
Review Topics for Final Exam in Calculus 1A
Instructor: Zvezdelina Stankova

1. Definitions

Be able to write precise definitions for any of the following concepts (where appropriate: both in words
and in symbols), to give examples of each definition, to prove that these definitions are satisfied in specific
examples. Wherever appropriate, be able to graph examples for each definition. What is

(1) a Riemann sum Rn, Ln, Mn, Randomn? How do we set up Riemann sums? What are ∆x, xi, x∗i ?
(2) the sigma notation? How do we put expressions into the sigma notation? How do we convert

expressions in the sigma notation back into expanded notation?
(3) the area under a curve? How do we represent it in terms of limits of Riemann sums? What is an

overestimate (underestimate) of an area? Can some areas be negative?
(4) the definite integral of f(x) from a to b in terms of Riemann sums? In terms of areas? What is

the geometric interpretation of the definite integral? (Be careful here!) Can a definite integral be
negative?

(5) the area function g(x) under a curve f(x)? What is the relation between the area function g(x) and
the given function f(x)?

(6) an indefinite integral? an antiderivative? What are the similarities and differences between definite
and indefinite integrals? Which can be thought of as a “continuation” of the other? Why? Why
similar notation for both? How many antiderivatives does a continuous function have?

(7) “du = u′(x)dx”? Is this a formula? What does it mean and where is it used?
(8) an odd function? an even function? Where can these properties be used? What do they simplify?
(9) the area between two curves? Can it be negative?

(10) a solid of revolution? What is the axis of rotation? How are the outer and inner radii used? What is
a cross-section of a solid? What is a volume of a general solid (not necessarily a solid of revolution)?

(11) the arithmetic mean of several numbers? the average value of a function? Is this average value
always attained by the function? (or should we say something about our function?)

2. Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says. Be sure
to understand, distinguish and state the conditions (hypothesis) of each theorem and its conclusion. Be
prepared to give examples for each theorem, and most importantly, to apply each theorem appropriately
in problems. The latter means: decide which theorem to use, check (in writing!) that all conditions of your
theorem are satisfied in the problem in question, and then state (in writing!) the conclusion of the theorem
using the specifics of your problem.

(1) Properties of definite integrals
(a) Algebraic properties

– addition and subtraction of functions:
∫ b

a
[f(x)± g(x)]dx =

∫ b

a
f(x)dx±

∫ b

a
g(x)dx;

– multiplication by constants:
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx.

(b) Interval properties
– if bounds equal each other, then the integral is 0:

∫ a

a
f(x)dx = 0;

– flip of bounds changes the sign of the integral:
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx;

– splitting of an interval into two (or more) intervals:
∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx.

(c) Comparison properties
– an integral of a positive function is positive: if f(x) ≥ 0 for all x ∈ [a, b] then

∫ b

a
f(x)dx ≥

0;
– integrals respect inequalities of functions, i.e. an integral of a larger function is larger: if

f(x) ≥ g(x) for all x ∈ [a, b] then
∫ b

a
f(x)dx ≥

∫ b

a
g(x)dx;



– sandwich property: if a function is sandwiched between two constant functions then its
integral is also sandwiched between the integrals of the two constant functions, i.e. if
m ≤ f(x) ≤ M for all x ∈ [a, b], then

∫ b

a
mdx ≤

∫ b

a
f(x)dx ≤

∫ b

a
Mdx.

(d) Basic Case
– integral of a constant function is the area of the corresponding rectangle, i.e.

∫ b

a
cdx =

c(b− a).
(2) The Fundamental Theorem of Calculus Part I: the definite integral of f(x) equals any anti-

derivative F (x) of f(x), evaluated at the ends of the interval, i.e.
∫ b

a
f(x)dx = F (b) − F (a) where

F ′(x) = f(x).
(3) The Fundamental Theorem of Calculus Part II: the area function g(x) =

∫ x

a
f(t)dt has

derivative equal to f(x), i.e. d
dx

∫ x

a
f(t)dt = f(x). Note the change of variables!

(4) Summary of FTCI and II: they show that differentiation and integration are inverse processes.
(5) Formula for the derivative of more complex area functions, in which one or both bounds of

integration are “floating”, i.e. given by functions instead of being constants:

d

dx

∫ h2(x)

h1(x)

f(t)dt = f(h2(x)) · h′2(x)− f(h1(x)) · h′1(x).

