
Solutions to Midterm I. Discrete Mathematics 55

Instructor: Zvezdelina Stankova

Problem 1 (20pts). True or False?

To discourage guessing, the problem will be graded as follows:

• 2 pts for each correct answer.

• 0 pts for a blank.

• -2 pts for each incorrect answer.

• If anything else but “True” or “False” is written, more than one answer is written, or the answer is

hard to read, you will get -2 points .

(1) If A is a proper subset of B, then |A| < |B|.
Answer: False. Counterexample: A = Z+ and B = N. We have that Z+ ( N, but both are

infinitely countable and hence |Z+| = |N|.

(2) If C = A ∪B, and A is infinitely countable but C is uncountable, then B is uncountable.

Answer: True. If B were countable, then A ∪ B would be countable too, as the union of two

countable sets, making C countable, a contradiction.

(3) To prove by contradiction a theorem of the form “p→ q”, we start by assuming ¬q.

Answer: True. A proof by contradiction starts with assuming ¬q (and p).

(4) The method of mathematical induction is necessary to prove some theorems that we studied so far

in this course.

Answer: True. We have mentioned that induction is necessary for the rigorous proof of some the-

orems (e.g. Division Algorithm, Euclid’s Algorithm, and the Fundamental Theorem of Arithmetic),

but we haven’t yet studied induction.

(5) Euclidean algorithm is not useful in expressing the GCD of two integers as a linear combination of

them with integer coefficients.

Answer: False. After one runs the Euclidean algorithm to find GCD of two integers, then one

runs it backwards to find the desired linear combination.

(6) Fermat’s Little Theorem applies to a modulo p that is prime but not to a modulo p that is composite.

Answer: True. Counterexample with a composite n: let n = 10, a = 3. Then 3 and 10 are

relatively prime, but 310−1 6≡ 1 (mod 10). Indeed, 34 = 81 ≡ 1 (mod 10) so that 39 = (34)2 · 31 ≡
12 · 3 ≡ 3 6≡ 1 (mod 10)

(7) The set of all infinite sequences of 0s and 1s is uncountable.

Answer: True. One can prove this by modifying Cantor’s Diagonalization argument for uncount-

ability of R.

(8) The sequence {4k + 3} where k ∈ N contains infinitely many primes, but the sequence {4k + 2} does

not.

Answer: True. We showed in class that {4k + 3} contains infinitely many primes. On the other

hand, {4k+2} does not since it consists of even numbers, only one of which will be prime, namely, 2.

(9) Every non-zero element of Zp (where p is prime) has an additive inverse but not necessarily a

multiplicative inverse.

Answer: False. Every non-zero element of Zp (where p is prime) has an additive inverse and a

multiplicative inverse.



(10) The ceiling function from R→ Z is neither injective nor surjective.

Answer: False. The ceiling function is not injective, e.g., d2.2e = 3 = d3e, but it is surjective onto

Z since dne = n for any integer n.

Problem 2 (20pts)

(a) Express the negation of the statement

∀x(∃y∀zP (x, y, z) ∧ ∃z∀yP (x, y, z))

so that negations appear only directly in front of predicates (that is, so that no negation is outside

a quantifier or an expression involving logical connectives).

Answer:

¬∀x(∃y∀zP (x, y, z) ∧ ∃z∀yP (x, y, z))

= ∃x¬(∃y∀zP (x, y, z) ∧ ∃z∀yP (x, y, z))

= ∃x(¬(∃y∀zP (x, y, z)) ∨ ¬(∃z∀yP (x, y, z)))

= ∃x(∀y∃z¬P (x, y, z) ∨ ∀z∃y¬P (x, y, z))

(b) Show that (p ∨ q) ∧ (¬p ∨ r)→ (q ∨ r) is a tautology.

