Homework 3 Solutions, Math 55

1.8.4. There are three cases: that a is minimal, that b is minimal, and that c is minimal. If a is minimal, then $a \le b$ and $a \le c$, so $a \le \min\{b, c\}$, so then

$$\min\{a, \min\{b, c\}\} = a.$$

Also $a \leq b$, so min $\{a, b\} = a$, and then

 $\min\{\min\{a, b\}, c\} = \min\{a, c\} = a$

since $a \leq c$ also. Thus $\min\{a, \min\{b, c\}\} = \min\{\min\{a, b\}, c\}$. The other two cases are similar and I'm too lazy to write them out.

1.8.6. If x and y are integers of opposite parity, without loss of generality we can assume that x is even and y is odd. Then x = 2a for some integer a and y = 2b + 1 for some integer b, so

$$5x + 5y = 10a + 10b + 1 = 2(5a + 5b) + 1$$

is odd.

1.8.10. The integers $2 \cdot 10^{500} + 15$ and $2 \cdot 10^{500} + 16$ are consecutive positive integers, and in general consecutive positive integers can never both be perfect squares. Indeed, if a positive integer n is a perfect square, it is equal to a^2 for some positive integer a, and the next perfect square strictly greater than n must be

$$(a+1)^2 = a^2 + 2a + 1 = n + 2a + 1 > n + 1$$

since 2a + 1 > 1 when $a \ge 1$.

1.8.14. It need not be that a^b is rational whenever a and b are rational. For example, if a = 2 and b = 1/2, then $a^b = 2^{1/2} = \sqrt{2}$.

1.8.18. We start with existence. Let n be the largest integer less than or equal to r. In other words, we choose n so that $n \leq r < n + 1$. Since r is irrational, we know that $r \neq n$, so n < r < n + 1. If |r - n| < 1/2, then n is an integer whose distance to r is less than 1/2, so we're done. So, suppose $|r - n| \geq 1/2$. Since r > n, we know that r - n > 0 so $|r - n| = r - n \geq 1/2$, which means that $n - r \leq 1/2$. But we also know that n + 1 > r, so |(n + 1) - r| = (n + 1) - r. Then

$$|(n+1) - r| = (n+1) - r = (n-r) + 1 \le 1/2.$$

If (n + 1) - r = 1/2, then we would have r = n + 1/2, but r was supposed to be irrational, so that's a contradiction. So then |(n + 1) - r| = (n + 1) - r < 1/2, so n + 1 is an integer whose distance to r is less than 1/2, so again we're done.

For uniqueness, suppose n and n' are distinct integers whose distance to r is less than 1/2. Then

$$|n - n'| = |(n - r) - (n' - r)| \le |n - r| + |n' - r| < \frac{1}{2} + \frac{1}{2} = 1,$$

using the triangle inequality. But the distance between two distinct integers is always greater than 1, so this is impossible.

1.8.22. If x is a nonzero real number, then x - 1/x is also a real number, so $(x - 1/x)^2 \ge 0$ since the square of any real number is nonnegative. Expanding this out, we get $x^2 - 2x(1/x) + 1/x^2 \ge 0$. But the middle term is equal to 2, and then adding 2 to both sides gives

$$x^2 + 1/x^2 \ge 2.$$

1.8.30. Let $f(x, y) = 2x^2 + 5y^2$. First notice that (x, y) is a solution if and only if (|x|, |y|) is a solution, so it suffices to look for solutions (x, y) where both x and y are nonnegative. If $x \ge 3$, then

$$f(x,y) \ge 2 \cdot 3^2 + 5y^2 \ge 2 \cdot 9 = 18 > 14$$

so any solution must have $x \ge 2$. Also if $y \ge 2$, we similarly have

$$f(x,y) \ge 5 \cdot 2^2 = 20 > 14$$

so we must have $y \leq 1$. There are only 6 pairs (x, y) where $0 \leq x \leq 2$ and $0 \leq y \leq 1$. We check all of these by hand.

$$f(0,0) = 0$$

$$f(0,1) = 5$$

$$f(1,0) = 2$$

$$f(1,1) = 7$$

$$f(2,0) = 8$$

$$f(2,1) = 13$$

Since none of these are equal to 14, we conclude that f(x, y) = 14 has no integer solutions.