(6) Table for Direct Integration: must be committed to memory for efficient direct integration.
(7) Total Change Theorem: a rephrase of FTCII, i.e.

∫ b

a
F ′(x)dx = F (b)− F (a), and its corollaries

in problems asking for total distance travelled, total displacement, etc.
(8) Substitution Rule for indefinite integrals:

∫
f(g(x))g′(x)dx =

∫
f(u)du (u = g(x), du =

u′(x)dx.)
(9) Substitution Rule for definite integrals:

∫ b

a
f(g(x))g′(x)dx =

∫ u(b)

u(a)
f(u)du (u = g(x), du =

u′(x)dx.)
(10) Integrals of symmetric functions on symmetric intervals:

(a)
∫ a

−a
f(x)dx = 0 if f(x) is an odd function on [−a, a], i.e. f(−x) = −f(x) for all x ∈ [−a, a].

(b)
∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx if f(x) is even on [−a, a], i.e. f(−x) = f(x) for all x ∈ [−a, a].

(11) Areas between curves:
(a) If f(x) ≥ g(x) on all of [a, b] then the area between f(x) and g(x) is given by

∫ b

a
(f(x)−g(x))dx.

(b) If f(x) and g(x) change relative positions, i.e. somewhere f(x) is the larger function, somewhere
g(x) is the larger function, then the area between f(x) and g(x) is given by

∫ b

a
|f(x)− g(x)|dx.

(12) Volumes of Solids of Revolution.

(a) If the function f(x) on [a, b] is rotated about the x-axis, then the volume is given by
∫ b

a

πf2(x)dx.

If the function f(y) is [a, b] is rotated about the y-axis, then the volume is given by
∫ b

a

πf2(y)dy.

In both cases, a and b are the endpoints of the solid on the axis of revolution.
(b) If a region between f(x) and g(x) is rotated about y = c, then the volume is given by∫ b

a

π
(
(f(x)− c)2 − (g(x)− c)2

)
dx.

a and b are the endpoints of the solid on the axis of revolution y = c; |f(x)− c| is the outer,
and |g(x)−c| is the inner radius of the “washer slice” (or the annulus cross-section of the solid.)

(c) If a region between f(y) and g(y) is rotated about x = c, then the volume is given by∫ b

a

π
(
(f(y)− c)2 − (g(y)− c)2

)
dy.

a and b are the endpoints of the solid on the axis of revolution x = c; |f(y)− c| is the outer,
and |g(y)− c| is the inner radius of the “washer slice”.

(13) Volumes of General Solids:
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(a) If S(x) is the cross-section of a solid (with respect to planes perpendicular to the x-axis), then
the volume of the solid is given by

∫ b

a
S(x)dx.

(b) Similarly, if the cross-sections are given by a function S(y) of y, then the volume is
∫ b

a
S(y)dy.

(c) Cavalieri’s Principle: If two solids have the same cross-sections with respect to a family of
parallel planes, then the two solids have equal volumes.

(14) Average Value of a Function: If f(x) is continuous on [a, b], then the average value of f(x) on

[a, b] is given by fave =

∫ b

a
f(x)dx

b− a
. Be able to say this formula in words!

(15) Mean Value Theorem for Integrals: If f(x) is continuous on [a, b], then f(x) attains its average
value fave for at least one c ∈ [a, b]: f(c) = fave for some c ∈ [a, b]. Further, the integral of f(x)
can be represented as a rectangle with base (b− a) and height f(c) = fave:∫ b

a

f(x)dx = f(c) · (b− a).

3. Problem Solving Techniques

(1) How do we set up Riemann Sums? Let f(x) be a continuous function on interval [a, b]. A
“random” n-th approximation of f(x) is the sum:

Randomn = (f(x∗1) + f(x∗2) + f(x∗3) + · · ·+ f(x∗n−1) + f(x∗n)) ·∆x,

where we partition the interval [a, b] into n small subintervals of length ∆ = (b − a)/n, and we

choose sample points x∗1, ..., x
∗
n in these n small subintervals. Thus, for n = 5, let xi = a+ i

b− a

5
for

i = 0, 1, 2, 3, 4, 5; then the right, left and middle 5th approximations are:

R5 = (f(x1) + f(x2) + f(x3) + f(x4) + f(x5)) ·
(b− a)

5
=

5∑
i=1

f(xi)∆x,

L5 = (f(x0) + f(x1) + f(x2) + f(x3) + f(x4)) ·
(b− a)

5
=

4∑
i=0

f(xi)∆x,

M5 =
(

f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)
+ f

(
x2 + x3

2

)
+ f

(
x3 + x4

2

)
+ f

(
x4 + x5

2

))
· (b− a)

5
.

