
Review Topics for Midterm II in Calculus 1A
Instructor: Zvezdelina Stankova

1. Definitions

Be able to write precise definitions for any of the following concepts (where appropriate: both in words
and in symbols), to give examples of each definition, to prove that these definitions are satisfied in specific
examples. Wherever appropriate, be able to graph examples for each definition. What is

(1) implicit differentiation?
(2) a global minimum and a global maximum of a function?
(3) a local minimum and a local maximum of a function?
(4) a global extremum and a local extremum of a function? Is a local extremum necessarily a global

extremum? examples? Is a global extremum necessarily a local extremum? examples? Can an
endpoint be a local extremum? a global extremum?

(5) a critical point? How do we find all of them? What is a potential and a realized local extremum?
(6) a nice function?
(7) a concave up (concave down) function?
(8) an inflection point? How do we locate all of them?
(9) an indeterminate form? How do we deal with them?

(10) the method of contradiction? How do we use it?
(11) a slant asymptote? How do we find it?
(12) an optimization problem? What is the strategy for solving optimization problems?
(13) the area and perimeter of a figure? Basic examples of figures.

2. Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says. Be sure
to understand, distinguish and state the conditions (hypothesis) of each theorem and its conclusion. Be
prepared to give examples for each theorem, and most importantly, to apply each theorem appropriately
in problems. The latter means: decide which theorem to use, check (in writing!) that all conditions of your
theorem are satisfied in the problem in question, and then state (in writing!) the conclusion of the theorem
using the specifics of your problem.

(1) Extreme Value Theorem. To what functions is it applicable?
(2) Theorem for Local Extrema. If f(x0) is a local min/max and f ′(x0) exists, then f ′(x0) = 0.
(3) Contrapositive Statement. If f ′(x0) 6= 0, then f(x) cannot have a local extremum at x0.
(4) Converse Statement is False. If f ′(x0) = 0, this does not guarantee that f(x) has a local

extremum at x0. Why? Counterexample?
(5) Rolle’s Theorem. To what functions is it applicable?
(6) Mean Value Theorem. To what functions is it applicable?
(7) Cor.1. If f ′(x) = 0 ∀x, then f(x) is a constant function.
(8) Cor.2. If f ′(x) = g′(x) ∀x, then f(x) and g(x) differ by a constant: f(x) = g(x) + c everywhere.
(9) Increasing/Decreasing Test. Does it always work? Examples.

(10) First Derivative Test. Does it always work? Examples.
(11) Second Derivative Test. Does it always work? Examples.
(12) Concavity Test. Does it always work? Examples.
(13) Inflection Point Test. Does it always work? Examples.
(14) L’Hospital’s Rule. Does it always work? Examples.
(15) Distance Formula. Pythagorus Theorem.
(16) Area and Perimeter Formulas for basic figures.



3. Problem Solving Techniques

(1) How do we use implicit differentiation? This is used to find tangent lines and their slopes
to curves in the plane which are not graphs of functions (i.e. they violate the vertical line test).
Thus, we don’t have a function formula to differentiate, but instead an equation for the curve, e.g.
x3 +x2y +4y2 = 6. It will be hard, sometimes impossible, to solve such an equation for y, and hence
a formula for y may not be available. 1

(a) We imagine that y is given by such a formula y = f(x) (e.g. x3 + x2f(x) + 4f(x)2 = 6), and we
differentiate (with respect to x) both sides of the given equation, e.g.

(x3 + x2y + 4y2)′ = (6)′ ⇒ 3x2 + 2xy + x2y′ + 8y · y′ = 0

Do not forget to include y′ wherever appropriate, for y = f(x) so that y′ 6= 1, but y′ = dy
dx =

f ′(x).
(b) Solve the above for y′:

3x2 + 2xy + y′(x2 + 8y) = 0 ⇒ y′ = −3x2 + 2xy

x2 + 8y
.

This is the best we can do for y′: we have expressed it in terms of x and the original function y.
(c) If we are asked something about derivatives, slopes and tangents at specific places, then we use

the above formula for y′ and if necessary, the original equation for y. E.g. in our example, find
the slope and the equation for the tangent at point (1, 1). 2 Now we use the formula for y′(x)
and substitute x = 1, y = 1:

y′(1) = −3 + 2
1 + 8

= −5
9
.

Finally, we use the point-slope formula:

y′(1) =
y − y(1)
x− 1

⇒ −5
9

=
y − 1
x− 1

⇒ y = −5
9
x +

14
9

.

