α, so γ = α. �

We now consider the case that α is in the range of a generic embed-
ding.

Lemma 48. Suppose πG(α0) = α for some P (ω1)/NS generic; then

(1) Jα0(R) is inadmissible in V , and
(2) πG(α0) = α for all P (ω1)/NS generic G.

Proof. Let g be such that g×G is Col(ω1, ω)×P (ω1)/NS generic. Let
h on Col(ω, ω2) be such that g,G ∈ V [h]. In V [g], let x be a real and
ϕ a Σ1 formula such that

Jα(R) |= ∀y ∈ Rϕ[y, x],

and α is least such that this is true. So ϕ, x witness the inadmissibility
of α in V [g]. Because π2 is Σ2 elementary, ϕ and x witness the inad-
missiblity of α∗ in V [h]. But then our Σ1 map j from 47 shows that
ϕ, x define a total function over Jα(R) in V [G][g], and the map π given
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by Iα shows this function has range cofinal in α. Thus ϕ, x witness the
inadmissibilty of α in V [G][g]. The Cohen map is Σ2, so ϕ, x witness
the inadmissibility of α in V [G]. Finally, πG is fully elementary, and
this gives us part (1).

For (2), let ϕ, x witness the inadmissibility of α0 in V . Let g × G
be any Col(ω1, ω) × P (ω1)/NS generic, with α = πG(α0). Then ϕ, x
witnesses inadmissibilty of α in V [G], hence V [G][g], and hence V [g].
If k ×H is any other generic, and ξ = πH(α0), then ϕ, x witness inad-
missibility for ξ in V [k]. Since x ∈ V and Col(ω, ω1) is homogeneous,
ξ = α, as desired. �

Lemma 49. Suppose α = πG(α0) for some G; then Iα+1 holds, and
W ∗
α+1 holds in all V [g], for g on Col(ω, ω1).

Proof. Let ϕ, x witness the inadmissibility of α0 in V . Let g × G
be Col(ω1, ω) × P (ω1)/NS generic. Let h on Col(ω, ω2) be such that
g,G ∈ V [h]. We have that ϕ, x witnesses inadmissibility for α in V [g],
and for α∗ in V [h]. Working in V [h], we now obtain a function J on

H(ω1) with parameter x such that J codes up Σ
Jα∗ (R)
1 truth. Here we

just follow the construction of [22]. Given a countable transitive set b
such that x ∈ b, J(b) is the minimal b − premouse with parameter x,
call it M, such that

Jα∗(R) |=M is ω1-iterable ,

and

M |= ψ.

Here ψ asserts roughly that the Σ1 function defined by ϕ, x is defined
at all reals of the form τg, where g is Col(ω, b) generic over M and τ
is a term that is rudimentary in b.

More precisely, if l ⊂ Col(ω, b) is M-generic, then there is a real
z(l, b) which simply codes the pair (l, b). Thus M[l] is a z(l, b)-mouse.
Let σ ∈M be term so that whenever l is such a generic

{(σl)i | i > 0} = {ρl | ρ ∈ L1(b)}
and (σl)0 = x. We let the sentence ψ assert that whenever l is generic
there is a γ so that M(z(l, b)) � γ is a (φ∗n, σl)-witness, in the sense
referred to in W ∗, where φ∗n(v) is the Σ1 formula: there is an ordinal ξ
for which ωξ + n exists and

Jξ(R) |= ∀i > 0 φ(vi, v0).

Since in V [h], ϕ, x witnesses inadmissibliity for Jα∗(R), and Jα∗(R)
thinks that every Σ1 truth about a real is captured by an ω1-iterable
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premouse, we have that J(b) exists for all b such that x ∈ b. J is not
quite a mouse operator in V [h], because that requires ω1 +1-iterability.
However, ω1-iterability in a model of AD is enough for comparison, so
J(b) is Σ1-definable over Jα∗(R) from Letting J0 = J � V , we then have
in V that J0 is a first order mouse operator on H(ω3), and J = Jh0 . It is
not hard to see that J0 relativises well, condenses well, and determines
itself on generic extensions. (See [22].)

Our lemmas 47 on the existence of j and the Cohen ultrapower map
ψ imply that J is NS-absolute. For let k×H be Col(ω, ω1)×P (ω1)/NS
generic over V , and both in V [l], where l is Col(ω, ω2) generic. Let θ
be the Σ1 formula defining J0 � H(ω1)V from x over Jα0(R). Then θ
defines J l over Jα∗(R)V [l], because j ◦ ψ ◦ πH exists. Thus θ defines
J l � V [H] = JH over Jα(R)V [H], because j ◦ψ exists. So πH(J0) ⊆ JH .

So in V , J0 is an (ω3, x) mouse operator that relativises and con-
denses well, determines itself on generic extensions, and is NS-absolute.
By theorem 28, setting

Jn+1 = (Jn)w,

we have the same properties for Jn, for all n < ω.
This gives W ∗

α0+1 in V , with the witnessing mice being the Jn(b).
Going back to g,G, and h, we also have that W ∗

α+1 holds in V [g], with

the witnessing mice being those of the form Jgn(b) for b ∈ H(ω1)V [g].
For details on why these mice suffice as witnesses, see [22]; the key is
that Σn truth over Jα(R) reduces to (Σ1

n)-in-J0 truth by inadmissibility.
We also get Iα+1. For let

π : Jα(R)V [g] → Jα(R)V [G][g]

be the Σ1 map given by Iα. It suffices to show π is fully elementary.
This is because the Jn’s code truth over Jα(R). More precisely, fix
n < ω. There is a recursive function t such that for any Σn formula ϕ
and any b in the H(ω1)-cone over x of V , we have

Jα0(R)V |= ϕ[b, x]⇔ Jn(b) |= t(ϕ)[b].

But then for any b ∈ H(ω1)V [G],

Jα(R)V [G] |= ϕ[b, x]⇔ πG(Jn)(b) |= t(ϕ)[b].

Since Jα+1(R)V [G] |= AD, the Cohen ultrapower map ψ is fully elemen-
tary, and πG(Jn)g = Jg×Gn , for any b ∈ H(ω1)V [G][g],

Jα(R)V [G][g] |= ϕ[b, x]⇔ Jg×Gn (b) |= t(ϕ)[b].

Finally, for b ∈ H(ω1)V [g],

Jα(R)V [g] |= ϕ[b, x]⇔ Jgn |= t(ϕ)[b].
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Since Jgn ⊆ Jg×Gn , this gives us that the inclusion map on the reals is
fully elementary from Jα(R)V [g] to Jα(R)V [G][g]. That implies π is fully
elementary, and hence Iα+1. �

We will be done with the inadmissible, uncountable cofinality case
when we show:

Lemma 50. Suppose α < πG(α0) for some G; then Iα+1 holds, and
W ∗
α+1 holds in all V [g], for g on Col(ω, ω1).

Proof. Let g×G be Col(ω1, ω)×P (ω1)/NS generic. Let h on Col(ω, ω2)
be such that g,G ∈ V [h]. Let π be given by Iα, π2 by lemma 46, ψ by
the Cohen ultrapower, and j by lemma 47. We have that π and j are
Σ1 elementary, while ψ and π2 are Σ2 elementary. Let ϕ, x witnesses
inadmissibility for α in V [g], V [G], and V [G][g], and for α∗ in V [h].

Just as before, working in V [h], we obtain a function J0 on H(ω1)

with parameter x such that J0 codes up Σ
Jα∗ (R)
1 truth. J0(b) is the least

b-premouse with parameter x satisfying a certain sentence ϕ, and being
ω1-iterable in Jα∗(R). The difference now is just that the parameter x
may only be in V [g]. Since V [h] is a homogeneous extension of V [g],
we do have in V [g] and V [G][g] (ω2, x) mouse operators K0, K1 such
that J0 = Kh

i . Ki is just the restriction of J0 to the H(ω2) of its model,
so we write J0 for Ki.

