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1 Introduction

In this paper, we shall extend the fine-structural analysis of scales in L(R)

([7]) and L(µ,R) ([1]) to models of the form L( ~E,R), constructed over the

reals from a coherent sequence ~E of extenders. We shall show that in the
natural hierarchy in an iterable model of the form L( ~E,R) satisfying AD ,
the appearance of scales on sets of reals not previously admitting a scale is
tied to the verification of new Σ1 statements about ~E and individual reals in
exactly the same way as it is in the special case ~E = ∅ of [7]. For example,
we shall show:

Theorem 1.1 Let M be a passive, countably iterable premouse over R, and
suppose M |= AD; then the pointclass consisting of all ΣM

1 sets of reals has
the scale property.

A premouse is said to be countably iterable if all its countable elementary
submodels are (ω1+1)-iterable. It is easy to show, using a simple Lowenheim-
Skolem argument, that if M and N are ω-sound, countably iterable premice
over R which project to R, then either M is an initial segment of N , or
vice-versa. We shall write K(R) for the “union” of all such premice over R,
regarded as itself a premouse over R. This is a small abuse of notation, since
our K(R) is determined by its sets of reals, but since we are concerned with
the scale property, sets of reals are all that matter here. In fact, as in [7]
and the work of [6] and [4] on which it rests, our existence results for scales
require determinacy hypotheses, and so we are really only concerned here
with the longest initial segment of K(R) satisfying AD .
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Section 2 is devoted to preliminaries. In section 3 we show that for any R-
mouse M satisfying “θ exists”, HODM is a T -mouse, for some T ⊆ θM.1 We
use this representation of HODM in the proof of 1.1, which is given in section
4. There we also extend the proof of 1.1 so as to obtain a complete description
of those pointclasses which have the scale property and are definable over
initial segments of K(R) satisfying AD.

2 Preliminaries

2.1 Potential R-premice

We shall be interested in premice built over R, which we take to be Vω+1 in
this context, but nevertheless refer to as the set of all reals on occasion. In
most respects, the basic theory of premice built over R is a completely routine
generalization of the theory of ordinary premice (built over ∅); however,
because R-premice do not in general satisfy the axiom of choice, one must
be careful at a few points. Here are some details.

Let M be a transitive, rud-closed set, and X ∈M . Let E be an extender
over M . We say that E is (M,X)-complete iff whenever a is a finite subset of
lh(E) and f :X → Ea and f ∈M , then

⋂
ran(f) ∈ Ea. In the contrapositive:

whenever g: [crit(E)]<ω → P (X) is in M , then

(Ea a.e. u)(∃i ∈ X)(i ∈ g(u)) ⇒ (∃i ∈ X)(Eaa.e.u)(i ∈ g(u)).

It is clear that if E is (M,X)-complete and (M,Y )-complete, then E is
(M,X × Y )-complete. Thus if E is (M,X)-complete and α < crit(E), then
E is (M,X × α)-complete.

For any transitive set M , let o(M) be the least ordinal not in M .

Definition 2.1 Let M be transitive and X ∈ M ; we say M is wellordered

mod X iff ∀Y ∈M∃α ∈ o(M)∃g ∈M(g:X × α
onto
→ Y ).

Our R-premice will be wellordered mod R, moreover, if we take an ul-
trapower of such a premouse M by an extender E, then E will be (M,R)-
complete. In this context we have

1What we actually show is slightly weaker than this in some very technical respects.
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Proposition 2.2 Let M be transitive, rud-closed, and wellordered mod X,
where X is transitive. Let E be an extender over M ; then the following are
equivalent:

1. E is (M,X)-complete,

2. ult(M,E) satisfies the Los theorem for Σ0 formulae, and the canonical
embedding from M to ult(M,E) is the identity on X ∪ {X}.

Proof. We shall just sketch (1) ⇒ (2), which is the direction we use
anyway.

The usual proof of Los’s theorem works except at the point where one
would invoke the axiom of choice in M . At this point we have assumed

(Eaa.e.u)M |= ∃v ∈ g(u)ϕ[v, f1(u), ..., fk(u)],

where ϕ is Σ0, and g, f1, ..., fk are in M , and we wish to find f in M such
that

(Eaa.e.u)M |= ϕ[f(u), f1(u), ..., fk(u)].

Now since M is wellordered mod X, we can fix h ∈M so that h:X × α
onto
→⋃

ran(g). For u ∈ dom(g) and β < α, set

f∗(u, β) = {i ∈ X | M |= ϕ[h(i, β), f1(u), ..., fk(u)]}.

For u ∈ dom(g), let

t(u) = f∗(u, βu), where βu is least s.t. f∗(u, βu) 6= ∅,

and let t(u) = ∅ if f∗(u, β) = ∅ for all β. Because M is rud-closed, the
functions f∗ and t are in M . But now for Eaa.e.u there is an i ∈ t(u), and
so by (M,X)-completeness we can fix i0 such that for Ea a.e. u, i0 ∈ t(u).
The desired function f is then given by

f(u) = h(i0, βu).

To see that the canonical embedding j is the identity onX∪{X}, suppose
g ∈ M maps [crit(E)]|a| to X. We have that for Eaa.e.u, there is an i ∈ X
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such that i = g(u), hence we can fix i ∈ X such that g(u) = i for Eaa.e.u. It
follows that [g] = j(i).

2

For X transitive and appropriate ~E, we define J
~E
α (X) by:

J
~E
0 (X) = X,

J
~E
α+1(X) = rud-closure of J

~E
α (X) ∪ {J

~E
α (X), Eα},

and taking unions at limits. Here the appropriate ~E are those such that each
Eα is either the emptyset or an extender over J

~E
α (X) which is (J

~E
α (X), X)-

complete. We write

J
~E
α (X) = (J

~E
α (X),∈, ~E ↾ α,Eα, X)

for the structure for the language of set theory expanded by predicate symbols
Ė for ~E, Ḟ for Eα, and a constant symbol Ṙ for X (chosen because X =

R ∩ J
~E
α (X) is the case of greatest interest).2 This language of relativised

premice we call L∗.

Definition 2.3 An appropriate ~E isX-acceptable at α iff ∀β < α∀κ(P (J
~E
κ (X)∩

(J
~E
β+1(X) \ J

~E
β (X)) 6= ∅) ⇒ (J

~E
β+1(X) |= ∃f : J

~E
κ (X)

onto
→ J

~E
β (X)).

The following proposition is a uniform, local version of the fact that that
every set in L[ ~E,X] is ordinal-definable from parameters in X ∪ {X}.

Proposition 2.4 1. There is a fixed Σ1 formula ϕ0 of our expanded lan-
guage such that whenever X is transitive, ~E is appropriate for X, and

α < lh( ~E), then ϕ defines over J
~E
α (X) a map h: (X<ω × [α]<ω)

onto
→

J
~E
α (X). We write h

~E,X
α for the map h so defined.

2. We can (and do) take the maps h
~E,R
α to have domain R× [α]<ω (replac-

ing ϕ0 with ϕ1, another Σ1 formula).

3. If ~E is appropriate for R, then for any α, there is a map from R × α

onto J
~E
α (R) which is Σ1 definable from parameters over J

~E
α (R).

2If α = 0, take Ṙ to name 0.
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The proof is a routine extension of Jensen’s [2]. See [7] for the case ~E = ∅.
We shall need the uniformly Σ1 maps of assertion (2) later on.

Using 2.4, we can reformulate R-acceptability with R×κ replacing J
~E
κ (R),

etc. Let us call λ an R-cardinal iff there is no map f : κ×R
onto
→ λ with κ < λ.

It is then easy to see that if ~E is R-acceptable at α, and J
~E
α (R) |= λ is an

R-cardinal, then for all κ < λ, P (J
~E
κ (R)) ∩ J

~E
α (R) ⊆ J

~E
λ (R).

Definition 2.5 Θ is the least ordinal which is not the surjective image of R.

Let M be an R
M-premouse satisfying “Θ exists”, and let θ = ΘM. It is

easy to see, using 2.4, that θ is regular in M. By acceptability, M|θ satisfies
“every set is the surjective image of R”. We can conclude then that the
structure M|θ is admissible.

It is easy to show, without using the axiom of choice, that for λ > 1, λ is an
R-cardinal iff λ is a cardinal and λ ≥ Θ. Thus if ~E is R-acceptable at α, then
J

~E
α (R) satisfies: “whenever κ ≥ Θ and κ+ exists, then P (J

~E
κ (R)) ⊆ J

~E
κ+(R)”.

Definition 2.6 Let X be transitive; then a fine extender sequence over X is
a sequence ~E such that for each α ∈ dom( ~E), ~E is X-acceptable at α, and

either Eα = ∅ or Eα is a (κ, α) pre-extender over J
~E
α (X) for some κ such

that J
~E
α (X) |= P (J

~E
κ (X)) exists, and Eα is (J

~E
α (X), X)-complete, and: Eα

satisfies clauses (1), (2), and (3) of definition 2.4 of [9].

Of course, definition 2.4 of [9] was formulated there for the case X = ∅,
but it is now easy to see what its clauses should mean in the general case.

Definition 2.7 A potential premouse over X (or X-ppm) is a structure

of the form J
~E
α (X), where ~E is a fine extender sequence over X. If M =

J
~E
α (X) is an X-ppm, we write JM

β , or simply M|β, for the structure J
~E
β (X).

We say N is an initial segment of M, and write N E M, iff N = M|β for
some β.

Active potential premice are in general not amenable structures, but we
can code an active X-ppm M by an amenable structure C0(M). That in-
volves replacing the last extender F = ḞM with F ↾ ν(F ) in the case ν(F )
(the sup of the generators of F ) is a limit ordinal, and with a certain pred-
icate F ∗ coding the fragments of F in the case ν(F ) is a successor ordinal.
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The details are given in [9, 2.11]. The “Σ0-code” C0(M) is also a structure
for the language L∗, and it really this interpretation of L∗ which is of impor-
tance in what follows. Whenever we speak of definability over a ppm M, we
shall in reality mean definabilty over C0(M).

2.2 Cores, Projecta, Soundness

These notions carry over routinely to X-ppm. One need only remember that
X ∪{X} is contained in all cores of X-ppm. For example, we define the first
projectum, standard parameter, and core of an X-ppm M by3:

ρ1(M) = least α such that for some boldface Σ
C0(M)
1 set A,

A ⊆ M|α and A 6∈ M,

p1(M) = least p ∈ [o(M)]<ω such that there is an

A ⊆ M|ρ1(M) s.t. A is Σ
C0(M)
1 in p but A 6∈ M,

C1(M) = Σ1 Skolem hull of M generated by M|ρ1(M) ∪ p1(M).