It is always good to check if this is the correct equation for the tangent line: yes, because the
slope is −5/9, and if we plug in the point (1, 1) it works: 1 = 1.

(d) Say, we want to find all points on the curve where the tangent to the curve is horizontal. In
general, this is not an easy question to answer. Set y′(x) = 0, and obtain two equations in
terms of x and y: the derivative equation and the original equation. Now you are supposed to
solve this system of two equations for x and y. In our example, this amounts to:∣∣∣∣∣ 0 = − 3x2+2xy

x2+8y

x3 + x2y + 4y2 = 6

The first equation yields 0 = 3x2 + 2xy = x(3x + 2y), i.e. x = 0 or y = − 3
2x. Substituting

in the second equation: 4y2 = 6 (when x = 0), or x3 − 3
2x3 + 4 9

4x2 = 6 (when y = − 3
2x), i.e.

y = ±
√

3
2 , while the second equation is a pain and I won’t solve it here. The final answer would

have been: the tangent lines to the curve are horizontal at points (0,
√

3
2 ), (0,−

√
3
2 ), and at

the points yielded by the second case above.

The good news is that if a similar question appears on the exam, the calculations will be easier. The
method, however, is outlined above. Note that similarly you can solve all sorts of questions about
the tangents to such curves: e.g. find where the tangents are parallel to y = x (set y′(x) = 1), etc.

1In the particular example, you can indeed solve for y viewing the given equation as a quadratic equation in “y”, but believe

me, you probably don’t want to do that, and you should follow the method of implicit differentiation instead.
2Note that this point was obtained by substituting x = 1 into the original equation: 1+ y +4y2 = 6 and obtaining solutions

y = 1,−5/4. Thus, you could have been asked to find instead the tangent line at point (1,−5/4).
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(2) How do we apply Rolle’s Thm in problems? Rolle’s Thm is used typically in problems of the
type: Show that a nice function f(x) has at most k roots.

Argue by contradiction. Start by supposing that f(x) has more than k roots, i.e. that f(x) has at
least k +1 roots. Then between every two consecutive roots, by Rolle’s Thm, the derivative function
f ′(x) must have at least one root. Thus, k + 1 roots of f(x) mean that f ′(x) has at least k roots on
its own. Study f ′(x) and show that it does not have these many roots. (For this, you may need to
go down to f ′′(x), or even higher derivatives, if necessary; but usually, a check of f ′(x) is sufficient.)

So, on the one hand, f ′(x) must have k roots, but on the other hand, it doesn’t have k roots - well,
that’s a contradiction. Conclude that the supposition was wrong to start with. Finally, conclude
that therefore f(x) does indeed have at most k roots. �

(3) How do we apply MVT and its Corollaries in problems?

(a) Show that some identity is true. First, label the two sides of the identity by f(x) and g(x). Find
the two derivatives f ′(x) and g′(x) and show that they are equal everywhere: f ′(x) = g′(x) ∀x.
Conclude by Cor.2 that f(x) = g(x) + c for some constant c. Finally, substitute your favorite
x = a and show that f(a) = g(a) (well, make sure that you choose your a so that you can easily
calculate f(a) and g(a).) But from the above, f(a) = g(a) + c, so that c = 0. Conclude that
f(x) = g(x) everywhere. �

(b) Given some data about a function f(x), show some inequality involving f(x) and or f ′(x).
There are various problems of this type, and we can’t describe in detail all of them. The general
principle is as follows. Set up the MVT for f(x) on convenient interval [A,B]:

f ′(x0) =
f(B)− f(A)

B −A
for some x0 ∈ (A,B).

Plug in whatever data you have about f(x) or about the derivative f ′(x) and see what this
implies. Usually, this quickly leads to whatever you are asked to show. �

(4) How do we find where f(x) is increasing or decreasing?

(a) Use the Increasing/Decreasing Test. If f ′(x) > 0 everywhere on some interval, then f(x)
increases on this interval. If f ′(x) < 0 everywhere on some interval, then f(x) decreases on this
interval. If f ′(x) = 0 everywhere on some interval, then f(x) is constant on this interval (by
Cor.1.) Thus, find for which x’s f ′(x) > 0, for which f ′(x) < 0.