Claim. In V [h], there are functions Jn on the H(ω1) cone over x such
that for any b in this cone

(a) Jn+1(b) |= “I am Jwn (b)”, and
(b) Jn+1(b) is ω1 iterable in V [h] by a Jn-guided iteration strategy.

Remark. So Jn+1 is Jwn , except that ω1+1 strategies have to be replaced
in V [h] by absolutely definable ω1 strategies.

Proof.
We begin with J1, though our method works in general.

Subclaim 1. In V [g], for any b in the H(ω1) cone over x, Jw0 (b) exists,
and has a J0-guided ω2-iteration strategy.

Proof. Fix b. We have b in V [G][g]. Because j exists, J0 � V [G][g] has
the same definition over Jα(R) in V [G][g] that J0 has over Jα∗(R) in
V [h]. But πG(α0) > α, and hence

V [G] |= W ∗
α+1,

so that

V [G][g] |= W ∗
α+1,
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by the elementarity of the Cohen ultrapower. Hence in V [G][g] we can
find M such that

(a) M |= “ I am Jw0 (b)”, and
(b) V [G][g] |= “M has a J0-guided ω1-iteration strategy”.

Using condensation for J0 in V [G][g] and the fact that it determines
itself on generic extensions, we see by a standard Lowenheim-Skolem
argument that M has a J0-guided ω1-iteration strategy in V [h]. This
fact defines M in V [h] from J0 � V [g] and b, so M ∈ V [g]. It is easy
to see that V [g] |= M = Jw0 (b), and that M J0-guided ω2-iteration
strategy in V [g]. �

Subclaim 2. In V [h], for any b in the H(ω1) cone over x, there is a b
premouse M with parameter x such that

(a) M |= “ I am Jw0 (b)”, and
(b) V [h] |= “M has a J0-guided ω1-iteration strategy”.

Proof. We go back to V , so that we can use Mouse Reflection.
Let τ be a standard term such that τg = x. Thus τ ∈ V , and

τ ⊂ ω × ω1. Working in V , we can find for any b in the H(ω2) cone
over τ a countably iterable b-premouseM with parameter τ such that
Jw0 (b) is the canonical re-arrangement ofM[g] as a premouse over 〈b, g〉
with parameter x. (The hierarchy of M is defined by induction. See
[24] or [14] for the details of this method of inverting generic extensions
of mice.) Writing M = I(b), we can summarize this as

I(b)[g] = Jw0 (b),

for all b in the H(ω2)V -cone over τ . I is a first order mouse operator
with parameter 〈τ, p〉 in V , its sentence being “it is forced in Col(ω, ω1)
by p that my canonical re-arrangement as a premouse over 〈b, g〉 with
parameter τg thinks it is Jw0 (b).” (Here p is an appropriately chosen
fixed condition.)

By Mouse Reflection, I extends in V to an (ω3, 〈p, τ〉) mouse opera-
tor, which we also call I. Given now b in the H(ω1)V [h] cone over x, we
can find anM as in subclaim 2 as follows. Let V [h] = V [g][k], where k
is Col(ω, ω2) generic over V [g], and let b = σg. Let c be in the domain
of I, with τ, σ ∈ c. Then I(c)[g][k] can be re-arranged as a premouse
over 〈c, g, k〉 with parameter x = τg. Let N be this re-arrangement. It
is easy to see

(a) N |= “ I am Jw0 (〈c, g, k〉)”, and
(b) V [g][k] |= “N has a J0-guided ω1-iteration strategy”.
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The reason is simply that we can reflect any failure of (a) or (b) into
the H(ω1) cone over x of V [g], where I does indeed determine Jw0 by
the method whereby we obtained N .

Since Jw0 relativises well, we can use N to find aM over b satisfying
subclaim 2. �

This gives us the function J1 as required by our claim. Notice also
that the proof has shown that the H(ω1) cones over x of V [g] and
V [G][g] are closed under J1, and that

J1 = Jw0

holds in V [g] and V [G][g] as well. This is what we need to obtain J2

by the same method. We get Jw1 on H(ω1)V [G][g] using W ∗
α+1 there.

The J1-closure of V [h] and homogeneity of Col(ω, ω2) give us Jw1 on
H(ω1)V [g] in V [g]. We get I in V such that I(b)[g] = Jw1 (〈b, g〉). I
extends to an (ω3, τ) operator in V , where τg = x. Going back to V [h],
we can convert I into the desired Jw1 -like function J2.

We leave any further detail to the reader. This proves the claim.
�

We can now finish the proof of lemma 50. Let Jn be the function in
V [h] we constructed. In V [g], the Jn(b) for b in the H(ω1) cone over x
collectively witness W ∗

α+1. This is because, as in the proof of 49, we can

reduce Σn truth about b in Jα(R)V [g] to Σ1 truth in Jn(b). We get Iα+1

because, as a byproduct of our construction, Jn∩H(ω1)V [g] is contained
in ((J0)w,...,w)V [G][g]. The former captures truth over Jα(R)V [g], and the
latter captures truth over Jα(R)V [G][g]. This implies that π is fully
elementary, as desired. �

7. The Admissible Cases

Let us fix g ⊂ Col(ω, ω1) which is V -generic, and a critical ordinal γ
in V [g] of type (3). That is, letting α be the strict sup of the critical
ordinals < γ, we have α < γ. We assume that W ∗

α holds in V [g], and
we wish to show that W ∗

γ+1 holds in V [g]. The analysis of scales in
L(R) shows that α begins a Σ1 gap [α, β], and Jα(R) is admissible.
The possibilities are that α = β = γ − 1 (the admissible empty gap),
that α < β = γ − 1 (the strong gap), or that α < β = γ (the weak
gap). But for the most part, we do not need to distinguish these three
cases here. We also assume WRP(2)(ω2), and that NS is saturated.
Our overall plan is:
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Step 1. Working in V [g], we construct a mouse N and iteration strat-
egy Σg which code up truth at the end of the gap [α, β]. N will be a
mouse over some real parameter z.

Step 2. Letting τg = z, we show that N and Σg yield a mouse Nτ over
τ and an ω2-iteration strategy Σ for Nτ , both in V , via the equations
Nτ [g] = N , and Σ = Σg � V .

Step 3. We show that Σ extends to act on H(ω3).

Step 4. We then further extend Σ so that it acts on all trees in the
H(ω1) of V [g][h], where h ⊂ Col(ω, ωV2 ) is V [g]-generic. At the same
time we find versions [αH , βH ] of our gap [α, β] in V [g][H], whenever
H ∈ V [g][h], along with appropriately elementary embeddings from
Jβ(R)V [g] to JβH (R)V [g][H].

Step 5. We proceed as in the inadmissible case, but using Σ-mice with
Woodin cardinals to witness W ∗

γ+1 in V [g]. As before, the proof breaks
into cases, according to whether α ∈ ran(πNS or not.

Steps 1 and 2 follow [22] closely. The only difference here is that we
want N to have ω Woodin cardinals, so that we can lift the gap [α, β]
to V [g][h], for h generic over Col(ω, ω2), using an R-genericity iteration
over V [g][h]. We now proceed to details.

Definition 51. Let Γ be the pointclass Σ
Jα(R)
1 . What is called the

envelope of Γ, or ENV(Γ), is the class of all A ⊆ R which are countably
captured by Γ in that there is a real x such that for any countable
σ ⊆ R, A ∩ σ is OD<α(σ, x). The analysis of scales from [23] shows
that if α = β or [α, β] is strong, then

ENV(Γ) = Jβ+1(R) ∩ P (R),

and if [α, β] is weak, then

ENV(Γ) = Jβ(R) ∩ P (R).