Here we order finite sets of ordinals by listing their elements in decreasing
order, and comparing the resulting finite sequences lexicographically. It is
possible that M|ρ1(M) = M; if this is not the case, then ρ1(M) is an X-
cardinal of M. In the case ρ1(M) = 1, we shall generally write ρ1(M) = X

instead. The core C1(M) is taken to be transitive, and a structure for the
language of X-ppm, and so taken, it is in fact an X-ppm.

The definitions of solidity and universality for the standard parame-
ter go over to X-ppm in the obvious way. We say p1(M) is universal if
P (M|ρ1(M)) ∩M ⊆ C1(M). We say p = p1(M) is solid if for each α ∈ p,
letting b be the set of Σ1 sentences in our expanded language augmented
further by names for all elements of (p \ (α + 1)) ∪ α which are true in M,
we have b ∈ M. We call such b the solidity witnesses for p1(M). If p1(M) is
solid and universal, we go on to define ρ2(M), p2(M), and C2(M); the reader
should consult [5] for all further details here regarding the ρn(M), pn(M),
and Cn(M) for n > 1. In this paper, when we need to go into fine-structural
details, we shall stick to the representative case n = 1.

3Here and elsewhere, we write M for the universe of the structure M, if no confusion
can come from doing so.
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Definition 2.8 An X-ppm M is n-solid iff Cn(M) exists, and pn(Cn(M)
is solid and universal. M is n-sound iff M is n-solid, and M = Cn(M).
M is an X-premouse iff every proper initial segment of M is ω-sound (i.e.,
n-sound for all n < ω).

2.3 Ultrapowers, Iteration Trees

It is easy to adapt the material of [5, §4, §5], or [9, §2, §3], to X-premice.
The definitions make sense, and the theorems continue to hold true, if one
replaces “premouse” with “X-premouse” everywhere. The following propo-
sitions summarize some of the basic facts:

Proposition 2.9 Let M be an n-sound premouse over X, and let E be an
extender over M which is (M, X)-complete; then

1. For any generalized rΣn formula ϕ, functions fi definable over M from
parameters using Σn Skolem terms τi ∈ Skn, and a ∈ [lh(E)]<ω such
that dom(fi) = [crit(E)]|a| for all i, we have

ultn(M, E) |= ϕ[[a, f0], ..., [a, fk]] ⇔ for Eaa.e.u,M |= ϕ[f0(u), ..., fk(u)].

2. The canonical embedding iME from M to ultn(M, E) is an n-embedding.

3. Suppose also E is close to M, ρn+1(M) ≤ crit(E), and pn+1(M) is
solid and universal; then

ρn+1(M) = ρn+1(ultn(M, E)),

and
iME (pn+1(M)) = pn+1(ultn(M, E)),

and pn+1(ultn(M, E)) is solid and universal.

Here the ultrapower ult0(M, E) is formed using the functions fi ∈ M.
Thus we have already proved the n = 0 case of (1) of 2.9. There are no new
ideas in the rest of the proof.

Proposition 2.10 Suppose T is an n-maximal iteration tree on the n-sound
X-premouse M, and that αTβ and DT ∩ (α, β]T = ∅; then the canonical
embedding iTα,β ◦ i

∗
α from M∗

α to MT
β is a k-embedding, where k = degT (β).

Moreover, if crit(i∗α) ≥ ρk+1(M
∗
α), then iTα,β ◦ i

∗(pk+1(M
∗
α)) = pk+1(M

T
β ).
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The notions of [5] and [9] associated with iterability relativise to X-
premice in an obvious way.

Definition 2.11 Let M be a k-sound X-premouse; then we say M is count-
ably k-iterable iff whenever M̄ is a countable X̄-premouse, and there is a
π:M̄ → M which is fully L∗-elementary, then M̄ is (k, ω1 +1)-iterable. We
say M is countably iterable just in case it is countably ω-iterable.

The comparison process yields

Theorem 2.12 Let M and N be X-premice. and suppose that M is m+1-
sound and countably m-iterable, where ρm+1(M) = X, and N is n + 1-
sound and countably n-iterable, where ρn+1(N ) = X; then either M E N or
N E M.

We can therefore define

Definition 2.13 For any transitive set X, K(X) is the unique X premouse
M whose proper initial segments are precisely all those countably iterable
X-premice N such that ρω(N ) = X.

3 Some local HOD’s

Our analysis of scales proceeds by getting optimal closed game representa-
tions. In the relevant closed game, player I attempts to verify that a given
R-mouse M satisfies ϕ(x), where ϕ is Σ1 and x ∈ R. He does so by describ-
ing an Ṙ

N -premouse N satisfying ϕ(x); one can think of him as claiming
that his N is an elementary submodel of M. Player II helps keep I honest
about this by playing reals which I must then put into N . In order to ensure
that I is indeed being honest about what is true in M, we must ask him in
addition to verify that his N is iterable. Of course, the obvious way to verify
this is to play an elementary π:N → M, but this leads to a payoff condition
for I which is not closed in the appropriate topology. 4 Our main new idea

4I may play reals as well as ordinals in our game, and the elements of ran(π) can be
coded by pairs 〈x, α〉 where x ∈ R and α ∈ OR. However, the elementarity requirement
on π would not be closed in the appropriate topology on (OR×R)ω, which is the product
of ω copies of the discrete topology on OR and the Baire (not discrete) topology on R.
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here is just that I can verify iterability by elementarily embedding HODN

into HODM. The key here is that HODM is definably wellordered 5, so that
the embedding is essentially an ω-sequence of ordinals, and the elementarity
condition is closed in the appropriate topology.

We must consider here iterations of N involving Σn-ultrapowers of the
form ultn. We shall reduce such ultrapowers to Σn-ultrapowers of HODN ,
and to do so we need a fine-structure theory for HODN . Fortunately, we
can restrict ourselves to N satisfying “Θ exists”, and be content with a fine-
structural analysis of HODN above ΘN : that is, a representation of HODN

as an X-mouse, for some X ⊆ ΘN . Now in the case N = L(R), the following
theorem of Woodin does the job:

Theorem 3.1 (Woodin) There is a partial order P on ΘL(R) such that

HODL(R) = L(P ),

and moreover L(R) is an inner model of a P -generic extension of HODL(R).

Here P is a modification of the Vopenka partial order designed to add a
generic enumeration of R.

We shall extend Woodin’s argument so as to show that if M is an R-
premouse satisfying “Θ exists”, then there is a P ⊆ ΘM such that HODM

is the universe of a P -premouse H. The main new thing here is to show
that the projecta and standard parameters of levels of H match those of the
corresponding levels of M, and indeed establish level-by-level intertranslata-
bility of the theories of initial segments of H and M respectively. This we
get from the fact that M is a symmetric6 inner model of a P -extension of
H, using the level-by-level definability of forcing.

In turning to the details, it will be convenient to replace P with a su-
perficially more powerful set. Let us fix for the remainder of this section an
R

M-premouse M such that

• M |= “Θ exists”.

5The definition which guarantees a set is in HODM must use the language L∗ of
premice. Ė and Ḟ are allowed, but names for individual reals are not! Further, this
definition must be interpreted over some proper initial segment of M; there may be sets
of ordinals in M which are definable over M itself, yet not in HODM.

6We shall explain the meaning of this shortly.
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We set θ = ΘM, and we also fix an n0 < ω such that

• M is n0-sound and ρn0(M) ≥ θ.

Finally, letting o(M) = ωγ0, we assume that

• for all 〈ξ, k〉 <lex 〈γ0, n0〉, M|ξ is countably k-iterable. 7

We get a certain amount of condensation from these assumptions.

Lemma 3.2 For any ξ < γ0,

HM|ξ
1 (RM) ∼= M|τ

for some τ < θ.

In fact, if 〈ξ, k〉 ≤lex 〈γ0, n0〉 and k ≥ 1, then for any finite F ⊆ ωξ,

H
M|ξ
k (RM ∪F ) ∈ M|θ, since the theory of the hull is in M|θ, and the latter

is an admissible structure. However, HM|ξ
k (RM ∪ F ) may not be sound, and

hence may not be of the form M|τ .

Corollary 3.3 M|θ is a Σ1-elementary submodel of (J Ė
M

γ0
,∈, ĖM ↾ γ0, ∅).

Set
TM = {〈ϕ, ~α〉 | ~α ∈ θ<ω and M|θ |= ϕ[~α]}.

Since θ is a cardinal in M, we can use Gödel’s pairing function to identify
TM with a subset of θ. Letting ωη = o(M), we have that

HODM|θ ∩ Vθ = Jη(T
M) ∩ Vθ.

Since M|θ is a Σ1-elementary submodel of M with its last extender removed,
we have

HODM ∩ Vθ = Jη(T
M) ∩ Vθ.

We can construct a TM-premouse whose universe is the whole of HODM

by simply constructing from TM together with the extenders from the M-
sequence having critical points above θ. More precisely, letting

M = J
~E
γ0

(RM),

7The analysis of HODM we are developing will be used to show that M is countably
n0-iterable, given that HODM is.
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we define an appropriate sequence ~F over θ ∪ {TM} by setting

Fα = Eθ+α ∩ J
~F↾α
α (θ ∪ {TM})

for all α such that θ + α ≤ γ0. It is not hard to see that the sequence ~F

is indeed appropriate for θ ∪ {TM}; the main point is that crit(Eθ+α) >
ΘM|(θ+α) = θ, which implies that Fα is sufficiently complete. We set

Hα = J
~F
α (θ ∪ {TM}),

for all α such that θ + α ≤ γ0.
It will be convenient to ignore the Hα for small α. Therefore, we add to

our assumptions on M that there is some λ ≤ γ0 such that M|λ |= ZF, and
let

λ0 = least λ such that M|λ |= ZF.

Notice that our new assumption on M holds if some Eθ+α 6= ∅, and in this
case crit(Eθ+α) > λ0. Since in our closed game representation we only need
the Hα to “verify” extenders from the M-sequence with index above θ, we
can afford to ignore Hα except when λ0 exists and λ0 ≤ θ + α. Note that
θ + α = α for the α we do not ignore, so that we are already rewarded for
our ignorance. We set

H = Hγ0 .

