
Review Topics for Final Exam in Calculus 1B

Instructor: Zvezdelina Stankova

1. Definitions and Basic Questions

Be able to write precise definitions for any of the following concepts (where appropriate: both in words
and in symbols), to give examples of each definition, to prove that these definitions are satisfied in specific
examples. Wherever appropriate, be able to graph examples for each definition and answer the posed
questions.

(1) What is a Differential Equation? What is the degree of DE? What constitutes a solution to a DE?
(2) What is an initial condition of a DE? How does it affect the number of solutions to a DE? How many

solutions of a 1st-order DE pass through a point (a, b)? Of a 2nd-order DE?
(3) What is exponential growth and decay, and what DEs model them?
(4) What is a logistic DE? What is its carrying capacity and how does it affect the solutions to the DE?
(5) What solutions do we know of the second degree DE: x′′(t) = −x(t)? What is a linear combination

of solutions to a DE?
(6) What is the direction field of a DE and to what order DEs is it applicable? What does it represent

and how does it help us draw solutions to the DE? Can you give an example of a 1st-order DE where
two solutions curves intersect in a point (a, b)? How about an example of a 2nd-order DE?

(7) What is an equilibrium solution to a DE and how do we find all such solutions? What are its stable
and unstable equilibria?

(8) What is an autonomous DE? Why are its solutions horizontal translates of one another and how
does this help us draw the direction field and sketch solutions? Is an autonomous equation also a
separable equation and why?

(9) How do we solve DE’s in which there is no dependent variable “on the RHS”, e.g. y′ = f(x)? Why
are the solutions vertical translates of one another and how does this help us draw the direction field
and sketch solutions? Is such a DE also a separable equation and why?

(10) What is a separable DE? How do we decide if a DE is separable?
(11) What is the angle between two curves at a point A and how do we compute this angle? What does

it mean for two curves to be perpendicular? What is an orthogonal trajectory?
(12) What is a tank problem and how do we translate the given data into mathematical terms and

equations?
(13) What is the relative growth of population P (t)? How do we calculate it? In what types of DE is the

relative growth constant?
(14) What is the half-life of a population/substance? How can it be used to set up a mathematical

equation?
(15) What does Newton’s Law of Cooling say and how do we use it to set up DEs and solve problems?
(16) What does it mean to compound interest annually, monthly, daily, continuously? What formulas for

the amount of money in n years do we have in each case?
(17) In the basic logistic model with initial relative growth rate k and carrying capacity K:

(a) How does the population P (t) grow when its size is relatively small compared to K; why is the
DE approximating the growth of P (t) in such a case given by dP/dt ≈ kP (t)?

(b) How does the population P (t) grow when its size is relatively close to K; why is the DE
approximating the growth of P (t) in such a case given by dP/dt ≈ 0?

(c) How does P (t) behave between the two equilibria 0 and K, above K, and below 0? Why?
(d) How do we find the inflection points of P (t) in the logistic DE? Where are all these inflection

points and why?
(18) How do the following variations of the basic logistic model modify the basic logistic equation:



(a) harvesting at a constant rate c?
(b) minimal survival level m for the population?
What are the equilibria in each case? Using only the given DEs, what are the direction fields and
what do the solutions look like? How do we compute exactly all solutions, i.e. solve these DEs?

(19) What is a first-order linear DE? Is it necessarily separable? What is an integrating factor, how do
we calculate it and how do we use it to solve the first-order linear DE?

(20) What is a predator-prey system? How do the two populations of predators and prey interact and
how is this reflected in the corresponding system of DEs?

(21) What is the phase DE associated to a basic predator-prey DE system? What is the phase plane, a
phase trajectory and a phase portrait of the DE-system?

(22) What are the equilibrium points of the basic predator-prey DE system and how do we find them?
(23) What are typical phase trajectories of the basic predator-prey model? What happens on each phase

trajectory as one goes along it?
(24) In the basic predator-prey model, why is there a phase-delay in the predator function W (t)? How

long is approximately such a phase delay and why?
(25) Why do we need to modify the basic predator-prey model in order to reflect reality? Why do we

change the DE equation of the prey into a logistic equation? What is a typical phase trajectory for
this improved logistic/predator-prey model? How many equilibrium points are there, which of them
are stable and why?

(26) Looking at the DE system associated to two co-inhabiting species, how can we decide if the species
are competing with each other for resources, or are in a predator-prey relationship, or are living
together for mutual benefit? What would the corresponding phase trajectories and functions R(t)
and W (t) look like in each case?

(27) What is a 2nd-order linear DE equation? A 2nd-order linear DE equation with constant coefficients?
A homogeneous 2nd order linear DE equation with constant coefficients?

(28) What is the characteristic equation associated to a homogeneous 2nd-order linear DE equation with
constant coefficients? What is the significance of its roots?

(29) When do we say that two DE solutions are linearly independent? Why do we care about their linear
independence?

(30) What is a complex number? What are the real and the imaginary parts of a complex number and
how do we find them?

(31) What is i? What does in equal and how does this depend on the natural number n?
(32) What does ea+bi equal to when a, b ∈ R?
(33) What is an initial-value problem for a 2nd-order DE? What is the geometric interpretation of the

initial-value conditions? How many initial values do we need to determine a unique solution to the
DE? Are all initial-value problems for 2nd-order DEs solvable?

(34) What is a boundary-value problem for a 2nd-order DE? What is the geometric interperation of
the boundary-value conditions? How many boundary values do we need to pose such a problem?
(Bonus:) Give an example of a boundary-value problem which doesn’t have a solution and explain
why this is so.