If α = β or [α, β] is strong, put

e(Γ) = {A ⊆ R | A is ordinal definable over Jβ(R)}.

If [α, β] is weak, put

e(Γ) = {A ⊆ R | ∃ξ < β (A is ordinal definable over Jξ(R)}.
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So
ENV(Γ) =

⋃
z∈R

e(Γ)(z)

is the boldface pointclass associated to e(Γ).

A 0-suitable premouse is a minimal premouse N with one Γ Woodin,
called δN . Such an N is A-iterable if it has a partial iteration strategy
moving the Col(ω, δN) term relation for A correctly. The reader should
see [22] or [24] for full definitions. We have the following basic result
of Woodin.

Theorem 52. (Woodin) For any countable transitive set X, and A
such that A ∈ e(Γ)(z) for some z ∈ X, there is a 0-suitable, A-iterable
premouse over X.

No full proof of this key lemma has ever been written up. There is part
of a proof in [16]. Thew paper [24] outlines a proof in the weak gap
case.

If [α, β] is weak, we let z0 be a real parameter such that for some
finite set F of ordinals, 〈z0, F 〉 satisfies a non-reflecting Σn type, where
n is least such that ρn(Jβ(R)) = R. We let F0 be the Brouwer-Kleene
least such F , and let

Jβ(R) =
⋃
n

Hn

be the decompostion given in [23]. Thus in particular each Hn collapses
to a member of Jβ(R). If [α, β] is not weak, let z0 be a real such that
for some Σ1 formula ϕ(v), we have

Jβ+1(R) |= ϕ[z0] but Jβ(R) 6|= ϕ[z0].

Let ρ be a standard Col(ω, ωV1 ) term for a real such that ρg = z0, and
let p0 force all the properties of ρ we have enumerated so far. For
p ∈ Col(ω, ωV1 ) such that p0 ⊆ p, let gp(n) = p(n) if n ∈ dom(p), and
gp(n) = g(n) otherwise. Let τ be a term for a real such that τg codes
ρg and g in some natural way. It is easy to do this so that

(a) z0 ≤T τg, and
(b) for all p, τg ≡T τgp .

Put z = τg. For any A ∈ e(Γ)(z), put

B(A) = {(y, t) ∈ R× R | y codes a countable, transitive X such that

z ∈ X, and t codes ThNω (X ∪ {X, τNA }),
for some (all) 0-suitable, A-iterable X-premouse N }.

Here τNA is the standard Col(ω, δN)- term capturing A . “Some” is
equivalent to “all” in the definition above because A-iterability yields
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an approximation to the comparison process which suffices to determine
the theory in question. Note that B(A) ∈ e(Γ)(z), because e(Γ)(z) is
closed under real quantification. By the scale analysis of [23], we have
a self-justifying system A = {Ai | i < ω} such that

(1) each Ai is in e(Γ)(z),

(2) if α = β or [α, β] is strong, then for each n < ω, ThJβ(R)
n (R) ∈ A

(3) if [α, β] is weak, then for all n, ThHnω (R ∪ {z, F0}) ∈ A, and
(4) for any n, B(〈Ai | i ≤ n〉) ∈ A, where we regard 〈Ai | i ≤ n〉 as

a set of reals via some natural coding.

It is easy to also arrange that there is a fixed term Ȧ such that

(5) for all p ⊇ p0, Ȧgp = Ȧg.
Let X be countable transitive, with z ∈ X. Let Nn be a 0-suitable,
〈Ai | i ≤ n〉-iterable mouse over X. As in [22] we can simultaneously
compare all the Nn to get a 0-suitable N over X such that N is 〈Ai | i ≤
n〉-iterable for all n. But then condensation for term relations implies
thatN has a unique fullness preserving (ω1, ω1) iteration strategy which
moves all the term relations τNAi correctly.8 Put

Q(X) = HullN(X ∪ {X} ∪ {τNA | A ∈ A}).

Condensation for term relations of a self-justifying system implies that
Q(X) has all the properties of N , namely, it is 0-suitable, and has a
unique fullness preserving (ω1, ω1) iteration strategy which moves all

the term relations τ
Q(X)
Ai

correctly. Moreover, Q(X) is “sound”, in that

Q(X) = HullQ(X)(X ∪ {X} ∪ {τQ(X)
A | A ∈ A}).

Let

N0 = Q(Vω ∪ {z}),
and

Nk+1 = Q(Nk),

and

N =
⋃
k<ω

Nk.

Put δNk = δNk . We regard N as a premouse over z in the natural way.
Note that because Nk is suitable, and hence Γ-full, no level of Nk+1

projects across o(Nk), and thus the δk are all Woodin in N .

Lemma 53. There is a unique A-guided strategy for N in V [g].

8See [22]. The strategy chooses the limit over n of branches bn moving all τNAi

for i ≤ n correctly.



44 JOHN STEEL AND STUART ZOBLE SEPTEMBER 16, 2008

Proof. As in [22], there is a unique A-guided iteration strategy Σ0 for
N0. Let

i : N0 → S0

be an iteration map by Σ0. We can let i act on all of N , giving rise to

i : N → S.

Put also Sm = i(Nm), for all m. We do not yet know that S is even
wellfounded, but in fact

Claim 54. For all m, Sm+1 = Q(Sm).

Proof. We prove it for m = 0. Let

Wk = ThN1
ω (N |δ ∪ {τN1

A0
, ..., τN1

Ak
}),

where δ = δN0 . Note Wk ∈ N0 because N0 is Γ-full. Let

B = B(〈A0, ..., Ak〉).
Now N0 satisfies the sentence “it is forced in Col(ω, δ) that if y codes
N |δ and t codes Wk, then (y, t) ∈ τN0

B .” Thus the same sentence is true
of i(δ), i(Wk), and i(τN0

B ) in S0. But i(τN0
B ) = τS0

B , and so

ThS1
ω (S|i(δ) ∪ {τS1

A0
, ..., τS1

Ak
}) = i(Wk)

= ThQ(S0)
ω (S|i(δ) ∪ {τQ(S0)

A0
, ..., τ

Q(S0)
Ak

}).
It follows that there is a natural isomorphism between

HullS1
ω (S|i(δ) ∪ {τS1

A0
, ..., τS1

Ak
})

and
HullQ(S0)

ω (S|i(δ) ∪ {τQ(S0)
A0

, ..., τ
Q(S0)
Ak

}).
Moreover, these isomorphisms commute with the inclusion maps on
the hulls, because they are determined by the i(Wk). Finally, S1 and
Q(S0) are the unions of the respective sequences of hulls, as k varies.
(In the case of S1, this is because N1 = Q(N0), and i came from an
iteration based on N0.) Thus S1

∼= Q(S0). The proof for m > 0 is the
same. �

But now S1 = Q(S0) has a unique iteration strategy Σ1 for trees above
S0. Letting i : S → T come from an iteration of S1 by this strategy,
and Tm = i(Sm) we get Tm+1 = Q(Tm) for all m ≥ 1 by repeating the
proof of the claim above. We can then move on to iterating T2 above
T1, etc. Clearly, this describes an iteration strategy for N acting on
normal trees.9 �

9In fact our strategy applies to trees of the form: a stack of normal trees below
the first Woodin, then a stack of normal trees between the first and second Woodin,
then a stack between the second and third, etc.
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N is a mouse over τg, but it can be re-arranged as a mouse over τgp
whenever p ⊇ p0. The re-arranged mouse has the same universe and
extender sequence; it just has a different (but Turing equivalent) real
distinguished at the bottom. What is more, we have a fixed term Ṅ
such that for all p ⊇ p0, Ṅgp is the re-arrangement of N as a mouse
over τgp . This is because of the symmetry in the construction of N ,

and in particular, because Ȧg = Ȧgp for all such p. This enables us to
build in V a premouse Nτ over τ such that Nτ [g] = N . We construct
Nτ |α by induction on α, maintaining that

(Nτ |α)[g] = N |α,
along with the correspondence of projecta and parameters. α is active
in Nτ iff it is active in N , and if so,

ENτ
α = EN

α ∩Nτ |α.
Nτ |(α + 1) ∈ V because by induction, Nτ |α ∈ V , and because EN

α is
independent of g. ENτ

α is an extender over Nτ because g was generic
over V , and the forcing is small. The reader can find all the details of
this construction in [24]. Let Σg be the unique iteration strategy for N
given by the Lemma. Iterating Nτ is the same as iterating Nτ [g] = N ,
because the forcing is small, and thus we can regard Σg as a strategy
for Nτ . Moreover Σ, which denotes Σg � V , is in V by the symmetry
in our construction of Σg. Since Σg condenses well, Σ condenses well.
We have finished steps 1 and 2 of the general plan.

