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1. Definitions

Understand the following concepts, give examples for each and use them in problems. What is/are:

(1) an increasing function; a decreasing function?
(2) a global/absolute minimum and a global/absolute maximum of a function?
(3) a local/relative minimum and a local/relative maximum of a function?
(4) a global extremum and a local extremum of a function? Is a local extremum necessarily a global

extremum? examples? Is a global extremum necessarily a local extremum? examples? Can an
endpoint be a local extremum? a global extremum?

(5) a potential and a realized local extremum?
(6) a concave up (concave down) function?
(7) an inflection point? How do we locate all of them?
(8) a table for f , f ′ and f ′′ and how do we use it to graph f(x)? What other calculations, besides those

in the table, do we need to do before graphing f(x)? (e.g. think of calculating x– and y–intercepts,
extremal and inflection y-values of f(x).)

(9) an optimization problem? What is the strategy for solving optimization problems? What is an
objective equation and a contraint equation?

(10) the area and perimeter of a figure? Basic examples of figures.
(11) the inventory cost? ordering cost? carrying cost? production run cost? the average inventory level?

How do we calculate all these?
(12) the marginal cost? the connection between minimal cost and marginal cost? How do we calculate

marginal cost?
(13) the revenue in a non-monopoly and in a monopoly situation? How do we calculate the revenue?

What is the marginal revenue and how do we calculate it? What is the connection between maximal
revenue and marginal revenue?

(14) the demand curve? Is it used to compute the cost or the revenue?
(15) the profit and how do we find it? the marginal profit and how does it relate to marginal cost and

marginal revenue? What is the notation for “rate of change of profit with respect to time”?
(16) a composition of two functions? What are the “inside” and the “outside” functions? How do we use

them to compute the derivative of a composite function?
(17) implicit differentiation? In what problems do we use it?
(18) related rates? What information do we need to compute y′(t) in problems involving related rates?
(19) exponential function? Why is ex a very special exponential function? What is the number e? the

properties of e? of ex? of bx?
(20) a differential equation? What do we solve for in a differential equation?



2. Theorems

Be able to write what each of the following theorems says. Be sure to understand and distinguish between
the conditions (hypothesis) of each theorem and its conclusion. Be prepared to give examples for each
theorem, and most importantly, to apply each theorem appropriately in problems.

(1) Theorem I.(Differentiable ⇒ Continuous.) If f(x) is differentiable at a, then f(x) is continuous
at a. If f(x) is differentiable everywhere on its domain, then it is also continuous everywhere on its
domain.

(2) Contrapositive Theorem II. (Non-differentiable ⇒ Non-continuous.) If f(x) is not contin-
uous at a, then f(x) is not differentiable at a.

(3) Converse Statement is False! Continuity does not guarantee differentiability. Counterexample?

(4) Differentiation Laws (DLs).

(a) Constant Functions: (c)′ = 0 for any constant c.

(b) Power Rule: (xc)′ = c xc−1 for any constant c.

(c) Natural Exponential Function: (ex)′ = ex.

(d) Multiplication by a Constant: If f(x) is a differentiable function, then (c f(x))′ = c f ′(x).

(e) Sum and Difference Rules: If f(x) and g(x) are differentiable, then their sum and difference are
also differentiable: (f(x) + g(x))′ = f ′(x) + g′(x), and (f(x)− g(x))′ = f ′(x)− g′(x).

(f) Product Rule: If f(x) and g(x) are differentiable, then their product is also differentiable, and(
f(x) · g(x)

)′ = f ′(x)g(x) + f(x)g′(x).

(g) Quotient Rule: If f(x) and g(x) are differentiable, and g(x) 6= 0 for all x nearby a (or on a
given interval (A,B)), then their quotient is also differentiable whose derivative is given by:(

f(x)
g(x)

)′
=

f ′(x)g(x)− f(x)g′(x)
g2(x)

.

(h) Chain Rule: If F (x) = f(g(x)) for some differentiable functions f(x) and g(x), then F (x) is
also differentiable and its derivative is given by: F ′(x) = f ′(g(x)) · g′(x).

(i) Power and Chain Rules combined: (fn(x))′ = n fn−1(x) f ′(x); (fc(x))′ = c (fc−1(x)) f ′(x).

(j) Exponential and Chain Rules combined: (ef(x))′ = ef(x) · ·f ′(x).