(b) Be careful when f ′(x0) = 0: just the fact that f ′(x0) = 0 does not mean that the function is
constant nearby x! (E.g. x3 nearby x = 0.) Thus, check the sign of the derivative at nearby
points and this will tell you what is going on exactly at f ′(x0). For example, if f ′(x) > 0 both
on the left and right of x0, then the function is increasing at x0 too. But if f ′(x) changes sign at
x0, then f(x0) is a local extremum so that f(x) is neither increasing nor decreasing at x0. �

(5) How do we find the global extrema of f(x)?

(a) First, find where f ′(x0) = 0 and record all such f(x0).

(b) Next, record all f(x0) where derivative does not exist, and also check and record what happens
at the ends of the intervals (if there are any ends, that is.)

(c) Compare all values f(x0) at the critical points recorded above and find which are your global
min/max. Be careful if the function is defined on an infinite interval or has vertical asymptotes.
This gives opportunity for f(x) to have arbitrarily large (small) values: some limit(s) of f(x)
could be ±∞, so in such cases, global min/max may not exist. �

(6) How do we find the local extrema of f(x)? For simplicity of exposition, let’s assume that f(x)
is a nice function, so we don’t have to worry for now about discontinuities or non-existing derivatives.
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(a) First find the potential local extrema of f(x), i.e. check where f ′(x0) = 0 and record all such
places x0.

(b) Next, use the Second Derivative Test (if f ′′(x0) exists, of course) to determine which of these
potential extrema are realized local extrema. In particular, if f ′′(x0) > 0 then f(x0) is a local
minimum; if f ′′(x0) < 0 then f(x0) is a local maximum.

(c) If f ′′(x0) = 0 or the second derivative f ′′(x0) does not exists (the latter could happen even if
f(x) is a nice function!), then the Second Derivative Test fails to give us anything useful, so we
try the First Derivative Test. If f ′(x) changes its sign at x0 from + to −, then f(x0) is a local
maximum; if f ′(x) changes its sign at x0 from − to +, then f(x0) is a local minimum. If f ′(x)
does not change its sign at x0, then f(x0) is not a local extremum. �

(d) The First Derivative Test is bulletproof!!!

(7) How do we find where the function is concave up or down?

(a) Use the Concavity Test. If f ′′(x) > 0 everywhere on some interval, then f(x) is concave-up
on this interval. If f ′′(x) < 0 everywhere on some interval, then f(x) is concave-down on this
interval.

(b) If f ′′(x0) = 0, then there could be an inflection point at x0, so we check if f ′′(x) changes sign
at x0. If yes, then at x0 the function does indeed have an inflection point: the function changes
from concave-up to concave-down or the other way around. But if f ′′(x) does not change sign
at x0, then the function does not have an inflection point at x0; and f(x) continues to be
concave-up (or concave-down) as it were before.

(c) As an example, compare the two functions x3 and x4 nearby x0 = 0 and determine if they have
inflection points at 0. Further, determine the intervals where these functions are concave-up or
concave-down. �

(8) How do we use L’Hospital’s Rule? L’Hospital’s Rule is applied to find limits only in cases
where Limit Laws fail! Do not apply L’Hospital’s Rule (LH) in cases where LLs work, or you will
get an incorrect result. In other words, LH and LLs are complements of each other: one works
exactly where the other doesn’t work.
(a) The cases where LH applies can be determined as follows. Attempt to apply LLs and get an

indeterminate of one of the types:

0
0
,
±∞
±∞

, 0 · ∞, 00,∞0, 1∞.

None of these expressions make sense (and they cannot be given any reasonable uniform sense
no matter how hard we try!)

(b) LH applies directly only to the first 2 types of indeterminants: 0/0 and ±∞/±∞. Thus, if we
deal with a limit like:

lim
x→a

f(x)
g(x)

LL=
limx→a f(x)
limx→a g(x)

LL=
0
0

or
±∞
±∞

,

we can replace each of f(x) and g(x) by their derivatives without changing the overall limit:

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

. �

(c) Any of the other indeterminate forms 0 ·∞, 00,∞0, 1∞ must be rewritten to fit one of the above
two basic cases before we can even start applying LH.

• Product Indeterminacy 0 · ∞ means that we have a limit like: limx→a f(x) · g(x) LL=
0 · ∞. We rewrite this simply by taking the reciprocal of f(x) or g(x), whichever is more
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convenient:

lim
x→a

f(x) · g(x) = lim
x→a

g(x)
1

f(x)

LL=
±∞
±∞

, or lim
x→a

f(x) · g(x) = lim
x→a

f(x)
1

g(x)

LL=
0
0
.

