Maps preserving measures

R. M. Solovay

April 13, 2011

1 Introduction

The goal of this note is to present a proof of the following theorem:
Theorem 1 If μ is an ultrafilter on a set I and $f: I \mapsto I$ has the property that $X \in \mu$ iff $f^{-1}[X] \in \mu$, then f is the identity function on a set in μ.

I'm not sure whether or not the result is due to me. I proved this many years ago and I can't recall whether or not I was just reconstructing a proof of someone elses result.

1.1

Lemma 2 Let $A \subseteq I$ such that $\mu(A)=1$. Then

$$
\mu(A \cap f[A])=1
$$

Proof: Note that if $\mu(f[A])=0$, our assumptions on f would imply $\mu(A)=0$. Hence $\mu(f[A])=1$. The lemma is now clear.

1.2

We say that $x \in I$ is periodic if for some positive integer $n, f^{n}(x)=x$. The least such n is called the period of x.

Let $A=\{x \in I \mid x$ is periodic with a period $>1\}$. We shall show that $\mu(A)=0$. Towards a contradiction, assume that $\mu(A)=1$.

Define an equivalence relation \sim on A by putting $x \sim y$ if for some integer $i \in \omega, f^{i}(x)=y$.

Let $D \subseteq A$ contain precisely one element from each equivalence class of A.
Define a function, $\alpha: A \mapsto \omega$ as follows: Let $x \in A$. Let y be the unique element of D such that $x \sim y$. Then $\alpha(x)$ is the least $n \in \omega$ such that $f^{n}(y)=x$.

Let B_{0} (resp. B_{1}) be the set of x in A such that $\alpha(x)$ is even (resp. odd). Since $\mu(A)=1$, one of B_{0}, B_{1} must have measure 1.

Let $B_{2}=\{x \in A \mid \alpha(x)=0\}$. Then one easily computes:

$$
B_{0} \cap f\left[B_{0}\right] \subseteq B_{2}
$$

$$
B_{1} \cap f\left[B_{1}\right] \subseteq \emptyset
$$

Using Lemma 2, we see that $\mu\left(B_{2}\right)=1$. But $B_{2} \cap f\left[B_{2}\right]=\emptyset$. Again, applying Lemma 2, we get our desired contradiction. We have shown that $\mu(A)=0$.

1.3

The remaining cases of our proof are quite easy. First, let C be the set of those x such that x is not periodic, but for some positive $n, f^{n}(x)$ is periodic. We shall show that $\mu(C)=0$.

We reinitialize our notation and let α be a function mapping C to ω defined as follows: let x in C. Then $\alpha(x)$ is the least $n \in \omega$ such that $f^{n}(x)$ is periodic.

Define a partition of C into two subsets, C_{0}, C_{1} by letting C_{0} (resp. C_{1}) be the set of x in C such that $\alpha(x)$ is even (resp. odd). Then clearly if j is either 0 or 1, we have:

$$
C_{j} \cap f\left[C_{j}\right]=\emptyset
$$

Hence, by Lemma 2, we have $\mu\left(C_{0}\right)=\mu\left(C_{1}\right)=0$. It follows that $\mu(C)=0$.

1.4

Now let E be the set of those x in I such that for no $i \in \omega$ do we have $f^{i}(x)$ periodic. We shall show that $\mu(E)=0$.

Reinitializing our notation, we define an equivalence relation \sim on E by $x \sim y$ if there exist i and j in ω such that $f^{i}(x)=f^{j}(y)$.
Lemma 3 Let x and y in E such that $f^{i}(x)=f^{j}(y)$ and $f^{i^{\prime}}(x)=f^{j^{\prime}}(y)$. Then

$$
i-j=i^{\prime}-j^{\prime}
$$

The proof will be left as an exercise for the reader. The definition of E plays a crucial role in the proof.

Now let $D^{\prime} \subseteq E$ be a subset of E that meets each equivalence class of \sim in precisely one element.

Let \mathbb{Z} be the ring of integers. Define a $\operatorname{map} \alpha: E \mapsto \mathbb{Z}$ as follows. Let $x \in E$. Let y be the unique element of D^{\prime} such that $x \sim y$. Choose i and j in ω such that $f^{i}(y)=f^{j}(x)$. Set $\alpha(x)=i-j$. By Lemma 3, this is well defined.

It should be clear that if $x \in E$, then $f(x) \in E$. Moreover, $\alpha(f(x))=$ $\alpha(x)+1$.

Let E_{0} (resp. E_{1}) consist of those $x \in E$ such that $\alpha(x)$ is even (resp. odd). Then clearly $E_{0} \cap E_{1}=\emptyset$. Also $f\left[E_{0}\right] \subseteq E_{1}$ and $f\left[E_{1}\right] \subseteq E_{0}$. Hence by Lemma 2 , $\mu\left(E_{0}\right)=\mu\left(E_{1}\right)=0$. It follows that $\mu(E)=0$.

1.5

We have now shown that A, C, and E have measure 0 . But the points which lie in none of these sets are precisely those x such that $f(x)=x$. The theorem is proved.