(5) Theorem for Local Extrema. If f(x0) is a local min/max and f ′(x0) exists, then f ′(x0) = 0.

(6) Contrapositive Statement. If f ′(x0) 6= 0, then f(x) cannot have a local extremum at x0.

(7) Converse Statement is False. If f ′(x0) = 0, this does not guarantee that f(x) has a local
extremum at x0. Why? Counterexample?

(8) First Derivative Test. Does it always work? Examples.

(9) Second Derivative Test. Does it always work? Examples.

(10) Concavity Test. Does it always work? Examples.

(11) Inflection Point Test. Does it always work? Examples.

(12) Average Inventory Level. If x is the size of each order throughout the year in a store, then the
average inventory level (average number of items in store at any time) is x/2 and hence the carrying
cost is a · x/2, where a is the carrying cost per item per year.

(13) Defining e via a Limit. lim
h→0

eh − 1
h

= 0.

(14) Solutions to a DE. All functions f(x) that satisfy the differential equation f ′(x) = kf(x) are of
the form f(x) = Cekx for some constant C.
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3. Problem Solving Techniques

(1) How do we sketch graphs of functions f(x)?

(a) Find where f(x) is defined, where it is continuous and where it is differentiable.
(b) Find where f(x) is increasing and where it is decreasing, using f ′(x) and the relevant test(s).

(Start your “f, f ′, f ′′”–table.)

(c) Find the local and global extrema (if any) of f(x), using f ′(x), f ′′(x) and the relevant test(s).

(d) Find where the function is concave-up and concave-down, and all inflection points, using f ′′(x)
and the relevant test(s).

(e) Find the vertical asymptotes (if any). They will appear where f(x) has an infinite (at least)
one-sided limit, i.e. if lim

x→a+
f(x) = ±∞ or lim

x→a−
f(x) = ±∞; then the vertical line x = a is

such an asymptote. If f(x) is a fraction, such solutions will be produced by the roots of the
denominator.

(f) If possible, find the roots of the function, i.e. its x-intercepts: try to solve f(x) = 0 if possible.
If f(x) is a fraction, such solutions will be produced in the numerator. (The denominator will
be irrelevant in this step.) It is also good to find the y-intercept, by setting x = 0 in f(x).

(g) On the x-axis, mark all interesting points which you found above, mark the intervals where
f(x) is increasing or decreasing (or constant, for that matter). Mark the x-intercepts and the
y-intercept (if any). Mark any local and global extrema you found. Mark any inflection points
you found.

(h) Draw the vertical and horizontal asymptotes (if any). Make a mental picture of what is hap-
pening nearby each of these asymptotes. Be careful nearby the vertical asymptotes to reflect
whether a given one-sided limit is +∞ or −∞.

(i) At this moment, if you are not sure how the graph looks in some intervals, plot a few other
points there.

(j) All that is left is to connect the points you plotted respecting the properties you found above:
domain of definition, increase/decrease, extrema, concavity and inflection points, dis-continuity
and non-differentiability, asymptotes. �

(2) Summary of Derivative Tests

# Test Uses Tells us about f(x) Remarks

1 Monotone Test f ′(x) > 0 or f ′(x) < 0 f(x) is increasing or decreasing bullet–proof

2 1st Derivative Test f ′(x0) = 0, and

f ′(x) changes sign at x0

potential local min/max at x0,

realized local min/max at x0 bullet–proof

3 2nd Derivative Test f ′(x0) = 0, and

f ′′(x0) > 0 or f ′′(x0) < 0

potential local min/max at x0,

realized local min/max at x0 fails if f ′(x0) = 0 = f ′′(x0)

4 Concavity Test f ′′(x) > 0 or f ′′(x) < 0 f(x) is concave up or down bullet–proof

5 Inflection Pt Test f ′′(x0) = 0, and

f ′′(x) changes sign at x0

f(x) has inflection point at x0 f ′′(x0) = 0 alone does not

imply inflection pt at x0

(3) How do we solve optimization problems? Optimization problems come in great varieties of
themes, and each problem requires individual consideration. Therefore, there is no uniform way of
solving these problems. Below we describe the general strategy for solving optimization problems.

(a) Let the optimization problem we are considering be named Problem 1.

(b) Translate Problem 1 into a mathematical Problem 2. For this, one has to understand very well
the original Problem 1, and use whatever means necessary for the mathematical translation.
Usually, one ends up with a function f(x), and is being asked to find its global or local extrema.

