
Review Topics for Midterm II in Calculus 1B

Instructor: Zvezdelina Stankova

1. Definitions and Basic Questions

Be able to write precise definitions for any of the following concepts (where appropriate: both in words
and in symbols), to give examples of each definition, to prove that these definitions are satisfied in specific
examples. Wherever appropriate, be able to graph examples for each definition.

(1) What is a sequence? How many ways of representing a sequence do we know? What is a recursive
sequence and how does it differ from a sequences defined by a direct formula?

(2) What is a convergent/divergent sequence?
(3) What is the limit L of a sequence? Why do we need ε and N in the definition of lim

n→∞
an = L and

what do they mean?
(4) What is an increasing/decreasing sequence? monotonic sequence?
(5) What is a bounded sequence? bounded from below? bounded from above?
(6) What is the relationship between monotonic, bounded and convergent sequence? Which of these

property(ies) implies one of the other properties?
(7) What is a subsequence of a sequence? What is {a2n}? What is the odd-indexed subsequence of a

sequence? Can you find a formula for the index of every third term of a sequence {an}? How can
you split the sequence {0, 1, 2, 0, 2,−2, 0, 3, 2, 0, 4,−2, 0, 5, 2, 0, 6,−2, ...} into simpler subsequences,
each of which has a limit, in order to argue formally that the whole sequence doesn’t have a limit?

(8) What is the “sequence” approach versus the “function approach” in proving monotonicity and bound-
edness of a sequence?

(9) What is the method of induction? Why is it necessary in proving facts about recursive sequences?
How do we find the limit of a recursive sequence? (Check out Example 12 in 11.1.)

(10) What are the similarities and differences between the following four sequences:

an =
(−1)n2n

3n + 2
, bn =

(−1)n2nn!
5 · 8 · 11 · · · (3n + 2)

, cn =
n∑

k=1

(−1)k2k

(3k + 2)
, dn =

n∑
k=1

(−1)k2kk!
5 · 8 · 11 · · · (3k + 2)

?

What are the first 3 terms of each sequence? Can you determine if each of these sequences is
monotine, bounded, convergent? If convergent, what is the limit?

(11) What is a series? a partial sum of a series? When do we say that a series converges? diverges?
(12) What is the difference between a term of a sequence and a term of a series? between the sequence

of terms and the sequence of partial sums of a series? Which of latter two determines if a series
converges?

(13) When given a series, which of the following do we have a ready formula for: the sequence of terms
or the sequence of partial sums? Why?

(14) What is a geometric series? What makes a series be a geometric series - the first term or something
else? What do we need to know in order to find the sum of the geometric series and how do we find
this information by looking at the first several terms of a geometric series?

(15) What is the harmonic series? a p-series? What can you say about their convergence/divergence?
(16) What is the telescoping method? Which method of integration is it related to? Why is it called

telescoping and to which series is it applicable? What questions does it answer when applied properly
to a problem?

(17) What is the remander Rn of a partial sum approximation? What is an error estimate of sn given
via the Integral Test (IT)?

(18) What is an alternating series? How do we know if a series is alternating? Is
∑

n≥1(−1)3n+1n alternat-
ing? How about

∑
n≥1(−1)2n+1n2,

∑
n≥1(−1)n+1 sinn,

∑
n≥1(−1)n−2 cos(πn),

∑
n≥1 n3 cos(πn)?



(19) What is the absolutely value series (AVΣ) and what is its relation to the original series Σan? What
is an absolutely convergent series? a conditionally convergent series? Can we have an absolutely
convergent series which is not convergent in the ordinary sense? Why?

(20) What is a rearrangement of a series? Do these always converge to the same sum? Why? Which series
exhibit behavior similar to that of finite sums: conditionally convergent, absolutely convergent, or
divergent series? What qualifies here as “similar behavior”?

(21) Why are Ratio Test and Root Test powerless when the corresponding limits are equal to 1? How
does one show convincingly that a test is inconclusive under certain conditions?

(22) What is a power series? a power series centered at a? the coefficients and the variable of a power
series?

(23) What is the radius and interval of convergence of a power series? Relation to each other and to the
center a?

(24) What does it mean to represent a function as a power series? What is the term-by-term differentiation
and integration of a power series? Examples of power series expansions of lnx, arctanx, ex, etc.

(25) What is a Taylor series, Maclaurin series, the nth-degree Taylor polynomial of f(x) at a, the re-
mainder Rn(x) of the Taylor series? Examples of Taylor series of basic functions: ex, ln(1+x), cos x,
sinx, arctanx, 1/(1− x), (1 + x)k.

(26) What is multiplication and division of power series? How do we perform these? Are they always
possible? Where does the resulting series converge?

(27) What is the Binomial Theorem? the Binomial series? Isn’t the Binomial Theorem enough to cover
all cases? Why do we also need Binomial series? For which kind of functions does the Binomial
series help us find their Taylor series? Examples.

(28) What is an application of power series? Examples of approximations of π, e, ln 2, etc. Examples of
finding limits and approximating integrals using power series. Examples of approximating functions
via several Taylor polynomials of successively higher degrees.

2. Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says. Be sure
to understand, distinguish and state the conditions (hypothesis) of each theorem and its conclusion. Be
prepared to give examples for each theorem, and most importantly, to apply each theorem appropriately
in problems. The latter means: decide which theorem to use, check (in writing!) that all conditions of your
theorem are satisfied in the problem in question, and then state (in writing!) the conclusion of the theorem
using the specifics of your problem.

(1) Limit Theorems for sequences. If limn→∞ an and limn→∞ bn exist and are finite, then the
following sequences also have limits:

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn; lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn; lim
n→∞

an

bn
=

limn→∞ an

limn→∞ bn
,

where the last “division” theorem assumes in addition that bn 6= 0 for all n and limn→∞ bn 6= 0. If
c is a constant, then as usual it can jump in front of the limit: lim

n→∞
c · an = c · lim

n→∞
an.

What happens in each of the above situations if lim an = −5 and lim bn doesn’t exist? How about
if lim an = 0 and lim bn doesn’t exist? How about if lim an = ∞ and lim bn = 0? Do we have any
right to apply the above theorems in each of these cases? What do we do in each such case: how do
we decide on what the limit is? (Hint: A theorem does not apply if its hypothesis (conditions) are
not satisfied!)

(2) Absolute Value Limit Theorem: lim
n→∞

|an| = 0 if and only if lim
n→∞

an = 0.