We shall show that for α ≥ λ0, Hα is a TM-premouse and M|α is an
inner model of a generic extension of Hα.

8 The relevant partial order is the
same Vopenka-like partial order used by Woodin.

Let us work in M for a while. Fix a bijection π: θ → O, where O is the
collection of all subsets of R

n = {s | s:n → R} which are definable from
ordinal parameters over M|θ. We choose π so that it is definable over M|θ.
We write A∗ for π(A) henceforth. Let

A ∈ Vopn ⇔ ∃n < ω(A∗ ⊆ R
n ∧A∗ 6= ∅),

and
A ∈ Vopω ⇔ ∃n < ω(A ∈ Vopn).

8The first assertion is true for smaller α as well.
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For A in Vopω, we write s(A) for the unique n < ω such that A ∈ Vopn. For
A,B ∈ Vopω, we put

A ≤v B ⇔ s(B) ≤ s(A) ∧ ∀s ∈ A∗(s ↾ s(B) ∈ B∗).

We also use Vopω to denote the partial order (Vopω,≤
v). Clearly, Vopω is

coded into TM in a simple way, and hence Vopω ∈ H|2.
The standard Vopenka argument shows that for any n < ω, Vopn is a

complete Boolean algebra in H, and each s ∈ R
n determines an H-generic

filter Gs = {A ∈ V pn | s ∈ A} on Vopn.
9 It is easy to see that the inclusion

map is a complete embedding of Vopn into Vopω. Motivated by this, we
define for h:ω → R and A ∈ Vopω:

A ∈ Gh ⇔ h ↾ s(A) ∈ A∗.

Lemma 3.4 If h is M-generic over Col(ω,R), then Gh is H-generic over
Vopω.

Proof. Let D be dense in Vopω, and D ∈ M. Let s ∈ R
n be a condition

in Col(ω,R). It will be enough to find a t extending s in Col(ω,R) such that
Gt ∩ D 6= ∅. Let

X = {u ∈ R
n | ∃B ∈ D∃t(u ⊆ t ∧ t ∈ B∗}.

We want to see s ∈ X, so it will be enough to see X = R
n. Suppose not;

then since X is clearly OD in M, there is an A ∈ Vopn such that

A∗ = R
n \X.

Since D is dense, we can find B ∈ D such that B ≤ A. But now pick any
t ∈ B, and it is clear that t ↾ n ∈ X, a contradiction. 2

We can recover h from Gh in a simple way. For b ∈ Vω and n < ω, let
Ab,n ∈ V pn+1 be such that A∗

b,n = {s ∈ R
n+1 | b ∈ s(n)}. We assume that

the map 〈b, n〉 7→ Ab,n is definable over Mθ, and hence in H, as any natural
such map will be.10 Then clearly,

b ∈ h(n) ⇔ Ab,n ∈ Gh.

9Note that any subset of R which is ODM is actually ODM|θ, since M|θ is a Σ1

elementary submodel of M.
10The ∗ map is one-one on the separative quotient of Vopω, so the question as to what

to choose for Ab,n disappears if we replace Vopω with its separative quotient.
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We define Vopω-terms for the h(n) and ran(h) by

σn = {〈A, b̌〉 | A ≤v Ab,n},

and
Ṙ = {〈A, σn〉 | A ∈ Vopω ∧ n < ω}.

These terms are of course in H. It is easy to see

Lemma 3.5 1. For any h:ω → R, σGhn = h(n) for all n, and ṘGh =
ran(h).

2. If h is M-generic for Col(ω,RM), then ṘGh = R
M.

3. For any condition A ∈ Vopω, there is an H-generic filter G on Vopω
such that A ∈ G and ṘG = R

M.

By 3.5, truth in H(RM) can be reduced to truth in H via the forcing
relation for Vopω. In order to see that H(RM) determines M we need to

know that the extenders on ~F generate the corresponding extenders on ~E.
For this, we need that the forcing relation for Vopω is locally definable. We
also need this local definability to show that the reduction of M-truth to
H-truth is local, and thereby that H is a TM-premouse.

We shall use the usual Shoenfield terms for our forcing language. Besides
these terms, the language of forcing over an amenable structure

(JAξ (X),∈, A,X,B)

has ∈,=, a constant symbol Ṙ for X, and predicate symbols Ė and Ḟ for A
and B. A filter G over a poset P ∈ JAξ (X) is generic over this structure just
in case it meets all P-dense sets D ∈ JAξ (X). We let JAξ (X)[G] = {τG | τ ∈
JAξ (X)} be the set of G-interpretations of terms, and say

p 
 ϕ⇔ ∀G(G is generic over JAξ (X) ⇒ (JAξ (X)[G],∈, A,X,B) |= ϕ).

We use SAα (X) for the αth level of Jensen’s S-hierarchy on JAξ (X). Let
Σ0,n be the collection of Σ0 sentences of the forcing language containing at
most n bounded quantifiers.
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Lemma 3.6 Let (JAξ (X),∈, B) be amenable, and let P be a poset, with P ∈
JAν (X), where ν < ξ and JAν (X) |= ZFC. For ν ≤ α < ωξ, let

Fα,n = {〈p, ϕ〉 | p ∈ P ∧ ϕ ∈ (Σ0,n ∩ S
A
α (X)) ∧ p 
 ϕ}.

Then

1. ∀α < ωξ∀n < ω(Fα,n ∈ JAξ (X)); moreover the function 〈α, n〉 7→ Fα,n

is Σ
(JA
ξ

(X),∈,A,X,B)

1 in the parameter P (uniformly in ξ).

2. If (JAξ (X)[G],∈, A,X,B) |= ϕ, where ϕ is Σ0 and G is generic over
JAξ (X), then ∃p ∈ G(p 
 ϕ).

A proof of 3.6 can be organized as follows. Let F ∗
α,n = {〈p, ϕ〉 ∈ Fα,n |

Ḟ does not occur in ϕ}. One first proves the lemma with F ∗
α,n replacing Fα,n.

This amounts to observing that the standard inductive definition of forcing
for Σ0 sentences is a “local Σ0-recursion” of the same sort that defines the
function α 7→ SAα (X) itself in a Σ1 way over (JAξ (X),∈, A,X). Of course,
one needs that everything true is forced to verify that the inductive definition
works. The reason for restricting ourselves to α ≥ ν is that we need a starting
point for the induction, and when α = ν, 3.6 literally is a standard basic
forcing lemma.11 Finally, one can show that Fα,0 is uniformly rudimentary
in 〈F ∗

α,0, B ∩ SAα (X)〉 (since p 
 Ḟ (τ ) ⇔ ∀q ≤ p∃r ≤ q∃x ∈ B(r 
 τ = x̌)).
Also, Fα,n+1 is uniformly rudimentary in Fα,n. This completes our psuedo-
proof of 3.6.

As a consequence of 3.6, we get the level-by-level adequacy of the Shoen-
field terms:

Lemma 3.7 Let G be H-generic over Vopω; then for all ξ such that λ0 ≤

ξ ≤ γ0, J
~F
ξ (TM)[G] = J

~F
ξ (〈TM, G〉).

If G is a Vopenka-generic over H such that ṘG = R
M, then H[G] can

recover M:

Lemma 3.8 If G is Vopω-generic over H, ṘM = R
M, and λ0 ≤ ξ ≤ γ0,

then M|ξ is ∆1-definable over Hξ[G] from the parameter G; moreover, this
definition is uniform in such G and ξ.

11For small α, we have the problem that there may be sentences in SA
α (X) involving

terms of rank greater than α.
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Proof. (Sketch.) For ξ = λ0 this is clear. In general, what we need
to see is that if Fξ 6= ∅, then Fξ determines the corresponding extender Eξ

on the M-sequence in a ∆
Hξ[G]
1 way. We may assume by induction that

J
~E
ξ (RM) ⊆ Hξ[G]. Since Vopω has cardinality strictly less than crit(Fξ) in

Hξ, Fξ lifts to an extender F ∗ over J
~E
ξ (RM) defined by: for a ∈ [lh(Fξ)]

<ω

and Z ⊆ [crit(Fξ)]
|a| such that Z ∈ J

~E
ξ (RM),

Z ∈ F ∗
a ⇔ ∃Y (Y ∈ (Fξ)a ∧ Y ⊆ Z).

Clearly, any extender over J
~E
ξ (RM) whose restriction to sets in Hξ is Fξ must

then be equal to F ∗. Thus Eξ = F ∗, and hence Eξ is ∆1 over Hξ[G] in the
parameter G. The uniformity in ξ and G is obvious upon inspection of the
definition we have given. (The uniformity is needed to pass through limit
stages.) 2

Theorem 3.9 H is a TM-premouse; moreover for all k ≤ n0, H is k-sound,
ρk(H) = ρk(M), and pk(H) = pk(M) \ {θ}.

Proof. We show by induction on ξ such that λ0 ≤ ξ ≤ γ0, that Hξ is a
TM-premouse, and if 0 ≤ k ≤ ω, and k ≤ n0 if ξ = γ0, then Hξ is k-sound,
ρk(Hξ) = ρk(M|ξ), and pk(Hξ) = pk(M|ξ).

This is clear for ξ = λ0. Now let ξ > λ0. We first show that Hξ is a
premouse. Since all proper initial segments of Hξ are ω-sound TM-premice
by our induction hypotheses, it suffices to show that Hξ is a TM-ppm. If
Fξ = ∅, this is trivial, so assume Fξ = Eξ ∩Hξ where Eξ is an extender over

M|ξ. We must verify that ~F has the properties of a fine extender sequence at
ξ, that is, that it satisfies clauses (1)-(3) of definition 2.4 in [9]. Let us write
F = Fξ and E = Eξ. Notice that ξ = lh(F ) = lh(E) = o(M|ξ) = o(Hξ). Set
κ = crit(F ) = crit(E).

Claim 1. If a ∈ [ξ]<ω and f ∈ M|ξ and f : [κ]|a| → Hξ, then there is a Z ∈ Fa
such that f ↾ Z ∈ Hξ.

Proof. We need to take a little care with the standard argument because
Fa 6∈ M is possible. Note that by 2.4, f is definable over some M|γ, where
γ < ξ, from ordinals and a real x0. We can therefore fix a term ḟ in Hξ such
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that whenever h is M-generic over Col(ω,R), and G = Gh is the associated
Vopenka generic, then ḟG = f . We claim there is an A ∈ Vopω such that

for Fa a.e. u, ∃η(A 
 ḟ(u) = η,

and
∃s ∈ A∗(s(0) = x0).