(c) Solve the mathematical Problem 2 using the techniques learned in Calculus I.
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(d) Translate the math answer in Problem 2 into a practical answer in the original Problem 1. �

(4) What is the “Distance Formula” and how do we use it?

(a) The Distance Formula (DF) tells us the distance between two known points, i.e. we know their
coordinates. Thus, if A(x1, y1) and B(x2, y2), the distance between A and B will be

d =
√

(x1 − x2)2 + (y1 − y2)2.

(b) The Distance Formula often comes in handy in Optimization Problems. Say, for example, we
are on a deck of a ship. The front portion of the deck is in the shape of a parabola y = x2.
Suppose a person is drowning in the water at location (18, 0). Where should we stand on the
deck of the ship and throw a life-saving device?

Obviously, we should stand at the place on the deck which is closest to the drowning person.
OK, we don’t know where this place will be, but for sure it must be on the edge of the deck!
Thus, if we stand somewhere on the edge of the deck, we are standing at some point (x, x2) -
because of the parabolic shape of the deck. The distance between us and the drowning person
is given by:

d(x) =
√

(x− 18)2 + (x2 − 0)2 =
√

(x− 18)2 + x4.

Therefore, all we have to do is find the minimum of this function and where this minimum
occurs!

.

However, an important simplification is to notice that d(x) will be minimal exactly when its
square d2(x) is minimal. This allows us to get rid of the uncomfortable square in this case
and deal with much simpler derivatives. Thus, we set out to find the global minimum of
f(x) = (x− 18)2 + x4.

f ′(x) = 2(x− 18) + 4x3 = 2(2x3 + x− 18).

We are interested where f ′(x) = 0, i.e. 2x3 + x − 18 = 0. Let’s hope that we won’t have to
solve such a complicated equation on the test, but for now: notice that x = 2 is a root if this
equation, so that (x−2) must factor out. Indeed: 2x3 +x−18 = (x−2)(2x2 +4x+9) (check it
out!) The quadratic factor 2x2 +4x+9 has no zeros, as the quadratic formula yields a negative
number under a square root (check this too!). Thus, the only critical point of f(x) is at x = 2.

To determine if f(2) is indeed a local extremum, we could find f ′′(x): f ′′(x) = 6x2 + 1 > 0
always. In particular, f(2) > 0, and indeed f(x) has a local minimum at x = 2. Moreover,
since 2x2 + 4x + 9 is always positive – it is a concave up parabola with no zeros!! – the sign of
f ′(x) = (x− 2)(2x2 + 4x + 9) is captured by x− 2. Hence, f ′(x) > 0 for x > 2, and f ′(x) < 2
for x < 2, which again confirms that f(x) has a local (and global!) minimum at x = 2.
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Correspondingly, the distance d(x) is minimum when x = 2. This is what we were after: we
should position ourselves at point (2, 4) on the deck so that we are closest to the drowning
person. The actual distance will be

√
(18− 2)2 + (4− 0)2 =

√
256 + 16 =

√
272 ∼ 16.5m. �

(5) How do we use area formulas in optimization problems?

(a) First, let’s see what area formulas we know. The most basic ones are:

• Area of a square with side x is x2.
• Area of a rectangle with sides x and y is x · y.

• Area of a triangle with base x and height h is
x · h

2
.

• Area of a circle with radius r is πr2.

(b) It could happen that we also need formulas for the perimeter of the above basic figures. (If we
take a walk along the sides/edges of a figure, the total length of the walk is called the perimeter
of the figure.)

• Perimeter of a square with side x is 4x.
• Perimeter of a rectangle with sides x and y is 2x + 2y.
• Perimeter of a triangle with sides x, y and z is x + y + z.
• Perimeter of a circle with radius r is 2πr.

(c) See if your optimization problem is asking for a maximum or minimum area. (The word “area”
may not be mentioned, but the problem could still boil down to an “area” of some sort.) Find
the applicable area formula(s), and create a function f(x) describing the given problem.

(d) For example, say we want to make flower and vegetable gardens up in the Berkeley Hills, and
put up a fence around them to prevent deer from eating by mistake all our carnations and
juicy Bulgarian tomatoes. We want a circular flower garden, and a square vegetable garden.
Unfortunately, we aren’t rich, yet the fence costs about $50 per yard! After long soul (and
pocket) searching we decide that we can afford at most $1000 for the fence. What sizes should
we choose for the flower and vegetable gardens so that the total garden area is as large as
possible?