(35) What is a non-homogeneous 2nd-order linear DE with constant coefficients? What is the comple-
mentary equation associated to a non-homogeneous equation and what is it used for?

(36) What is a complementary solution yc(x), a particular solution yp(x), and a general solution y(x) to
a non-homogeneous 2nd-order linear DE with constant coefficients? How do these solutions relate
to each other?
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(37) Given a non-homogeneous 2nd-order linear DE with constant coefficients ay′′ + by′ + cy = G(x),
what does it mean to make an intelligent guess for its particular solution yp(x)? For which functions
G(x) does this “guessing” work well?

(38) What is the difference between the method of undetermined coefficients and the method of variation
of parameters? To what type of DE equations is each applicable? What are the pros and cons of
each method?

(39) What is a spring constant k and to what DEs is it associated? What is a restoring force?
(40) What is a simple harmonic motion? What are its frequency, amplitude and phase angle?
(41) What is a damping constant and damping force and to what DEs are they associated? What is

overdamping, critical damping and underdamping, when does each occur and how does it affect the
motion? What happens with the motion as t→∞?

(42) What is a forced vibration and an external force? What is resonance and when does it appear?
(43) What is the difference between simple harmonic vibrations, damped vibrations and forced vibrations?

How are these differences reflected in the corresponding DEs and the graphical presentation of their
solutions?

(44) (Bonus:) What is a steady state solution in a spring systems? How do we calculate it?
(45) What is a series solution to a DE?
(46) What does it mean to shift the index of a series, how and why do we change indices of series?
(47) How do recursive sequences enter the process of solving DEs? What is the difference between recursive

and direct formulas for sequences? Which of these two types of formulas is more useful for us when
solving DEs and why?

2. Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says. Be sure
to understand, distinguish and state the conditions (hypothesis) of each theorem and its conclusion. Be
prepared to give examples for each theorem, and most importantly, to apply each theorem appropriately
in problems. The latter means: decide which theorem to use, check (in writing!) that all conditions of your
theorem are satisfied in the problem in question, and then state (in writing!) the conclusion of the theorem
using the specifics of your problem.

(1) Exponential Growth/Decay. The solutions to the DE: P ′(t) = kP (t) are given by P (t) = Cekt

for any C ∈ R. If given the initial value P (0), then C = P (0).
(2) Newton’s Law of Cooling. A body changes its temperature f(t) to match the temperature Ts of

the environment at a rate proportional to the difference of temperatures: f ′(t) = k(f(t)− Ts).

(3) Limit Theorem. lim
n→∞

(
1 +

1
n

)n

= e.

(4) Compounding Interest Theorems. Given principal P0 and yearly interest rate r (written as a
decimal, e.g. r = 0.06), the amount of money accumulated in t years is given by

(a) P (t) = P0

(
1 +

r

n

)nt

if interest is compounded n times a year.

(b) P (t) = P0e
rt if interest is compounded continuously.

(5) Logistic DE. The solutions to the logistic DE:
dP

dt
= kP

(
1− P

K

)
are given by P (t) =

K

1 + Ae−kt
.

If given initial condition P (0), then P (0) =
K

1 + A
, from where A =

K

P (0)
− 1.
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(6) Predator-Prey DE Systems. The prey population R(t) and the predator population W (t) interact
according to the following system of DEs, where a, b, k, r are some positive constants:∣∣∣∣∣∣∣

dR

dt
= kR(t)− aR(t)W (t)

dW

dt
= −rW (t) + bR(t)W (t)

The solutions (R(t),W (t)) satisfy the following equation for some constant c ≥ 0:
W kRr

eaW ebR
= c. The

phase DE satisfied by W (R) as a function of R is

dW

dR
=

(−r + bR)W
(k − aW )R

·

Note that there is no time t in this phase DE.
(7) Linear Combinations Theorem. If y1(x) and y2(x) are two solutions of a homogeneous linear

DE, then any linear combination of them Ay1(x)+By2(x) for A,B ∈ R is also a solution to the DE.
(8) Linear Independence Theorem. If y1(x) and y2(x) are two linearly independent solutions of a

homogeneous 2nd-order linear DE P (x)y′′ + Q(x)y′ + R(x)y = 0, then all solutions to the DE are
given by the linear combinations of these two solutions: y(x) = Ay1(x) + By2(x) for A,B ∈ R.

(9) Characteristic Equation Theorem. Given a homogeneous linear DE with constant coefficients
any(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0, all of its solutions of the form y = erx correspond to the

roots r of the associated characteristic equation anrn + an−1r
n−1 + · · ·+ a1r + a0 = 0.

(10) Euler’s Formula. If z = α + iβ ∈ C is a complex number with real and imaginary parts α and β

respectively, then ez = eα+iβ = eα(cos β + i sinβ).
(11) General Solutions Homogeneous 2nd-Order Linear DE. Let ay′′ + by′ + cy = 0 be a ho-

mogeneous 2nd-order linear DE with constant coefficients a, b, c; a 6= 0. Consider the associated
characteristic equation ar2 + br + c = 0 and its discriminant D = b2 − 4ac.

(a) If ar2 + br + c = 0 has two different real roots r1,2 =
−b±

√
b2 − 4ac

2a
(i.e. D > 0), then the

general DE solution is given by y(x) = Aer1x + Ber2x for any A,B ∈ R.

(b) If ar2 + br + c = 0 has one real root r =
−b

2a
(i.e. D = 0), then the general DE solution is given

by y(x) = Aerx + Bxerx for any A,B ∈ R.
(c) If ar2 + br + c = 0 doesn’t have real roots (i.e. D < 0), then its complex roots given by the

quadratic formula can be written in the form z1,2 = α ± iβ where α = Re(z) and β = Im(z),
and the general DE solution is given by y(x) = Aeαx cos(βx) + Beαx sin(βx) for any A,B ∈ R.