We now execute step 3. Here we use WRP(2)(ω2) in V to extend our
ω2-iteration strategy to an ω3-iteration strategy. In fact, simultaneous
stationary reflection for pairs of subsets of ω2 is enough.

Lemma 55. Let M be a premouse of cardinality ≤ ω1, and let Σ be
any ω2 iteration strategy for M which condenses well. Suppose that
whenever S, T ⊆ ω2 are stationary and consist of ordinals of countable
cofinality, there is a ν < ω2 such that S and T are stationary in ν.
Then there is a unique ω3 iteration strategy Ω for M such that

(1) Σ ⊆ Ω, and
(2) Ω condenses well.

Proof. We omit the easy proof that there is at most one such Ω. Fix
η large. Let T be an iteration tree on M with lh(T ) < ω3. We say
〈Xα | α < ω2〉 is a T -chain iff

(a) Xα ≺ Vη, for all α < ω2,
(b) α < β ⇒ Xα ( Xβ, and Xλ =

⋃
α<λXα for limit λ,

(c) M, T ∈ X0, and
(d) |Xα| = ω1, and Xα ∩ ω2 ∈ ω2, for all α < ω2.
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Given a T -chain ~X, we let πα : Hα
∼= Xα with Hα transitive, let πα,β =

π−1
β ◦ πα, and let Tα = π−1

α (T ). We say that ~X is Σ-good iff each Tα is
by Σ, and in that case, we set

bα = Σ(Tα)

for all α < ω2. There is of course no reason that we should have
bα ∈ Hα.

Claim 56. Let ~X be a Σ-good T -chain, and let γ < ω2 with cof(γ) =
ω1; then for club many α < γ, πα,γ“bα ⊆ bγ.

Proof. We take cases on the cofinality of the length of T . Suppose first
cof(lh(T )) = ω. Then for all sufficiently large α < γ, ran(πα,γ) is cofi-
nal in bγ, and thus applying condensation to the support-closed subtree
of T _γ bγ determined by ran(πα,γ), we get that π−1

α,γ“bγ = Σ(Tα) = bα.
So the desired club is just a tail below γ. Suppose cof(lh(T )) = ω1.
Then cof(lh(Tξ)) = ω1, for all ξ. Also, for all α < γ, πα,γ“bα is
cofinal in lh(Tγ). Since Tγ has at most one cofinal branch, we get
πα,γ“bα ⊆ bγ. Finally, suppose cof(lh(T )) = ω2. As in case two,
cof(lh(Tξ)) = cof(Xξ∩ω2), , for all ξ, but now, α < γ ⇒ πα,γ is discon-
tinuous at lh(Tα). Fixing γ with cof(γ) = ω1, we can find club many
α < γ such that ran(πα,γ)∩bγ is cofinal in supπα,γ“lh(Tα). For any such
α, condensation for the support-closed subtree of T _γ bγ determined by

ran(πα,γ), implies that π−1
α,γ“bγ = Σ(Tα) = bα. �

Let ~X be a Σ-good T -chain. We say ~X is coherent if and only if
whenever α < γ < ω2, then πα,γ“bα ⊆ bγ. In this case, we say ~X
justifies b, where

b =
⋃
α<ω2

bα.

It is easy to see

Claim 57. T has at most one branch b which is justified by some co-
herent T -chain.

Proof. If ~X and ~Y are Σ-good T -chains, then for club many α < ω2,

Xα ∩ ω2 = Yα ∩ ω2. Thus for club many α < ω2, T ~X
α = T ~Y

α and

b
~X
α = b

~Y
α . �

So we define

Ω(T ) = b⇔ b is justified by some coherent T -chain.

Claim 58. If T is by Ω, then every T -chain is Σ-good.
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Proof. Let T be of minimal length such that the claim is false. Suppose
first that lh(T ) is a limit ordinal. Let ~X be a T -chain. If α < γ < ω2,
then Tα is the collapse of a support-closed subtree of Tγ, so since Σ
condenses well, we have that Tγ is not by Σ for all sufficiently large
γ < ω2. Using a surjective map f : ω2 → lh(T ) with f ∈ X0, and a
Fodor argument, we can fix ξ < lh(T ) such that for stationary many

α < ω2, π−1
α (T � ξ) is not by Σ. But ~X is a T � ξ-chain, contrary

to the minimality of lh(T ). Thus lh(T ) = λ + 1 for some λ. It is
clear that λ must be a limit ordinal. Let b = Ω(T � λ), and let
~X be a T -chain. Let ~Y be a T � λ-chain which justifies b. There
are club many α < ω2 such that Xα ∩ lh(T ) = Yα ∩ lh(T ), and for

such α, (π
~X
α )−1(b) = (π

~Y
α )−1“b = b

~Y
α . Thus for club many α, T ~X

α is
by Σ. Condensation implies this is true for all α. This contradiction
completes the proof. �

Claim 59. Σ ⊆ Ω, and Ω condenses well.

Proof. If T is by Σ, then in any T -chain, we have Tα = T for all
α < ω2, so every T -chain justifies Σ(T ). For condensation, suppose
Ω(T ) = b, and U_c is the collapse of a support-closed subtree of T _b,
and Ω(U) = d where d 6= c. It is easy to see that there is a single ~X,
with T ,U , b, c, d ∈ X0, which justifies both b and d. But this gives a
failure of condensation for Σ. �

Claim 60. Suppose T is by Ω, and lh(T ) < ω3; then there is a b such
that Ω(T ) = b.

Proof. Fix any ξ < lh(T ), and any T -chain ~X. Since ~X is Σ-good, we
have bα = Σ(Tα) for α < ω2. We claim that exactly one of the following
holds:

(1) for ω-club many α < ω2, π−1
α (ξ) ∈ bα,

(2) for ω-club many α < ω2, π−1
α (ξ) 6∈ bα.

It is clear that not both can hold. Suppose both fail. Let S be the
stationary set of α of cofinality ω where ξ ∈ ran(πα) and (1) fails,
and T the stationary set of α of cofinality ω where (2) fails. By our
stationary reflection hypothesis, we can fix γ of cofinality ω1 such that
both S and T are stationary in γ. Note ξ ∈ ran(πγ). If π−1

γ (ξ) ∈ bγ,
then by the first claim, π−1

α (ξ) ∈ bα for club-in-γ many α, so T was not
stationary in α, contradiction. Similarly, if π−1

γ (ξ) 6∈ bγ, then The first
claim implies S is not stationary in γ, a contradiction. So at least one
of (1) and (2) holds. It also implies that the ω-clubs of (1) and (2) can
be taken to be fully club in ω2. Define b by:

ξ ∈ b⇔ for club many α < ω2, π−1
α (ξ) ∈ bα.
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Taking a diagonal intersection, we can find a club C ⊆ ω2 such that
for α ∈ C, πα“bα ⊆ b. But then 〈Xα | α ∈ C〉 is a coherent T -chain
which justifies b. �

This completes the proof of Lemma 55. �

Applying Lemma 55, let us use Σ to denote the unique ω3 iteration
strategy for Nτ which condenses well, and extends Σg � V . Proceeding
to step 4, we need to further extend Σ so that it acts on all trees in
H(ω1)V [g][h], whenever h is V [g]-generic over some poset in H(ω2)V [g].
These extensions of Σ will be mutually consistent. At the same time,
we will be showing that the gap [α, β] of V [g] has counterparts in every
V [g][h]. The following little lemma will be useful.