• The whole story about the price of the fence simply means that we’ll have at most a 20
yard fence total for both gardens. If we want to encompass the largest amount of ground,
then we must use the longest possible fence - this much is obvious without any higher
mathematics.

• The problem is talking about shapes and areas of gardens, hence let’s see what area
formulas will be relevant: the area of a square x2 and the area of a circle πr2. However,
the problem is also talking about fences, hence the useful perimeter formulas will be 4x

for a square and 2πr for a circle.
• Let’s assign letters to the hypothetical sizes of the two gardens: say, the square garden

will have size x yards and the circular garden will have radius r yards. The total area of
the two gardens will be: x2 + πr2. We want to maximize this quantity.

• The fence is, as we decided above, 20 yards total. The total perimeter of the two gardens
will be 4x + 2πr. Hence we want 20 = 4x + 2πr. This means that the size x and the
radius r are not completely independent of each other! For example, we can solve for x:

x =
20− 2πr

4
= 5− πr

2
.
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• So, let’s substitute x is the formula for the total area above: (5− πr
2 )2 +πr2. Simplifying:

f(r) =
(

π2

4
+ π

)
r2 − 5πr + 25.

Note that this is a function in one variable only, namely r! And not a complicated function
at all - just a quadratic polynomial. We want to maximize it.

• f ′(r) =
π2 + 4π

2
r − 5π. Thus, f ′(r) = 0 if r = 10

π+4 (Why? Do it yourself.) To make

sure that this is indeed a local extremum, we check f ′′(r) = π2+4π
2 , which is always

positive. Hence this is a local (and global in this case) minimum. But we wanted the
global maximum! Our parabola decreases until it hits the above local minimum, and
then increases. Hence its global maximum will be attained at the ends of the interval.

• What interval are we talking about? A parabola is defined everywhere! However, the real
situation poses some restrictions. For example, we can’t have negative x or r - they must
both be ≥ 0. Since x = 5 − πr

2 ≥ 0, we discover that r ≤ 10/π, thus the interval of r is
[0, 10/π].

• Thus, f(x) will attain its maximum at one of the ends of [0, 10/π]: f(0) = 25, and
f(10/π) = 100/π ∼ 31.8. The second case obviously wins, but what does it mean? To
have maximal total area we must have r = 10/π and x = 5 − πr

2 = 5 − π10
2π = 0. In real

life, our answer means that if we really want to maximize the used area, we will have no
square garden, and the whole land (and fence) should go into a circular flower garden of
radius 10/π ∼ 3.18 yards.

• A further discussion is due here. We see that if we want to have some vegetable garden
too, we have to change somehow our requirements in the original problem! We simply
cannot have BOTH 20 yards of fence AND maximal total area, and still expect that we
will have a square vegetable garden! Under these conditions, the circular garden will win
no matter what, and it will use up all the ground! �

• Suppose instead that we had already bought the 20 yard fence, and wanted to use all of
it (well, we won’t throw it away!), but we had a shortage of space, so we wanted to use as
little space for both gardens as possible. The set-up of the function f(r) will be exactly
the same as above, except that we will be looking for its minimum.
We already found where this happens: at r = 10

π+4 ∼ 1.4, and correspondingly, x =
5 − πr

2 = 20
π+4 ∼ 2.8. These will be two jolly small gardens: a circular garden of radius

about 1.4 yards, and a square garden of size about 2.8 yards... But we get what we asked
for: the total fence used will be exactly 20 yards, and the total area used will be as small
as possible. �

(6) How do we sketch graphs of the derivative function f ′(x) given the graph of f(x)?

(a) Find where the given function f(x) is not differentiable; at these x’s f ′(x) will not exist. There
are many different reasons for f ′(x) not to exist. Here follow some such reasons:

• f(x) is not defined at x = a. Then we can’t even talk about the derivative at x = a.

• f(x) is defined at x = a but is not continuous there. Then the contrapositive theorem
implies that f(x) is not differentiable at x = a. No matter what type of discontinuity
f(x) has at x = a, f ′(a) will not exist. An infinite discontinuity of f(x) (i.e. f(x) has a
vertical asymptote x = a) usually translates into a vertical asymptote for f ′(x) at x = a.
A jump or removable discontinuity of f(x) usually translates into a jump or removable
discontinuity for f ′(x). Each case is treated separately to see what happens with f ′(x).

