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1 Introduction

The goal of this note is to present a proof of the following theorem:

Theorem 1 If µ is an ultrafilter on a set I and f : I 7→ I has the property that

X ∈ µ iff f−1[X ] ∈ µ, then f is the identity function on a set in µ.

I’m not sure whether or not the result is due to me. I proved this many
years ago and I can’t recall whether or not I was just reconstructing a proof of
someone elses result.

1.1

Lemma 2 Let A ⊆ I such that µ(A) = 1. Then

µ(A ∩ f [A]) = 1

Proof: Note that if µ(f [A]) = 0, our assumptions on f would imply µ(A) = 0.
Hence µ(f [A]) = 1. The lemma is now clear.

1.2

We say that x ∈ I is periodic if for some positive integer n, fn(x) = x. The
least such n is called the period of x.

Let A = {x ∈ I | x is periodic with a period > 1}. We shall show that
µ(A) = 0. Towards a contradiction, assume that µ(A) = 1.

Define an equivalence relation ∼ on A by putting x ∼ y if for some integer
i ∈ ω, f i(x) = y.

Let D ⊆ A contain precisely one element from each equivalence class of A.
Define a function, α : A 7→ ω as follows: Let x ∈ A. Let y be the unique

element of D such that x ∼ y. Then α(x) is the least n ∈ ω such that fn(y) = x.
Let B0 (resp. B1) be the set of x in A such that α(x) is even (resp. odd).

Since µ(A) = 1, one of B0, B1 must have measure 1.
Let B2 = {x ∈ A | α(x) = 0}. Then one easily computes:

B0 ∩ f [B0] ⊆ B2
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B1 ∩ f [B1] ⊆ ∅

Using Lemma 2, we see that µ(B2) = 1. But B2∩f [B2] = ∅. Again, applying
Lemma 2, we get our desired contradiction. We have shown that µ(A) = 0.

1.3

The remaining cases of our proof are quite easy. First, let C be the set of those
x such that x is not periodic, but for some positive n, fn(x) is periodic. We
shall show that µ(C) = 0.

We reinitialize our notation and let α be a function mapping C to ω defined
as follows: let x in C. Then α(x) is the least n ∈ ω such that fn(x) is periodic.

Define a partition of C into two subsets, C0, C1 by letting C0 (resp. C1) be
the set of x in C such that α(x) is even (resp. odd). Then clearly if j is either
0 or 1, we have:

Cj ∩ f [Cj ] = ∅

Hence, by Lemma 2, we have µ(C0) = µ(C1) = 0. It follows that µ(C) = 0.

1.4

Now let E be the set of those x in I such that for no i ∈ ω do we have f i(x)
periodic. We shall show that µ(E) = 0.

Reinitializing our notation, we define an equivalence relation ∼ on E by
x ∼ y if there exist i and j in ω such that f i(x) = f j(y).

Lemma 3 Let x and y in E such that f i(x) = f j(y) and f i′(x) = f j′(y). Then

i− j = i′ − j′

The proof will be left as an exercise for the reader. The definition of E plays
a crucial role in the proof.

Now let D′ ⊆ E be a subset of E that meets each equivalence class of ∼ in
precisely one element.

Let Z be the ring of integers. Define a map α : E 7→ Z as follows. Let x ∈ E.
Let y be the unique element of D′ such that x ∼ y. Choose i and j in ω such
that f i(y) = f j(x). Set α(x) = i − j. By Lemma 3, this is well defined.

It should be clear that if x ∈ E, then f(x) ∈ E. Moreover, α(f(x)) =
α(x) + 1.

Let E0 (resp. E1) consist of those x ∈ E such that α(x) is even (resp. odd).
Then clearly E0∩E1 = ∅. Also f [E0] ⊆ E1 and f [E1] ⊆ E0. Hence by Lemma 2,
µ(E0) = µ(E1) = 0. It follows that µ(E) = 0.

1.5

We have now shown that A, C, and E have measure 0. But the points which
lie in none of these sets are precisely those x such that f(x) = x. The theorem
is proved.
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