If not, then for each A ∈ Vopω such that ∃s ∈ A∗(s(0) = x0), the set ZA
of all u ∈ [κ]|a| such that A forces no value for ḟ(u) is in Fa. The local
definability of Vopenka forcing implies that the function A 7→ ZA is in M
(in fact, in Hξ). But F is (M,R)-complete, and hence we have a u such that
u ∈ ZA whenever ZA is defined. Now let h be M-generic over Col(ω,R) with
h(0) = x0. Then ∃A ∈ Gh∃η(A 
 ḟ(u) = η), so ZA is defined and u 6∈ ZA, a
contradiction.

Now let A be as in our claim, and let Z be the set of all u such that
∃ηA 
 ḟ (u) = η. It is clear that f ↾ Z can be computed inside Hξ from
A, ḟ , and the forcing relation. (Note that there is an M-generic h such that
h(0) = x0 and A ∈ Gh.)

2

Claim 2. F and E have the same generators.

Proof. If η < lh(F ) is not a generator of F , then there is an f ∈ Hξ and
finite a ⊆ η such that f(u) = v for (F )a∪{η}-a.e. u∪{v}. Since f ∈ M|ξ and
F ⊆ E, this means that η is not a generator of E. Conversely, if η is not a
generator of E, as witnessed by f ∈ Mξ and a ⊆ η finite, then we can apply
claim 1 to see that η is not a generator of F . 2

Claim 3. For all θ ≤ η < ξ, η is a cardinal of Hξ iff η is a cardinal of M|ξ.

Proof. If η is a cardinal of M|ξ, then η is a cardinal of the smaller model
Hξ. If η > θ is a cardinal of Hξ and G is Vopω-generic over Hξ, then η is a
cardinal of Hξ[G]. Choosing G so that ṘG = R

M, we see that η is a cardinal
of M|ξ. For η = θ, we have that η is a cardinal of both models. 2

We can now verify the first clause in the definition of fine extender se-
quences, that ξ = ν(F )+ in ult(Hξ, F ). We have ν(F ) = ν(E) by claim 2,

and ξ = ν(E)+ in ult(M|ξ, E) because ~E is a fine extender sequence. Letting
iE:M|ξ → ult(M|ξ, E) be the canonical embedding, we have ult(Hξ, F ) =
iE(Hξ) by our first claim.12 By claim 3 and the elementarity of iE, ult(M|ξ, E)

12Where iE(Hξ) is the “union” of the iE(Hη) for η < ξ.
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has the same cardinals as iE(Hξ), so ξ = ν(E)+ in iE(Hξ). Thus ξ = ν(F )+

in ult(Hξ, F ), as desired.

To verify clause 2, coherence, notice that iE(~F ) ↾ ξ = F ↾ ξ by coherence

for the ~E sequence and the fact that the Fα are uniformly locally definable
from the Eα. Since by claim 1, iF (~F ) = iE(~F ), we are done.

The initial segment condition for E easily implies the initial segment
condition for F ; we leave the details to the reader. We have therefore shown
that Hξ is a TM-premouse.

We now show by induction on k such that k ≤ n0 if ξ = γ0 that ρk(Hξ) =
ρk(M|ξ), pk(Hξ) = pk(M|ξ)\{θ}, and Hξ is k-sound. This is trivial if k = 0.
Let us first consider the case k = 1.

The key is that the Σ1 theories (in the language L∗) of Hξ and M|ξ are
intertranslatable. First, let us translate the Σ1 theory of Hξ into that of M|ξ.
Here we shall expand the latter theory by allowing a name for θ; notice that
TM is Σ1-definable over M|ξ from the parameter θ. We can then see that
the universe of Hξ, together with the interpretations of Ė and Ḟ in Hξ, are
∆1-definable over M|ξ from θ. Clearly µ̇Hξ = µ̇M|ξ = κ, and ν̇Hξ = ν̇M|ξ by
claim 2 above. We leave it to the reader to show that γ̇Hξ is Σ1-definable over
M|ξ from θ; this is a bit of a mess because of the “one ultrapower away” case
in the initial segment condition, but otherwise routine.13 These calculations
constitute a proof of:

Claim 4. There is a recursive map ϕ(v1, ..., vn) 7→ ϕ∗(v0, v1, ..., vn) associating
to each Σ1 formula of L∗ a Σ1 formula of L∗ with one additional free variable,
such that for all ϕ(v1, ..., vn) and a1, ..., an,

Hξ |= ϕ[a1, ..., an] ⇔ M|ξ |= ϕ∗[θ, a1, ..., an].

We translate in the other direction using the strong forcing relation for Σ1

formulae and 3.6. Let L∗∗ be the sublanguage of L∗ with symbols ∈,=, Ė, Ḟ .
If

ϕ(v1, ..., vn) = ∃u1...∃ukψ(u1, .., uk, v1, ..., vn)

where ψ is a Σ0 formula of L∗∗, then for p ∈ Vopω and τ1, ..., τn Shoenfield

13E and F fall under the same case in the initial segment condition, and γ̇Hξ = γ̇M|ξ

unless E and F are type II, and their last initial segments are an ultrapower away from
the corresponding sequence.
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terms, we put

p
s


 ϕ(τ1, ..., τn) ⇔ ∃r1...∃rk(p 
 ψ(r1, ..., rk, τ1, ..., τn)).

Now ifG is generic over Hξ for Vopω and ṘG = R
M, then the universe of M|ξ

is ∆1 definable over Hξ[G] from ṘG; moreover, the interpretations in M|ξ of
the symbols of L∗ are ∆1 definable over Hξ[G] from their interpretations in
Hξ.

14 Since strong forcing equals truth, we get

Claim 5. There is a recursive map ϕ(v1, ..., vn) 7→ ϕ†(w, x, y, z, v1, ..., vn)
associating to each Σ1 formula of L∗ a Σ1 formula of L∗∗ with four additional
free variables, such that whenever G is generic over Hξ for Vopω and ṘG =
R

M, and τ1, ..., τn are Shoenfield terms, then

M|ξ |= ϕ[τG1 , ..., τ
G
n ]

if and only if

∃p∃w, x, y(p ∈ G ∧ 〈x, y, z〉 = 〈γ̇Hξ , µ̇Hξ , ν̇Hξ〉 ∧ p
s


 ϕ†(Ṙ, x̌, y̌, ž, τ1, ..., τn)).

These translations give

Claim 6. ρ1(Hξ) = ρ1(M|ξ).

Proof. We first show ρ1(Hξ) ≥ ρ1(M|ξ). This follows at once from

Subclaim 6.1 Let S ⊆ Hξ be Σ
M|ξ
1 -definable from parameters in Hξ, and

suppose S ∈ M|ξ; then S ∈ Hξ.

Proof. We may as well assume S is a set of ordinals; say S ⊆ ρ < ωξ. By 2.4

we can fix a real x0 and an ordinal δ such that S = h
~E,RM

ξ (δ, x0). Now for y
a real, let

y ∈ Ø ↔ ∃η ∈ S∃Z(Z = h
~E,RM

ξ (δ, y) ∧ η 6∈ Z).

Since S is Σ
M|ξ
1 in parameters from Hξ, O is Σ

M|ξ
1 in ordinal parameters,

so by 3.2, O is ordinal definable over M|θ. Hence there is a condition r ∈
Vop1 such that r∗ = R

M \O. Notice that x0 ∈ r∗.

14Our previous comments regarding γ̇ apply here too.
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Let ϕh be a Σ1 formula defining h
~E,RM

ξ over M|ξ. Let α < ωξ be large
enough that

(S
~E
α (RM),∈, ~E ↾ α∗) |= ϕh[δ, x0, S],

where α∗ is largest such that ωα∗ ≤ α. By the proof of 3.8, we can fix a term
τ ∈ Hξ such that whenever G is Vopω-generic over Hξ and ṘG = R

M, then

τG = (S
~E
α (RM),∈, ~E ↾ α∗).

Subclaim 6.1.1. For any η < ρ

η 6∈ S ⇔ ∃p ≤v r(p 
 [τ |= (ϕh(δ̌, σ0, Z) ∧ η̌ 6∈ Z)]).

Proof. Assume η 6∈ S. Let f :ω
onto
→ R

M be M-generic over Col(ω,RM),

with f(0) = x0. It follows that r ∈ Gf , τ
Gf = (S

~E
α (RM),∈, ~E ↾ α∗), and

σ
Gf
0 = x0. But then τGf |= ∃Z(ϕh[δ, σ

Gf
0 , Z] ∧ η 6∈ Z), since S is in fact the

unique such Z. Hence we have some p ∈ Gf forcing this fact, and we may as
well take p ≤v r, so that p witnesses the right hand side of our equivalence.

Conversely, let p be as on the right hand side of our equivalence. By 3.5,

we can find and f :ω
onto
→ R

M which is M-generic over Col(ω,RM) such that

p ∈ Gf . Then τGf = (S
~E
α (RM), and what’s forced by p is true in the generic

extension, so (S
~E
α (RM) |= ∃Z(ϕh[δ, σ

Gf
0 , Z] ∧ η 6∈ Z). If η ∈ S, this implies

σ
Gf
0 ∈ O by the defintion of O; however, σ

Gf
0 = f(0) ∈ r∗ = ¬O because

r ∈ Gf . Thus η 6∈ S, as desired. 2

From 6.1.1 and the definability of the forcing relation for Σ0 sentences
given by 3.6, we get that that S ∈ Hξ. This yields 6.1. 2

Now let S ⊆ ρ1(Hξ) be boldface Σ
Hξ

1 but not in Hξ. By claim 4 and
subclaim 6.1, S 6∈ M|ξ, and this implies ρ1(M|ξ) ≤ ρ1(Hξ).

We now show ρ1(Hξ) ≤ ρ1(M|ξ). Let S ⊆ (RM × ρ) be boldface Σ
M|ξ
1

but not a member of M|ξ, where ρ = ρ1(M|ξ). Let

〈x, η〉 ∈ S ⇔ M|ξ |= ϕ[x, η, y, β],

where y ∈ R
M and β < ωξ are fixed parameters. Now consider the strong

forcing relation:

〈p, η〉 ∈ F ⇔ (p ∈ Vopω ∧ p
s


 ϕ(σ0, η̌, σ1, β̌)).
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F is Σ
Hξ

1 by 3.6, and a subset of θ × ρ. Since θ ≤ ρ, we will be done if we
show F 6∈ Hξ. In fact, F 6∈ M|ξ, for

〈x, η〉 ∈ S ⇔ ∃p[〈p, η〉 ∈ F ∧ (∃s ∈ p∗(s(0) = x ∧ s(1) = y)],

so that if F ∈ M|ξ, then S ∈ M|ξ. Both directions of the equivalence
displayed are proved by considering Vopenka generics of the form Gf , where
f is Col(ω,RM) generic over M|ξ and f(0) = x and f(1) = y. We leave the
rest to the reader. This proves claim 6. 2

Claim 7. p1(Hξ) = p1(M|ξ) \ {θ}.