(12) Initial-Value Problems. Let ay′′ + by′ + cy = 0 be a homogeneous 2nd-order linear DE with
constant coefficients a, b, c; a 6= 0. Then any initial-value problem y(x0) = y0 and y′(x0) = s for
arbitrary fixed constants x0, y0, s, has a unique DE solution y(x), i.e. the constants A,B from the
general DE solution y(x) can be calculated uniquely so that y(x) satisfies the two given initial values.

(13) Uniqueness of Boundary-Value Solutions (Bonus). Let ay′′ + by′ + cy = 0 be a homogeneous
2nd-order linear DE with constant coefficients a, b, c, a 6= 0. A boundary-value problem y(x0) = y0

and y(x1) = y1 for arbitrary fixed constants x0, y0, x1, y1 will have a unique solution in all cases

except when the characteristic equation has complex roots z = α + iβ and x2 − x1 =
kπ

β
for some

integer k. In the latter case, the boundary-value problem has infinitely many solutions if in addition
y2 = (−1)ke

α
β kπ, or else it has no solutions. 1

1Try to prove this theorem as a challenging bonus exercise. You will need to come up with a condition for a linear system

of 2 equations with 2 unknowns to fail to have a unique solution. If and when you take linear algebra, you will associate this

problem with a 2 × 2 matrix and will investigate if its determinant is 0 or not.
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(14) General Solutions to Non-Homogeneous 2nd-Order Linear DE. Given the DE ay′′ + by′ +
cy = G(x), its general solution is given by y(x) = yp(x) + yc(x) where yp(x) is a particular solution
to the DE, and yc(x) is the general solution to the complementary homogeneous equation. Note that
in this formula yp(x) is fixed and yc(x) varies over all complementary solutions.

(15) Theorem on Method of Undetermined Coefficients: Intelligent Guessing for yp(x). Con-
sider the DE ay′′+by′+cy = G(x) where G(x) equals polynomial P (x), erx, sin(mx), cos(kx), or any
function which can be obtained from these basic functions via addition, taking linear combinations,
or multiplication. Then the following guesses for a particular solution yp(x) to the DE always work:

G(x) guess for yp(x)
1. poly P (x) of degree n same type as G(x): poly Q(x) of degree n,

i.e. yp(x) = Q(x) = cnxn + cn−1x
n−1 + · · ·+ c2x

2 + c1x + c0

2. erx same type as G(x): yp(x) = cerx

3. sin(mx) yp(x) = c1 sin(mx) + c2 cos(mx)
4. cos(kx) yp(x) = c1 sin(kx) + c2 cos(kx)
5. G1(x) + G2(x)
e.g. 7e3x − 2 sin(5x)

sum of all guesses for G1(x) and for G2(x)
e.g. yp(x) = c1e

3x + c2 sin(5x) + c3 cos(5x)
6. G1(x) ·G2(x)
e.g. (x2 + 1) cos(2x)

products of all guesses for G1(x) and for G2(x)
e.g. yp(x) = (c2x

2 + c1x + c0)(b1 sin(2x) + b2 cos(2x)) =
d1x

2 sin(2x) + d2x sin(2x) + d3 sin(2x) + d4x
2 cos(2x)

+ d5x cos(2x) + d6 cos(2x)
7. some term of yp(x)
participates in yc(x)

multiply this term by x (or by x2, if necessary) in order to avoid
repetition with terms of yc(x).

(16) Method of Variation of Parameters: Consider the DE ay′′+ by′+ cy = G(x) where G(x) is any
continuous function on some interval J . The following procedure always produces the general DE
solutions, provided we can integrate at the end.2

(a) Find the complementary solution yc(x) = Ay1(x) + By2(x) for some linearly independent solu-
tions y1(x) and y2(x), A,B ∈ R.

(b) For the particular solution, set yp(x) = f(x)y1(x)+ g(x)y2(x) for some unknown functions f(x)
and g(x), continuous on J .

(c) Set up the following system with unknowns f ′(x) and g′(x):∣∣∣∣∣ f ′(x)y1(x) + g′(x)y2(x) = 0
f ′(x)y′1(x) + g′(x)y′2(x) = G(x)

(d) Solve the system for f ′(x) and g′(x) via elimination of one of them. Thus, arrive at f ′(x) = S(x)
and g′(x) = Q(x) for some functions S(x) and Q(x), continuous on J .

(e) Integrate to solve for f(x) and g(x): f(x) =
∫

S(x)dx and g(x) =
∫

Q(x)dx. (No constants C

are necessary here.)
(f) Put together yp(x) =

(∫
S(x)dx

)
y1(x) +

(∫
Q(x)dx

)
y2(x).

(g) Put together y(x) = yp(x) + yc(x).

2We may view the Method of Variation of Parameters as a 2-dimensional version of the method for solving Linear DE’s via

an integration factor. Further, Linear Algebra will put the system in part (c) into the matrix form: 
y1 y2

y′
1 y′

2

!
·
 

f ′

g′

!
=

 
0

G

!
There are standard methods for solving such systems in Linear Algebra. As a bonus “food for thought”: looking at the form

of this matrix equation, can you guess the corresponding system for a non-homogeneous 3rd-order linear DE? nth-order?
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(17) Simple Harmonic Motion is described via the DE mx′′(t) + kx(t) = 0, where k is the spring
constant, m is the mass of the spring, and x(t) is the units of stretching/contracting of the spring
relative to its natural state, at time t. The general solution of the DE is

x(t) = c1 cos(ωt) + c2 sin(ωt) = A cos(ωt + δ),

where ω =
√

k/m is the frequency, A =
√

c2
1 + c2

2 is the amplitude, and sin δ = −c2/A, cos δ = c1/A

give the phase angle δ.