Proof: One way is to reason by contradiction. Suppose that the implication is false for some truth

values of p, q and r. This means that the conclusion q∨r is false and the hypothesis (p∨q)∧ (¬p∨r)

is true. The disjunction q ∨ r is false exactly when both q and r are false. If p is false, then p ∨ q is

false; if p is true, then ¬p is false so that ¬p∨r is false. In either case, the conjunction (p∨q)∧(¬p∨r)

is false, so the hypothesis is false. This is a contradiction. We conclude that the implication cannot

be false for any truth values of its propositional variables. This means that the implication is a

tautology. �

Problem 3 (20pts) Give an example of two uncountable sets A and B such that A−B is

(a) finite. Explain.

Answer: Let A = B = R: uncountable. Then A−B = ∅, finite.

(b) countably infinite. Explain.

Answer: Let A = R and B = R− Z: both uncountable. Then A−B = Z, countably infinite.

(c) uncountable. Explain.

Answer: Let A = C and B = R: both uncountable. Then A−B is the set of all complex non-real

numbers. A−B contains a subset of all purely imaginary numbers iR = {ir | r ∈ R−{0}}, which is

uncountable (why?) so that A−B is also uncountable.

For another example, take A = R × R and B = R × {0}. Both are uncountable because R is

uncountable. Then A − B = R × (R − {0}) which contains an uncountable subset, e.g., R × ({1}),
whichi is uncountable (why?), making the bigger set A−B = R× (R− {0}) also uncountable.

Problem 4 (20pts) Include all relevant calculations and explanations:

(a) Find all integers x that satisfy the congruence 54x ≡ 2 (mod 89).
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Solution: We find the gcd(89,54) by using the Euclidean algorithm:

89 = 1 · 54 + 35

54 = 1 · 35 + 19

35 = 1 · 19 + 16

19 = 1 · 16 + 3

16 = 5 · 3 + 1.

Thus, gcd(89, 54) = 1. We now reverse the Euclidean algorithm to find a linear combination of 54

and 89 that equals 1:

1 = 16− 5 · 3 = 16− 5(19− 16) = 6 · 16− 5 · 19 = 6 · (35− 19)− 5 · 19 = 6 · 35− 11 · 19

= 6 · 35− 11 · (54− 35) = 17 · 35− 11 · 54 = 17(89− 54)− 11 · 54 = 17 · 89− 28 · 54.

Thus, the multiplicative inverse of 54 modulo 89 is −28. Multplying both sides of the congruence

by −28 we get:

(−28) · 54x ≡ (−28) · 2 (mod 89) ⇒ 1 · x ≡ −56 ≡ −56 + 89 = 33.

Thus, all integers satisfying the congruence are x = 89k + 33 for k ∈ Z. �

(b) Find the remainder of 47200 (mod 19).

Solution: 47 ≡ 9 (mod 19), hence 47200 ≡ 9200 (mod 19). Since 19 is prime and 9 is relatively prime

with 19, by Fermat’s Little Theorem, 918 ≡ 1 (mod 19). Dividing 200 by 18, we have 200 = 18·11+2.

Therefore,

47200 ≡ 9200 = 918·11+2 = (918)11 · 92 ≡ 111 · 81 ≡ 5 (mod 19). �

Problem 5 (20pts) Two players take turns removing 1, 2, 3, 4, or 5 cards from a stack of 2014 cards. The

player who takes the last card loses. Is there a strategy for one of the players to always win? If yes, which

player is this and what is his strategy? If not, why not? Explain.

Solution: The first player can always win. Indeed, 2014 ≡ 4 (mod 6). The first player takes 3 cards on

his first turn, and then completes the moves of the second player to 6 each time: if the second player takes

k cards, the first player then takes 6− k cards, for k = 1, 2, 3, 4, 5. As a result, after each of the first player’s

moves the number of the remaining cards is always 1 more than a multiple of 6. When there are only 7

cards left, whatever the second player takes, the first player will be able to leave exactly one card, forcing

the second player to take the last card. Thus, the first player can always win the game. �
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