Proof. The proof of claim 6 actually shows that for any finite F ⊆ ωξ and
any α such that θ < α,

Th
Hξ

1 (α ∪ F ) ∈ Hξ ⇔ Th
M|ξ
1 (RM ∪ α ∪ F ) ∈ M|ξ,

where ThP
1 (X) denotes the Σ1-theory in P of parameters in X. Letting

p1(Hξ) = 〈α0, ..., αn〉,

we have by the solidity of p1(Hξ) that for i ≤ n,

αi = least β s.t. Th
Hξ

1 (β ∪ {α0, ..., alphai−1}) 6∈ Hξ.

Using the equivalence displayed above and the solidity of p1(M|ξ), we then

get by induction on i that αi is the ith member of p1(M|ξ). Thus p1(Hξ) ⊆
p1(M|ξ) \ {θ}. (Note that θ 6∈ p1(Hξ), since θ is easily definable over Hξ.)
A similar argument shows p1(Mξ) \ {θ} ⊆ p1(Hξ). 2

Claim 8. Hξ is 1-sound.

Proof. Let η < ωξ; we must show η is Σ
Hξ

1 -definable, as a point, from
parameters in ρ∪p, where ρ = ρ1(Hξ) and p = p1(Hξ). Since M|ξ is 1-sound,
we can find a finite F ⊆ ρ∪p and a real x and a Σ1 formula ϕ(t, u, v, w) such
that

η = unique β s.t. M|ξ |= ϕ[x, F, θ, β].

We may assume that ϕ has been “uniformised”, so that over any premouse it
defines the graph of a partial function of its first three variables. Now, letting
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f be Col(ω,RM)-generic over M|ξ with f(0) = x, we can find a A ∈ Gf such
that

A
s


 ϕ(σ0, F̌ , θ̌, η̌).

Since ϕ has been uniformised, this gives us a Σ
Hξ

1 definition of η from A, σ0, F,

and θ. But A < θ, and σ0 ⊆ θ is coded into TM in a simple way. Thus η is

Σ
Hξ

1 definable from F , as desired. 2

This finishes the k = 1 case in our induction on 〈ξ, k〉. The case k > 1 can
be handled quite similarly, using the master code structures. For example,
let P = (J

~F
ρ (TM),∈, ~F ↾ ρ, A) and Q = (J

~E
ρ (RM),∈, ~E ↾ ρ,B) be the first

master code structures of Hξ and M|ξ respectively. The arguments above
show that α 7→ A∩α is ∆Q

1 and total on Q, and this can be used to show as
above that ρ1(Q) ≤ ρ1(P), that is, ρ2(M|ξ) ≤ ρ2(Hξ). In the other direction,

one can show that Q is ∆
P [G]
1 , uniformly in all Vopenka-generic G such that

ṘG = R
M (as in 3.8), and using the definability of forcing over P given by

3.6, this implies ρ1(P) ≤ ρ1(Q), that is ρ2(Hξ) ≤ ρ2(M|ξ). We leave the
remaining details to the reader.

This completes the proof of 3.9 2

If M is a model of ZFC minus the powerset axiom, and H is the TM-
premouse we have defined above, then it is easy to see that the universe of H
is just HODM. Indeed, H ⊆ HODM is clear, and HODM ⊆ H follows at once
from subclaim 6.1. In general, for arbitrary M satisfying the assumptions
behind 3.9,

x ∈ H ⇔ ∃α(ωα < o(M) ∧ ∀y ∈ TC(x) ∪ {x}(y ∈ ODM|α).

It is therefore tempting to write H = HODM in general, as this would be
a reasonable general meaning for HODM. However, we shall stick to

H = H(M) = HM.

Finally, we come to the main reason we have isolated H.

Theorem 3.10 Let M be n0-sound R
M-premouse, and satisfy “Θ exists”.

Suppose ρn0(M) ≥ ΘM, and M|λ |= ZF, for some λ ≥ ΘM. Finally, suppose

M|ξ is countably k-iterable, for all 〈ξ, k〉 <lex 〈γ0, n0〉 such that ΘM ≤ ξ,
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where γ0 is such that ωγ0 = o(M). Then, letting H = H(M), we have for
all τ

H is (n0, τ )-iterable ⇒ M is (n0, τ )-iterable above ΘM.

Proof.(Sketch) Let Σ be an (n0, τ )-iteration strategy for H. We define an
(n0, τ )-iteration strategy Γ for M which operates on trees all of whose exten-
ders have critical points above ΘM. Given such a tree T played according to
Γ, the construction insures that there is a tree T ∗ on H which is according
to Σ with the same tree order, drop, and degree structure as T , and such
that

• T ∗ is according to Σ,

• MT ∗

α = H(MT
α ), for all α < lh(T ), and

• ET ∗

α = ET
α ∩MT ∗

α .

Because MT
α is an inner model of a generic extension of MT ∗

α via a poset
(i.e. VopH

ω of size ΘM, these conditions imply that

• iT
∗

α,β = iTα,β ↾ MT ∗

α .

Given that T has limit length < τ , and we have a T ∗ as above, we simply
define Γ(T ) = Σ(T ∗). Setting b = Γ(T ), it is routine to verify that the
b-extensions of T and T ∗ satisfy the conditions above. The main point is
that for α ∈ b sufficiently large,

MT ∗

b = iT
∗

α,b(M
T ∗

α ) = iTα,b(H(MT
α )) = H(MT

b ),

where we have applied the embeddings to classes of their domain models in
the usual way.

It is also clear that the existence of T ∗ as above propagates through
successor steps in the construction of T . This completes our sketch. 2

4 The scale property in K(R)

Using the local HOD’s of the last section to verify iterability, in the same way
that the ordinals were used to verify wellfoundedness in [7], we shall construct
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closed game representations of minimal complexity for sets in K(R). As
explained in [7], an argument due to Moschovakis ([6]) converts these closed
game representations to scales of minimal complexity. Modulo the use of the
local HOD’s to verify iterability, everything goes pretty much as it did in [7].
We shall therefore keep our notation as close as possible to that of [7], and
omit many of the details treated more carefully there.

4.1 Scales on ΣM
1 sets, for M passive

In this subsection we prove 1.1. In fact, we prove the slightly stronger

Theorem 4.1 Let M be a passive, countably iterable premouse over R
M,

and suppose M |= AD; then

M |= “the pointclass ΣM
1 has the scale property.”

It should be clear what it means for M to believe that a pointclass of
M-definable sets of reals has the scale property: the norms of the putative
scale, which are M-definable, must have the limit and lower semi-continuity
properties of a scale with respect to all sequences of reals 〈xi | i < ω〉 ∈ M.
If R

M = R and M believes that the pointclass ΣM
1 has the scale property,

then indeed ΣM
1 does have the scale property, as every ω-sequence of reals is

in M. Thus 4.1 implies 1.1.

Proof. Let us fix a passive, countably 0-iterable R
M-premouse M such that

M |= AD. We want to show that M satisfies a certain sentence, so by taking
a Skolem hull we may assume that M is countable.

For x ∈ R
M, let

P (x) ⇔ M |= ϕ0[x],

where ϕ0 is a Σ1 formula of L∗. Since M is passive, we may (and do) assume
that ϕ0 does not contain Ḟ , µ̇, ν̇, or γ̇; that is, it contains only ∈ and Ė. We
want to show that M believes that there is ΣM

1 scale on P .
Let us first assume that o(M) = ωα, where α is a limit ordinal, and deal

with the general case later. If M satisfies “Θ exists”, then set α∗ = ΘM,
and otherwise set α∗ = α. For β < α∗ and x ∈ R

M, let

P β(x) ⇔ M|β |= ϕ0[x],
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so that P =
⋃
β<α∗ P

β. Here we use 3.2 to see that the union out to α∗

suffices. 15

For each β < α∗, we will construct a closed game representation x 7→ Gβ
x

of P β. Letting

P β
k (x, u) ⇔ u is a position of length k from which

I has a winning quasi-strategy in Gβ
x ,

we shall arrange that each P
β
k ∈ M, and that the map 〈β, k〉 7→ P

β
k is ΣM

1 .
As explained in [7], Moschovakis’ argument then gives that M believes there
is a scale on P of the desired complexity.16

So let β and x be given; we want to define Gβ
x . Our plan is to force Player

I to describe a model of V = K(R) + ϕ0(x) + ∀γ(J
~E
γ (R) 6|= ϕ[x]) which

includes all the reals played by II. Player I will verify that his model is well-
founded by embedding its ordinals into ωβ, and verify his model is iterable
by embedding its local HOD’s into the local HOD’s of M|β corresponding
to them under his embedding of the ordinals.

Player I describes his model in the language L, which is L∗ together with

new constant symbols ẋi for i < ω. He uses ẋi to denote the ith real played
in the course of Gβ

x . Let us fix recursive maps

m,n: {σ | σ is an L-formula } → {2n | 1 ≤ n < ω}

which are one-one, have disjoint recursive ranges, and are such that when-
ever ẋi occurs in σ, then i < min (m(σ), n(σ)). These maps give stages
sufficiently late in Gβ

x for I to decide certain statements about his model.
Let us call an ordinal ξ of an R

P -premouse P relevant iff P|ξ satisfies “Θ

exists, and there is a λ > Θ such that J Ėλ (R) |= ZF.” That is, the relevant ξ
are just those for which, under the additional assumption that P is countably
iterable, we have have defined and proved the existence of HP

ξ . Also, “v is
relevant” is the L-formula which expresses that v is relevant viv-a-vis the
universe as P . Similarly for the L-formula “Hv exists”.

Player I’s description must extend the following L-theory T . The axioms
of T include

15We have restricted ourselves to β < α∗ for a minor technical reason connected to the
definability of “honesty”.