Lemma 61. Let Γ be an iteration strategy for S which condenses well.
Let π : R → S be sufficiently elementary that the pullback strategy Γπ

for R exists; then Γπ also condenses well.

Proof. Let T be a tree according to Γπ, and U a support-closed subtree
of T corresponding to those MT

α such that α ∈ X, and let Ū be the
collapse of U . It is easy to see the lifted tree πŪ is the collapse of the
support-closed subtree of πT corresponding to those MπT

α such that
α ∈ X. Since Γ condenses well, πŪ is according to Γ, and hence Ū is
according to Γπ. �

We need to use hybrid strategy mice. Suppose Ω is an iteration strat-
egy for some structure M , and Ω condenses well. Let A be transitive,
with M ∈ A. We obtain a hybrid Ω-premouse by adding extenders with
critical points above A to a coherent sequence we are building, and at
the same time closing the model we are building under Ω, and giving
it a predicate for Ω. The construction can only go on as long as all
(non-dropping) iteration trees according to Ω we construct are in the
domain of Ω. (M may or may not be a fine-structural premouse, but in
any case, it is convenient to only close under Ω on non-dropping trees.)
We refer the reader to [22] for a brief discussion of such Ω-hybrids, and
to [16] for a more thorough one.

Definition 62. Let Ω be an |A|+-iteration strategy for M which con-
denses well, where A is transitive and M ∈ A; then PΩ

n (A)] is the
minimal |A|+-iterable hybrid Ω- mouse over A which is active, and
satisfies “there are n Woodin cardinals”.

We note that the iterations referred to here all leave A, and hence
M , fixed. It is part of iterability that they must move Ω to itself. One
can hope to construct such iterable hybrid mice in a Kc construction,
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because Ω condenses well, and hence Ω will condense to itself under
realizing maps. The iterability demand we have made for PΩ

n (A)] in
the definition above is the minimal one which guarantees uniqueness,
granted that H(|A|+) is closed under PΩ

n−1-sharps. We shall never
consider a putative PΩ

n (A)-sharp unless we already know H(|A|+) is
closed under PΩ

n−1-sharps. In practice, we often have more iterability
than the minimal demand. Our core-model-induction proof that H(ω3)
of V is closed under the M ]

n operators generalizes routinely to hybrid
mouse operators, and gives:

Lemma 63. Assume NS is saturated, and WRP(2)(ω2) holds. Let S ∈
H(ω1), and let Ω be an ω3-iteration strategy for S which condenses well.
Then for all transitive A ∈ H(ω3) such that S ∈ A, and all n < ω,
PΩ
n (A)] exists and is ω3-iterable.

This is proved exactly as was theoremjtojw, so we omit the details.
Lemma 63 is the place core model theory gives us new mice. We shall

eventually apply it in the case that α ∈ ran(πG) for some NS-generic
G. In that case, we can take our real z0 to be in V , and Nτ to be in V ,
and countable there. (We don’t actually need τ at all, N could be a
z0-premouse.) We shall then apply lemma 63 with S = N and Ω = Σ.

Before we take cases on whether α ∈ ran(πG), however, we do some
further preliminary work related to Iγ.

Lemma 64. For all A ∈ H(ω3), PΣ
0 (A)] exists and is ω3-iterable.

Proof. We show first that PΣ
0 (A)] exists for all such A ∈ H(ω2), then

extend this to A ∈ H(ω3) using simultaneous reflection. Let G ⊂
P (ω1)/NS be V -generic and let

i : V →M ⊆ V [G]

be the generic embedding. Since Nτ ∈ H(ω2)V , we have Nτ ∈ M , and
i � Nτ ∈ M . So inside M , we can form the (i � Nτ )-pullback of i(Σ),
which we denote by i(Σ)i. From the point of view of M , i(Σ)i is an ω3

iteration strategy for Nτ , and by Lemma 61, it condenses well in M .

Claim 65. i(Σ)i agrees with Σ on all trees in the intersection of the two
domains.

Proof. We first consider trees in H(ω2)V , all of which are in both
domains. Let T ∈ H(ω2)V be a tree according to Σ. Note that
i � Nτ ∈ M . In M the copied tree iT on i(Nτ ) is satisfied to be
the collapse of a support closed subtree i(T ). Since i(Σ) condenses
well in M , iT is according to i(Σ). Hence T is according to the pull-
back i(Σ)i. Now let U be a tree in V of size ωV2 in V which is according
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to both Σ and i(Σ)i, and is of limit length. Let

b = i(Σ)i(U)

and
c = Σ(U)

and
b 6= c.

Note that cf(lh(U)) must be countable in V [G]. In V, we can write
U =

⋃
α<ω2

Uα, where this is an increasing continuous chain of support-
closed subtrees, each of size ω1. Going to V[G], where cf(lh(U)) is
countable, we see that

b ∩ Uα is cofinal in Uα
and

c ∩ Uα is cofinal in Uα,
for all sufficiently large α, so we may assume all α. Let Ūα denote the
collapse of Uα, b̄α the collapse of b ∩ Uα, c̄α the collapse of c ∩ Uα. Fix
α such that b̄α 6= c̄α. Now

c̄α = Σ(Ūα)

because Σ condenses well in V. On the other hand,

b̄α = i(Σ)i(Ūα),

because i(Σ)i condenses well in M . Since Σ and i(Σ)i must agree at
Ūα by the first part, we are done. �

Now fix a transitive A ∈ H(ω2) such that Nτ ∈ A. Let LΣ[A] be the
minimal model of height ω3 which has A as a member and is closed
under Σ, and is expanded by a predicate for Σ. In M , we can form
Li(Σ)i [A] in parallel fashion. By claim 65, these two models are the
same. So LΣ[A] ∈ M . But i(NS) is saturated in M , so by the same
argument that shows that the existence of a saturated ideal implies 0]

exists, we get some P ∈M such that

M |= P = PΣ
0 (A)].

Being PΣ
0 (A)] is a first order property, combined with linear iterability

by the last (and only) extender in a way that moves Σ to itself, for
iterations of length < ωM3 = ωV3 . But now let h be V -generic for
Col(ω, ωV2 ), and such that G ∈ V [h]. The required iterability of P is
upward absolute, that is

V [h] |= P is ωV3 iterable,
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so since ωV3 is still uncountable in V [h],

V [h] |= P = PΣ
0 (A)].

By the homogeneity of Col(ω, ω2), P ∈ V , and

V |= P = PΣ
0 (A)],

and we are done in the case A ∈ H(ω2). We now use WRP(2)(ω2),
via hybrid mouse reflection at ω2, to show that PΣ

0 (A)] exists, for all
transitive A ∈ H(ω3) such that Nτ ∈ A. Without loss of generality, let
us assume A ⊆ ω2. Let φ be a formula in the language of set theory
together with a predicate symbol Σ̇ and constant symbol Ȧ, and let
~α ∈ ω<ω2 . For σ ≺ H(ω2) countable, let

πσ : Mσ → Hω2

be the transitive collapse, and Aσ = π−1
σ (Aσ), Nσ = π−1

σ (Nτ ), and
~ασ = π−1

σ (~α). Note that for such σ, the pullback strategy Σπσ is a full
ω3 iteration strategy for Nσ, and it condenses well. Using our saturated
ideal, we then have that

PΣπσ
0 (Aσ)] exists,

and is ω3 iterable. We put

(φ, ~α) ∈ PΣ
0 (A)] ⇔ for club many σ ∈ Pω1(Hω2)

(φ, ~ασ) ∈ PΣπσ
0 (Aσ)].