Which direction of this theorem is used in practice? Can we replace in the theorem the limits 0 by
another limit, say, 1? What can we conclude if limn→∞ |an| 6= 0?
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(3) Sandwich Theorem for sequences. If an ≤ bn ≤ cn for all n, and the limits of the policemen
sequences are equal to each other: lim

n→∞
an = lim

n→∞
cn, then the middle (prisoner) sequence also

converges to the same limit:

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

As a version of this theorem, formulate what happens if a sequence an is larger than a sequence bn

and it is known that bn diverges to ∞. (This could be referred to as the “∞ half-sandwich” theorem
:)) Formulate the twin theorem when one of the sequences has limit −∞: when and what can you
conclude about the other sequence. Finally, suppose you have a sequence with positive terms which
you want to show converges to 0; however, the given formula is very complex to deal with directly.
What other sequence should you come up with in order to use a sandwich argument and conclude
limit = 0?

(4) Monotonic Bounded Sequence (MBT). If an is a monotonic and bounded sequence, then an

converges.

Note that the converse is not true: If an converges, then an is bounded, but not necessarily
monotonic. (Why? Examples? Counterexamples of sequences?) What do we use MBT for? Does it
give us the limit of the sequence? What types of problems is MBT applied in?

(5) Limit Sequence Thm. If a sequence {an} has limit L, then any subsequence of it also has limit L.

So, if it happens that two subsequences have different limits L1 and L2, how could the whole
sequence converge? To what limit? If the whole sequence converged to some limit L, by our Limit
Sequence theorem above, each subsequence must converge to the same L, but we have two specific
subsequences in mind that don’t abide to this rule: one converges to some L1 and another converges
to some another L2. This is a blatant contradiction, hence the whole sequence has no chance to have
a limit in this case. We formulate

(6) Subsequence Limit Theorem 1. If a sequence {an} has two (or more) subsequences that converge
to different limits, then the whole sequence {an} does not have a limit, i.e. {an} diverges. If a
sequence {an} has some subsequence which diverges, then the whole sequence {an} also diverges.

(7) Subsequence Limit Theorem 2. If a sequence {an} can be split into two (or three, or four, or
finitely many) subsequences, each of which converges to the same limit L, then the whole sequence
{an} converges to that same common limit L.

(8) Basic Example of geometric sequences: {rn} converges/diverges as follows:

lim
n→∞

rn


= 0 if |r| < 1;
= 1 if r = 1;
= ∞ if r > 1;
6 ∃ if r ≤ −1.

(9) Finite Geometric Series Sum: a + ar + ar2 + ar3 + · · ·+ arn =
a(1− rn)

1− r
when r 6= 1.

(10) Infinite Geometric Series Sum: a + ar + ar2 + ar3 + · · ·+ arn + · · · = a

1− r
when |r| < 1. If

|r| ≥ 1, then the geometric series diverges.

(11) The Harmonic Series Diverges: 1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

+ · · · = ∞. The p-series
∞∑

n=0

1
np

con-

verges for p > 1, and diverges for p ≤ 1.

(12) Theorem for convergence of sequences: If
∞∑

n=1

an converges, then lim
n→∞

an = 0.

(13) Contrapositive Theorem (TD): If lim
n→∞

an 6= 0 or does not exist, then
∞∑

n=1

an diverges.
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Thus, the condition lim
n→∞

an = 0 is necessary but not sufficient to guarantee convergence of a series.
What does it mean that some condition X is necessary but not sufficient for Y to happen? How
about sufficient but not necessary X? How about necessary and sufficient X? And finally, how about
neither necessary not sufficient X? Provide in each of the 4 situations an example of corresponding
X and Y related to convergence of series.

(14) Telescoping Method for series of the form
∞∑

n=1

ax + b

(cn + d)(c(n + 1) + d)
, e.g.

1
n(n + 1)

=
1
n
− 1

n + 1
,

and
∞∑

n=1

1
n(n + 1)

=
(

1
1
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · ·+

(
1
n
− 1

n + 1

)
+ · · · = 1 because the

partial sums sn = 1− 1
n+1 converge to 1, and hence the series itself converges with sum 1.

(15) Theorems for Rearrangements(Riemann): Let
∑

an be a series.
(a) If

∑
an is absolutely convergent with sum s =

∑
an, then any rearrangement of

∑
an is also

convergent with the same sum s.
(b) If

∑
an is conditionally convergent, then we can rearrange its terms in such a way that the new

series converges to any (real) number we wish, as well as ±∞.
(c) If

∑
an diverges, there is nothing to talk about.

To summarize, absolutely convergent series behave very much like ordinary finite sums of numbers,
while conditionally convergent series exhibit very different (and somewhat exotic) behavior.

(16) Remainder Estimate for IT. Let
∑∞

n=1 an with an = f(n), where f(x) is continuous, positive
and decreasing function for x ≥ 1. Suppose

∑∞
n=1 an converges with sum s (e.g. via IT). Then the

remainder Rn = s− sn is estimated as follows:∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞

n

f(x) dx.

Hence the error in approximating the sum s by the partial sum sn (s ≈ sn) is at most
∫∞

n
f(x) dx,

and the actual value of the sum s lies in the following interval:

sn +
∫ ∞

n+1

f(x) dx ≤ s ≤ sn +
∫ ∞

n

f(x) dx.

Thus, to find out big n must be in order for sn to approximate the sum s within error r, one solves

for n the inequality
∫ ∞

n

f(x) dx < r: first turn the improper integral into a limit of proper integrals,

integrate, find the limit, and then finally solve the inequality for n. The final answer should be of
the form n ≥ N .

(17) Remainder Estimate for AT. Let
∑∞

n=1(−1)nan be an alternating series which is convergent via
AT, i.e. an ≥ 0, {an} ↘ for n � 1 and limn→∞ an = 0. Then the nth remainder Rn = s − sn is
estimated by the (n + 1)st term of the series:

|Rn| = |s− sn| ≤ an+1.

(18) Remainder Estimate for CT. Let
∑∞

n=1 an be convergent by Comparison Test with
∑∞

n=1 bn, i.e.
0 ≤ an ≤ bn for n � 1 and

∑∞
n=1 bn convergent. Then the nth remainder Rn = s− sn of

∑∞
n=1 an is

estimated by the nth remainder Tn of
∑∞

n=1 bn. For instance, if
∑∞

n=1 bn is convergent via IT, then
the remainder Rn for

∑∞
n=1 an is bounded above by

Rn ≤ Tn ≤
∫ ∞

n

f(x) dx.

