HOMEWORK 3 SOLUTIONS, MATH 55

1.8.4. There are three cases: that a is minimal, that b is minimal, and that ¢ is minimal.
If @ is minimal, then a < b and a < ¢, so a < min{b, c}, so then

min{a, min{b, c}} = a.
Also a < b, so min{a,b} = a, and then
min{min{a, b}, ¢} = min{a,c} = a

since a < c¢ also. Thus min{a, min{b, c}} = min{min{a,b}, c}. The other two cases are
similar and I'm too lazy to write them out.

1.8.6. If x and y are integers of opposite parity, without loss of generality we can assume
that z is even and y is odd. Then z = 2a for some integer a and y = 2b+ 1 for some integer
b, so

5z + 5y = 10a + 106+ 1 = 2(5a + bb) + 1

is odd.

1.8.10. The integers 2-10°°° 4- 15 and 2-10°°° 4 16 are consecutive positive integers, and in
general consecutive positive integers can never both be perfect squares. Indeed, if a positive
integer n is a perfect square, it is equal to a? for some positive integer a, and the next
perfect square strictly greater than n must be

(a+1)=a*+2a+1=n+2a+1>n+1

since 2a +1 > 1 when a > 1.

1.8.14. It need not be that a® is rational whenever a and b are rational. For example, if
a =2 and b=1/2, then a® = 21/2 = /2.

1.8.18. We start with existence. Let n be the largest integer less than or equal to r. In
other words, we choose n so that n < r < n + 1. Since r is irrational, we know that r # n,
son <r<n+1 If |r—n|] < 1/2, then n is an integer whose distance to r is less than
1/2, so we're done. So, suppose |r —n| > 1/2. Since r > n, we know that r —n > 0 so
|r —n| =7 —mn > 1/2, which means that n —r < 1/2. But we also know that n +1 > r, so
[m+1)—7r|=(n+1)—r. Then

(n+1)—rl=n+1)—r=(mn-r)+1<1/2.

If (n+ 1) —r =1/2, then we would have r = n + 1/2, but r was supposed to be irrational,
so that’s a contradiction. So then [(n+1) —r| = (n+ 1) —r < 1/2, s0 n+ 1 is an integer
whose distance to r is less than 1/2, so again we’re done.

For uniqueness, suppose n and n’ are distinct integers whose distance to r is less than
1/2. Then

1 1
n=nl =l =)= =) < |+ | < 55 =1,
using the triangle inequality. But the distance between two distinct integers is always greater

than 1, so this is impossible.

1.8.22. If x is a nonzero real number, then z — 1/x is also a real number, so (z —1/z)? > 0
since the square of any real number is nonnegative. Expanding this out, we get 22 —2x(1/x)+
1/22 > 0. But the middle term is equal to 2, and then adding 2 to both sides gives

24+ 1/2% > 2.



1.8.30. Let f(x,y) = 22% + 5y?. First notice that (z,v) is a solution if and only if (|z], |y|)
is a solution, so it suffices to look for solutions (z,y) where both  and y are nonnegative.
If x > 3, then

flz,y)>2-32+5y2>2.9=18> 14

so any solution must have x > 2. Also if y > 2, we similarly have
flz,y) >5-22=20> 14

so we must have y < 1. There are only 6 pairs (x,y) where 0 <z <2 and 0 <y < 1. We
check all of these by hand.

Since none of these are equal to 14, we conclude that f(z,y) = 14 has no integer solutions.
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1.8.32. If m and n are arbitrary integers and x = m? — n?, y = 2mn, and z = m? + n?,

then

332 + y2 — (m2 _ n2)2 =+ (an)2

=m* —2m?n? + nt 4+ 4m>n?

=m* +2m?n? 4+ n*

= (m? +n?)* =22
Thus each pair of integers (m, n) gives rise to a triple of integers (z,y, z) that is a solution to
x24y? = 22, Now notice that fixing n = 1 gives us solutions of the form (m?—1,2m, m?+1).
For positive integers m # m’, clearly (m? —1,2m,m? + 1) # (m'2,2m’,m’2 + 1), so there
are infinitely many solutions (z,y, 2) to 2% + y? = 22 in the positive integers.

1.8.34. Suppose v/2 were rational. Then we can write ¢/2 = p/q where p and ¢ are integers
and p/q is in lowest terms. Cubing both sides and clearing denominators, we get p® = 2¢>.
Thus p? is even. If p were odd, it would be equal to 2k + 1 for some integer k, and then

p> = (2k 4+ 1)% = 2(4k> 4+ 6k* + 3k) + 1

which is odd. But we know that p> is even, so p cannot be odd, so it must be even. Thus
p = 2k for some integer k. Then

2¢° = p° = (2k)3 = 8k3

which means that ¢ = 4k% = 2(2k3). This means that ¢> is even, so as above, ¢ must also
be even. But p and g were supposed to be in lowest terms, so this is a contradiction.

1.8.36. Let a be rational and z irrational. We will show that y = (a + x)/2 is irrational
and y is between a and x. First, to see that y must be irrational. If it were rational, then
we would have

rT=2y—a

but then the left hand side is clearly rational, whereas x was supposed to be irrational. Thus
y must be irrational.



Next, we need to show that y is between a and x. Since a is rational and x is irrational,
we know that a # x, so either a < x or x < a. If a < z, then

at+a<at+z<z+zx

so, dividing by 2, we get
a+a a+x T +x
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Thus a < y < z. If x < a, one proves that z < y < a in an analogous way.