(18) Damped Vibration is described via the DE mx′′(t)+cx′(t)+kx(t) = 0, where m is the mass of the
spring, c and k are the damping and spring constants, and x(t) is the units of stretching/contracting
of the spring relative to its natural state, at time t. The general solution of the DE depends on the
roots of the quadratic characteristic equation mr2 + cr + k = 0: r1,2 = −c+

√
c2−4mk
2m .

(a) If D = c2 − 4mk > 0, the general solution to the DE is given by:

x(t) = c1e
r1t + c2e

r2t.

In this case, both roots r1,2 < 0 (why?), and hence limt→∞ x(t) = 0, i.e. the oscillations in the
original harmonic motion die out fast and overdamping occurs.

(b) If D = c2 − 4mk = 0, the general solution to the DE is given by:

x(t) = c1e
rt + c2te

rt,

where r = r1 = r2 = −c/(2m) < 0. Again, one can calculate that limt→∞ x(t) = 0 (why?), i.e.
the oscillations of the original harmonic motion die over time but slower than in the previous
case. The damping is just enough to surpress the oscillations: we say that critical damping
occurs.

(c) If D = c2 − 4mk < 0, the general solution to the DE is given by:

x(t) = c1e
−c/2m cos ωt + c2e

−c/2m sinωt = Ae−c/2m cos(ωt + δ),

where the two roots are r1,2 = − c
2m ± ωi, and ω =

√
4mk−c2

2m . In this case limt→∞ x(t) = 0
too (why?), but the vibrations survive with smaller and smaller amplitudes: there are still
well-defined oscillations no matter how much time has elapsed.

(19) Forced Vibration is described via the non-homogeneous DE mx′′(t)+ cx′(t)+kx(t) = F (t), where
m is the mass of the spring, c and k are the damping and spring constants, F (t) is an external force,
and x(t) is the units of stretching/contracting of the spring relative to its natural state, at time t.
The complementary solutions xc(t) of the DE depend on the roots of the quadratic characteristic
equation mr2 + cr + k = 0 (covered in the three cases above), and a particular solution xp(t) is
obtained via the methods of undetermined coefficients or variation of parameters.

(20) Forced Vibration without Damping commonly occurs when the external force F (t) = F0 cos(ω0t)
is a continuous periodic function, and c = 0. Then the general solution to the DE

mx′′(t) + kx(t) = F0 cos(ω0t)

is given by

x(t) = c1 cos ωt + c2 sinωt +
F0 cos(ω0t)
m(ω2 − ω2

0)
·

Correspondingly, resonance occurs when ω0 = ω, i.e. the original spring motion and the forced
vibration have the same frequency.
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3. Problem Solving Techniques

(1) Without solving a 1st-order DE, how do we use the DE to analyze its solutions and draw
sketches of these solutions? A first-order DE is of the form: y′(x) = f(x, y). We investigate
the sign of the derivative y′ by finding out for which x’s and y’s f(x, y) is positive, zero or negative.
Correspondingly, the solutions y(x) will be increasing, leveling or decreasing at the points (x, y). This
gives us a rough idea of the behavior of each solution and helps us sketch representative solutions.
Try this on y′ = x− y, on y′ = x− y2, and on the logistic equation dP/dt = 2P (1− P/800).

(2) How do we use the 1st-order DE to draw its direction field? Compared to the method
above, this is a slightly more precise way of sketching the solutions to the DE. For various values of x

and y, we calculate RHS = f(x, y), and hence we have calculated the LHS = y′. These calculations
can be recorded in a table:

x · · ·
y · · ·
y′ · · ·

For each of these points (x, y), we draw a small segment centered at (x, y) with slope = f(x, y). The
collection of these small segments comprise the direction field of the DE. By following the directions
of the segments we can trace rough sketches of solutions to the DE.

(3) How to choose the points (x, y) at which to calculate y′ depends on the given DE.

(a) If given autonomous DE: y′(x) = f(y), we know that the solutions and their slopes do not
depend on the variable x, i.e. the solutions are horizontal translates of each other, and the
slopes are equal along the same horizontal line. Thus, it suffices to find the slopes only along
one vertical line, say, x = 1. The slope calculations can be recorded in a table of the form:

x * * * · · ·
y · · ·
y′ · · ·

It remains to draw these slopes on the vertical line x = 1 and to draw the same slopes along all
horizontal lines. Try this on y′ = y(1− y/2)(1 + y/2).

(b) If given DE without dependent variable on RHS: y′(x) = f(x), we know that all solutions
are of the form y(x) =

∫
f(x)dx, thus, having found one solutions y(x) = F (x), all other

solutions are vertical translates of it: y(x) = F (x) + C. Thus, it suffices to find the slopes only
along one horizontal line, say, y = 1. The slope calculations can be recorded in a table of the
form:

x · · ·
y * * · · ·
y′ · · ·

It remains to draw these slopes on the horizontal line y = 1 and to draw the same slopes along
all vertical lines. Try this on y′ = x2.

(c) If given a general first-order DE: there is no recipe that works in all cases. In class, we did
two examples of this type: y′ = x− y and y′ = y + xy. Several things that could be done are:

(i) look for the points where y′ = 0 and solve for x and y. In the first example, y′ = 0
happens along the line x = y, while in the second example: along the lines y = 0 and
x = −1. (Why?)

(ii) look for equilibrium solutions: plug in y = K and y′ = 0 and solve for x. The first example
doesn’t have equilibrium solutions, but the second example has equilibrium y = 0.