If
∑∞

n=1 bn is convergent via AT, then the remainder Rn for
∑∞

n=1 an is bounded above by

Rn ≤ Tn ≤ |bn+1|.
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(19) Summary of Tests for Convergence/Divergence of Series
Test Conditions Conclusion

1. Geom. series

∞X
n=0

arn (a) If |r| < 1

(b) If |r| ≥ 1

⇒
∞X

n=0

arn=
a

1− r
converges

⇒
∞X

n=0

arn diverges

2. P -series

∞X
n=0

1

np
(a) If p > 1

(b) If p ≤ 1

⇒
∞X

n=0

1

np
converges

⇒
∞X

n=0

1

np
diverges

3. Comparison Test (CT)
∞X

n=0

an,

∞X
n=0

bn

(Note: n � 0 means “for all n

from somewhere on”)

0 ≤ an ≤ bn for n � 0

(a) If

∞X
n=0

bn converges

(b) If

∞X
n=0

an diverges

⇒
∞X

n=0

an converges

⇒
∞X

n=0

bn diverges

4. Limit ComparisonTest(LCT)
∞X

n=0

an,

∞X
n=0

bn

0 ≤ an ≤ bn for n � 0

(a) If lim
n→∞

an

bn
= L 6= 0

(b) If lim
n→∞

an

bn
= 0,∞ or 6 ∃

⇒
∞X

n=0

an&

∞X
n=0

bn behave similarly

⇒ inconclusive

5. Test for Divergence (TD) If lim
n→∞

an 6= 0 or 6 ∃ ⇒
∞X

n=0

an diverges

6. Ratio Test (RT)
∞X

n=0

an

(a) If lim
n→∞

˛̨̨̨
an+1

an

˛̨̨̨
= L < 1

(b) If lim
n→∞

˛̨̨̨
an+1

an

˛̨̨̨
= L > 1 or ∞

(c) If lim
n→∞

˛̨̨̨
an+1

an

˛̨̨̨
= L = 1 or 6 ∃

⇒
∞X

n=0

an converges (absolutely)

⇒
∞X

n=0

an diverges

⇒ inconclusive

7. Root Test (
√

T)
∞X

n=0

an

(a) If lim
n→∞

n
p
|an| = L < 1

(b) If lim
n→∞

n
p
|an| = L > 1 or ∞

(c) If lim
n→∞

n
p
|an| = L = 1 or 6 ∃

⇒
∞X

n=0

an converges (absolutely)

⇒
∞X

n=0

an diverges

⇒ inconclusive

8. Alternating Test (AT)
∞X

n=0

an

∞X
n=0

(−1)nan If all are satisfied:

1. an ≥ 0 for n � 0 (alternating)

2. {an} is decreasing for n � 0

3. lim
n→∞

an = 0

⇒
∞X

n=0

(−1)nan converges.

9. Integral Test (IT)
∞X

n=0

an

∞X
n=0

an If all are satisfied:

1. an comes from f(x) for x � 1

2. f(x) is decreasing for x � 1

3. f(x) ≥ 0 for x � 1

⇒
Z ∞

1

f(x)dx &

∞X
n=0

an behave

similarly.

10. Absolute Convergence Test

(ACT)

∞X
n=0

an

If

∞X
n=0

|an| converges ⇒
∞X

n=0

an converges (absolutely)
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(20) Theorem for Convergence of Power Series: Any power series
∑∞

n=0 cn(x− a)n centered at a

falls within one of the cases below:

(a) The power series converges only for x = a. Thus, R = 0 and the interval of convergence is
I = {a}.

(b) The power series converges for all x. Thus, R = ∞ and the interval of convergence is I =
(−∞,∞).

(c) The power series converges for x within an interval I centered at a. Thus, there is some positive
radius of convergence R, and the interval of convergence is I = [a−R, a+R], or I = [a−R, a+R),
or I = (a−R, a+R], or I = (a−R, a+R). In other words, I always contains the open interval
(a−R, a + R), and it could also contain both, one, or none of the two endpoints a±R.

(21) Theorem for Term-by-Term Differentiation and Integration of Power Series: Let the
power series

∑∞
n=0 cn(x− a)n have positive radius of convergence R, i.e. it defines a function

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + · · ·+ cn(x− a)n + · · ·

for x ∈ (a − R, a + R). Then this function f(x) is continuous and differentiable, and its derivative
and integral are calculated by performing term-by-term differentiation and integration on the power
series:

(a) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + · · ·+ ncn(x− a)n−1 + · · · ;

(b)
∫

f(x) dx = C + c0(x− a) + c1
(x− a)2

2
+ c2

(x− a)3

3
+ c3

(x− a)4

4
+ + · · ·+ cn

(x− a)n+1

n + 1
+ · · ·.

Further, the radii of convergence of the two new power series are also equal to R; however, the
endpoints of the intervals of convergence may be different and require individual checks for each new
series.

(22) Theorem for Taylor Series Expansions: If f(x) has a power series expansion at a (radius R > 0):

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + · · ·+ cn(x− a)n + · · · ,

then the coefficients of this expansion are given by the formula cn =
f (n)(a)

n!
, n = 0, 1, 2, 3, .... The

Maclaurin series expansion is obtained by setting a = 0:

f(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 +
f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

(23) Theorem for Remainders of Taylor Series Expansions: Let

Tn(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·+ cn(x− a)n

be the nth-degree Taylor polynomial of f(x) at a, and let Rn(x) = f(x) − Tn(x) be the remainder
of the Taylor series. If limn→∞Rn(x) = 0 for |x − a| < R, then f(x) equals its Taylor series for
x ∈ (a−R, a + R).

(24) Taylor’s Inequality: If there is number M > 0 which bounds all derivative functions of f(x):

|f (n)(x)| ≤ M ∀n and ∀x ∈ (a−R, a + R)

then the remainders

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1 for x ∈ (a−R, a + R),

and limn→∞Rn(x) = 0. Hence f(x) equals its Taylor series for x ∈ (a−R, a + R).
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(25) Table of Basic Taylor Series. All functions here equal their Taylor series in the specified intervals.

Function Taylor Series Sum Notation Interval of equality

1
1− x

1 + x + x2 + · · ·+ xn + · · ·
∞∑

n=0

xn (−1, 1)

(1 + x)k 1 + kx + k(k−1)
2 + k(k−1)(k−2)

6 x3 · · ·
∑k

n=0

(
k
n

)
xn (−1, 1)

ex 1 +
x

1!
+

x2

2!
+ · · ·+ xn

n!
+ · · ·

∑∞
n=0

xn

n! (−∞,+∞)

cos x 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

∞∑
n=0

(−1)n x2n

(2n)!
(−∞,+∞)

sinx x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
(−∞,+∞)

arctanx x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · ·

∞∑
n=0

(−1)n x2n+1

2n + 1
[−1,+1]

ln(1 + x) x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

∞∑
n=1

(−1)n+1 xn

n
(−1,+1]

(26) Applications of Taylor Series for Enumeration of Fundamental Constants

Constant and Series Enumeration Taylor Series Used

2 = 1 +
1
2

+
1
22

+
1
23

+ · · ·+ 1
2n

+ · · · =
∞∑

n=0

1
2n

1
1− x

, x =
1
2

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · ·+ 1
n!