• f(x) is defined and continuous at x = a, but is not “smooth” there, i.e. has a cusp(corner).
Usually here either the two one-sided tangents exist at x = a but have different slopes,
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or there is a vertical tangent at x = a. In the former case, this will translate into a jump
discontinuity of f ′(x); in the latter case, this translates into a vertical asymptote of f ′(x).

• f(x) looks “smooth” at x = a, but has a vertical tangent there. Again, this will translate
into a vertical asymptote of f ′(x).

(b) After marking all x’s where f ′(x) does not exist (including possible vertical asymptotes, etc.),
we move on to graphing f ′(x) where it exists. First find all places where the tangents to
f(x) are horizontal and mark the corresponding 0’s on the graph of f ′. Next determine the
intervals where f(x) increases i.e. has positive tangent slopes, and where f(x) decreases, i.e.
has negative tangent slopes. In the former case, f ′(x) will be positive, and in latter case, f ′(x)
will be negative. In each such interval, answer the following two questions: whether the tangent
slopes are positive or negative, and whether the tangent slopes themselves are increasing or
decreasing. Translate this into the corresponding property of f ′(x).

(c) For more precise drawing, in each of the above intervals mark several tangent lines, guestimate
their slopes and mark the corresponding points on the graph of f ′(x). Connect all these marked
points to obtain the graph of f ′(x). Don’t forget the places where f ′(x) was not defined!

(7) How do we find derivatives using DLs? If you are given f(x) via one formula and you are not
asked to use the definition of derivative, you apply DLs.

(a) First see if you can further simplify the given formula. In particular, try to avoid applying the
Quotient Rule whenever possible because it is prone to errors. In practice this mean: try to get
rid of denominators by either splitting fractions and then simplifying each fraction separately
(see formulas for fraction manipulations below), or by direct cancellation of common stuff in
the numerator and denominator, or by moving the denominator into the numerator: e.g. x3 in
the denominator becomes x−3 in the numerator.

(b) If you are going to apply the Power Rule, turn all expressions like n
√

x
m into the standard form

x
m
n . Again, such expressions in the denominator should move into the numerator wherever

suitable by flipping the sign of the power: n
√

x
m in the denominator becomes x−

m
n in the

numerator.

(c) Look at your function f(x) to figure out its components, the simpler pieces it is made of, and
decide which DL(s) you are going to use. In some cases, you may have to apply several DLs one
after the other, so keep good track of your intermediate results, or else your calculations will
be untraceable. A good strategy is to name some of the simpler components of f(x), e.g. g(x),
h(x), etc. and perform some of the necessary differentiation on these functions on the side and
then put back your results together. To reduce errors and to make clear that you do know the
DLs, it is always good to write the DL formula in terms of functions at first, e.g.

((5x + 2) · x3)′ PR= (5x + 2)′ · x3 + (5x + 2) · (x3)′ = ...

(d) In case your function is given by several formulas on different intervals, you must find the
derivative of each such formula on the corresponding interval. In the end, you must compare
your results for the left-side and right-side derivative at the “break” points to determine if you
function is differentiable there. E.g. if f(x) is defined by two different formulas on (2, 5]∪ (5, 8),
then at the end you must compare f ′−(5) ?= f ′+(5). If yes, then f ′(5) also exists; if not, then
f ′(5) doesn’t exist. You final answer for f ′(x) is again going to be given by several different
formulas on the corresponding intervals.

(8) How do we use implicit differentiation? This is used to find tangent lines and their slopes
to curves in the plane which are not graphs of functions (i.e. they violate the vertical line test).
Thus, we don’t have a function formula to differentiate, but instead an equation for the curve, e.g.
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x3 +x2y +4y2 = 6. It will be hard, sometimes impossible, to solve such an equation for y, and hence
a formula for y may not be available. 1

(a) We imagine that y is given by such a formula y = y(x) (e.g. x3 + x2y(x) + 4y(x)2 = 6), and we
differentiate (with respect to x) both sides of the given equation, e.g.

(x3 + x2y(x) + 4y2(x))′ = (6)′ ⇒ 3x2 + 2xy + x2y′ + 8y · y′ = 0

Do not forget to include y′ wherever appropriate, due to the Chain Rule.
(b) Solve the above for y′:

3x2 + 2xy + y′(x2 + 8y) = 0 ⇒ y′ = −3x2 + 2xy

x2 + 8y
.