(iii) if possible, find where y′ = 1,−1, 2,−2 and some other convenient slopes. In the first
example, we can actually solve for all wanted slopes y′ = c: this happens along the line
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y = x− c. In the second example, this happens along the curves y = c/(1 + x). (Why?)
Draw a few representatives of such curves.

(iv) analyse when y′ > 0, < 0. In the first example, all points above the line x = y correspond
to negative slopes, and all points below the line x = y correspond to positive slopes. Thus,
solutions above x = y are decreasing, and below x = y are increasing. In the second
example, if we form a coordinate system with axis the usual x-axis and x = −1, then the
slopes are positive and solutions are increasing in the “first” and “third quadrants”, and
the slopes are negative and solutions are decreasing in the “second” and “forth quadrants”.

(v) All of the above observations can be summarized in tables, the directions fields can be
drawn, and representative solutions sketched.

(4) How do we solve separable DE?
(a) The first step of turning a DE into the form of a separable DE is sometimes the toughest to

see. If you believe that a DE is separable, put all terms involving y′ to LHS, all other terms to
the RHS. Factor out y′ on the LHS: �1 · y′ = �2, and solve for y′: y′ = f(x, y). Now comes
the moment of truth: in a separable DE one can factor f(x, y) as a product of a function of x

and another function of y: f(x, y) = g(x) · h(y). If this is not possible, then your DE is not
separable, and you must try another method.

(b) If it is possible to separate the x and the y’s on RHS, then we proceed in the standard way:

dy

dx
= g(x)h(y) ⇒ dy

h(y)
= g(x)dx ⇒

∫
1

h(y)
dy =

∫
g(x)dx.

After integrating wrt to y on LHS, and wrt x on RHS (i.e. here all integration methods we
learned this semester kick in), we get rid of all integrals (and derivatives) to arrive at an equation:

F (y) = G(x) + C for all C ∈ R.

(c) Solving for y is the next moderately difficult step here, for it may involve raising e to both
sides, or taking ln on both sides, or taking some radical on both sides, or some other algebraic
technique. If F (y) happens to be a quadratic polynomial, then the quadratic formula will give
the solutions for y. Many calculational mistakes are possible here, especially forgetting absolute
values, +/− signs, forgetting about the constant C on RHS, etc.

(d) After the dust settles down, we have y = some function or functions ofx. We analyse here the
involved constant and simplify the expression that involves this constant. A common situation
is y = ±eC ·H(x)+Q(x), which can be rewritten as y = BH(x)+Q(x) for all B 6= 0. However,
we divided upstairs by all sorts of functions, so we may have lost a solution that corresponds to
B = 0 in it. One needs to substitute y = 0 + Q(x) = Q(x) and y′ = Q′(x) in the original DE to
check if this is indeed a solution, and if indeed we can write y = BH(x) + Q(x) for all B ∈ R.

Another common situation is y = ±
√

H(x) + C, and a common error is to pull the C from
under

√
: y = ±

√
H(x) ± C = ±

√
H(x) + B is FALSE! One cannot split square roots

this way since
√

a + b 6=
√

a +
√

b. Instead, we leave y = ±
√

H(x) + C, and comment that
H(x) + C ≥ 0, i.e. C ≥ −H(x).

(5) How do we find all orthogonal trajectories to a family F of curves?
(a) Such a family of curves is given usually via an equation y = f(x, k) where for each fixed k we

get a different curve of the family. The class example was y = 1/(x+k) for all k ∈ R. However,
the family F may be described in words, e.g. all lines through (1,-4), or all circles centered at
(-3,7), all lines parallel to y = 2x+9, etc. Here one needs to come up with the defining equation
for the curves in F. In class, we discussed all circles through the origin: x2 + y2 = k for k ≥ 0,
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and all lines through the origin: y = kx for all k. Try to come up with the equations for F in
the other examples above.

(b) We create a first-order DE from the given equations for F by differentiating wrt x. We obtain

something like
dy

dx
= g(x, k). In the class example of y = 1/(x + k), the DE we obtained was:

dy

dx
=

−1
(x + k)2

. For the family of circles through the origin, one needs to differentiate implicitly:

2x + 2y · y′ = 0 so that y′ = −x/y.
(c) Next we reciprocate and negate the RHS of the DE in order to find the slope of the orthogonal

trajectory:
dy

dx
=

1
g(x, k)

. In the class example, we obtained
dy

dx
= (x + k)2. For the family of

circles through the origin, one will get dy/dx = y/x.
(d) Solve for k from the original equation for F and substitute into the new DE in order to get

rid of k. In the class example, k = 1
y − x, so the new DE becomes after several algebraic

manipulations:
dy

dx
= y2. For the family of circles through the origin, we don’t have any k in

the new DE, so we are happy about it.
(e) Solve the new DE using any methods we learned. As we see, inevitably, a constant C will arise

in the solutions, so we will indeed get a family G of curves, each of which is orthogonal to each
of the original curves; in rather illuminating notation: G ⊥ F.
In the class example, we arrived at y = 3

√
3x + 3C, which we relabeled y = 3

√
3x + B for any

B ∈ R. For drawing purposes, we solved here for x = y3/3 − C for all C, drew sketches of
curves in the original family F and in the new family G, and verified that the curves from the
two families were indeed orthogonal wherever they intersected.
For the circles through the origin, check that the orthogonal trajectories are given by y = Bx

for all B, i.e. these are, as expected, all lines through the origin.