+ · · · =
∞∑

n=0

1
n!

ex, x = 1

cos 1 = 1− 1
2!

+
1
4!
− 1

6!
+

1
8!
− · · · =

∞∑
n=0

(−1)n

(2n)!
cos x, x = 1

sin 1 = 1− 1
3!

+
1
5!
− 1

7!
+

1
9!
− · · · =

∞∑
n=0

(−1)n

(2n + 1)!
sinx, x = 1

π = 4
(

1− 1
3

+
1
5
− 1

7
+

1
9
− · · ·

)
= 4

∞∑
n=0

(−1)n

2n + 1
arctanx, x = 1

ln 2 = 1− 1
2

+
1
3
− 1

4
+

1
5
− · · · =

∞∑
n=1

(−1)n+1

n
ln(1 + x), x = 1

3. Problem Solving Techniques

(1) How do we find limits of sequences given by explicit formulas? An explicit formula means
a formula which gives us the power to calculate immediately any term of the sequence by plugging
in the appropriate value of n.

(a) Say, an =
4n2 + 2
3n2 + 10

for n ≥ 1. Using the function approach here: f(x) = 4x2+2
3x2+10 , first find

lim
x→∞

f(x) = lim
x→∞

4x2 + 2
3x2 + 10

= lim
x→∞

x2(4 + 2
x2 )

x2(3 + 10
x2 )

= lim
x→∞

(4 + 2
x2 )

(3 + 10
x2 )

=
4
3
.

We recognized f(x) as a fraction of two polynomials, so we factored the highest power of x from
top and bottom, cancelled and then found the limit. We conclude that limn→∞ an = 4

3 .

We could have equivalently done this whole procedure directly on the sequence:

lim
n→∞

an = lim
n→∞

4n2 + 2
3n2 + 10

= lim
n→∞

n2(4 + 2
n2 )

n2(3 + 10
n2 )

= lim
n→∞

(4 + 2
n2 )

(3 + 10
n2 )

=
4
3
.
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Finally, we could have played “smart” and applied LH to f(x):

lim
x→∞

f(x) = lim
x→∞

4x2 + 2
3x2 + 10

∞
∞= lim

x→∞

(4x2 + 2)′

(3x2 + 10)′
= lim

x→∞

8x

6x
= lim

x→∞

4
3

=
4
3
.

Each of the above three methods is acceptable in similar problems. Note that the function
approach will work not only for fractions of polynomials, but also for a wide variety of cases,
e.g. when trig., inverse trig. and log functions are involved.

(b) Say, an =
(n + 2)!

4n
. The function approach does not work when factorials are involved since

no (reasonable) function can produce the sequence n!. So, we try a different approach. First,
write a few terms of your sequence to see what is going on. Next, look at your sequence from
“far away” - may be you can guess what its limit is. In our case, we have, roughly speaking,
a factorial divided by an exponential. We know that factorials grow faster than exponentials,
hence we predict that limn→∞ an = ∞.

The next step is to use the Sandwich Theorem: we have to cook policemen sequences which
bound our sequence and converge to the same limit. However, in our example above we need
only one policeman sequence bn from below: we want bn ≤ an and we want bn →∞ (this will
force an →∞). To this end, write an explicitly as follows:

an =
1 · 2 · 3 · 4 · 5 · 6 · · ·n · (n + 1) · (n + 2)
4 · 4 · 4 · 4 · 4 · 4 · · · 4 · 4 · 4

=
(

1
4

)(
2
4

)(
3
4

)(
4
4

)(
5
4

)(
6
4

)
· · ·
(n

4

)(n + 1
4

)(
n + 2

4

)
We notice that the first 3 fractions are < 1, the fourth fraction is = 1, and then, from the
fifth fraction on, all other fractions are > 1; so no wonder that an keeps growing - we keep
multiplying it my bigger and bigger fractions! To formalize this, leave alone the first (three)
small fractions as well as the last fraction (we need that one to survive for the policeman!), and
replace all middle fractions by 1. All in all, this decreases an:

an ≥
(

1
4

)(
2
4

)(
3
4

)
· 1 · 1 · · · 1 ·

(
n + 2

4

)
=

3
128

(n + 2).

Aha! Here is our policemen: set bn = 3
128 (n + 2). We have shown an ≥ bn (for n ≥ 3, why?)

But
lim

n→∞
bn = lim

n→∞

3
128

(n + 2) = ∞.

By the Sandwich Theorem, this forces limn→∞ an = ∞. �

Review the classnotes, workshop notes and HW for more examples of this sort. Note that you
need two policemen if you are going to show, say, that limn→∞ an = 8: you need bn and cn

such that bn ≤ an ≤ cn and limn→∞ bn = limn→∞ cn = 8. Quite often, if you want to show
limn→∞ an = 0, one of the policemen comes for free, e.g. it is often obvious that 0 ≤ an.

(c) What if an =
sin (n + n3 − 7)

(−4)n
? The functions approach doesn’t quite work here either because

(−4)x doesn’t always make sense (e.g. what is (−4)1/2?) But let’s look at the sequence from
“far away” - we see that the numerator is just a sine function, so it can’t go above 1 or below -1
no matter what n is! Moreover, the denominator goes “wild” when n → ∞. I would bet that
this sequence goes to 0. To show this, recall the absolute value limit theorem: it would apply
perfectly here. So, set a new sequence which is the absolute value of an:

bn =
| sin (n + n3 − 7)|

4n
·

We got rid of the signs in the denominator, but we can’t do much in the numerator since the
sine functions oscillates between positive and negative, so we leave the absolute value sign in
the numerator. Alright, now what? The Sandwich Theorem comes to the rescue once again:
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we can cook up two policemen functions almost immediately - we first bound the numerator
and then divide by the denominator:

0 ≤ | sin (n + n3 − 7)| ≤ 1 ⇒ 0 ≤ | sin (n + n3 − 7)|
4n

≤ 1
4n

.

Wonderful! Since both {0} and {1/4n} converge to 0, then take their prisoner with them:

lim
n→∞

bn = lim
n→∞

| sin (n + n3 − 7)|
4n

= 0.

Finally, by the absolutely value limit theorem, this implies limn→∞ an = 0. �

There are plenty of similar examples from HW, so please, review them carefully. To summarize,
there are essentially 3 tools in dealing with sequences given by explicit formulas: the function
approach, the Sandwich Theorem, and the Absolute Value Limit Theorem. Each sequence
requires careful thought: write out the first several terms, compare with any problem before,
and try out different approaches until something works out.

(2) How do we show that sequences are monotonic and/or bounded if given by an explicit
formula? First, write out the first several terms of your sequence to get a feeling for it: is it
increasing/decreasing, bounded from above/below, etc. Keep in mind that some sequences can
deceive you in the beginning, so make sure that you have written enough terms of the sequence to
determine its behavior.