Thus, we apply LH to the new rewritten expressions above. �

• Exponential Indeterminacies 00,∞0, 1∞ mean that we have a limit like

lim
x→a

f(x)g(x) LL= 00,∞0 or 1∞.

This is a tougher case to handle. Recall the basic identity

eln blah = blah, or equivalently blah = eln blah.

Setting blah = f(x)g(x), we rewrite:

f(x)g(x) = eln
(
f(x)g(x)

)
= eg(x) · ln f(x).

Now instead of trying to find the limit of the whole expression, we can concentrate on
finding the limit of the exponent only: limx→a g(x) · ln f(x). If we apply LLs here, we will
necessarily get an indeterminacy form 0 · ±∞ or ±∞· 0, with which we know how to deal
from the previous discussion.

To summarize, to find limx→a f(x)g(x), where LLs would produce an indeterminacy of
the form 00,∞0 or 1∞, we first rewrite the expression via an exponential as above. Then
we find the limit limx→a g(x) · ln f(x). Say, this limit turns out to be some number L.
Therefore, the original limit will be eL. �

(d) Word of caution. The idea of LH is to simplify our job of finding limits, not to complicate it!
Thus, before you apply LH, find if LLs apply! Do not skip this step - this is not just an advice,
this is a necessity! Only after you verify that LLs do NOT apply, you can start thinking of
applying LH. And even then, it could be that LLs can get part of the job done - so use LLs as
much as you can, and leave for LH to take care of the rest.

Why not just use LH on everything? Because LH may not apply; and even if it applies, if not
used wisely it will yield a more complicated expression with which you will not know what to
do! Remember: derivatives can be simpler than the original functions (e.g. polynomials), but
sometimes derivatives can be much more complex than the original functions (e.g. often after
you apply the Product Rule, Quotient Rule or Chain Rule).

So, LH is a powerful weapon, but only when used wisely! It can really backfire if we don’t know
how to use it!

(9) How do we find slant asymptotes of f(x)?

(a) Find the limits lim
x→±∞

f(x)
x

. If it turns out that this limit does not exists, or exists but is not a

finite number, then there will be no slant asymptote in the corresponding direction x → ∞ or
x → −∞. If this limit exists and is a finite number, then call it m:

m = lim
x→∞

f(x)
x

.

m will be the slope of the slant asymptote.
(b) After we find the slope m, we proceed to find the constant b which will appear in the equation

of the slant asymptote. To do that, find the limit

b = lim
x→∞

(f(x)−mx).

Thus, the slant asymptote in the direction x →∞ will be y = mx + b. �
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Note that there is a short-cut for finding slant asymptotes in case we are looking at a fraction
of two polynomials: f(x)/g(x). For clarity, let f(x) = Axm + lower degree terms, and g(x) =
Bxn + lower degree terms; in other words, the leading coefficients of f and g are A and B, and their
degrees are m and n respectively.

(a) If m = n (i.e. f(x) and g(x) have the same degrees), then

lim
x→±∞

f(x)
g(x)

=
A

B
(Why?)

and hence f(x)/g(x) will have a horizontal asymptote y = A/B in both directions x → ±∞.
(b) If m < n (i.e. the degree of f(x) is less than the degree of g(x)), then

lim
x→±∞

f(x)
g(x)

= 0 (Why?)

and hence f(x)/g(x) will have a horizontal asymptote y = 0 in both directions x → ±∞.
(c) If m = n + 1 (i.e. the degree of f(x) is exactly 1 more than the degree of g(x)), then there will

be a slant asymptote in both directions (why?) More precisely, to find this slant asymptote, we
divide by x:

lim
x→±∞

f(x)
xg(x)

=
A

B
(Why?)

Hence the slant asymptote will have slope A/B in both directions x → ±∞. To find the term b

from linear equation of the slant asymptote, we proceed as follows:

b = lim
x→±∞

f(x)
g(x)

− A

B
x = lim

x→±∞

Bf(x)−Ax

Bg(x)
.

There is a formula for this in terms of the second coefficients of f(x) and g(x), but it is not
worth remembering. Instead, dutifully find the above limit and this will give your b in the slant
asymptote formula.

(d) If m > n + 1 (i.e. degree of f(x) is 2 or more than the degree of g(x)), then there will be no
horizontal or slant asymptotes (in any directions). The reason is that in this case:

lim
x→±∞

f(x)
xg(x)

= ±∞

depending on whether the degrees of f(x) and g(x) are odd, even, etc. (Why?)
(e) In conclusion, if you are asked about horizontal and slant asymptotes for a fraction of two

polynomials, you can use the above discussion. In particular, the only case where there will be
a slant asymptote is when the degree of f(x) is exactly 1 more than the degree of g(x).