16Moschovakis uses the “second periodicity” method to construct scales on the P
β
k . It

is here that one needs M |= AD .
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(1) Extensionality plus V = K(R)

(2) ∀v(v is relevant ⇒ Hv exists )

(3)ϕ ∃vϕ(v) ⇒ ∃v(ϕ(v)∧ ∀u ∈ v¬ϕ(u))

(4)i ẋi ∈ R.

(5) ϕ0(ẋ0) ∧ ∀δ(J Ė
δ (R) 6|= ϕ0[ẋ0])

Finally, T has axioms which guarantee that in any model, the definable clo-
sure of the interpretations of the ẋi constitute an elementary submodel. Re-

call from 2.4 the uniformly definable maps hγ: [ωγ]
<ω onto

→ M|γ; let σ0(v0, v1, v2)
be a Σ1 formula which for all γ defines the graph of hγ over M|γ. Now, for
any L-formula ϕ(v) of one free variable, T has axioms

(6) ∀v0∀v1∀y∀z(σ0(v0, v1, y) ∧ σ0(v0, v1, z) ⇒ y = z)

(7)ϕ ∃vϕ(v) ⇒ ∃v∃F ∈ [OR]<ω(ϕ(v) ∧ σ0(F, ẋm(ϕ), v))

(8)ϕ ∃v(ϕ(v)∧ v ∈ R) ⇒ ϕ(ẋn(ϕ)).

This completes the axioms of T .
A typical run of Gβ

x has the form

I i0, x0, η0 i1, x2, η1

...

II x1 x3

where for all k, ik ∈ {0, 1}, xk ∈ R, and ηk < ωβ. If u = 〈(ik, x2k, ηk, x2k+1) |
k < n〉 is a position of length n, then we set

T ∗(u) = {σ | σ is a sentence of L ∧ in(σ) = 0},

and if p is a full run of Gβ
x ,

T ∗(p) =
⋃

n<ω

T ∗(p ↾ n).

Now let p = 〈(ik, x2k, ηk, x2k+1) | k < ω〉 be a run of Gβ
x ; we say that p is

winning for I iff
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(a) x0 = x,

(b) T ∗(p) is a complete, consistent extension of T such that for all i,m, n,
“ẋi(n) = m” ∈ T ∗(p) iff xi(n) = m,

(c) if ϕ and ψ are L-formulae of one free variable, and “ιvϕ(v) ∈ OR ∧
ιvψ(v) ∈ OR” ∈ T ∗(p), then “ιvϕ(v) ≤ ιvψ(v)” ∈ T ∗(p) iff ηn(ϕ) ≤
ηn(ψ), and

(d) if ψ is an L-formula of one free variable, and “ιvψ(v) ∈ OR ∧ ιvψ(v)
is relevant” ∈ T ∗(p), then ηn(ψ) is relevant vis-a-vis M; moreover
if σ1, ..., σn are L formulae of one free variable such that for all k,
“ιvσk(v) < (ιvψ(v))” ∈ T ∗(p), then for any L∗ formula θ(v1, ..., vn),

“Hιvψ(v) |= θ[ιvσ1(v), ..., ιvσn(v)]” ∈ T ∗(p)

if and only if
HM
ηn(ψ)

|= θ[ηn(σ1), ..., ηn(σn)].

Clearly, Gβ
x is a game on R × ωβ whose payoff is continuously associated

to x. It remains to show that the winning positions for I in Gβ
x are those

in which he has been honest. More precisely, let us call a position u =
〈(ik, x2k, ηk, x2k+1) | k < n〉 (β, x)-honest iff M|β |= ϕ0[x], and letting γ ≤ β

be least such that M|γ |= ϕ0[x], we have

(i) n > 0 ⇒ x0 = x,

(ii) if we let Iu(ẋi) = xi for i < 2n, then all axioms of T ∗(u) ∪ T thereby
interpreted in (M|γ, Iu) are true in this structure, and

(iii) if σ0, ..., σm enumerates those L-formulae σ of one free variable such
that n(σ) < n and

(M|γ, Iu) |= ιvσ(v) ∈ OR,

and if δi < ωγ is such that

(M|γ, Iu) |= ιvσi(v) = δi,
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then the map
δi 7→ ηn(σi)

is well-defined and extendible to an order preserving map π:ωγ → ωβ

with the additional property that whenever δi is relevant vis-a-vis M,
so that ηn(σi) is as well, then π ↾ ωδi is extendible to an elementary
embedding from HM

δi
to HM

ηn(σi)
. 17

It is not immediately clear that the set of (β, x)-honest positions even
belongs to M, because of condition (iii).

Claim 1. Letting Qβ
k(x, u) iff u is a (β, x)-honest position of length k, we

have that Qβ
k ∈ M for all β, and the map (β, k) 7→ Q

β
k is ΣM

1 .

Proof.(Sketch.) It is enough to see that the truth of clause (iii) can be
determined within M. But note that (iii) is equivalent to the existence of
a winning strategy for the closed player in a certain “embedding game” on
ωβ. It is enough then to see that if the closed player wins the embedding
game in V , then he wins it in M. (The converse is obvious.) So suppose
the closed player wins the embedding game in V . Let A ∈ M be a set of
ordinals which codes up this game; since β < ΘM, and M |= AD, we can
find a model N of ZFC such that A ∈ N , and (N,∈) is coded by a set of
reals BN ∈ M. (E.g., let N = Lα[A], where α is the supremum of the order

types of the ∆
M|γ
n prewellorders of R

M, for an appropriate n and γ.) Since
N |= ZFC, the closed player wins the embedding game via a strategy Σ ∈ N .
For γ < ωβ, let f(γ) = {z ∈ R

M | z codes γ via BN}. We can arrange that
f ∈ M, and use f to show that Σ ∈ M. 2

We now show that the winning positions are the honest ones.

Claim 2. For any position u in Gβ
x , Player I has a winning quasi-strategy

starting from u iff u is (β, x)-honest; that is, P β
k (x, u) ⇔ Qβ

k(x, u) for all k.

Proof. It is easy to see that I can win from honest positions u by continuing
to tell the truth, while continuing to play his η’s according to some map π

satisfying (iii) in the definition of honesty for u.
Conversely, let Σ be a winning quasi-strategy for I in Gβ

x from u. Since
R

M is countable, we can easily construct a complete run

p = 〈(ik, x2k, ηk, x2k+1) | k < ω〉

17Notice that this extension is determined by π, since every point in Hδi
is definable

from an ordinal.
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of Gβ
x according to Σ such that

R
M = {xi | i < ω}.

Since T ∗(p) is consistent, it has a model A, and by the axioms in groups
(3), (6), (7), and (8), the L-definable points of A constitute an elementary
submodel N ≺ A. Let

π(ιvψ(v)N) = ηn(ψ)

whenever “ιvψ(v) ∈ OR” ∈ T ∗(p). Then π witnesses that N is wellfounded,
and so we may assume N is transitive. By axiom (1) of T , N is a premouse.
Note that N is a premouse over {ẋAi | i < ω}, and this set is R

M since
ẋAi = xi by (ii). The main thing we need to show is that N is an initial
segment of M|β. Since π guarantees o(N ) ≤ ωβ, it suffices to show N is an
initial segment of M.

We show by induction on γ that if ρω(N|γ) = 1, then N|γ = M|γ. This
is clear if γ = 1.

Suppose first that N|γ 6|= Θ exists . Note that then γ is not active in
N . If γ is a limit ordinal, then there are arbitrarily large ξ < γ such that
ρω(N|ξ) = 1, and by induction N|ξ = M|ξ for such ξ. This implies γ is not
active in M, and N|γ = M|γ, as desired. If γ = ξ+1, then ρω(N|ξ) = 1, so
N|ξ = M|ξ. Since successor ordinals are not active, we get N|γ = M|γ, as
desired. ( Note that if ωγ = o(N ), then it falls under this last case by axiom
(5) of T , so we may assume ωγ < o(N ) henceforth.)

Next, suppose N|γ |= Θ exists, and let θ = ΘN|γ. Note N|θ = M|θ by
the argument of the last paragraph.

If there is no ξ ∈ (θ, γ) such that N|ξ |= ZF, then N|γ is just the
constructible closure of N|θ through γ steps. Also, no ξ ∈ (θ, γ] can be active
in M, and so N|γ = M|γ. So we may assume that there is a ξ ∈ (θ, γ) such
that N|ξ |= ZF; that is, γ is relevant in N . Let n0 be the largest n < ω

such that ρn(N|γ) ≥ θ. By rule (iii), π determines an elementary embedding
from H(N|ξ) to H(M|π(ξ)), for each relevant ξ of N . Using 3.10 and a
simple induction, we can then see that N|γ is countably n0-iterable. Now
β < α∗, and hence we can find a ξ ≥ β such that ρω(M|ξ) = 1. Applying
the comparison theorem 2.12 to N|γ and M|ξ, we get that N|γ = M|γ, as
desired.

Thus N is an initial segment of M|β. Clearly, N = M|γ, where γ is
least such that M|γ |= ϕ0[x]. The theory T ∗(u) is true in N = M|γ. The
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remainder of (β, x) honesty for u is witnessed by π. This completes the proof
of claim 2. 2

Claims 1 and 2 yield the desired scale, as we have explained. This com-
pletes the proof of 4.1 in the case that o(M) = ωα for α a limit. The
case that α is a successor ordinal can be handled similarly, using Jensen’s
S-hierarchy. See [7]. 2

4.2 Σ1 gaps

Definition 4.2 Let M and N be X-premice; then we write M ≺1 N iff M
is an initial segment of N , and whenever ϕ(v1, ..., vn) is a Σ1 formula of the
language L∗ in which Ḟ , µ̇, ν̇, and γ̇ do not occur, then for any a1, ..., an ∈
X ∪ {X},

N |= ϕ[a1, ..., an] ⇒ M |= ϕ[a1, ..., an].

Notice here that such Σ1 formulae go up from M to N simply because
M is an initial segment of N . This uses our restriction that the symbols of
L∗ which have to do with the last extender of a premouse do not occur in ϕ.

Definition 4.3 Let M be an X-premouse, and suppose ωα ≤ ωβ ≤ o(M);
then we call the interval [α, β] a Σ1-gap of M iff

1. M|α ≺1 M|β,

2. ∀γ < α(M|γ 6≺1 M|α), and

3. ∀γ > β(M|β 6≺1 M|γ).

That is, a Σ1-gap is a maximal interval of ordinals in which no new Σ1

facts about members of X ∪ {X} and the extender sequence ~E are verified.
If [α, β] is a Σ1-gap, we say α begins the gap and β ends it. Notice that we
allow α = β. It is easy to see

Lemma 4.4 Let o(M) = ωα; then the Σ1-gaps of M partition α+ 1.