(a) Say, an =
4n2 + 2
3n2 + 10

for n ≥ 1 and suppose you think that the sequence is increasing. How do

we show this? Again, there are two possible approaches.

(i) Try a function approach: f(x) =
4x2 + 2
3x2 + 10

, find the derivative f ′(x) and show that

f ′(x) > 0. Conclude that f(x) increases, and hence forces {an} also to increase.

(ii) Try a direct approach: set an

?
≤ an+1 and replace an and an+1 by what they equal:

4n2 + 2
3n2 + 10

?
≤ 4(n + 1)2 + 2

3(n + 1)2 + 10
.

Cross-multiply and reduce this inequality to something obviously true. Note that expres-
sion on the RHS is indeed equal to an+1: we replaced n by n + 1 in the original formula
for an.

(b) What if we can’t find/guess the “exact” upper/lower bound for an? How do we show that {an}
is bounded?

First of all, no one is asking you for “exact” bounds! If you find one number which is bigger
than all an, then you have found an upper bound and you are done, and similarly for a lower
bound. In the above example, if you write several terms of the sequence, you will notice that
this sequence doesn’t get very big or very small at all. So, you could conjecture, say, that
an < 30 and try to show it directly:

an

?
< 30 ⇔ 4n2 + 2

3n2 + 10
?
< 30.

Finish the calculation: reduce to something obviously true. It looks like I picked “30” out of
the blue, and this is so indeed! I didn’t want to bother with upper bounds that are “too close”
to the sequence, so I picked something big enough that looked like a sure win. If you want to
play smart, you could have argued that, since {an} was shown to increase and to converge to
4/3, chances are that 4/3 is an upper bound (the “exact” upper bound, if you insist). So, you
could have tried to show instead:

an

?
<

4
3
⇔ 4n2 + 2

3n2 + 10
?
<

4
3
.
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I bet this wouldn’t be terribly hard to finish. So, what are you waiting for?

Now, let’s not forget that we could also be asked to find a lower bound. Well, once again, since
the sequence was shown to be increasing, we have an automatic lower bound: the first term
a1 = 6/13. But we could pretend that we have just fallen from the moon and we didn’t know
that {an} was increasing; in such a case, even a baby can see that 0 is a lower bound, or to
“confuse the enemy”, we could also say that −18.65963 is a lower bound, and we wouldn’t be
telling a lie.

(3) How do we use the Monotonic Bounded Theorem when given a recursive formula? For
the sake of concreteness, let’s use an exercise from §11.1: a1 =

√
2, an+1 =

√
2 + an. The problem

asks to show that {an} is increasing and bounded from above by 3, and then to find its limit.

(a) Let’s show first that an < 3 for all n. We use induction.

Step 1. Is the first statement true? i.e. for n = 1? Sure, because a1 =
√

2 < 3.
Step 2. Suppose for a moment that the nth statement is true, i.e. an < 3.
Step 3. Using Step 2, we must show that the (n + 1)st statement is also true. Alright, we

need to show that an+1

?
< 3. But this is the same if we replace an+1 =

√
2 + an:

√
2 + an

?
< 3 ⇔ 2 + an

?
< 9 ⇔ an

?
< 7.

Well, the last is certainly true since we have assumed something even stronger: an < 3. This
shows that all of the previous inequalities are true, in particular, what we wanted: an+1 < 3.

Steps 1-3 complete the proof by formal induction. We don’t have to do anything now but
conclude: “By induction, the above shows that all statements are true, i.e. an < 3 for all
n.” �

Try to repeat the same discussion to show that an < 2 for all n - it will work the same way
almost word-for-word! However, trying to show that an < 1 will fail: in which step and why?

(b) Now let’s show that {an} increases, i.e. an ≤ an+1 for all n. We’ll do this by induction.

Step 1. Is the first statement true? i.e. is it true that a1

?
≤ a2? Well, a1 =

√
2, and

a2 =
√

2 +
√

2 >
√

2 + 0 =
√

2, so yes.
Step 2. Assume for a moment that the nth statement is true, i.e. an ≤ an+1.

Step 3. Using Step 2, we will show that the (n+1)st statement is also true, i.e. an+1

?
≤ an+2.

But we know that an+1 =
√

2 + an and an+2 =
√

2 + an+1. Replacing these in the inequality
above, we get something equivalent:

√
2 + an

?
≤
√

2 + an+1 ⇔ 2 + an

?
≤ 2 + an+1 ⇔ an

?
≤ an+1.

Well, the latter is certainly true by the assumption in Step 2. This completes the proof of Step
3, and ultimately, the proof of all stamements an ≤ an+1. Thus, {an} is increasing. �

(c) A lot of information was accumulated about the sequence an: it is increasing and it is bounded
from above by 3. But the former automatically implies that {an} is bounded from below by its
first term, a1 =

√
2, i.e.

√
2 ≤ an ≤ 3 for all n. Thus, {an} is monotonic and bounded, hence

by MBT: {an} is convergent.

Now we have the right to name the limit of an, say, L = limn→∞ an, because we know that
it exists and it is a finite number. To use this new-found knowledge, we go back to the very
beginning of the problem: an+1 =

√
2 + an. When we let n →∞ on both sides, we have

lim
n→∞

an+1 = lim
n→∞

√
2 + an, ⇒ L =

√
2 + L ⇒ L2 = 2 + L ⇒ L2 − L− 2 = 0.
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Solving the last quadratic equation yields L = −1 or L = 2. But L = −1 is impossible, since
our sequence is bounded from below by

√
2 (even more so by 0!), so it cannot converge to a

negative number. The only possibility left is L = 2. Therefore, limn→∞ an = 2. �

(4) How do we decide which test for series to apply? There isn’t a bulletproof recipe: each series
requires particular attention and individual decision-making. Here are general strategies, which may
or may not apply to the series you are considering.
Type of function, an Tests to try in order of probable success

1. Rational or Algebraic (radicals,poly) TD, CT or LCT (with p-series)

2. Exponentials (plus possibly poly,algebraic) TD, RT,
√

T , CT or LCT (with geom. series), IT

3. Exponentials (plus some constants) TD, CT or LCT (with geom. series)

4. Factorials (plus possibly poly, exponentials) RT, CT or LCT, TD (Policemen Thm)

5. Alternating expression AT, TD, ACT(+ other methods on AVS)

6. Lots of powers
√

T , RT, TD

7. Simple rat’l functions telescoping, TD, IT

8. Trigonometric (plus possibly some others) TD, CT or LCT, ACT, AT, IT

(a) Let
∑

an be a series. Identify the type of function from which the terms an come from.
(b) Do not apply

√
T if you have already found that RT is inconclusive: according to a theorem,

if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, then lim
n→∞

n
√
|an| = 1, so

√
T will also be inconclusive. As a general rule,

do not apply RT or
√

T when only polynomials or algebraic expressions are involved: in such
cases, these two tests will inevitably yield limits 1, and hence will be inconclusive. However, as
soon as there is a factorial involved (among other function), RT becomes a very plausible test,
and as soon as there is an exponential involved, both RT and

√
T become plausible tests.