1.8.32. If m and n are arbitrary integers and $x = m^2 - n^2$, y = 2mn, and $z = m^2 + n^2$, then

$$\begin{aligned} x^2 + y^2 &= (m^2 - n^2)^2 + (2mn)^2 \\ &= m^4 - 2m^2n^2 + n^4 + 4m^2n^2 \\ &= m^4 + 2m^2n^2 + n^4 \\ &= (m^2 + n^2)^4 = z^2. \end{aligned}$$

Thus each pair of integers (m, n) gives rise to a triple of integers (x, y, z) that is a solution to $x^2 + y^2 = z^2$. Now notice that fixing n = 1 gives us solutions of the form $(m^2 - 1, 2m, m^2 + 1)$. For positive integers $m \neq m'$, clearly $(m^2 - 1, 2m, m^2 + 1) \neq (m'^2, 2m', m'^2 + 1)$, so there are infinitely many solutions (x, y, z) to $x^2 + y^2 = z^2$ in the positive integers.

1.8.34. Suppose $\sqrt[3]{2}$ were rational. Then we can write $\sqrt[3]{2} = p/q$ where p and q are integers and p/q is in lowest terms. Cubing both sides and clearing denominators, we get $p^3 = 2q^3$. Thus p^3 is even. If p were odd, it would be equal to 2k + 1 for some integer k, and then

$$p^{3} = (2k+1)^{3} = 2(4k^{3} + 6k^{2} + 3k) + 1$$

which is odd. But we know that p^3 is even, so p cannot be odd, so it must be even. Thus p = 2k for some integer k. Then

$$2q^3 = p^3 = (2k)^3 = 8k^3$$

which means that $q^3 = 4k^3 = 2(2k^3)$. This means that q^3 is even, so as above, q must also be even. But p and q were supposed to be in lowest terms, so this is a contradiction.

1.8.36. Let a be rational and x irrational. We will show that y = (a + x)/2 is irrational and y is between a and x. First, to see that y must be irrational. If it were rational, then we would have

$$x = 2y - a$$

but then the left hand side is clearly rational, whereas x was supposed to be irrational. Thus y must be irrational.

Next, we need to show that y is between a and x. Since a is rational and x is irrational, we know that $a \neq x$, so either a < x or x < a. If a < x, then

$$a + a < a + x < x + x$$

so, dividing by 2, we get

$$a=\frac{a+a}{2}<\frac{a+x}{2}<\frac{x+x}{2}=x.$$

Thus a < y < x. If x < a, one proves that x < y < a in an analogous way.

1.8.42. You can tile a standard checkerboard with all four corners removed using dominoes. Each row has an even number of squares (either 6 or 8), so you can just place the dominoes end-to-end in each row. If I were doing this by hand, I'd draw a picture, but I'm not, so you'll just have to imagine it.

1.8.44. Suppose the original 5×5 checkerboard (without the corners removed) is colored with alternating white and black squares, starting with a white square in the top left corner. Then there are 3 rows with 3 white squares and 2 rows with 2 white squares, so a total of 13 white squares. Then there are 25 total squares, so the remaining 12 squares are all black. Now suppose we remove 3 of the corner squares. All of the corner squares are white, so we wind up with 10 white squares and 12 black squares. Each domino needs to cover a black square and a white square, but there are a different number of white squares and black squares left, so it is impossible to tile this checkerboard with dominoes.

2.1.10. I don't know how to write down an explanation for any of these without saying "duh," so here are the answers.

- (a) True.
- (b) True.
- (c) False.
- (d) True.
- (e) False.
- (f) False.
- (g) True.

2.1.12. I'm on a computer, so I can't draw. Sorry.

2.1.16. Again, I'm on a computer, so I can't draw.

2.1.18. Let $A = \emptyset$ and $B = \{\emptyset\}$. Then clearly $\emptyset \in \{\emptyset\}$ and $\emptyset \subset \{\emptyset\}$.

2.1.20. Again, I don't know how to write down an explanation for any of these without saying "duh," so here are the answers.

(a) 0.

- (b) 1.
- (c) 2.
- (d) 3.
- 2.1.22.

- (a) The empty set can never be the power set of a set S, since any set S must have at least \emptyset as a subset, so at least \emptyset must be an element of the power set, but $\emptyset \notin \emptyset$.
- (b) This is the power set of $\{a\}$.
- (c) This cannot be the power set of any set. If it were the power set of some set S, then we would have $\{a, \emptyset\} \subseteq S$, so $\emptyset \in S$, so then $\{\emptyset\}$ would also be a subset of S. But $\{\emptyset\}$ is not an element of the set described in the problem.
- (d) This is the power set of $\{a, b\}$.

2.1.26. Suppose $(a, b) \in A \times B$. Then $a \in A$ and $b \in B$. But $A \subseteq C$ and $B \subseteq D$, so $a \in C$ and $b \in D$. So then $(a, b) \in C \times D$. Thus $A \times B \subseteq C \times D$.