(Here we identify the structure PΣ
0 (A)] with its theory with parameters

from ω2.) In order to see that this definition works, we must show that
every (φ, ~α) is decided on a club. So suppose neither (φ, ~α) nor (¬φ, ~α)
is in PΣ

0 (A)] according to the definition above. As usual, we find a
transitive X ≺ Hω2 with |X| = ω1 such that both sets are stationary
in Pω1(X). Without loss of generality, assume ~α,Nτ ∈ X, and

(φ, ~α) ∈ PΣ
0 (A ∩X)].

It is then easy to see that for club many σ ∈ Pω1(X), (φ, ~ασ) ∈
PΣπσ

0 (Aσ)]. That is because for club many σ ≺ X, σ = Z ∩ X for
some Z ≺ Vη with PΣ

0 (A ∩X)] ∈ Z. Letting π ⊇ πσ be the collapse of
Z, we get that

π−1(PΣ
0 (A ∩X)]) = PΣπσ

0 (Aσ)].

To see this, note π−1(Σ) ⊆ Σπσ by our argument in the first part of
the proof of 64. So the strategy predicate in π−1(PΣ

0 (A∩X)]) denotes
Σπσ . Moreover, iterates S of π−1(PΣ

0 (A ∩X)]) embed into iterates S∗

of PΣ
0 (A ∩ X)], and the strategy predicate of S∗ denotes a fragment

of Σ, so the strategy predicate of S denotes a fragment of Σπσ . So we
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have shown (φ, ~α) ∈ PΣ
0 (A)], or (¬φ, ~α) ∈ PΣ

0 (A)]. This easily gives
that our PΣ

0 (A)] has the first order properties required of PΣ
0 (A)].

We must see that its strategy predicate denotes Σ, and that linear
iterates of it move Σ correctly. Let I be a linear iteration of length
< ω3 of P , with last model Q such that Σ̇Q 6⊆ Σ. We can find

π : H → Vη

such that M is countable transitive, and everything relevant is in
ran(π). Because ran(π) ∩ ω2 meets the clubs definable over Vη from
elements of ran(π), we get

π−1(P ) = PΣπ

0 (π−1(A))].

Also, π−1(Σ) = Σπ ∩ H. So Σ̇π−1(N) 6⊆ Σπ. This contradicts the
fact that linear iterations of PΣπ

0 (π−1(A))] do move Σπ to itself, by
definition. �

We shall now use genericity iterations of Nτ to lift Jβ(R)V [g] and Σg

to V [g][h], for any h generic over V [g] for a poset in H(ω2)V [g]. To this
end, recall our self-justifying system A = {Ai | i < ω} in V [g]. For
A ∈ A and δ a Woodin cardinal of N , we have the Col(ω, δ)-term τNA,δ,
whose images in Σg-iterations always capture A. Since N = Nτ [g], we
have τNA,δ = ρg for some Col(ω, ωV1 )- term ρ. Let σA,δ be the canonical

Col(ω, ωV1 )× Col(ω, δ) term such that for all generics k × l,
(σA,δ)k×l = (ρk)l.

Thus
(σA,δ)g×l = (τNA,δ)l,

for l being Col(ω, δ) generic over Nτ [g].

Lemma 66. Let h ⊂ P be V [g]-generic where P ∈ (H(ωV3 ))V [g]. Then
in V [g][h] there are

(1) sets A∗i ⊆ R such that

(HCV [g],∈, Ai)i<ω ≺ (HCV [g][h],∈, A∗i )i<ω,
(2) an ordinal βh and embedding

π : Jβ(R)V [g] → Jβh(R)V [g][h]

such that π is fully elementary if α = β or [α, β] is strong,
and π is Σn-elementary for n least such that ρn(Jβ(R)V [g]) = R
otherwise, and

(3) a unique ωV3 -iteration strategy Σh ∈ V [g][h] for N which extends
Σg ∪ Σ and condenses well.
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Proof. We begin with (1). A∗i comes from interpreting the images of
τNτAi under genericity iterations. Note first

Claim 67. In V , let M ∈ H(ω3) be any non-dropping Σ-iterate of Nτ ,
and let k < ω. Let x ∈ R ∩ V [g][h]; then there is (in V ) a Σ-iteration
map i : M → P with crit(i) > δMk such that for any Col(ω, δMk )-generic
l over P such that l ∈ V [g][h] and g, h ∈ P [l], we have that x ∈ P [l][f ],
for some f ∈ V [g][h] such that f is Col(ω, δPk+1) -generic over P .

Proof. Let x = σg?h. Working in V , we use the standard genericity
iteration for the ωV2 -generator version of the extended algebra of M at
δMk+1 to make σ generic. We get in V an i : M → P with crit(i) > δMk
such that for any Col(ω, δMk )-generic l over P , there is f as in our claim
with σ ∈ P [l][f ]. So if g, h ∈ P [l], then x ∈ P [l][f ]. The important
thing to note is that the genericity iteration yielding i terminates. This
follows from the fact that PΣ(C)] exists, where C ∈ H(ω3) codes up σ
and the iteration from Nτ to M . �

Claim 68. Let i : Nτ → P and j : Nτ → Q be non-dropping Σ-iterations
of Nτ (in V ), and let δ and µ be Woodin cardinals of Nτ . Let A ∈ A
be in our self-justifying system from V [g]. Let x ∈ RV [g][h] be such that

x ∈ P [g][l0] ∩Q[g][l1],

where l0, l1 are generic over P [g], Q[g] for the collapses of i(δ) and j(µ),
respectively. Then

x ∈ i(σA,δ)g×l0 ⇔ x ∈ j(σA,µ)g×l1 .

Proof. If not, we have (p, q) ∈ g ? h such that

(p, q)  φ(Ňτ , Σ̌),

where φ in the language for forcing over V expresses the failure of out
claim in V [g][h]. Here φ also involves check-names for σA,δ and σA,µ,
which we have suppressed. In V , let

π : H → Vη,

where H is transitive and of size ω1, ω1 ∈ H, and everything relevant
is in ran(π). We can find

h̄ ∈ V [g]

so that

g ? h̄ is Col(ω, ω1) ? π−1(Ṗ)-generic over H,

and π−1(q) ∈ h̄. Note that by condensation for Σ,

π−1(Σ) ⊆ Σ.
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But then, the fact that H[g][h̄] |= φ[Nτ , π
−1(Σ)] yields a Σg-iteration

of N which fails to move one of the term relations for A correctly. This
is a contradiction. �

Motivated by these claims, working in V [g][h] we put for x ∈ R and
A ∈ A,

x ∈ Ah ⇔ ∃i∃δ∃l(i : Nτ → P is a Σ-iteration and

l is P [g]-generic and x ∈ i(σA,δ)g×l).

It is easy to see that

Ah ∩ V [g] = A,

because the iteration given by 67 can be taken in H(ω2)V in this case,
and such iterations correspond to iterations by Σg, which moves τNA,δ
correctly. Note A is closed under real quantification. Fixing i, we have
a j such that

V [g] |= ∀~x ∈ R<ω(Aj(~x)⇔ ∃yAi(~x, y)).