(c) In series which are neither alternating nor their terms are only positive (e.g. the numerator is
cos n), you may try for absolute convergence coupled with CT.

(d) In using test involving limits (TD, LCT, RT,
√

T ), keep in mind the following standard limits:

• lim
n→∞

sinn

n
= 1.

• lim
n→∞

n
√

n = 1 and lim
n→∞

n
√

c = 1 for any constant c > 0.

• lim
n→∞

(
1 +

1
n

)n

= e. (Equivalently, lim
n→∞

(
n

1 + n

)n

=
1
e
. Why? What is lim

n→∞

(
n + 1

n

)n+1

?)

Be aware of variations of these limits where n is replaced by a linear function an + b: in some
cases the limits remain the same, and in some cases the limits change. Investigate.

(e) If using AT or IT, you need to verify all conditions in writing before even starting to apply
the test. In particular, in both tests there is a condition for decreasing terms an (in AT), or
decreasing function f(x) (in IT). Use whatever methods seem appropriate to show this in the
specific problem: derivatives, direct approach (an ≥ an+1), observation that the denominator
obviously increases, etc. Do not use reasoning like “exponentials increase slower than factorials
hence the fraction will be decreasing”: even though this is true, we have not fully proved it; you
can use such ideas just to start on the right track, but you need more solid standard explanations
as suggested above when writing your solutions.

(5) How do we find the radius and interval of convergence of a power series? Let
∞∑

n=0

cn(x− a)n

be a power series. First note where the series is centered at: at a.

(a) To determine the radius of convergence R, imagine for a moment that x is a constant, and use
RT or

√
T - whichever seems easier. Setting the resulting limit to be less than 1, you end up
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with an equality of the form: |x−a| < R, e.g. |x+2| < 7: in this case, the radius of convergence
is R = 7.

(b) To determine the interval of convergence I, solve the inequality above for x: −R < x− a < R,
i.e. a − R < x < a + R (in the example: −7 < x + 2 < 7, i.e. −9 < x < 5). Check separately
for convergence of your original series at the endpoints of the interval: plug x = a ± R in

the power series to obtain two ordinary series
∞∑

n=0

cnRn and
∞∑

n=0

cn(−R)n, and use whatever

methods necessary to determine convergence/divergence (note that RT or
√

T will be useless
here since you have exhausted their power earlier in the game when determining the radius R.)

(c) Summarize your findings: state your radius R and interval I, and draw a picture of the interval
paying special attention to the endpoints. Check that the center a of your power series is indeed
the center of the interval I (in the example, a = −2 is the center of (−9, 5).) Remember that
every power series converges at least at its center a: if this isn’t so in your series, check for silly
computational errors.

(6) How do we use geometric power series to find power series of other functions? This is
an ad-hoc method for finding power series representations of some functions f(x). (The general
method that works for all functions is the Taylor series approach.) The nice thing about the geometric
power series ad-hoc approach is that it gives quickly the desired power series for f(x) without the
necessity of calculating all derivatives of f(x) (as the Taylor series approach requires.) The drawback,
as with all ad-hoc methods, is that it applies only to a very restricted class of functions: those that
are related to geometric series either directly, or via a derivative or integral.

(a) Functions directly related to geometric series: f(x) =
p(x)

bx + c
where p(x) is a polynomial, and

bx + c is a linear function. We like p(x) because every polynomial is already a power series in
which almost all coefficients are 0 except, of course, the coefficients of p(x), itself. We don’t like
the denominator bx+c because power series don’t have any denominators; so we turn 1/(bx+c)
into a power series:

p(x)
bx + c

= p(x) · 1
c + bx

= p(x) · 1
c(1− (− bx

c ))

=
p(x)

c

(
1 +

(
−bx

c

)
+
(
−bx

c

)2

+
(
−bx

c

)3

+ · · ·+
(
−bx

c

)n

+ · · ·

)

=
p(x)

c

∞∑
n=0

(
−bx

c

)n

= p(x) ·
∞∑

n=0

(−1)nbnxn

cn+1
·

In the above we used a geometric series with ratio r = − bx
c , so the power series expansion is

valid only when | − bx/c| < 1, i.e. |x| < |c/b| (check it out!) To finish the problem, we have to
bring p(x) inside the sum, multiply out each term by it and regroup as necessary. For example,
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if p(x) = x2 − 2 and bx + c = −5x + 8, following the above we obtain: ratio r = 5x/8,

x2 − 2
−5x + 8

= (x2 − 2) ·
∞∑

n=0

5nxn

8n+1
= x2 ·

∞∑
n=0

5nxn

8n+1
− 2

∞∑
n=0

5nxn

8n+1

=
∞∑

n=0

5nxn+2

8n+1
−

∞∑
n=0

2 · 5nxn

8n+1
(shift n to get xn everywhere)

=
∞∑

n=2

5n−2xn

8n−1
−

∞∑
n=0

2 · 5nxn

8n+1
(isolate initial terms for n = 0, 1)

= −
1∑

n=0

2 · 5nxn

8n+1
+

∞∑
n=2

(
5n−2

8n−1
− 2 · 5n

8n+1

)
xn = −1

4
− 5

32
x +

∞∑
n=2

14 · 5n−2

8n+1
xn

Again, we don’t forget that this power series expansion is valid only for |5x/8| < 1, i.e. |x| < 8/5.
We needed to isolate the first two terms because they don’t fit the general pattern of the terms in
the sum (why?) The above calculations contain many algebraic and summation manipulations,
so it is worth going through it carefully on your own. There is no need to memorize here
any formulas: just understand how the method works and apply it individually to each similar
problem.

(b) Functions related to geometric series via derivative or integral: logarithmic, arctan, reciprocals
of powers of linear functions. Examples of such functions are ln(2x + 7), arctan (2x + 7),

ln(4− x3), arctan (x3),
1

(2x + 7)3
, etc. There are essentially two ways of finding power series of

these functions (apart from the Taylor series approach.)

• Recall (or rederive on the spot) the power series expansion of ln(1 + x) and arctanx, as
well as their intervals of validity. Then you can substitute in them the new “variable
expression”.

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · =

∞∑
n=1

(−1)n+1 xn

n
, for x ∈ (−1,+1];

arctanx = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · =

∞∑
n=0

(−1)n x2n+1

2n + 1
, for x ∈ [−1,+1].