We shall use the Σ1-gaps of K(R) to characterize the levels of the Levy
hierarchy in the initial segment of K(R) satisfying AD which have the Scale
Property. Until we get to the end-of-gap case, the proofs are quite easy, and
completely parallel to those of [7], so we shall omit them.
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If M is an R
M-premouse, then by the pointclass ΣM

n we mean the collec-
tion of all A ⊆ R

M such that A is Σn definable over Cn−1(M) from arbitrary
parameters in Cn−1(M), using the language L∗.

Theorem 4.5 Let M be a countably 0-iterable R
M-premouse, and suppose

α begins a Σ1 gap of M, and that M|α |= AD; then M believes that the

pointclass Σ
M|α
1 has the Scale Property.

Theorem 4.6 Let M be a countably 0-iterable R
M-premouse, and suppose

α begins a Σ1-gap of M, and that M|(α+1) |= AD, and that M|α is not an
admissible structure. Then for all n < ω,

(a)

Σ
M|α
n+2 = ∃R(Π

M|α
n+1 ),

Π
M|α
n+2 = ∀R(Σ

M|α
n+1 ),

and

(b) M believes that the pointclasses Σ
M|α
2n+1 and Π

M|α
2n+2 have the Scale Prop-

erty.

As in L(R), our negative results on the Scale Property are localizations of
the fact that the relation “x is not ordinal definable from y” has no ordinal
definable uniformization.

Definition 4.7 If M is an R
M-premouse and o(M) = ωα, then for x, y ∈

R
M, we put

CM(x, y) ⇔ ∃γ < α({y} is M|γ-definable from parameters in {x} ∪ ωγ).

We also set ¬CM = (RM × R
M) \ CM.

It is clear that CM is ΣM
1 , and indeed, it is so via a formula which does

not refer to the last extender ḞM.

Theorem 4.8 (Martin, [3]) Let M be a countably 0-iterable R
M-premouse,

and suppose that α begins a Σ1-gap of M, that M|(α + 1) |= AD, and that
the structure M|α is admissible. Then
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(a) there is a Π
M|α
1 relation on R

M, namely ¬CM|α, which has no uni-
formization in M|(α+ 1), and hence

(b) M believes that none of the pointclasses Σ
M|α
n or Π

M|α
n , for n > 1,

have the Scale Property.

In the interior of a Σ1-gap, we find no new scales.

Theorem 4.9 (Kechris, Solovay) Let M be a countably 0-iterable R
M-

premouse, and suppose [α, β] is a Σ1-gap of M, and that M|α |= AD. Then

(a) the relation ¬CM|α has no uniformizing function f such that f ∈ M|β,
and hence

(b) if α < γ < β, then M believes that none of the pointclasses Σ
M|γ
n or

Π
M|γ
n , for n < ω, have the Scale Property.

4.3 Scales at the end of a gap

We are left with the question as to which, if any, of the pointclasses Σ
M|β
n

and Π
M|β
n have the Scale Property in the case that β ends a Σ1 gap [α, β]

of M, and α < β. As in [7], the answer turns on the following reflection
property of β.

Definition 4.10 For M a relativised premouse and 1 ≤ n < ω and a ∈ M,
we let Σn,M

a be the Σn-type realized by a in M; that is

Σn,M
a = {θ(v) | θ is either Σn or Πn and Cn−1(M) |= θ[a].

We are allowing formulae of the full language L∗ of relativised premice,
so that the last extender ḞM is (partially) described in Σn,M

a .

Definition 4.11 An ordinal β is strongly Πn-reflecting in M iff every Σn-
type realized in Cn−1(M|β) is realized in Cn−1(M|ξ) for some ξ < β; that
is

∀a ∈ Cn−1(M|β)∃ξ < β∃b ∈ Cn−1(M|ξ)(Σn,M|β
a = Σ

n,M|ξ
b ).

Definition 4.12 Let [α, β] be a Σ1 gap of M, with α < β; then we call
[α, β] strong iff β is strongly Πn-reflecting in M, where n is least such that
ρn(M|β) = R

M. Otherwise, [α, β] is weak.

31



Martin’s reflection argument of [3] yields

Theorem 4.13 (Martin) Let M be a countably 0-iterable R
M-mouse which

satisfies AD , and let [α, β] be a strong Σ1-gap of M such that ωβ < o(M);
then

(a) there is a Π
M|α
1 relation on R

M which has no uniformization which is
definable over M|β, and hence

(b) M believes that none of the pointclasses Σ
M|β
n or Π

M|β
n have the Scale

Property.

Thus at the end of strong gaps [α, β], the Scale Property first re-appears

with the pointclass Σ
M|(β+1)
1 . The weak gap case is settled, under stronger

determinacy hypotheses than should be necessary, by

Theorem 4.14 Let M be a countably ω-iterable R
M-mouse which satisfies

AD, and [α, β] a weak gap of M and ωβ < o(M); then letting n be least

such that ρn(M|β) = R
M, we have that M believes that Σ

M|β
n has the Scale

Property.

Remark. The hypothesis that ωβ < o(M) should not be necessary. The
proof below needs it because at a certain point we apply the Coding Lemma
to a bounded subset of ΘM|β such that A is merely definable over M|β, and
we need enough determinacy to do this. (See below.) Unfortunately, adding
this determinacy as a hypothesis in 4.14 makes the theorem significantly less
useful in core model induction arguments than it would be otherwise. We
can eliminate the additional determinacy hypothesis in one case:

Theorem 4.15 Let M be a countably ω-iterable R
M-mouse which satisfies

AD, and [α, β] a weak gap of M. Suppose that either ΘM does not exist, or
there are no extenders on the M-sequence with index above ΘM; then letting
n be least such that ρn(M|β) = R

M, we have that M believes that Σ
M|β
n has

the Scale Property.

One can combine Theorem 4.15 with the work of [8], and thereby obtain
a construction of scales at the end of a weak gap in K(R) which is more
useful in a core model induction.
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Proof of 4.14. (Sketch.) One gets a proof by integrating our use of the
local HODM’s into the proof of the corresponding result (theorem 3.7) of
[7]. This is fairly routine, yet involves many details. We shall therefore just
sketch one case in which some care with the details is needed. We want also
to point out the place where the additional determinacy hypothesis is used.18

The case we consider is n = 1 and M|β is active of type II. Let us make
these assumptions.

Let F ∗ be the amenable-to-M predicate coding ḞM which is descibed in
[9]. For γ < β, let

M||γ = (J Ė
M

γ ,∈, ĖM|γ, F ∗ ∩ J Ė
M

γ ).

The M||γ are just the initial segments of the Σ0-code C0(M). They are
structures for the language L∗ of C0(M), and for ϕ a Σ1 formula of L∗ and
x ∈ M, we have

C0(M) |= ϕ[x] ⇔ ∃γ < β(M||γ |= ϕ[x]).

Further, M||γ ∈ M for all γ < β.
Let Σ = Σ1,M

a be our nonreflecting Σ1-type. We may assume a = 〈G,w1〉,
where G is a finite subset of β and w1 ∈ R, and that G is Brouwer-Kleene
minimal, in the sense that whenever H ∈ [β]<ω and H <b G then 〈H,w1〉
does not realize Σ in C0(M). (Here H <b G iff max (H△G) ∈ G.) Let
κ = crit(ḞM).

We define a canonical sequence of initial segments M||βi of C0(M). Let
β0 = ν(ḞM). Given βi < β, let

Yi = {a | a is definable over M||βi from parameters in R
M∪{G, β0, ..., βi−1}},

and
ξi = sup(Yi ∩ (κ+)M).

Letting
ψi = least ψ ∈ Σ s.t. M||βi 6|= ψ[〈G,w1〉],

we set

βi+1 = least γ s.t. M||γ |= ψi[〈G,w1〉] ∧ Ḟ
M||γ measures all sets A ∈ M|ξi.

18This hypothesis is needed in the other cases not covered by 4.15 as well.
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Note that Yi ∈ M, so ξi < (κ+)M, and ψi exists and βi+1 < β, for all i.

Claim.
⋃
i<ω Yi = M.

Proof. Let π:N →
⋃
i Yi be the transitive collapse map. Let ~E =

⋃
i π

−1(ĖM||βi)

and W =
⋃
i π

−1(ḞM||βi). It is not hard to see that (N,∈, ~E,W ) = C0(N ) for
some premouse N ; note here that our construction insures that W measures
all subsets of its critical point which lie inN . Further, N is (0, ω1+1)-iterable
because we can lift trees on it to trees on M. (Here we need that π is a weak
0-embedding. That is true because π is Σ1-elementary on the collapses of
the βi, and that in turn is true because each βi is Σ1-definable over C0(M)
from 〈G,w1〉, so that Σ1 facts about βi in C0(M) get recorded in the type
Σ.) Thus N can be compared with M, and since ρ1(N ) = ρ1(M) = R,
and N realizes Σ, we get N = M. The <b-minimality of G then implies
π−1(G) = G, and the minimality of the βi implies π−1(βi) = βi. From this
the claim follows easily. 2

It follows that sup({βi | i < ω}) = β and sup({ξi | i < ω}) = (κ+)M.

Let P ⊆ R be Σ
C0(M)
1 . Fix a Σ1 formula ϕ0 of L∗ and a parameter b such

that
P (x) ⇔ C0(M) |= ϕ0[x, b].

By the claim, we may assume

b = 〈G, β0, ..., βe, w2〉,

for some e and some real w2. For e < i < ω, let

P i(x) ⇔ M||βi |= ϕ0[x, b].

We shall construct closed game representations i 7→ Gi
x of the P i in such a

way that if

P i
k(x, u) ⇔ u is a winning position

for I in Gi
x of length k ,

then P i
k is first order definable over M||βsup(i,k). Such a closed game repre-

sentation yields scales on each P i each of whose norms belongs to M, and
hence a ΣM

1 scale on P .
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In Gi
x, player I describes C0(M) as the union of the M||βk. The language

L in which he does this has ∈,=, and constant symbols Ġ, and Ṁk, β̇k, and
ẋk for all k < ω. If ϕ is an L-formula involving no constants Ṁk or β̇k for
k ≥ m, then we say ϕ has support m. Player I will produce a Σ0-complete
theory in L, restricting himself at move m to Σ0 sentences with support m.