(2) How do we convert limits of Riemann sums into integrals? The general formula is

lim
n→∞

n∑
i=1

f(x∗i )∆x =
∫ b

a

f(x)dx.

Thus, limn→∞
∑n

i=1 is replaced by
∫ b

a
, f(x∗i ) is replaced by f(x), and ∆x is replaced by dx. The

difficulty in these replacements usually occurs when trying to figure out what the interval [a, b] is,
and sometimes even which function exactly is being integrated.
(a) If you are fairly sure that you can identify the “sample points” x∗i , then a = limn→∞ x∗1, and

b = limn→∞ x∗n.
(b) You can also try to identify ∆x. Make sure that it is of the form constant

n . The constant will
then tell you the width of the total interval [a, b].

(c) As an example, consider

lim
n→∞

1
n

[(
1
n

)9

+
(

2
n

)9

+
(

3
n

)9

+ · · ·+
(n

n

)9
]

.

Clearly, they are telling us that ∆x = 1/n. So, b − a = 1. Further, the sample points are
x∗1 = 1/n, x∗2 = 2/n,..., x∗n = n/n. Thus, a = limn→∞ 1/n = 0, and b = limn→∞ n/n = 1. The
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function is f(x) = x9, and we can rewrite the above limit as:∫ 1

0

x9dx =
x10

10

∣∣1
0

=
1
10

.

(3) How do we find derivatives of area functions? You use FTC I, which states that

d

dx

∫ x

a

f(t)dt = f(x).

If you are being asked a more complicated question where the bounds of integration (a and x above)
are replaced by some other functions, then you apply directly Formula 5 from the Theorems section
of this review handout.

(4) How do we use the Total Change Theorem? Usually, the relevant problem will deal with
two functions: the “derivative” function f(x), and the “antiderivative” (or integral) function F (x):
F ′(x) = f(x). It is your job to recognize which function is which. A hint here are the units in which
the functions are given. For example, if one function is given in units pounds/years, and the other
is given in pounds, then the first function, call it f(x), is the derivative of the second function, call
it F (x): F (x) is the weight in pounds at time x years, and f(x) is the rate of change of weight in
pounds per year. The variable x with respect to F (x) is differentiated is time in years. Thus,∫ b

a

f(x)dx = F (b)− F (a)

can be interpreted as the total change in weight from year a to year b.

A common class of problems gives the velocity function v(t) on some interval [a, b], and asks for
the final displacement of the body at time b, or for the total distance travelled between time a and
b. The displacement function F (t) is an antiderivative of v(t), hence the final displacement at time
b with respect to time a is given by:∫ b

a

v(t)dt = F (b)− F (a).

The speed is given by |v(t)|, and the total distance D(t) travelled during the interval [a, b] is given
by: ∫ b

a

|v(t)|dt = D(b)−D(a).

To calculate this last integral, you have to draw a very good graph of v(t), flip all negative parts of
the graph above the x-axis, and then calculate and add all individual areas under the graph of |v(t)|:
be aware that all of these areas will be taken with positive signs in determining the total distance
travelled, while some will be taken with negative signs when finding the final displacement.

(5) How do we show Inequalities of Integrals? If possible, draw a good graph of the function(s).
(a) If you are asked to show that

∫ b

a
f(x)dx ≥ 0, you may check to see if f(x) ≥ 0 on all of [a, b].

If yes, then the definite integral will equal the area under f(x), and hence
∫ b

a
f(x)dx ≥ 0. No

calculations are necessary here except for verifying that f(x) ≥ 0 for all x ∈ [a, b].
(b) If are asked to show that

∫ b

a
f(x)dx ≥

∫ b

a
g(x)dx, you may check to see if f(x) ≥ g(x) on all of

[a, b]. If yes, then the definite integral of f(x) will be greater than the definite integral of g(x)
by a comparison property of integrals. No calculations are necessary here except for verifying
that f(x) ≥ g(x) for all x ∈ [a, b]. For this, you may have to reason backwards: start with
f(x) ≥ g(x) and step by step show that this inequality is the same as some obvious inequality;
for example, if you have to show that