It is clear how to obtain arctan(2x + 7) and arctan (x3) - substitute 2x + 7 and x3 appro-
priately in the power series expansion for arctan x:

arctan(2x + 7) = (2x + 7)− (2x + 7)3

3
+

(2x + 7)5

5
− (2x + 7)7

7
+

(2x + 7)9

9
− · · ·

=
∞∑

n=0

(−1)n (2x + 7)2n+1

2n + 1
=

∞∑
n=0

(−1)n (x + 7
2 )2n+1

22n+1(2n + 1)
for (2x + 7) ∈ [−1,+1].

Note that this power series is centered at −7/2, and it is valid for x ∈ [−4,−3] (why?)

arctan(x3) = x3 − (x3)3

3
+

(x3)5

5
− (x3)7

7
+

(x3)9

9
− · · · =

∞∑
n=0

(−1)n (x3)2n+1

2n + 1
=

∞∑
n=0

(−1)n x6n+3

2n + 1

Note that this power series is centered at 0 and is valid for x3 ∈ [−1,+1], i.e. x ∈ [−1, 1].

In the ln examples, we have to be more careful as to what exactly we substitute in ln(1+x),
in other words, we need ln(1+ �). For ln(2x+7), factor 7 from 2x+7, and then substitute
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2x/7 in the power series expansion of ln(1 + x):

ln(2x + 7) = ln
(

7
(

1 +
2x

7

))
= ln 7 + ln

(
1 +

2x

7

)
= ln 7 +

( 2x
7 )
1

−
( 2x

7 )2

2
+

( 2x
7 )3

3
−

( 2x
7 )4

4
+ · · ·

= ln 7 +
∞∑

n=1

(−1)n+1 ( 2x
7 )n

n
= ln 7 +

∞∑
n=1

(−1)n+1 2n

7nn
xn

for 2x
7 ∈ (−1,+1], i.e. x ∈ (−7/2, 7/2]. Try ln(4− x3) in the same vein.

• We can start from scratch, e.g. notice that ln(2x + 7) =
∫

2
2x + 7

dx (why?), write the

power expansion for
2

2x + 7
, integrate it term by term, and find the constant C. Similarly,

for arctan(2x + 7) =
∫

2
1 + (2x + 7)2

dx. Try both examples.

In the case of f(x) =
1

(2x + 7)3
, integrating f(x) twice yields a geometric series function,

i.e.

1
(2x + 7)3

=
1
8

(
1

2x + 7

)′′
=

1
56

(
1

1− (− 2x
7 )

)′′
=

1
56

( ∞∑
n=0

(
2x

7

)n
)′′

=
1
56

( ∞∑
n=2

n(n− 1)
(

2x

7

)n−2
)

Why does n start at 2 in the last summation? For what x is the power series expansion
valid?

(c) Rational Functions whose denominator has degree more than 1. First we factor the denominator,
split the fraction using partial fractions, and to each of the latter apply a geometric power series,
and finally add up all the involved power series into one power series. When determining the
radius of convergence of the final power series, we take the minimum of all involved radii of
convergence. For example,

f(x) =
3

x2 + x− 2
=

3
(x− 1)(x + 2)

=
1

x− 1
− 1

x + 2
= − 1

1− x
− 1

2
· 1
1− (−x

2 )

= −
∞∑

n=0

xn − 1
2

∞∑
n=0

(
−x

2

)n

= −
∞∑

n=0

xn − 1
2

∞∑
n=0

(−1)n

2n
xn =

∞∑
n=0

(
−1 +

(−1)n+1

2n

)
xn

Here the first power series expansion requires |x| < 1, while the second: |x/2| < 1, i.e. |x| < 2.
The more restrictive requirement is |x| < 1, so that’s where the final power series expansion for
the original function is valid. �

(7) How do we find the Taylor series of a function? First, we agree on where the Taylor series
must be centered at: usually this is part of the question, or else, it is assumed that it will be centered
at 0 or at the most convenient for us point. Next, we find all derivatives of f(x), or rather, we find a
pattern for these derivatives. (Review §3.10 from Calculus I.) We then substitute in the formula for

the coefficients of the Taylor series: cn =
f (n)(a)

n!
, where each derivative is evaluated at the center a.

Make sure that what you get here are numbers, not functions, and don’t forget about the factorial
in the denominator. Finally, put all coefficients in the Taylor series formula:

∞∑
n=0

cn(x− a)n =
∞∑

n=0

f (n)(a)
n!

(x− a)n.

Make sure that you get a power series here in the “variable” (x− a).
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If the question asks for a specific Taylor polynomial, e.g. T4(x), then stop with the 4th derivative
of f(x), and produce the polynomial

T4(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)
6

(x− a)3 +
f ′′′′(a)

24
(x− a)4.

Now, you don’t have to perform Taylor calculations over and over again for similar functions. For
instance, the Taylor series of x2e−x7

can be obtained by substituting −x7 for x in the Taylor series of
ex, and then multiplying everything by x2. Memorize the Taylor series of the basic functions given
in a table earlier.

(8) How do we decide for which x a function equals its Taylor expansion? One way is to use
the term-by-term differentiation and integration theorem: if you already know that a given Taylor
series equals its function for some radius of convergence R around center a, then the derivative and
the integral of this series are also Taylor series and they equal their own functions also on the interval
(a−R, a + R), and possibly at some of the two ends (to be checked separately).

Another more general and powerful way is to use Taylor’s Inequality (mostly bonus stuff). Re-
member that the constant M you are looking for must be universal, i.e. it must be a bound for all
derivative functions of f(x). Once this is established, by Taylor’s Inequality, we can conclude that
the function does equal its Taylor series on the specificed interval.

(9) Where can we apply known Taylor expansions of functions?

(a) Special constants can be found by plugging some specific values of x into appropriate Taylor
series. Recall how this was done for e, π, ln 2, and think of possibly other constants that you
can represent as infinite sums in a similar way. Conversely, Taylor series are useful in computing
the sums of certain interesting series.

• In #38 on p.760, we ultimately want to find the sum
∞∑

n=1

n2

2n
· We follow the hints earlier.

Let’s find first
∞∑

n=1

nxn, |x| < 1. This sum looks like the derivative of the geometric power

series, but the power of x is wrong: we need xn−1. So, let’s force this power by factoring
out x:

∞∑
n=1

nxn = x
∞∑

n=1

nxn−1 = x

( ∞∑
n=0

xn

)′
= x

(
1

1− x

)′
=

x

(1− x)2
·

Substituting in this formula x = 1/2, we find the next sum the problem asks for

∞∑
n=1

n

2n
=

∞∑
n=1

n
1
2n

=
1
2

(1− 1
2 )2

= 2.