(6) How do we solve “word problems”? There are several parts in solving word problems:
(a) Translate the word problem into a mathematical set up. This is the hardest part! First one

has to decide a rough outline of what mathematical problem this translates into, e.g. DE with
exponential growth/decay, logistic DE, some other DE (linear first-order, second order, some-
thing else), cooling/warming problem, variation on logistic DE (harvesting, minimal survival
level, etc), predator-prey system, some other system of DEs, etc... Even if you guessed the
wrong type of mathematical problem from the beginning, you’ll have some frame for action in
your mind and you will be able to start the translation: later on, after you have input all data
you will correct yourself if indeed you guessed wrong. Decide which function(s) are the most
important in the problem: which function(s) describes the process you are given, and give a
name to this function(s). Write out all given data into mathematical terminology.

(b) Solve the mathematical problem using the methods we learned. This is a relatively easy part,
as long as the problem is translated correctly.

(c) Translate back your mathematical results into the set up of the original problem. This part is
the easiest, but usually forgotten by happy people who already successfully went through the
two parts above.

(7) How do we set up and solve exponential growth/decay problems? The problem that will
eventually translate into a basic exponential growth/decay set up involves only one population P (t),
with some characteristics that can be encoded in various ways, e.g. “P (t) grows proportionately to
its size”, “half-life of P (t) is 5 days”, “the relative growth of P (t) is constant”, “interest rate has
been accumulating continuously”, etc. In all such cases, start with the basic DE dP/dt = kP (t).
You have essentially two ways of proceeding:
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(a) input the given data into the equation now (e.g. P (0) = k, or P ′(5) = 4, or P (5) = 2P0, or
something else) and solve for k or whatever else left;

(b) or solve the given equation: P (t) = Cekt, then input the given data, and finally solve for k, C

or something else that is left.
Finally, look at the questions they are asking you, plug into your resulting equation P (t) = Cekt, or
into the original equation dP/dt = kP (t) and solve for whatever you need to.

(8) How do we set up and solve “tank problems”? One needs to recognize the basic situation
of a solution, say, water mixed with salt, where the concentration of salt changes due to incoming
water/salt and outgoing water/salt. The basic assumption is that the amount of incoming solution
equals the amount of outgoing solution per unit of time, so that the tank (lake, swamp, container,
etc.) has the same amount of solution at any time. Another fairly standard assumption is that the
solution in the tank is being stirred constantly (say, a waterfall!) so that the concentration of salt
everywhere in the tank is the same.
(a) Depending on the problem, one usually (but not always) labels y(t) to be the total amount of

salt in the tank at time t.
(b) Set up the rate of change DE: dy/dt = (rate-in)-(rate-out).
(c) Come up with formulas for the rate-in and the rate-out of the salt. Usually, but not always,

(rate-in) =

(
concentration of salt in

incoming solution at time t

)
·

(
amount of incoming solution

per unit time

)

(rate-out) =

(
concentration of salt

in tank at time t

)
·

(
amount of outgoing solution

per unit time

)
Usually, the problems supplies data to figure out all 4 quantities above.

(d) The resulting DE is usually of the form: dy/dt = A − By(t) for some constants A and B. In
such a case, one can solve the DE either as a separable or a 1st-order linear equation. You
should try doing it both ways for the class example dy/dt = 7 − 0.07y(t) and compare your
answers.
In more complex problems, the resulting DE will have functions A(t) and B(t): dy/dt = A(t)−
B(t)y(t), in which case one solves the DE as a 1st-order linear equation.

(e) Now that we have come up a formula for y(t), one needs to input any remaining data and
answer the given questions. Note that occasionally it is easier to input the data into the DE to
answer some of the questions, but, by-and-large, you will be answering the questions using the
resulting formula for y(t).

(9) How do we set up and solve “cooling/warming” problems? One needs to recognize the basic
situation of a body cooling down or warming up due to being placed in a colder/warmer environment.
Start from the basic equation

f ′(t) = k(f(t)− Ts),

and substitute the given data: this could be Ts, or k, or something else. Then we solve the DE by
following the steps below:
(a) Substitute y(t) = f(t) − Ts in order to turn the equation into a well-known exponential

growth/decay DE: y′(t) = f ′(t), so that y′(t) = ky(t).
(b) Apply the formula for exponential growth/decay: y(t) = Cekt.
(c) Substitute back to find f(t) = y(t) + Ts = Cekt + Ts.
(d) Finally, use the remaining data in the problem to find anything else that has remained unknown

here: C, k, Ts.
(e) Use your newly found formula for f(t) to answer the questions posed in the problem.
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Note that, if we draw representative solutions, we will notice a picture similar to exponential growth
or decay, except shifted vertically by Ts, and that the equilibrium solution here is y = Ts. Why?

(10) How do we use the formula lim
n→∞

(
1 +

1
n

)n

= e to find limits in similar problems? The

idea is to make a suitable substitution and reduce all other problems to this basic one. Below is one
such example, which by no means exhausts all possible situations:

lim
n→∞

(
1 +

4
7n

)−3n

= lim
n→∞

((
1 +

1
7n
4

) 7n
4
)− 3·4

7

= lim
m→∞

((
1 +

1
m

)m)− 12
7

= e−
12
7

Here we substituted m = 7n/4.
(11) How can we solve problems about doubling money and interest rates? On the surface,

some problems may seem to give you insufficient data for solution. For example,
“How long will it take an investment to double in value if the interest rate is 10% compounded

continuously?”
We don’t know the principal P0, but we can still use P0 in letter notation in our equations. So, set
up the basic continuous compounding equation: P (t) = P0e

0.1t = 2P0. The latter 2P0 simply means
that at time t we will have twice the principal amount, as required in the problem. From here P0

cancels, and we solve for t = (ln 2)/0.1 = 10 ln 2 ≈ 6.9 years.
“What is the equivalent annual interest rate?” In other words, if the interest rate is accumulated

annually, what interest rate r would insure that the money will double in 10 ln 2 years?
Set the equation for annual compounding P (t) = P0(1 + r)t = 2P0, plug t = 10 ln 2, and solve for r:

(1 + r)10 ln 2 = 2 ⇒ ln
(
(1 + r)10 ln 2

)
= ln 2 ⇒ 10 ln 2 ln(1 + r) = ln 2 ⇒ ln(1 + r) = 0.1

⇒ 1 + r = e0.1 ⇒ r = e0.1 − 1 ≈ 0.105, i.e. r ≈ 10.5%.