√
5− x ≥

√
x + 1 on [1, 2], you can reduce this inequality

eventually to 6 ≥ 2x, or 3 ≥ x, which is obviously true for all x ∈ [1, 2].
(c) If you are asked to show that

∫ b

a
f(x)dx ≥ B or

∫ b

a
f(x)dx ≤ A, or both, try finding the

maximum M and the minimum m of f(x) on [a, b]. Then m ≤ f(x) ≤ M for all x ∈ [a, b], so by
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a comparison property of integrals,
∫ b

a
mdx ≤

∫ b

a
f(x)dx ≤

∫ b

a
Mdx. Thus, compute m(b − a)

and M(b− a) and hope that they equal B and A, respectively.
(d) If the sandwich by constants in (c) doesn’t work, then you need to do some more innovative

thinking, e.g. increasing sinx to 1, dropping part of the function to decrease it, replacing
numerator or denominator by 1, etc.

(6) How do we integrate discontinuous functions? One has to be very careful when integrating
discontinuous functions, since most of our theorems and formulas either fail completely for such
functions, or need some modifications.
(a) If f(x) has an infinite discontinuity on the interval [a, b] (e.g. f(x) = 1/(x − 2) on [1, 5]),

then do NOT attempt to find
∫ b

a
f(x)dx! FTC fails completely here, and a new theorem is

necessary. (To be studied later in 7.8. Improper Integrals.) If they are asking you for the
indefinite integral, find an antiderivative for each subinterval on which f(x) is continuous, and
make sure you add different constants (C1, C2, etc.) for each such subinterval.

(b) If f(x) has a jump discontinuity or a removable discontinuity, or is given by several
different formulas, then partition the interval [a, b] into several subintervals on each of which
f(x) is continuous (or is given by a single formula), and apply FTCII to each small subinterval
separately. If they are asking you just for the indefinite integral of f(x), make sure that you
find the antiderivatives on each separate small subinterval and add a different constant for each
subinterval.

(7) How do we guess u(x) and u′(x) in the substitution rule? There isn’t any “bullet-proof”
method for guessing (that’s why it’s called “guessing” afterall), but here are several tips that will
suffice in all problems of Calculus II. By applying the Substitution Rule we are making an attempt
to reverse the effect of differentiation by the Chain Rule. Thus, we want to represent our function as
if it were the result of a Chain Rule: f(g(x)) · g′(x), where u = g(x) = blah; in other words, we are
trying to write our function as a product of a “u-part” and a “u′(x)dx-part”. The key to “correct
guessing” is to remember that, whatever u(x) turns out to be, the derivative u′(x) must appear
multiplied by dx!
(a) Try to locate u′(x): all candidates for u′(x) are among the things with which dx is multiplied.
(b) For example,

∫
3x2cos(x3)dx yields two possibilities for u′(x): u′(x) = 3x2 and u′(x) = cos(x3).

Now let’s recall that we need to determine also u(x), i.e. we have to do direct integration on
our chosen u′(x). Obviously, the choice u′(x) = cos(x3) is bad because we don’t know how
to directly integrate cos(x3). However, the choice u′(x) = 3x2 works very well, since we can
integrate immediately: u(x) = x3 + C, and notice that x3 appears in the rest of the expression.
Thus, we set u(x) = x3 and du = (x3)′dx = 3x2dx, and the substitution rule yields:∫

3x2cos(x3)dx =
∫

cos(x3)(3x2dx) =
∫

cos(u)du = sin(u) + C = sin(x3) + C.

Don’t forget to check the answer by differentiation!!
(c) Recall that “denominators” may also yield something relevant for u′(x). For example, in∫

arctanx√
1+x2 dx it will be unsuitable to set u′(x) = arctan(x) (why?), but it will be very suitable to

set u′(x) = 1√
1+x2 : then u(x) =

∫
1√

1+x2 dx = arctan(x) and du = 1√
1+x2 dx so that∫

arctanx√
1 + x2

dx =
∫

arctanx ·
(

1√
1 + x2

dx

)
=

∫
udu =

u2

2
+ C =

arctan2(x)
2

+ C.