This is the best we can do for y′: we have expressed it in terms of x and the original function y.
(c) If we are asked something about derivatives, slopes and tangents at specific places, then we use

the above formula for y′ and if necessary, the original equation for y. E.g. in our example, find
the slope and the equation for the tangent at point (1, 1). 2 Now we use the formula for y′(x)
and substitute x = 1, y = 1:

y′(1) = −3 + 2
1 + 8

= −5
9
.

Finally, we use the point-slope formula:

y′(1) =
y − y(1)
x− 1

⇒ −5
9

=
y − 1
x− 1

⇒ y = −5
9
x +

14
9

.

It is always good to check if this is the correct equation for the tangent line: yes, because the
slope is −5/9, and if we plug in the point (1, 1) it works: 1 = 1.

(d) Say, we want to find all points on the curve where the tangent to the curve is horizontal. In
general, this is not an easy question to answer. Set y′(x) = 0, and obtain two equations in
terms of x and y: the derivative equation and the original equation. Now you are supposed to
solve this system of two equations for x and y. In our example, this amounts to:∣∣∣∣∣ 0 = − 3x2+2xy

x2+8y

x3 + x2y + 4y2 = 6

The first equation yields 0 = 3x2 + 2xy = x(3x + 2y), i.e. x = 0 or y = − 3
2x. Substituting

in the second equation: 4y2 = 6 (when x = 0), or x3 − 3
2x3 + 4 9

4x2 = 6 (when y = − 3
2x), i.e.

y = ±
√

3
2 , while the second equation is a pain and I won’t solve it here. The final answer would

have been: the tangent lines to the curve are horizontal at points (0,
√

3
2 ), (0,−

√
3
2 ), and at

the points yielded by the second case above.

The good news is that if a similar question appears on the exam, the calculations will be easier. The
method, however, is outlined above. Note that similarly you can solve all sorts of questions about
the tangents to such curves: e.g. find where the tangents are parallel to y = x (set y′(x) = 1), etc.

(9) How do we find where f(x) is increasing or decreasing?

(a) Use the Increasing/Decreasing Test. If f ′(x) > 0 everywhere on some interval, then f(x)
increases on this interval. If f ′(x) < 0 everywhere on some interval, then f(x) decreases on this
interval. If f ′(x) = 0 everywhere on some interval, then f(x) is constant on this interval. Thus,
find for which x’s f ′(x) > 0, for which f ′(x) < 0.

1In the particular example, you can indeed solve for y viewing the given equation as a quadratic equation in “y”, but believe

me, you probably don’t want to do that, and you should follow the method of implicit differentiation instead.
2Note that this point was obtained by substituting x = 1 into the original equation: 1+ y +4y2 = 6 and obtaining solutions

y = 1,−5/4. Thus, you could have been asked to find instead the tangent line at point (1,−5/4).
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(b) Be careful when f ′(x0) = 0: just the fact that f ′(x0) = 0 does not mean that the function is
constant nearby x! (E.g. x3 nearby x = 0.) Thus, check the sign of the derivative at nearby
points and this will tell you what is going on exactly at f ′(x0). For example, if f ′(x) > 0 both
on the left and right of x0, then the function is increasing at x0 too. But if f ′(x) changes sign at
x0, then f(x0) is a local extremum so that f(x) is neither increasing nor decreasing at x0. �

(10) How do we find the global extrema of f(x)?

(a) First, find where f ′(x0) = 0 and record all such f(x0).

(b) Next, record all f(x0) where derivative does not exist, and also check and record what happens
at the ends of the intervals (if there are any ends, that is.)

(c) Compare all values f(x0) at the critical points recorded above and find which are your global
min/max. Be careful if the function is defined on an infinite interval or has vertical asymptotes.
This gives opportunity for f(x) to have arbitrarily large (small) values: some limit(s) of f(x)
could be ±∞, so in such cases, global min/max may not exist. �

(11) How do we find the local extrema of f(x)? For simplicity of exposition, let’s assume that f(x)
is a nice function, so we don’t have to worry for now about discontinuities or non-existing derivatives.

(a) First find the potential local extrema of f(x), i.e. check where f ′(x0) = 0 and record all such
places x0.