(10) How do we sketch graphs of functions? It will be very long to describe the whole process for
an arbitrary function f(x). On the exam, you will be given a specific function f(x) to which some
of the stuff below will apply, and some stuff will possibly be irrelevant.

(a) Establish where f(x) is defined, where it is continuous and where it is differentiable.

(b) Establish if the function has any period. This is relevant usually in cases involving only trigono-
metric functions. If you find such a period, say, 2π, concentrate below only on one such interval,
say [0, 2π].

(c) Check if the function is odd or even - this will further reduce your work to concentrating only
on, say, the interval [0,+∞). Such cases may occur with polynomials, fractions of polynomials,
adn trig. functions. This step is not strictly necessary, but sometimes it is good to take it into
account for more precise sketches.

(d) Find f ′(x) and f ′′(x). Simplify them. If you get a fraction of polynomials, try to cancel
everything in common and to factor top and bottom polynomials as much as possible.
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(e) Establish where f(x) is increasing and where it is decreasing, using f ′(x) and the relevant
test(s).

(f) Find the local and global extrema (if any) of f(x), using f ′(x), f ′′(x) and the relevant test(s).

(g) Find where the function is concave-up and concave-down, and all inflection points, using f ′′(x)
and the relevant test(s).

(h) Find the vertical asymptotes (if any). They will appear where f(x) has an infinite (at least)
one-sided limit, i.e. if lim

x→a+
f(x) = ±∞ or lim

x→a−
f(x) = ±∞; then the vertical line x = a is

such an asymptote. If f(x) is a fraction, such solutions will be produced by the roots of the
denominator.

(i) Find the horizontal asymptotes: these will appear where f(x) has a finite limit when x → ±∞,
i.e. if lim

x→±∞
f(x) = L; then the horizontal line y = L is such an asymptote. If f(x) is a fraction,

both numerator and denominator will be involved in this step. Note that L’Hospital’s Rule may
or may not be needed here.

(j) Find the slant asymptotes (if any). Note that L’Hospital’s Rule may or may not be needed
here.

(k) If possible, find the roots of the function, i.e. its x-intercepts: try to solve f(x) = 0 if possible.
If f(x) is a fraction, such solutions will be produced in the numerator. (The denominator will
be irrelevant in this step.) It is also good to find the y-intercept, by setting x = 0 in f(x).

(l) The above information should be enough to sketch a very good graph of f(x).

• On the x-axis, mark all interesting points which you found above, mark the intervals where
f(x) is increasing or decreasing (or constant, for that matter). Mark the x-intercepts and
the y-intercept (if any). Mark any local and global extrema you found. Mark any inflection
points you found.

• Draw the vertical, horizontal and slant asymptotes (if any). Make a mental picture of what
is happening nearby each of these asymptotes. Be careful nearby the vertical asymptotes
to reflect whether a given one-sided limit is +∞ or −∞.

• At this moment, if you are not sure how the graph looks in some intervals, plot a few
other points there.

• All that is left is to connect the points you plotted respecting the properties you found
above: domain of definition, increase/decrease, extrema, concavity and inflection points,
dis-continuity and non-differentiability, asymptotes, period of function, odd/even func-
tion. �

(11) How do we cook up a function g(x) which captures the sign of f ′(x) or of f ′′(x)?

Speaking of shortcuts, this may be the single most significant shortcut in drawing graphs: when
applicable, this shortcut may allow you to establish all intervals of increase, decrease, concavity, loc.
min’s and max’s without having to plug in a single value into f ′(x) and f ′′(x)! Now, that’s what I
call a shortcut!

An example illustrates the technique. Say, f ′(x) equals the following stupendous expression:

f ′(x) =
4(x− 1)3(x + 7)6(x− 4)13(x2 + 10)
(x + 2)5(x− 2)2(2x2 + 3)2(x + 8)

.

Naturally, we are interested where this expression is positive, negative and zero. Now, you can plug
in values into f ′(x) and fill in a table with + and − signs until you are blue in the face, but ... let’s
do it the cool way!
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(a) First of all, find where f ′(x) = 0. This comes from the numerator: x = 1, −7, 4. These are
the potential local min’s and max’s of the original function f(x). Note that the factor x2 + 10
does not contribute any zeros (why?)