1.8.42. You can tile a standard checkerboard with all four corners removed using dominoes.
Each row has an even number of squares (either 6 or 8), so you can just place the dominoes
end-to-end in each row. If I were doing this by hand, I'd draw a picture, but I'm not, so
you’ll just have to imagine it.

1.8.44. Suppose the original 5 x 5 checkerboard (without the corners removed) is colored
with alternating white and black squares, starting with a white square in the top left corner.
Then there are 3 rows with 3 white squares and 2 rows with 2 white squares, so a total of
13 white squares. Then there are 25 total squares, so the remaining 12 squares are all black.
Now suppose we remove 3 of the corner squares. All of the corner squares are white, so we
wind up with 10 white squares and 12 black squares. Each domino needs to cover a black
square and a white square, but there are a different number of white squares and black
squares left, so it is impossible to tile this checkerboard with dominoes.

2.1.10. I don’t know how to write down an explanation for any of these without saying
“duh,” so here are the answers.

(a
b

(
(c
(

True.
True.
False.
d) True.
(f) False.
True.

(g
2.

)
)
)
)
(e) False.
)
)
1.

12. I'm on a computer, so I can’t draw. Sorry.
2.1.16. Again, I'm on a computer, so I can’t draw.
2.1.18. Let A= and B = {0}. Then clearly () € {0} and 0§ C {0}.

2.1.20. Again, I don’t know how to write down an explanation for any of these without
saying “duh,” so here are the answers.

(a) 0
(b) 1
(c) 2.
(d) 3
2.1.22.



(a) The empty set can never be the power set of a set .S, since any set S must have at least
() as a subset, so at least () must be an element of the power set, but 0 ¢ 0.

(b) This is the power set of {a}.

(c¢) This cannot be the power set of any set. If it were the power set of some set S, then
we would have {a,0} C S, so @ € S, so then {(}} would also be a subset of S. But {0}
is not an element of the set described in the problem.

(d) This is the power set of {a,b}.

2.1.26. Suppose (a,b) € Ax B. Thena€ Aandbe B. Bt ACCand BC D,soa€C
and b € D. So then (a,b) € C x D. Thus A x BC C x D.

2.1.32.
(b) There should be 3 x 2 x 2 = 12 elements.

CxBxA={(0,z,a),(0,z,b),(0,z,¢),
(0,9,a),(0,y,0),(0,y,¢),
(1,z,a),(1,z,b),(1,z,¢),
(Ly,a), (1,y,b), (L iy, 0)}

(d) There should be 8 elements. I'm too lazy to list them all.

2.1.38. If A and B are nonempty and A # B, then either there exists an element a € A
such that a ¢ B, or else there exists an element b € B such that b ¢ A. Without loss of
generality, assume there exists a € A such that a ¢ B. Since B is nonempty, there exists
some b € B (which may or may not be in A, but it doesn’t matter either way). Then
(a,b) € Ax B, but (a,b) ¢ B x Asince a ¢ B. Thus A x B# B x A.

2.2.2.

(a) AnB.
(b) A

(¢) AUB.
(d) AUBor ANB.
2.2.4.
(a) Since A C B, we have AU B = B.
(b) Since A C B, we have AN B = A.
() A\B={fg,h}.

(d) B\A=0.

2.2.12. First, note that if © € A, then clearly z € AU (AN B), so we definitely have
A C AU (AN B). Conversely, if x € AU (AN B), then either € A, or else z € AN B.
In either case, we see that we must have © € A, which shows that AU (AN B) C A. Thus
A=AU(ANB).

2.2.14. If A ={1,3,5,6,7,8,9} and B = {2,3,6,9,10}, then one can verify that A — B,
B — A and AN B are all as specified in the problem.



2.2.16(d). If z € AN(B\ A), then x € A and z € B\ A. This means that x € A, and
x € Bbut x ¢ A. So we have z € A and x ¢ A, so this is a contradiction. Thus AN (B\ A)
has no elements.

2.2.18(c). f t € (A—B) —C, then x € A— B and = ¢ C. This means that x € A, z ¢ B
andx ¢ C. Soxe Aandax ¢ C,sox € A—C. Thus (A—-B)-CCA-C.

2.2.24. Ifx e (A-C)—(B—-C),thenx € A—C and z ¢ B—C. Since z € A—C, we have
x € Aand x ¢ C. Since z ¢ B, we know that either = ¢ B or else x € C. But we already
know that « ¢ C, so actually we must have z ¢ B. Thus v € Aand 2 ¢ B, sox € A — B,
but then also z ¢ C so « € (A— B) —C. This shows that (A—-C)—(B—-C) C (A-B)—-C.
The proof of the reverse inclusion is similar.

2.2.26(b). On a computer, can’t draw.

2.2.30.
(a) Nope. For example, take A = (), B = {1}, and C' = {1}. Then A # B but AUC = BUC.

(b) Nope. For example, take A = {1}, B = {2} and C = (). Then ANC = BN C but
A # B.

(¢) Yes. Suppose x € A. Thenz € AUC, and AUC = BUC, so x € BUC so either
x € Borx e C. If x € B, we're done, so suppose = ¢ B. Then we must have x € C.
Then z € ANC,but ANC = BNC, sox € BNC. But this is a contradiction, since
we assumed that x ¢ B but BN C C B. Thus we have just shown that A C B. The
proof of the reverse inclusion is identical.

2.2.44. Let n = max{|A|,|B|}. Then |AUB| <n+n = 2n,so AU B is finite.