(b) Next, use the Second Derivative Test (if f ′′(x0) exists, of course) to determine which of these
potential extrema are realized local extrema. In particular, if f ′′(x0) > 0 then f(x0) is a local
minimum; if f ′′(x0) < 0 then f(x0) is a local maximum.

(c) If f ′′(x0) = 0 or the second derivative f ′′(x0) does not exists (the latter could happen even if
f(x) is a nice function!), then the Second Derivative Test fails to give us anything useful, so we
try the First Derivative Test. If f ′(x) changes its sign at x0 from + to −, then f(x0) is a local
maximum; if f ′(x) changes its sign at x0 from − to +, then f(x0) is a local minimum. If f ′(x)
does not change its sign at x0, then f(x0) is not a local extremum. �

(d) The First Derivative Test is bulletproof!!!

(12) How do we find where the function is concave up or down?

(a) Use the Concavity Test. If f ′′(x) > 0 everywhere on some interval, then f(x) is concave-up
on this interval. If f ′′(x) < 0 everywhere on some interval, then f(x) is concave-down on this
interval.

(b) If f ′′(x0) = 0, then there could be an inflection point at x0, so we check if f ′′(x) changes sign
at x0. If yes, then at x0 the function does indeed have an inflection point: the function changes
from concave-up to concave-down or the other way around. But if f ′′(x) does not change sign
at x0, then the function does not have an inflection point at x0; and f(x) continues to be
concave-up (or concave-down) as it were before.

(c) As an example, compare the two functions x3 and x4 nearby x0 = 0 and determine if they have
inflection points at 0. Further, determine the intervals where these functions are concave-up or
concave-down. �

4. Useful Formulas and Miscallaneous Facts

(1) Quadratic formula: useful for factoring quadratic polynomials as a(x−x1)(x−x2), where x1 and
x2 are the two roots of the polynomial, and a is the leading coefficient. Useful also for graphing
quadratic polynomials: will yield the x-intercepts (or tell you that they don’t exist.)

(2) Rationalizing formula:
√

A−
√

B =
(
√

A−
√

B)(
√

A +
√

B)√
A +

√
B

=
(A−B)√
A +

√
B

.
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(3) Factorization formulas: A2 −B2 = (A−B)(A + B) and A3 −B3 = (A−B)(A2 + AB + B2).

(4) Binomial formulas: (A + B)2 = A2 + 2AB + B2, (A + B)3 = A3 + 3A2B + 3AB2 + B3.

(5) Putting fractions under a common denominator. The most general formula is as follows:
A

B
+

C

D
=

AD + BC

BD
. Yet, it is worth noting that if fractions already share something in their

denominators, it will be faster to take this into account, e.g.

2x + 1
x2

+
x3

x(x− 1)
=

(2x + 1)(x− 1) + x · x3

x2(x− 1)
=

x4 + 2x2 − x− 1
x2(x− 1)

.

(6) Exponential Functions: domains of definition, ranges, graphs; for which bases do these function
increase/decrease.

(7) Manipulations with Fractions

(a) Splitting fractions:
a + b

c
=

a

c
+

b

c
;

ab

cd
=

a

c
· b

d
;

(b) Wrong formula:
a

b + c
6= a

b
+

a

c
·

(c) Putting fractions under a common denominator:
a

b
+

c

d
=

ad + bc

bd
.

(d) When denominators have something in common:
a

be
+

c

de
=

ad + bc

bde
.

(e) “Fractions over fractions”:
a

c
:

b

d
=

a
b
c
d

=
ad

bc
;

a
c
d

=
ad

c
;

a
b

c
=

a

bc
.

(8) Manipulations with Exponentials

ab+c = ab · ac,
ab

ac
= ab−c, (ab)c = abc, a

b
c = c

√
ab, 1

c√
ab

= 1

a
b
c

= a−
b
c , a0 = 1.

5. Exercises to Review

A good review of all homework exercises and examples from class should be an excellent preparation for
the exam. It is important that you understand especially well the applications to business and economics, i.e.
problems about cost, revenue, profit in different situations: airline companies, bridge tolls, stores, building
fences, etc. etc.

6. Cheat Sheet

For the midterm, you are allowed to have a “cheat sheet” - one page of a regular 8 × 11 sheet. You can
write whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and
for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.)

• Any violation of these rules will disqualify your cheat sheet and may end in disqualifying your
midterm. I may decide to randomly check your cheat sheets, so let’s play it fair and square. :)

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.
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