Let B0 be the collection of Σ0 formulae of L, and let n:B0
1−1
→ ω be such that

any θ ∈ B0 has support n(θ) and involves no ẋk for k ≥ n(θ).
A typical run of Gi

x has the form

I T0, s0, η0, m0 T1, s2, η1, m1

...

II s1 s3

where for all k, Tk is a finite set of sentences in B0, all of which have support
k, sk ∈ R

<ω, ηk < ωβ, and mk ∈ ω. Given such a run of Gi
x, let

〈xk | k < ω〉 = concatenation of 〈sk | k < ω〉,

and
T ∗ =

⋃

k

Tk.

Let S0 be the set of sentences in B0 which involve no constants of the form
ẋi for i 6∈ {1, 2}, and are true in the interpretation under which ẋ1 denotes
w1, ẋ2 denotes w2, and β̇k and Ṁk denote βk and M||βk for all k < ω. S0

will enter as a real parameter in the payoff condition for Gi
x, and hence in

the definition of our scale on P . We could avoid this by replacing S0 with
an appropriate finitely axiomatized subtheory, but since real parameters will
enter elsewhere, there is no point in doing so. Notice that it is part of S0

that each Ṁk is an L∗-structure. For θ any formula of L∗, let θṀk be the
natural B0-formula expressing that Ṁk |= θ.

We say that the run of Gi
x displayed above is a win for I iff the following

conditions hold:

(1) x0 = x, x1 = w1, and x2 = w2.

(2) T ∗ is a consistent extension of S0 such that for all k,m, n, “ẋk(n) = m”
∈ T ∗ iff xk(n) = m.

(3) If θ ∈ B0 is a sentence, then either θ ∈ Tn(θ) or (¬θ) ∈ Tn(θ).
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(4) If ∃v(v ∈ R ∧ σ) ∈ Tk, then for some j, σ(ẋj) ∈ Tk+1.

(5) (ϕ0(ẋ0, 〈Ġ, β̇0, ..., β̇e, ẋ2〉))Ṁi ∈ Ti+1.

(6) If θ(v1, ..., vn+2) is an L∗-formula, and σ1, ..., σn are B0 formulae of one
free variable with support k, and “ιvσm(v) ∈ OR”∈ T ∗ for all m ≤ n,
then

θṀk(ιvσ1(v), ..., ιvσn(v), ẋ1, ẋ2) ∈ T ∗ ⇔ M||βk |= θ[ηn(σ1), ..., ηn(σn), w1, w2].

(8) If (ιvσ(v) <b Ġ) ∈ Tk, then either

(a) there is a Π1 formula ϕ ∈ Σ such that

(¬ϕ(〈ιvσ(v), ẇ1〉))
˙Mmk ∈ Tmk+1,

or

(b) there is a Σ1 formula ϕ which is one of the first mk elements of Σ
such that for all j and l,

(ϕ(〈ιvσ(v), ẇ1〉))
Ṁl 6∈ Tj.

This completes the description of the payoff set for I in Gi
x. We now

show that I wins Gi
x iff M||βi |= ϕ0[x, b], and that the P i

k are appropriately
definable. Both claims follow from the fact that P i

k(x, u) iff u is honest.
Honesty is defined as follows: let Iu be the interpretation of L under which

ẋj denotes xj whenever xj is the jth real determined by u, and Ġ, β̇k and
Ṁk denote G, βk, and M||βk for all k. For u a position in Gi

x, we say u is
x-honest iff

(i) T ∗(u) is true in (|M|,∈, Iu),

(ii) M||βi |= ϕ0[x, b],

(iii) x0 = x, x1 = w1,and x2 = w2, if u determines x0, x1, and x2.

(iv) the commitments represented by the mk can be kept,
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(v) if σ0, ..., σn enumerates those B0-formulae σ of one free variable such
that n(σ) ∈ dom(u) and

(|M|,∈, Iu) |= ιvσ(v) ∈ OR,

and if δm < o(M) is such that

(|M|,∈, Iu) |= ιvσm(v) = δm,

for all m ≤ n, then the map

δm 7→ ηn(σm)

is well-defined and extendible to an order preserving map π: o(M) →
o(M) such that for all k, all formulae θ of L∗, and all tuples γ̄ of
ordinals from M||βk, π ↾ M||βk ⊆ M||βk and

M||βk |= θ[γ̄, w1, w2] ⇔ M||βk |= θ[π(γ̄), w1, w2].

Claim 1. For any position u of Gi
x, I wins Gi

x from u iff u is x-honest.

Proof. If u is x-honest, then I can win Gi
x from u by continuing to tell the

truth, while using the map π given by condition (v) to play further η’s.
Now suppose I wins Gi

x from u. Let p be a run of Gi
x by such a strategy,

with u ⊆ p, such that the associated sequence of reals 〈xk | k < ω〉 enumer-
ates R

M. Let T ∗ = T ∗(p) be the B0-theory played by I. Let A be the unique
model of T ∗ which is pointwise definable from parameters in R

M. (There is
such a model by rule (4).) By rule (6) of Gi

x, A is wellfounded, and so we
assume it is transitive. Let

ṀA
k = (Nk, F

∗
k ),

β∗
k = β̇A

k ,

and
G∗ = ĠA.

Since S0 ⊆ T ∗, the Nk are premice, and Nk � Nk+1 for all k. Let N be the
union of the Nk, and F ∗ the union of the F ∗

k . We can define π: o(N ) → o(N )
by

π(ιvσ(v)A) = ηn(σ),
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for all B0-formulae σ such that ιvσ(v) ∈ OR is in T ∗. Clearly, π is well-
defined, and for any tuple γ̄ of ordinals from Nk and any formula θ of L∗,

(Nk, F
∗
k ) |= θ[γ̄, w1, w2] ⇔ M||βk |= θ[π(γ̄), w1, w2].

As in the proof of 4.1, this implies that N is countably iterable, and that π
extends to an embedding, which we also call π, such that

π:HN → HM

is Σ1-elementary (in L∗).
Because S0 is true in A, F ∗

k+1 measures all subsets of its critical point in

H
(Nk,F

∗
k )

1 (RM ∪ {β∗
0 , ...β

∗
k−1, G

∗}). But the union of these hulls has the same
universe as N , and thus F ∗ is an extender over N . Similarly, we get

F ∗
k ∩HNk ∈ HNk+1

for all k, and because π is sufficiently elementary,

π(F ∗
k ∩ HNk) = F ∩HM|βk .

Letting E∗ = F ∗ ∩HN and E = F ∩HM, we then have that

π: (HN , E∗)
Σ1→ HM

is Σ1 elementary. It follows that (HN , E∗) is a countably iterable premouse,
and hence that (N , F ∗) is a countably iterable premouse.

It is part of S0 that our non-reflecting type Σ is realized for the first
time, and thus we have (N , F ∗) = M. Because I has kept the commitments
he made according to rule (7) of Gi

x, we have G∗ = G, and β∗
k = βk and

(Nk, F
∗
k ) = M||βk for all k. It is now easy to verify that u was x-honest; the

map π witnesses that condition (v) of x-honesty is met. 2

Claim 2. Let k ≤ i; then {u | u is an x-honest position of length k } is a
member of M|β.

Proof. It is clear that the set of u satisfying conditions (i)-(iii) of x-honesty
is definable over M||βk, and hence in M|β. The Coding Lemma argument
of [7] shows that the set of u satisfying condition (iv) is also in M|β. Here,
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as in [7], we can apply the Coding Lemma to sets belonging to M|β, so we
don’t actually need determinacy beyond the sets in M|β.

For (v), let
s = (ιvσ(v)M||βk 7→ ηn(σ))

be a finite map coded into a position u of length k satisfying (i)-(iv). Note
that dom(s) ⊆ Yk, so that if s can be extended to a π as demanded in (v),
then as Yk is Σ1-definable over M||βk+1 from β0, ..., βk−1, G, ran(s) ⊆ Yk as
well. (Note here that by the proof of Claim 1, π must fix G and the βm for
m < ω.) So if we let

Zk = {t:Yk → Yk | |t| < ω ∧ ∃π ⊇ t(π is as in (v) },

then it suffices to show that Zk is definable over M||βsup(i,k).
We proceed as in the proof of Claim 1 of 4.1. M. Note that t ∈ Zk

iff the closed player has a winning strategy in a certain “embedding game”
on θM|β . We claim that if the closed player wins the embedding game in
V , then he wins it in M. (The converse is obvious.) So suppose the closed
player wins the embedding game in V . Let A ∈ M be a set of ordinals which
codes up the payoff of game; since θM|β < θM, and M |= AD, we can find
a model N of ZFC such that A ∈ N , and (N,∈) is coded by a set of reals
BN ∈ M. (E.g., let N = Lα[A], where α is the supremum of the order types

of the ∆
M|β
n prewellorders of R

M, for an appropriate n.) Since N |= ZFC, the
closed player wins the embedding game via a strategy Σ ∈ N . For γ < θM|β,
let f(γ) = {z ∈ R

M | z codes γ via BN}. We can arrange that f ∈ M, and
use f to show that Σ ∈ M.

The argument of the last paragraph actually shows that there is a fixed
n < ω such that for all t, t ∈ Zk iff II has a ∆

M|β
n winning strategy in the

embedding game associated to t. It follows that

Zk ∈ M.

But M |= AD, and Zk can be identified with a bounded subset of θM|β , since
Yk ∈ M|β and is the surjective image of R by a map in M|β. It follows
from the Coding Lemma that Zk ∈ M|β, and in fact Zk is definable over
M||βsup(i,k).

19 2

19All we really need to get the desired scale is that Zk ∈ M|β.
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Claim 2 completes the proof of 4.14. 2

As the reader can see, we use the determinacy of sets definable over M|β
in the proof of Claim 2 above. The determinacy of sets belonging to M|β is
not enough for the proof because the payoff set A for the embedding game
may not be a member of M|β. One can get by with the determinacy of sets
in M|β in the proof of 4.15 because in that case, the only “global” role of
the ordinals played by I in Gi

x is to verify that the model he is playing is
wellfounded. This aspect of honesty can be explicitly defined; I needs only
to have spaced his ordinals adequately. See [7] for the details. It is still true
that I will have to verify that the HA

ν for ν < o(A) are iterable, by embedding

them into a corresponding HM|β
µ , but these embeddings no longer need to fit

together into a single embedding, and thus this aspect of honesty does not
lead out of M|β. We leave the further details of the proof of 4.15 to the
reader.
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