Don’t forget to check the answer by differentiation!!
(d) Sometimes we have readjust u′(x) and u(x) by constants. For example, in

∫
x2cos(x3 − 7)dx

we can initially guess u′(x) = x2 so that u(x) = x3

3 + C. But this u(x) does not conveniently
appear in the rest of the function! Instead, we would have liked that u(x) = x3 − 7: this is a
harmless little wish, which can be satisfied on the spot by setting du = (x3 − 7)′dx = 3x2dx.
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We can then “solve” du = 3x2dx: x2dx = 1
3du, and substitute in the integral:∫

x2cos(x3 − 7)dx =
∫

1
3
cos(u)du =

1
3
sin(u) + C =

1
3
sin(x3 − 7) + C.

Don’t forget to check the answer by differentiation!!
(e) We learn from the above that after having made a choice for u′(x), and hence finding u(x), we

can readjust u(x) by replacing it by any convenient expression of the form C1u(x) + C2 where
C1 and C2 are some suitable constants. This forces a slight change in u′(x): multiplication by
the constant C1. To summarize: always keep in mind that certain degrees of freedom in our
choices for u(x) and u′(x) exist: for u(x) there are “2 degrees of freedom”, and for u′(x) there is
only “1 degree of freedom”. Be aware that among all possible choices for u(x) and u′(x) there
is one most convenient choice: it is dictated by what we would like u(x) to be in our original
function.

(f) Sometimes it may appear as if there are no candidates for the role of u′(x). For example, in∫
e6xdx, dx is multiplied only by e6x, so what can u′(x) be? It can be a constant: it can be any

constant that we like. So, we look for a possible u(x): it looks like u = 6x would be nice; hence
u′(x) = 6dx, dx = 1

6du, and∫
e6xdx =

∫
1
6
eudu =

1
6
eu + C =

1
6
e6x + C.

Don’t forget to check the answer by differentiation!!
(g) Finally, some problems are trickier than we would have liked. The “trouble” there, surprisingly,

is not in the guessing of u(x) and u′(x), but rather in trying to get rid of all x’s and replacing
them by u’s. For example, in

∫ √
x2 + 1x5dx, it is clear that we definitely want to get rid of

x2 + 1 under the radical, so we substitute u(x) = x2 + 1, du = 2xdx, but then how do we
get rid of the remaining x4 in our function? We solve for x4 from our substitution equation:
u = x2 + 1 ⇒ x2 = u− 1 ⇒ x4 = (u− 1)2, so that our integral will look like:∫ √

x2 + 1x5dx =
∫ √

x2 + 1x4xdx =
∫ √

u(u−1)2·du

2
=

∫
1
2
√

u(u2−2u+1)du =
1
2

∫
(u5/2−2u3/2+u1/2)du

Finish this example as we did in class, and check with differentiation.
(h) Continuing with the “mean streak” of substitution rule problems: splitting the integral as a sum

of two integrals; also, don’t forget that functions maybe even/odd, thus simplifying integration
on symmetric intervals [−a, a].

(8) How do we set up integrals for Areas between Curves f(x) and g(x)? The problem will
sometimes specify vertical bounds like x = −2 and x = 5, or horizontal bounds like y = −9 and
y = −6, or no other bounds when the region is completely determined by the two curves.
(a) Draw the given region and decide if you would like to integrate with respect to x or y. The

better choice is determined by the fewer subregions that you have to integrate: if you need
to chop up your interval into many pieces and use many different functions on these pieces,
probably this is not a good choice for an integration variable.

(b) Make sure that your curves are written in the same variable that you will be integrating with
respect to: f(x) and g(x), or f(y) and g(y).

(c) Find the points of intersection of the two curves by setting them to equal each other: f(x) = g(x)
(or f(y) = g(y)).

(d) Determine the bounds of integration on the corresponding axis of integration. Determine the
subintervals over each of which only one function is bigger than the other.

(e) Find the integral
∫ b

a
|f(x) − g(x)|dx (or the corresponding y-integral). To calculate this inte-

gral, use your intervals in part (d) and sum up all integrals depending on which function is
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bigger/smaller in each subinterval. Thus, you may end up with something like∫ c

a

(f(x)− g(x))dx +
∫ d

c

(g(x)− f(x))dx +
∫ b

d

(f(x)− g(x))dx

if f(x) ≥ g(x) on [a, c], g(x) ≥ f(x) on [c, d], and f(x) ≥ g(x) on [d, b]. The key point is to
sum up geometric areas - i.e. all areas are included with positive signs even though some areas
maybe “under the x-axis.” You must distinguish between the area between two curves and the
definite integral of the difference of the two functions:

∫ b

a
|f(x)− g(x)|dx is quite often different

from
∫ b

a
(f(x)− g(x))dx (Why?)