But this fact is coded into the first order theory over Nτ of the term
relations σAi,δ and σAj ,µ. More precisely, given δ < µ Woodins of Nτ ,
there is a p ∈ g which forces over Nτ the statement “whenever k is
Nτ [ġ]-generic over Col(ω, δ) and ~x ∈ Nτ [ġ][k], then ~x ∈ (σAj ,δ)ġ×k if
and only if 1 forces in Col(ω, µ) over Nτ [ġ][k] “ there is a y such that
(~x, y) ∈ (σAi,µ)ġ×t, where t is the re-arrangement of k × Ġ.”” These
first order facts are preserved by our genericity iterations of Nτ , and
those are sufficiently numerous by 67, and coherent in how they move
the σA,ν by 68, that we get

V [g][h] |= ∀~x ∈ R<ω(Ahj (~x)⇔ ∃yAhi (~x, y)).

We leave any further calculation here to the reader.10 Also, for any i
there is a j such that

V [g] |= ∀~x(Ai(~x)⇔ ¬Aj(~x)).

Fixing such i, j, we then have

V [g][h] |= ∀~x(Ahi (~x)⇔ ¬Ahj (~x)).

Generalizing slightly, we get that for any formula φ in the language of
our two structures, there is a j = jφ such that for all ~x in V [g],

((HCV [g],∈, Ai)i<ω |= φ[~x])⇔ Aj(~x),

10See [21] for a similar argument. It was to make this argument possible that we
moved to an N with ω Woodins, rather than just one.
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and for all ~x in V [g][h]

((HCV [g][h],∈, Ahi )i<ω |= φ[~x])⇔ A∗j(~x).

Since Aj = Ahj ∩ V [g], we are done with part (1). Part (2) of the
theorem follows easily from part (1), and the fact that the Ai code the
appropriate fragments of the theory of Jβ(R). It is routine then use
the Ahi to construct a structure over R ∩ V [g][h] into which Jβ(R)V [g]

embeds with the required degree of elementarity. One need only show
the structure over R ∩ V [g][h] one gets is well-founded. The proof of
this is a reflection argument very similar to the proof of Claim 55, so
we omit it. We let βh be such that ωβh is the height of this structure.

Finally, we turn to (3). By part (2), βh ends a gap [αh, βh] in V [g][h],
and the Ahi constitute a self-justifying system which seals this gap. We
claim that the Ahi guide an iteration strategy Σh for Nτ , or equivalently
for N = Nτ [g], and that Σg∪Σ ⊆ Σg,h. This is again a simple reflection
argument along the lines of the proof of Claim 55, and so again, we omit
it. Being guided by a self-justifying system, Σh condenses well. �

Remark 69. An earlier version of this paper, posted on the first author’s
webpage, had at this point an argument purporting to show that the
pullback strategy i(Σ)i used in the proof of Lemma 64 codes that same
sort of gap in the L(R) of Ult(V,G) that ΣG does in V [g][G]. Trevor
Wilson found a serious gap in this argument, namely, its assumption
that the theory coded into i(Σ)i describes a wellfounded model. For-
tunately, we don’t need this argument.

Remark 70. We eventually get βG = β, but only after we have shown
W ∗
γ+1 holds in V [g]. That is because the Foreman-Magidor argument

requires a universally Baire prewellorder of length β in V [g].

Corollary 71. Let G ⊂ (P (ω1)/NS)V be generic over V [g]. Then

V [g][G] |= ∀A ∈ H(ω1) ∀n (PΣG

n (A)] exists and is ω1-iterable ).

Proof. Suppose first that α ∈ ran πG. We may then suppose that Nτ =
N is in V , and countable there. We can then repeat the inductive proof
of theorem 28, showing that H(ω3)V is closed under the PΣ

n operator,
for all n. This easily yields the corollary.

Suppose next that α /∈ ran(πG), and let α0 be least such that α <
πG(α0). As in the inadmissible case, α0 begins a gap in V . Thus
πG(α0) begins a gap in Ult(V,G), so βG < π(α0). It follows that
in Ult(V,G), JβG+ω(R) |= AD. Standard results on the existence of
iterable models with Woodin cardinal under determinacy imply that
JβG+ω(R)V [G] |= ∀A ∈ H(ω1)∀n (PΣG

n (A)] exists and is ω1-iterable ). (
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See [21, theorem 10.1].) But then the same is true in JβG+ω(R)V [G][g],
by the elementarity of the Cohen ultrapower. �

Now let h be Col(ω, ωV2 )-generic over V [g], and G ∈ V [g][h] be NS-
generic over V [g]. Note that the extension from V [g][G] to V [g][h] is
by a partial order which, in V [g][G], is of size ω1 and collapses ω1. So
V [g][g]-to-V [g][h] is a homogeneous extension. We shall show the mice

PΣG

n (A)] given by 71 are definable from A in V [g][h], thus in V [g] when
A ∈ V [g]. Definability comes from lifting their strategies to V [g][h],
and that comes from lifting the operators themselves to V [g][[h]. To do
that, we need to use simultaneous reflection in V , so we must consider
the PΣ

n -sharp operators on H(ω3)V . The following lemma does the job.

Lemma 72. For all n < ω,

(1) V |= for all transitive A ∈ H(ω3) such that Nτ ∈ A, PΣ
n (A)]

exists and is ω3-iterable,
(2) if A ∈ H(ω3)V and P is such that V |= “P = PΣ

n (A)] is ω3-

iterable”, then V [g][h] |= “P = PΣh

n (A)] is ω1-iterable”, and
(3) V [g][h] |= for all countable transitive A such that N ∈ A,

PΣh

n (A) exists and is ω1-iterable.

Proof. By induction on n. We have already proved (1) when n = 0.
Part (2) is trivial in this case, since the iterations of P are all linear
iterations by its unique extender, and hence are all in V . For part (3),
Note that the PΣ

0 -sharp operator determines itself on V [g][h]. More

precisely, the PΣ
0 -sharp operator on H(ω3)V determines the PΣh

0 -sharp
operator on H(ω1)V [g][h]. For let A be countable transitive in V [g][h],
and say A = ρg×h. Let B ∈ V be the transitive closure of {ρ,Nτ}.
We have an ωV3 -iterable P = PΣ

0 (B)] in V . But then P [g × h] exists

in V [g][h], and we can obtain PΣh

0 (A)] from it. This is because the
determination of Σh from Σ we gave (via R-genericity iterations which
create a self-justifying system guiding Σh) is sufficiently local that if
M |= ZFC and Σ ∩M ∈ M and g, h ∈ M , then σh ∩M ∈ M and is
uniformly-in-M definable over M from Σ ∩M, g, and h. Iterations of
PΣh

0 (A)] correspond to iterations of P as in (2). The latter stretch Σ
into Σ, so the former stretch Σh into Σh.

Now suppose (1) through (3) hold for n = k. We consider (1) for
n = k + 1. We first consider the case A ∈ H(ω2)V . In V [g], let B be
the first admissible set over {A, g}, so that N ∈ B. By Corollary 71
we have P in V [g][G] such that

V [g][G] |= P = PΣG

k+1(B)],
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in the sense that P has the first order properties, and is ω
V [g][G]
1 -iterable

via a strategy which moves ΣG to itself. We claim that

V [g][h] |= P = PΣh

k+1(B)],

in the sense that P is ω
V [g][h]
1 iterable in V [g][h] via a strategy which

moves Σh to itself. The iteration strategy for P in V [g][h] is the one
guided by the Q-structures provided by (3) for n = k. Let Γ be this

strategy, and suppose Γ fails in V [g][h]. Let Oh be the PΣh

k -sharp
operator of V [g][h], and let O = Oh � V [g][G]. So O is defined on
A ∈ H(ω2)V [g][G] with N ∈ A. We have that O ∈ V [g][G], because
the extension to V [g][h] is homogeneous, and Oh is definable in V [g][h]
from Σ. Moreover, O determines the full Oh in V [g][h] via the process
we have described. So Γ is definable in V [g][h] from O, and

V [g][G] |= “it is forced that the strategy for P determined by O fails”.