(12) How do we translate and solve problems in the logistic model set up? The Logistic set
up requires a population P (t) whose growth is approximately exponential P ′(t) ≈ kP (t) when P (t)
is small, but is restricted by a carrying capacity of K when P (t) is big: P ′(t) ≈ 0. Once we have
identified this set up, we use the basic logistic equation

dP

dt
= kP

(
1− P

K

)
·

One can either solve it from scratch as a separable equation, or use the corresponding answer formula
for P (t) from the Theorem section.

(13) How do we set up and solve “minimal survival level” problems within the logistic set
up? In addition to the basic logistic set up, one also needs a minimal survival level m for the

populaton P (t). The corresponding DE is
dP

dt
= kP

(
1− P

K

)(
1− m

P

)
, which, after multiplication

of the first and last term, becomes

dP

dt
= k

(
1− P

K

)
(P −m).

This is a separable DE, which has to be solved from scratch. Note that the answer will involve two
equilibria: P (t) ≡ K(stable) and P (t) ≡ m (unstable).

(14) How do we set up and solve “harvesting” problems within the logistic set up? Such
problems are a modification of the basic logistic set up. We have the basic logistic situation of a
population P (t) with carrying capacity K, initial relative growth rate k, and the modifying additional
harvesting rate of c per unit time:

dP

dt
= kP (1− P

K
)− c
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(a) Put the harvesting rate c to LHS and subsume it into the derivative:

dP

dt
+ c = kP (1− P

K
) ⇔ d(P + c)

dt
= kP (1− P

K
).

(b) It is time to substitute in order to reduce to a simpler logistic model. Thus, set y(t) = P (t) + c

so that P = y − c and substitute. The DE becomes
dy

dt
= k(y − c)(1− y − c

K
) ⇔ dy

dt
=

k

K
(y − c)(K + c− y).

(c) Looking closely into this equation, we see that it is nothing else but a “minimal survival level”
problem, where the carrying capacity is K + c, and the minimal survival level is c. The last
makes total sense since y(t) = P (t)+ c ≥ 0+ c = c. Thus, we proceed from here as in “minimal
survival level problems” above: we solve the DE as a separable equation.

(d) Finally, we have found a formula for the solution y(t). However, this is not the original popu-
lation. We substitute back to find P (t) = y(t) + c and answer all given questions.

(15) How do we solve first-order linear DE? The solutions to y′ + P (x)y = Q(x) where P (x) and
Q(x) are continuous functions on some interval J can be found via
(a) calculating one integration factor I(x) = e

R
P (x)dx;

(b) multiplying both sides of the DE by I(x): I(x)y′ + I(x)P (x)y = I(x)Q(x);
(c) recognizing the LHS as the derivative of a product: (I(x)y)′ = I(x)Q(x);
(d) integrating both sides wrt x: I(x)y =

∫
I(x)Q(x)dx;

(e) solving for y =
1

I(x)

∫
I(x)Q(x)dx.

The only formula here to remember and use in problems is for the integrating factor I(x) in (a). The
rest should be viewed as an algorithm and you should go carefully through each of the above steps
in solving every 1st-order linear DE.

(16) How to solve DE with the method of undetermined coefficients? Consider ay′′+ by′+ cy =
G(x) where G(x) is equals P (x) (polynomial), erx, sin(mx),cos(kx), or any function which can be
obtained from these basic functions via addition, taking linear combinations, or multiplication. To
solve the DE, we proceed as follows:
(a) Find first yc(x).
(b) Make an intelligent guess for yp(x) (cf. Theorem on Method of Undetermined Coefficients) and

write out yp(x) as a linear combination of your guessed terms with unknown coefficients.
(c) Substitute yp(x) into the DE, perform differentiation and algebraic operations, simplify, and

group alike terms on LHS. Multiply out and group similarly G(x) on RHS.
(d) Equate coefficients on both sides to obtain a system of linear equations.
(e) Solve the system for your unknown coefficients.
(f) Write out a particular solution yp(x) using your guess and your newly-found coefficients.
(g) Write out the general solution y(x) = yp(x) + yc(x).

(17) How to find solutions to DE via series? Given a DE, suppose we want to find a solution y(x)
close to x = 0.

(a) Set up a power series centered at a = 0 to represent the wanted solution: y(x) =
∞∑

n=0

cnxn.

(b) TT′ several times to find power expression for y′(x) =
∞∑

n=1

ncnxn−1, y′′(x) =
∞∑

n=2

n(n− 1)cnxn−2,

etc. Note that it is silly (but possible and sometimes necessary) to start the series for y′ at
n = 0 and the series for y′′ at n = 0, 1, because the corresponding first terms are 0.