(b) Let’s not forget where f ′(x) is not defined, just so that we don’t write meaningless things later
on: this comes from the denominator, i.e. x 6= −2, 2,−8. Note that 2x2 + 3 does not mess the
domain of f ′(x) (why?)

(c) Now, we throw out all irrelevant terms in f ′(x), about which we already know that they are
always positive. In our case, (x + 7)6, x2 + 10, (x − 2)2, (2x2 + 3)2 and 4 can all go, since
they are always positive. We can’t quite throw out (x− 1)3 because it can be either positive or
negative, but we can throw out a big chunk of it: (x− 1)3 = (x− 1)2 · (x− 1), so (x− 1)2 can
happily go, leaving only (x− 1). In a similar fashion, let’s get rid of (x− 4)12, leaving (x− 4)
in the numerator.
In the denominator, we have (x + 2)5. Instead of throwing out (x + 2)4 and leaving (x + 2) in
the denominator, it is better to multiply top and bottom by an extra (x + 2):

1
(x + 2)5

=
(x + 2)
(x + 2)6

.

Now, we happily throw out (x+2)6, and we are left with (x+2) in the numerator! In a similar
vein, multiply top and bottom by (x + 8), throw out (x + 8)2 from the denominator, leaving
(x + 8) in the numerator.
We have created a monster! No, just kidding. We have created a new simple function g(x),
which completely captures the sign of f ′(x):

g(x) = (x− 1)(x− 4)(x + 2)(x + 8).

To see where g(x) is positive and where it is negative, simply arrange all zeros x = 1, 4,−2,−8
of g(x) on the number line and note that g(x) is a polynomial of degree 4 with positive
leading coefficient (in our case, the leading term is x4). Then, start from the very right top
corner of the graph paper, go down to the first zero of g(x) (x = 4 in our case), and then start
alternating going above and below the x–axis between the zeros:

We conclude that f ′(x) > 0 when x ∈ (−∞,−8) ∪ (−2, 1) ∪ (4,∞), and f ′(x) < 0 when
x ∈ (−8,−2) ∪ (1, 4).

(d) How about the potential local min’s and max’s? These were at x = 1,−7, 4. A common
mistake is to include here x = −8,−2, but ... these are zeros of g(x), and we don’t care
where g(x) = 0! g(x) exists with one and only one purpose: to tell us where f ′(x) is positive or
negative, but not where f ′(x) = 0! So, be very careful here!
OK, at x = 1 f ′ changes sign from + to −, hence f(x) has a local maximum at x = 1; at x = 4
f ′ changes sign from − to +, hence f(x) has a local minimum at x = 4. However, at x = 7
f ′(x) doesn’t change sign: it stays negative, so no local extrema at x = 7 - the function f(x)
simply levels off at x = 7 but continues to decrease there.

(e) Let’s summarize. f(x) has several interesting points: x = 1 (local maximum), x = 4 (local
minimum), x = −8,−2, 2 (vertical asymptotes). Even without having studied yet f ′′(x), nor
having yet found any slant or horizontal asymptotes of f(x), we can draw an approximate graph
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of f(x):

To check that f(x) indeed has the above concavities and find the inflection points, one needs to
look at f ′′(x). Note that one needs to evaluate the actual f(1) and f(4) - I have drawn some
hypothetical points here, since I don’t have the original function f(x).

(12) Summary of Derivative Tests

# Test Uses Tells us about f(x) Remarks

1 Monotone Test f ′(x) > 0 or f ′(x) < 0 f(x) is increasing or decreasing bullet–proof

2 1st Derivative Test f ′(x0) = 0, and

f ′(x) changes sign at x0

potential local min/max at x0, re-

alized local min/max at x0 bullet–proof

3 2nd Derivative Test f ′(x0) = 0, and

f ′′(x0) > 0 or f ′′(x0) < 0

potential local min/max at x0, re-

alized local min/max at x0 fails if f ′(x0) = 0 = f ′′(x0)

4 Concavity Test f ′′(x) > 0 or f ′′(x) < 0 f(x) is concave up or down bullet–proof

5 Inflection Pt Test f ′′(x0) = 0, and

f ′′(x) changes sign at x0

f(x) has inflection point at x0 f ′′(x0) = 0 alone does not

imply inflection pt at x0

(13) How do we solve optimization problems? Optimization problems come in great varieties of
themes, and each problem requires individual consideration. Therefore, there is no uniform way of
solving these problems. Below we describe the general strategy for solving optimization problems.

(a) Let the optimization problem we are considering be named Problem 1.