From the point of view of V [g][G], the forcing in question is just
Col(ω, ω1). But now, working in V [g][G], let

π : S → Vη,

where S is countable transitive, with everything relevant in its range.
Let l be S-generic for the collapse of ωS1 , with l ∈ V [g][G]. It is then

easy to see that π−1(O) is contained in the PΣG

k -sharp operator of

V [g][G], and what it determines on S[l] is also contained in the PΣG

k -
sharp operator of V [g][G]. Since P did have a strategy in V [g][G]
guided by this operator, we have a contradiction, proving our claim.

Now we can invert the extension leading from A to B, getting a Σh

premouse Q over A such that

P = canonical re-arrangement of Q[g] as a premouse over B.

By the homogeneity of the forcing and the definablity of P in V [g][h],
we get that inductively that all levels of Q are in V , and that all trees
to which Σh is applied in such levels are in V . Thus Q is a Σ-premouse
in V . The iteration strategy for P in V [g][h] induces a strategy for Q
in V , and this strategy is in V by homogeneity, and it witnesses

Q = PΣ
k+1(A)]

in V , and that Q is ω3-iterable in V . We now use simultaneous reflec-
tion to extend the PΣ

k+1-sharp operator to H(ω3) in V , just as we did
in the n = 0 case. For A ⊆ ω2, the key definition is

(φ, ~α) ∈ PΣ
k+1(A)] ⇔ for club many σ ∈ Pω1(Hω2)

(φ, ~ασ) ∈ PΣπσ
k+1 (Aσ)].
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Here we use Lemma 49 to see that for each such σ ∈ Pω1(ω2), PΣπσ
k+1 (Aσ)]

exists, and is ω3-iterable. Just as in the n = 0 case, we get that
everything is decided on a club, so that the definition yields a structure
with the first order properties of PΣ

k+1(A)]. An argument parallel to

that in the n = 0 case shows that this structure interprets Σ̇ as Σ, and
that it is ω3-iterable in a way that moves Σ to itself. Here one uses
the corresponding properties of the PΣπσ

k+1 (Aσ)], and the fact that Σ
collapses into its pullbacks under Skolem hulls. This finishes the proof
of (1) at k + 1. We leave the straightforward proofs of (2) and (3) at
k + 1 to the reader. �

We have finally done what we set out to do in this section.

Lemma 73. The following holds in V [g]. For all transitive A ∈ H(ω1)
such that N ∈ A, and all n < ω, PΣg

n (A)] exists and is ω1-iterable.
Hence W ∗

γ+1 holds in V [g].

Proof. This follows at once from (3) of 72, and the homogeneity of
Col(ω, ω1). Every set in Jγ(R)V [g] is (boldface) projective in Σg. So
the PΣg

n (A)] are the desired coarse capturing mice. �

Lemma 74. Iγ+1 holds.

Proof. We have shown that the PΣG

n -sharp operator of V [g][G], when

restricted to HCV [g], is just the PΣg

n -sharp operator of V [g]. Projective-
in-Σ truth is coded into these operators, so we get

(HCV [g],∈,Σg) ≺ (HCV [g][G],∈,ΣG).

But Σg codes truth at the bottom of the Levy hierarchy over Jγ(R)V [g],
and ΣG codes truth at the bottom of the Levy hierarchy over JγG(R)V [g][G],
where γG = βG if our gap was weak, and γG = βG+1 otherwise. (Truth
is coded via R-genericity iterations which determine self-justifying sys-
tems at the end of these gaps, as in our argument.) So we get from the
line displayed above an embedding

π : Jγ+1(R)V [g] → JγG+1(R)V [g][G]

which is Σ1 elementary. But in V [g] we have an ω1 Universally Baire
prewellorder of length γ, so we can use the Foreman-Magidor argument
to show γ = γG, and π = identity. �

Repeating the relevant arguments ω times gives W ∗
γ+ω in V [g] as well

as Iγ+ω.
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8. Concluding Remarks

Like many of the well-known consequences of MM(c), our hypothe-
ses follow from the Strong Reflection Principle of Todorcevic, denoted
SRP(ω2), which asserts that for every projective stationary subset S
of [ω2]ω there is an ordinal δ < ω2 so that S ∩ [δ]ω contains a club

in [δ]ω. Thus, our main theorem gives ADL(R) from SRP(ω2) as well.
While this represents the best known lower bound for the strength of
SRP(ω2), and even MM(c), these principles are almost certainly much
stronger.11 Moreover, in a precise sense, our arguments can not take us
much farther. In section 9.5 of [25] Woodin defines principles SRP∗(ω2)
and WRP∗(2)(ω2) and shows that the latter is a consequence of the for-
mer if NS is saturated (see Lemma 9.93 of [25]). SRP∗(ω2) asserts the
existence of a normal fine ideal I ⊂ P ([ω2]ω) with the following two
properties: (1) For every T ∈ P (ω1) \NS the set

ST = {σ ∈ [ω2]ω | σ ∩ ω1 ∈ T}

is I-positive, and (2) for every S ⊂ [ω2]ω which satisfies S ∩ ST /∈ I for
every T ∈ P (ω1)\NS, there is γ < ω2 such that S∩[γ]ω contains a club
in [γ]ω. WRP∗(2)(ω2) asserts the existence of a normal fine ideal I with
property (1) above so that any pair S, T /∈ I simultaneously reflect
to stationary sets in some [γ]ω. Woodin obtains SRP ∗(ω2) together
with the saturation of NS in a Pmax extension of a determinacy model
whose existence is equiconsistent with ω2 Woodin cardinals.

Theorem 75. (Woodin; 9.102 of [25]) The following are equiconsis-
tent.

(1) F ∩ L(F,R) is an ultrafilter where F is the club filter on [R]ω

and AD holds in the model L(F,R)
(2) There exists a set of Woodin cardinals of order type ω2

Moreover, if G is Pmax generic over L(F,R) as in (1) then

L(F,R)[G] |= SRP∗(ω2) and NS saturated .

Woodin remarks in 9.98 of [25] that his proof of Theorem 10 also proves
PD from NS saturated and WRP∗(2)(ω2). The same is true of our argu-
ment.

Corollary 76. Assume NS saturated, WRP∗(2)(ω2) holds, and 2ω ≤ ω2.
Then L(R) |= AD.

11They can be obtained via forcing from a supercompact cardinal (see [4]) or
from ADR + Θ regular (see 10.88 of [25]).
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Proof. This amounts to checking that WRP∗(2)(ω2) can serve in the place
of WRP(2)(ω2) in every H(ω2) to H(ω3) lifting argument. For example
in Lemma 14 we would show that the sets St are measured by the filter
dual to I (as opposed to the club filter). One therefore gets 2ω1 = ω2

as in Lemma 8 and the rest of the proof is the same as in the proof of
the Main Theorem. �

Very likely the 2ω ≤ ω2 hypothesis can be dropped, although we haven’t
thought this through.12 Thus the consistency strength of NS saturated
together with WRP∗(2)(ω2) and 2ω ≤ ω2 is somewhere in the interval

(ω Woodins, ω2 Woodins]

and we have reason to believe that the following conjecture is true.

Conjecture 77. The following are equiconsistent.

(1) There exists a set of Woodin cardinals of order type ω2

(2) NS is saturated and WRP∗(2)(ω2) holds.
(3) NS is saturated and SRP∗(ω2) holds.

The first step is to prove that K(R) |= AD. We leave this for another
time.
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