(c) Substitute your power series for y, y′, y′′, etc. into the DE, and perform the corresponding
algebraic manipulations.
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(d) You will end up the sum of several power series written, possibly, in various powers of x, e.g.
xn, xn−1, xn+1, etc. You will need to make all powers of x the same, i.e. choose an “anchor”
power, e.g. xn, and shift the index of any series so as to match the power xn. For example,
∞∑

n=6

cn−2(n + 1)nxn−3 would require shift of powers n−3 7→ n, i.e. the shift of index n 7→ n+3;

Thus, substitute in this series n + 3 everywhere for n, and note that the starting index is not

anymore n = 6 but n + 3 = 6, i.e n = 3:
∞∑

n=3

cn+1(n + 4)(n + 3)xn. It is always a sign of good

upbringing to check that the first terms or the original and of the new series coincide after the
index shift: for n = 6 the original series produces the term c4 · 7 · 6 · x3, and for n = 3 the new
series produces the same term c4 · 7 · 6 · x3.

(e) Now you are ready to add up and put together all resulting series: they are all written in the
same power of x, say, xn. The only trouble may come from different starting indices of the series:
these all need to be matched, however, we cannot shift indices anymore (or else we will mess up
our powers of x). Note that some series may be started earlier or later since some of their first
terms are 0, e.g.

∑∞
n=1 ncnxn =

∑∞
n=0 ncnxn, and

∑∞
n=2 n(n−1)cnxn =

∑∞
n=1 n(n−1)cnxn =∑∞

n=0 n(n− 1)cnxn.
However, sometimes this trick won’t be sufficient to equalize the starting indices. So, take the
highest starting index, e.g. n = 3, peel off for all your series the first terms for n < 3, and start
all series at n = 3. For example,

∞∑
n=1

ncnxn −
∞∑

n=2

n(n + 1)cn−2x
n +

∞∑
n=3

cn+1(n + 4)(n + 3)xn

= c1x + 2c2x
2 +

∞∑
n=3

ncnxn − 6c0x
2 −

∞∑
n=3

n(n + 1)cn−2x
n +

∞∑
n=3

cn+1(n + 4)(n + 3)xn

= c1x + (2c2 − 6c0)x2 +
∞∑

n=3

[
ncn − n(n + 1)cn−2 + cn+1(n + 4)(n + 3)

]
xn

(f) Equate the coefficients of xn on both sides of the DE, not forgetting about any special “peeled
off” first terms as in the previous step. For example, if the last sum above were supposed to
equal x, then c1 = 1, 2c2 − 6c0 = 0, and ncn − n(n + 1)cn−2 + cn+1(n + 4)(n + 3) = 0 for all
n ≥ 3. Solve each equation for the term with highest index, e.g.

c2 = 3c0, cn+1 =
n

(n + 4)(n + 3)
[
− cn + (n + 1)cn−2

]
for all n ≥ 3.

(g) If the problem gives you initial values, this is the time to input this extra data. For example, if in
the above problem we had y(0) = 0, this means y(0) = c0 = 0, so we have c1 = 1, c0 = c2 = 0.
We need to roll up the recursive formula for various n’s to find patterns for the remaining
coefficients:

n = 2 : c3 = 0

n = 3 : c4 =
3

7 · 6
(
− c3 + 4c1

)
=

2
7

n = 4 : c5 =
4

8 · 7
(
− c4 + 4c2

)
= − 1

49

n = 5 : c6 =
5

9 · 8
(
− c5 + 4c3

)
=

5
9 · 8 · 72

In this particular problem, I don’t see a ready nice pattern developing (but check it out!) The
important part of this is to learn how to manipulate power series in order to find solutions to
DEs.
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4. Summary

Note that series solutions to DEs interlink the following basic concepts which we studied this semester:

(1) Differential equations;
(2) Power series;
(3) Term-by-term differentiation of power series;
(4) Change of indices of series;
(5) Equating coefficients in polynomial or power series equations;
(6) Recursive sequences and recursive formulas;
(7) Pattern chasing in recursive sequences;
(8) Direct formulas for recursive sequences;
(9) Recognition of functions given by their Taylor series as solutions to DEs.

5. Useful Formulas and Miscellaneous Facts

(1) cos(α− β) = cos α cos β + sinα sinβ.
(2) c1 cos α + c2 sinα = A cos(α + δ), where A =

√
c2
1 + c2, A =

√
c2
1 + c2

2, sin δ = −c2/A, cos δ = c1/A.
(3) ax2 + bx + c = 0:

(a) x1,2 =
−b±

√
b2 − 4ac

2a
·

(b) If b2 − 4ac = 0, x1 = x2 =
−b

2a
·

(c) If b2 − 4ac < 0, x1,2 = α± βi for α = −b/2a, β =
√

4ac− b2

2a
·

(4) (n− 1)! n = n!, n! (n + 1)(n + 2) = (n + 2)!

(5) 1 · 3 · 5 · · · (2n + 1) =
(2n + 1)!

2 · 4 · 6 · · · (2n)
=

(2n + 1)!
2nn!

·

(6) ln(ex) = x and eln y = y for all x ∈ R and all y ≥ 0.

(7) lim
n→∞

(
1 +

r

n

)n

= er.

(8) (cos α + i sinα)n = cos nα + sinnα(= (eαi)n = enαi).
(9) eπ + 1 = 0.

6. Review Problems

All HW problems, all Quiz problems, all classnotes, and all Review Sections in textbook.

7. Cheat Sheet and Studying for the Exam

For the exam, you are allowed to have a “cheat sheet” - one page of a regular 8× 11 sheet. You can write
whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and
for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.)

• Any violation of these rules will disqualify your cheat sheet and may end in your own disqualification
from the midterm. I may decide to check some cheat sheets, so let’s play it fair and square. :)

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.

• Do NOT overstudy on the day of the exam!! More than 3 hours of math study on the
day of the exam is counterproductive! No kidding!
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