(b) Translate Problem 1 into a mathematical Problem 2. For this, one has to understand very well
the original Problem 1, and use whatever means necessary for the mathematical translation.
Usually, one ends up with a function f(x), and is being asked to find its global or local extrema.

(c) Solve the mathematical Problem 2 using the techniques learned in Calculus I.

(d) Translate the math answer in Problem 2 into a practical answer in the original Problem 1. �

(14) What is the “Distance Formula” and how do we use it?

(a) The Distance Formula (DF) tells us the distance between two known points, i.e. we know their
coordinates. Thus, if A(x1, y1) and B(x2, y2), the distance between A and B will be

d =
√

(x1 − x2)2 + (y1 − y2)2.

(b) The Distance Formula often comes in handy in Optimization Problems. Say, for example, we
are on a deck of a ship. The front portion of the deck is in the shape of a parabola y = x2.
Suppose a person is drowning in the water at location (18, 0). Where should we stand on the
deck of the ship and throw a life-saving device?

Obviously, we should stand at the place on the deck which is closest to the drowning person.
OK, we don’t know where this place will be, but for sure it must be on the edge of the deck!
Thus, if we stand somewhere on the edge of the deck, we are standing at some point (x, x2) -
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because of the parabolic shape of the deck. The distance between us and the drowning person
is given by:

d(x) =
√

(x− 18)2 + (x2 − 0)2 =
√

(x− 18)2 + x4.

Therefore, all we have to do is find the minimum of this function and where this minimum
occurs!

.

However, an important simplification is to notice that d(x) will be minimal exactly when its
square d2(x) is minimal. This allows us to get rid of the uncomfortable square in this case
and deal with much simpler derivatives. Thus, we set out to find the global minimum of
f(x) = (x− 18)2 + x4.

f ′(x) = 2(x− 18) + 4x3 = 2(2x3 + x− 18).

We are interested where f ′(x) = 0, i.e. 2x3 + x − 18 = 0. Let’s hope that we won’t have to
solve such a complicated equation on the test, but for now: notice that x = 2 is a root if this
equation, so that (x−2) must factor out. Indeed: 2x3 +x−18 = (x−2)(2x2 +4x+9) (check it
out!) The quadratic factor 2x2 +4x+9 has no zeros, as the quadratic formula yields a negative
number under a square root (check this too!). Thus, the only critical point of f(x) is at x = 2.

To determine if f(2) is indeed a local extremum, we could find f ′′(x): f ′′(x) = 6x2 + 1 > 0
always. In particular, f(2) > 0, and indeed f(x) has a local minimum at x = 2. Moreover,
since 2x2 + 4x + 9 is always positive – it is a concave up parabola with no zeros!! – the sign of
f ′(x) = (x− 2)(2x2 + 4x + 9) is captured by x− 2. Hence, f ′(x) > 0 for x > 2, and f ′(x) < 2
for x < 2, which again confirms that f(x) has a local (and global!) minimum at x = 2.
Correspondingly, the distance d(x) is minimum when x = 2. This is what we were after: we
should position ourselves at point (2, 4) on the deck so that we are closest to the drowning
person. The actual distance will be

√
(18− 2)2 + (4− 0)2 =

√
256 + 16 =

√
272 ∼ 16.5m. �

(15) How do we use area formulas in optimization problems?

(a) First, let’s see what area formulas we know. The most basic ones are:

• Area of a square with side x is x2.
• Area of a rectangle with sides x and y is x · y.

• Area of a triangle with base x and height h is
x · h

2
.

• Area of a circle with radius r is πr2.

(b) It could happen that we also need formulas for the perimeter of the above basic figures. (If we
take a walk along the sides/edges of a figure, the total length of the walk is called the perimeter
of the figure.)

• Perimeter of a square with side x is 4x.
10



• Perimeter of a rectangle with sides x and y is 2x + 2y.
• Perimeter of a triangle with sides x, y and z is x + y + z.
• Perimeter of a circle with radius r is 2πr.

(c) See if your optimization problem is asking for a maximum or minimum area. (The word “area”
may not be mentioned, but the problem could still boil down to an “area” of some sort.) Find
the applicable area formula(s), and create a function f(x) describing the given problem.

(d) For example, say we want to make flower and vegetable gardens up in the Berkeley Hills, and
put up a fence around them to prevent deer from eating by mistake all our carnations and
juicy Bulgarian tomatoes. We want a circular flower garden, and a square vegetable garden.
Unfortunately, we aren’t rich, yet the fence costs about $50 per yard! After long soul (and
pocket) searching we decide that we can afford at most $1000 for the fence. What sizes should
we choose for the flower and vegetable gardens so that the total garden area is as large as
possible?