(f) If you have trouble drawing the graph of x = f(y), switch for a moment the two variables:
y = f(x), draw the graph of y = f(x), and then flip it across the line y = x. This transforms,
for example, all x-intercepts of y = f(x) into the y-intercepts of x = f(y), etc, and it does
transform the whole graph of y = f(x) into the graph of x = f(y).

(9) How do we set up integrals to calculate Volumes of Solids of Revolution?
(a) Decide with respect to which variable you will be integrating: this depends solely on what kind

of axis you are rotating about. If it is a horizontal axis (e.g. x-axis or y = c) then you will
be integrating wrt variable x . If it is a vertical axis (e.g. y-axis or x = c) then you will be
integrating wrt variable y.

(b) Find the beginning and the ending points of your solid measured on the axis you chose above.
These will be your bounds of integration. Make sure you draw a very good picture!

(c) Make sure your functions are written in the ”correct” integration variable. If not, rewrite the
functions in this variable. For example, if you are going to integrate wrt variable y, but one
function is written as y = 2x3 + 4, then solve for x: x = ((y − 4)/2)1/3.

(d) Next decide what your outer radius will be, and what your inner radius will be. Say, you are
rotating a region between f(y) and g(y) about x = −3, and say, f(y) is ”further away” from
x = −3 compared to g(y). Then your outer radius will be |(f(y)− (−3)| and your inner radius
will be |g(y)− (−3)|: you subtract your axis of rotation from your two functions.

(e) Finally, apply the most general formula (the last formula we derived in class) about volumes of
solids of revolution. In the example above, rotating about y = −3 produces∫ b

a

π
(
(f(y) + 3)2 − (g(y) + 3)2

)
dy.

Note that here ”+3” resulted from subtracting (−3) from the two functions. If we had to rotate
about y = 4, then the outer and innner radius would have been |f(y) − 4| and |g(y) − 4|,
respectively.
If you have only one function to rotate, there is no need to look for ”outer” or ”inner” radii. You
will have only one radius generated by this function and the axis about which you are rotating.

(10) How do we find Volumes of General Solids? This is a hard question to answer because solids
can come in many different shapes. First we choose a “convenient” axis with respect to which the
integration will occur. The “convenience” is determined by an easy to find cross-section function
S(x). Next we find the beginning and ending points a and b of the solid as measured on our axis,
and we integrate

∫ b

a
S(x)dx. Cavalieri’s Principle is sometimes helpful here.

(11) How do we apply Mean Value Theorem for Integrals in Problems? Usually, such problems
ask you something either about

∫ b

a
f(x)dx, or about a specific value of f(x). So, first check that f(x)

is contunuous on [a, b]. Next, calculate the average value of f(x) on [a, b] using the formula

fave =

∫ b

a
f(x)dx

b− a
.

Depending on what the problem is asking,
(a) conclude that

∫ b

a
f(x)dx equals fave · (b− a).
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(b) conclude that f(x) attains its average value fave for a
¯
t least one value c ∈ [a, b]: f(c) = fave.

(c) set f(c) = fave and solve for c: find all c ∈ [a, b] at which f(x) attains its average value fave.

4. Useful Formulas and Miscellaneous Facts

(1) The formula describing a circle of radius r as a function: y = ±
√

r2 − x2 or x = ±
√

r2 − y2.
(2) Quadratic formula for solving quadratic equations.

(3) Formulas for area of a circle and the volume of a sphere of radii r: πr2 and
4
3
πr3, respectively.

(4) Fraction manipulations, exponential and logarithmic manipulations and formulas. Manipulations
with the sigma notation: going back and forth between sigma notation and expanded notation.

(5) Formulas for specific sums:

(a) 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
· (b) 12 + 22 + 32 + · · ·+ n2 =

n(n + 1)(2n + 1)
6

·
(6) Differentiation Laws, especially the Chain Rule and the Product Rule.

5. Cheat Sheet and Studying for the Exam

For the exam, you are allowed to have a “cheat sheet” - one page of a regular 8× 11 sheet. You can write
whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and
for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.)

• Any violation of these rules will disqualify your cheat sheet and may end in your own disqualification
from the exam. I may decide to randomly check your cheat sheets, so let’s play it fair and square. :)

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.

• Do NOT overstudy on the day of the exam!! More than 3 hours of math study on the
day of the Final is counterproductive! No kidding!
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