2.1.32.

(b) There should be $3 \times 2 \times 2 = 12$ elements.

$$\begin{split} C\times B\times A &= \{(0,x,a), (0,x,b), (0,x,c), \\ &\quad (0,y,a), (0,y,b), (0,y,c), \\ &\quad (1,x,a), (1,x,b), (1,x,c), \\ &\quad (1,y,a), (1,y,b), (1,y,c)\} \end{split}$$

(d) There should be 8 elements. I'm too lazy to list them all.

2.1.38. If A and B are nonempty and $A \neq B$, then either there exists an element $a \in A$ such that $a \notin B$, or else there exists an element $b \in B$ such that $b \notin A$. Without loss of generality, assume there exists $a \in A$ such that $a \notin B$. Since B is nonempty, there exists some $b \in B$ (which may or may not be in A, but it doesn't matter either way). Then $(a, b) \in A \times B$, but $(a, b) \notin B \times A$ since $a \notin B$. Thus $A \times B \neq B \times A$.

2.2.2.

- (a) $A \cap B$.
- (b) A B.
- (c) $A \cup B$.
- (d) $\overline{A} \cup \overline{B}$ or $\overline{A \cap B}$.

2.2.4.

- (a) Since $A \subseteq B$, we have $A \cup B = B$.
- (b) Since $A \subseteq B$, we have $A \cap B = A$.
- (c) $A \setminus B = \{f, g, h\}.$
- (d) $B \setminus A = \emptyset$.

2.2.12. First, note that if $x \in A$, then clearly $x \in A \cup (A \cap B)$, so we definitely have $A \subseteq A \cup (A \cap B)$. Conversely, if $x \in A \cup (A \cap B)$, then either $x \in A$, or else $x \in A \cap B$. In either case, we see that we must have $x \in A$, which shows that $A \cup (A \cap B) \subseteq A$. Thus $A = A \cup (A \cap B)$.

2.2.14. If $A = \{1, 3, 5, 6, 7, 8, 9\}$ and $B = \{2, 3, 6, 9, 10\}$, then one can verify that A - B, B - A and $A \cap B$ are all as specified in the problem.

2.2.16(d). If $x \in A \cap (B \setminus A)$, then $x \in A$ and $x \in B \setminus A$. This means that $x \in A$, and $x \in B$ but $x \notin A$. So we have $x \in A$ and $x \notin A$, so this is a contradiction. Thus $A \cap (B \setminus A)$ has no elements.

2.2.18(c). If $x \in (A - B) - C$, then $x \in A - B$ and $x \notin C$. This means that $x \in A$, $x \notin B$ and $x \notin C$. So $x \in A$ and $x \notin C$, so $x \in A - C$. Thus $(A - B) - C \subseteq A - C$.

2.2.24. If $x \in (A-C) - (B-C)$, then $x \in A-C$ and $x \notin B-C$. Since $x \in A-C$, we have $x \in A$ and $x \notin C$. Since $x \notin B$, we know that either $x \notin B$ or else $x \in C$. But we already know that $x \notin C$, so actually we must have $x \notin B$. Thus $x \in A$ and $x \notin B$, so $x \in A-B$, but then also $x \notin C$ so $x \in (A-B) - C$. This shows that $(A-C) - (B-C) \subseteq (A-B) - C$. The proof of the reverse inclusion is similar.

2.2.26(b). On a computer, can't draw.

2.2.30.

- (a) Nope. For example, take $A = \emptyset$, $B = \{1\}$, and $C = \{1\}$. Then $A \neq B$ but $A \cup C = B \cup C$.
- (b) Nope. For example, take $A = \{1\}$, $B = \{2\}$ and $C = \emptyset$. Then $A \cap C = B \cap C$ but $A \neq B$.
- (c) Yes. Suppose $x \in A$. Then $x \in A \cup C$, and $A \cup C = B \cup C$, so $x \in B \cup C$ so either $x \in B$ or $x \in C$. If $x \in B$, we're done, so suppose $x \notin B$. Then we must have $x \in C$. Then $x \in A \cap C$, but $A \cap C = B \cap C$, so $x \in B \cap C$. But this is a contradiction, since we assumed that $x \notin B$ but $B \cap C \subseteq B$. Thus we have just shown that $A \subseteq B$. The proof of the reverse inclusion is identical.

2.2.44. Let $n = \max\{|A|, |B|\}$. Then $|A \cup B| \le n + n = 2n$, so $A \cup B$ is finite.