Next, we set out to find
∞∑

n=2

n(n− 1)xn, |x| < 1. This sum looks like a second derivative

of the geometric power series, but the power of x is wrong: we need xn−2. So, let’s force
this power by factoring out x2:

∞∑
n=2

n(n− 1)xn = x2
∞∑

n=2

n(n− 1)xn−2 = x2

( ∞∑
n=0

xn

)′′
= x2

(
1

1− x

)′′
= x2((1− x)−1)′′ = x2 · 2(1− x)−3 =

2x2

(1− x)3
·
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OK, now the next sum they hint at is
∞∑

n=2

n2 − n

2n
=

∞∑
n=2

n(n− 1)
(

1
2

)n

. Obviously, we

get exactly this sum if we plug in x = 1/2 in the previous sum. Thus,
∞∑

n=2

n2 − n

2n
=

2 1
22

(1− 1
2 )3

= 4.

Finally, the sum we originally wanted to find is a sum of two series discussed above:
∞∑

n=1

n2

2n
=

∞∑
n=1

n2 − n

2n
+

∞∑
n=1

n

2n
= 4 + 2 = 6.

• Evaluate the sum of
∞∑

n=0

(−1)nπ2n

62n(2n)!
. Which Taylor series might this have come from:

the even factorials remind us of cos x =
∞∑

n=0

(−1)n x2n

(2n)!
, which is valid everywhere, so no

retrictions on x. Plugging in x = π/6 produces the desired series:
∞∑

n=0

(−1)nπ2n

62n(2n)!
= cos

π

6
=
√

3
2

.

(b) Limits can be found by replacing one or more functions by their Taylor series. For example,
below we could apply LH five times, but we can get away faster by using the Taylor series for
sinx:

lim
x→0

sinx− x + 1
6x3

x5
= lim

x→0

(
x− x3

3! + x5

5! −
x7

7! −
x9

9! + · · ·
)
− x + 1

6x3

x5
= lim

x→0

x5

5! −
x7

7! −
x9

9! + · · ·
x5

= lim
x→0

(
1
5!
− x2

7!
− x4

9!
+ · · ·

)
=

1
5!
− 0 + 0− 0 + · · · = 1

5!
=

1
120

·

(c) Integrals can be evaluated via series where “exact” integration in terms of ordinary functions is
impossible. For example,∫

sin(x2)dx =
∫ (

x2

1!
− x6

3!
+

x10

5!
− x14

7!
+

x18

9!
− · · ·

)
dx =

∞∑
n=1

(−1)n+1x2(2n−1)

(2n− 1)!

=
x3

3 · 1!
− x7

7 · 3!
+

x11

10 · 5!
− x15

15 · 7!
+

x19

19 · 9!
− · · · =

∞∑
n=1

(−1)n+1x4n−1

(4n− 1) · (2n− 1)!

(d) Convergence/divergence of ordinary series can be established via CT with the help of Taylor
series: replace an involved function by its first or second Taylor polynomial to guess a new sim-

pler series to compare with. For example, we are asked to test for convergence of
∞∑

n=1

tan(1/n)
n

.

Consider the term an = sin(1/n)
cos(1/n)n , replace both sinx and cos x by their Taylor series, ignore all

terms but the first, and cook up a new series to compare with:

an =
sin(1/n)

cos(1/n)n
=

1
n −

1
n33! + 1

n55! + · · ·(
1− 1

n22! + 1
n44!

)
n

∼ bn =
1
n

1 · n
=

1
n2
·

Now we compare
∑

an with
∑

bn via LCT:

lim
n→∞

an

bn
= lim

n→∞

sin(1/n)n
cos(1/n)

=
limn→∞ sin(1/n)n
limn→∞ cos(1/n)

= lim
n→∞

sin(1/n)n.

The last is true because lim
n→∞

cos(1/n) = cos(0) = 1. Now we use LH, or resort to series again:

lim
n→∞

sin(1/n)n = lim
n→∞

(
1
n
− 1

n33!
+

1
n55!

+ · · ·
)

n = lim
n→∞

(
1− 1

n23!
+

1
n45!

+ · · ·
)

= 1.
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By LCT,
∑

an and
∑

bn behave similarly; since
∑

bn converges as 2-series, then
∑

an also
converges.

(e) Multiplication and division of power series can be used to find Taylor series of more complicated
functions.

(10) Summary of Methods for Finding Taylor Series. In lecture, we went through a long table,
which had three columns: Method, Types of Functions, and Interval of Convergence. I will give here
only the first column, and you are responsible to studying and filling in the other two columns.
• Basic power series.
• Substitution into basic power series.
• Algebraic manipulations and substitution into basic power series. Partial Fractions.
• TT′ or TT

∫
on previous/basic power series.

• Taylor series (table method)
• Multiplication, division of previous power series.

4. Useful Formulas and Miscellaneous Facts

(1) Derivatives and integrals of special functions, e.g. trig., inverse trig., logarithmic, exponential, etc.
(2) Integration methods.
(3) Limits of special sequences and functions from before.
(4) All special values of trig. and inverse trig. functions.
(5) Quadratic formula for solving quadratic equations.
(6) Fraction manipulations: common denominators, splitting of fractions, cross-multiplication, splitting

of radicals, manipulation of powers and factorials, etc.
(7) Representing a fraction as a sum of partial fractions.
(8) Exponential and logarithmic manipulations and formulas, e.g. an

bn =
(

a
b

)n, ln a + ln b = ln ab,
ln a− ln b = ln a

b , c · ln a = ln(ac).
(9) Algebraic Formulas, e.g. (A ± B)2 = A2 ± 2AB + B2, (A + B)3 = A3 + 3A2B + 3AB2 + B3,

(A−B)3 = A3 − 3A2B + 3AB2 −B3, An+m = An ·Am, (An)m = Anm, n
√

Am = ( n
√

A)m, etc.

5. Review Problems

(1) All HW problems.
(2) All Quiz problems.
(3) All classnotes.
(4) All Review Section (except #60) in Chapter 11.
(5) For Bonus: as many as possible from Problems Plus Section in Chapter 11 (don’t overkill yourselves

here: this is only for those who like to hit their heads against a wall many times and eventually
knock the wall down! :)

6. Cheat Sheet and Studying for the Exam

For the exam, you are allowed to have a “cheat sheet” - one page of a regular 8× 11 sheet. You can write
whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and
for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.)

• Any violation of these rules will disqualify your cheat sheet and may end in your own disqualification
from the midterm. I may decide to randomly check your cheat sheets, so let’s play it fair and square.
:)
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• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.

• Do NOT overstudy on the day of the exam!! More than 3 hours of math study on the
day of the exam is counterproductive! No kidding!
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