• The whole story about the price of the fence simply means that we’ll have at most a 20
yard fence total for both gardens. If we want to encompass the largest amount of ground,
then we must use the longest possible fence - this much is obvious without any higher
mathematics.

• The problem is talking about shapes and areas of gardens, hence let’s see what area
formulas will be relevant: the area of a square x2 and the area of a circle πr2. However,
the problem is also talking about fences, hence the useful perimeter formulas will be 4x

for a square and 2πr for a circle.
• Let’s assign letters to the hypothetical sizes of the two gardens: say, the square garden

will have size x yards and the circular garden will have radius r yards. The total area of
the two gardens will be: x2 + πr2. We want to maximize this quantity.

• The fence is, as we decided above, 20 yards total. The total perimeter of the two gardens
will be 4x + 2πr. Hence we want 20 = 4x + 2πr. This means that the size x and the
radius r are not completely independent of each other! For example, we can solve for x:

x =
20− 2πr

4
= 5− πr

2
.

• So, let’s substitute x is the formula for the total area above: (5− πr
2 )2 +πr2. Simplifying:

f(r) =
(

π2

4
+ π

)
r2 − 5πr + 25.

Note that this is a function in one variable only, namely r! And not a complicated function
at all - just a quadratic polynomial. We want to maximize it.

• f ′(r) =
π2 + 4π

2
r − 5π. Thus, f ′(r) = 0 if r = 10

π+4 (Why? Do it yourself.) To make

sure that this is indeed a local extremum, we check f ′′(r) = π2+4π
2 , which is always

positive. Hence this is a local (and global in this case) minimum. But we wanted the
global maximum! Our parabola decreases until it hits the above local minimum, and
then increases. Hence its global maximum will be attained at the ends of the interval.
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• What interval are we talking about? A parabola is defined everywhere! However, the real
situation poses some restrictions. For example, we can’t have negative x or r - they must
both be ≥ 0. Since x = 5 − πr

2 ≥ 0, we discover that r ≤ 10/π, thus the interval of r is
[0, 10/π].

• Thus, f(x) will attain its maximum at one of the ends of [0, 10/π]: f(0) = 25, and
f(10/π) = 100/π ∼ 31.8. The second case obviously wins, but what does it mean? To
have maximal total area we must have r = 10/π and x = 5 − πr

2 = 5 − π10
2π = 0. In real

life, our answer means that if we really want to maximize the used area, we will have no
square garden, and the whole land (and fence) should go into a circular flower garden of
radius 10/π ∼ 3.18 yards.

• A further discussion is due here. We see that if we want to have some vegetable garden
too, we have to change somehow our requirements in the original problem! We simply
cannot have BOTH 20 yards of fence AND maximal total area, and still expect that we
will have a square vegetable garden! Under these conditions, the circular garden will win
no matter what, and it will use up all the ground! �

• Suppose instead that we had already bought the 20 yard fence, and wanted to use all of
it (well, we won’t throw it away!), but we had a shortage of space, so we wanted to use as
little space for both gardens as possible. The set-up of the function f(r) will be exactly
the same as above, except that we will be looking for its minimum.
We already found where this happens: at r = 10

π+4 ∼ 1.4, and correspondingly, x =
5 − πr

2 = 20
π+4 ∼ 2.8. These will be two jolly small gardens: a circular garden of radius

about 1.4 yards, and a square garden of size about 2.8 yards... But we get what we asked
for: the total fence used will be exactly 20 yards, and the total area used will be as small
as possible. �

4. Useful Formulas and Miscellaneous Facts

(1) Pythagorus Theorem for a right triangle.
(2) Quadratic formula.
(3) Fraction manipulations, exponential and logarithmic manipulations and formulas.
(4) LLs, DLs.

5. Cheat Sheet and Studying for the Exam

For the exam, you are allowed to have a “cheat sheet” - one page of a regular 8× 11 sheet. You can write
whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and
for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.)

• Any violation of these rules will disqualify your cheat sheet and may end in your own disqualification
from the midterm. I may decide to randomly check your cheat sheets, so let’s play it fair and square.
:)

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.

• Do NOT overstudy on the day of the exam!! More than 3 hours of math study on the
day of the Final is counterproductive! No kidding!
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