
RECURSIVE IN A GENERIC REAL

JUICHI SHINODA AND THEODORE A. SLAMAN

Abstract. There is a comeager set C contained in the set of 1-generic reals

and a first order structure M such that for any real number X, there is an
element of C which is recursive in X if and only if there is a presentation of M

which is recursive in X.

1. Introduction

The theory of a generic real is the theory of the almost everywhere behavior of all
of the reals, and as such it can be well approximated. Consequently, constructions
which can be implemented relative to any generic real can usually be simulated by
approximation. For example, if a set of natural numbers X is recursive in every
element of a co-meager set, then X is recursive. Similar statements for arithmetic
in or constructible from are equally valid.

Counter to these observations, Slaman [1] produced a first order structure M
such that for all reals X, X is not recursive if and only if there is a presentation of
M which is recursive in X. X’s computing a presentation of M gives an existential
criterion for determining whetherX is not recursive. And so, there is something, the
isomorphism type of M, which is common to all nonrecursive reals and which is not
recursive. Wehner [2] independently produced an equivalent example formulated in
terms of relatively recursive enumerations.

Now, we consider the question of whether there is an M which is common exactly
to generic reals. In sense of Theorem 1.1, the answer is yes.
Theorem 1.1. For any uniformly Σ0

2 family D of dense subsets of 2<ω, there is a
co-meager subset C of 2ω and a countable model M with the following properties.

(1) If G ∈ C, then G is D-generic;
(2) For all X ⊆ ω, the following conditions are equivalent.

(a) There is a G ∈ C such that G is recursive in X.
(b) There is a presentation of M which is recursive in X.

For example, the family of dense sets that characterize 1-genericity is uniformly
Σ0

2, and so Theorem 1.1 applies to it.
While our proof of Theorem 1.1 is in the spirit of [1], it is quite different in

detail. In the latter, one ensures that M is not recursively presentable by ensuring
that M is not isomorphic to any recursive structure. There is a uniformly recursive
approximation to the collection of recursively presented structures, so one has a
countable diagonalization problem. Conversely, one constructs a functional Ψ so
that if Ψ(X) is not isomorphic to M then the manner by which Ψ(X) fails to
duplicate M provides the means to compute X.
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Here, we must ensure that for any real X, if M is recursively presented relative
to X, then there is a generic real which is recursive in X. So we have a coding
problem: we must code the means to build a generic real within the isomorphism
type of M; that is we must represent the means to meet dense sets within M. On
the other hand, if M contains nothing more than the means to meet dense sets, then
generic reals should be able to represent M since they meet dense sets themselves.

2. Trees associated with dense Σ0
2 sets

2.1. Dense functions. For a nonempty set X and n ∈ ω, Xn denotes the set of
all sequences of elements from X of length n. And let

X<ω =
⋃
n∈ω

Xn, X≤n =
⋃
i≤n

Xi.

For each u ∈ X<ω, |u| denotes the length of u, and for i < |u|, u(i) denotes the
i-th component of u. In this paper, p, q, . . . denote the elements of 2<ω and σ, τ, . . .
denote the elements of ω<ω.

We say that a function f : 2<ω → 2<ω is dense if p ⊆ f(p) for all p. For each Σ0
2

dense subset D of 2<ω, we can associate a ∆0
2 dense function fD with D so that

fD(p) ∈ D for all p ∈ 2<ω. Furthermore, there is an effective procedure ϕ which
produces a ∆0

2 index of fD from any Σ0
2 index of D. Let D = {Dn | n ∈ ω} be

a given uniformly Σ0
2 family of dense subsets of 2<ω. Namely, each Dn is a dense

subset of 2<ω and there is a recursive function π such that π(n) gives a Σ0
2 index

of Dn. Then, the family F = {fDn | n ∈ ω} is uniformly ∆0
2 since ϕ(π(n)) gives a

∆0
2 index of fDn . It is easy to see that

(∀f ∈ F)(∃p ∈ 2<ω)[f(p) ⊆ G] =⇒ G ∈ 2ω is D-generic.

Hereafter, we will consider uniformly ∆0
2 families of dense functions instead of the

uniformly Σ0
2 families of dense sets, For a uniformly ∆0

2 family F of dense functions,
we say that a real G is F-generic if G satisfies (∀f ∈ F)(∃p ∈ 2<ω)[f(p) ⊆ G]. Then,
in order to prove Theorem 1.1, it is sufficient to show the following.
Theorem 2.1. For any uniformly ∆0

2 family F of dense functions, there is a co-
meager subset C of 2ω and a countable model M with the following properties.

(1) If G ∈ C, then G is F-generic;
(2) For all X ⊆ ω, the following conditions are equivalent.

(a) There is a G ∈ C such that G is recursive in X.
(b) There is a presentation of M which is recursive in X.

2.2. Recursive approximation. In the following, we will be approximating a
variety of sets and functions. We will use the suffix [s] to indicate these quantities
as they are approximated by stage s.

Let f : 2<ω → 2<ω be a ∆0
2 dense function. By the limit lemma, there is a

recursive approximation to f such that for all p

f(p) = lim
s→∞

f(p)[s].

We may assume that this approximation satisfies the following conditions.
(D1) if s ≥ n and |p| = n, then f(p)[s] ∈ 2≤s;
(D2) for all p and s, p ⊆ f(p)[s].
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Such an approximation is effectively obtained from f . That is, there is an effective
procedure ψ which when given a ∆0

2 index of f provides an index for the recursive
approximation to f . We will fix a ∆0

2 dense function f and its recursive approxi-
mation throughout this section.

2.3. The tree T (f, n). Let σ be an element of ω<ω. The predecessor of σ, pd(σ),
is defined as pd(σ) = σ � (|σ| − 1) if |σ| > 0; and pd(σ) = ∅ otherwise. Suppose
σ, τ ∈ ω<ω. We say that σ is on the left of τ (or τ is on the right of σ) if there is
an i < min(|σ|, |τ |) such that σ � i = τ � i and σ(i) < τ(i).

Given a ∆0
2 dense function f and an integer n, we will define a recursively

enumerable tree T (f, n) on ω by stages. Note that in the following, T (f, n)[s]
denotes the finite subtree of T (f, n) which we have enumerated by stage s.

Stage 0. Enumerate ∅ into T (f, n).
Stage s (1 ≤ s < n). Do nothing.
Stage n. Enumerate 〈2n3n〉 into T (f, n).
Stage s + 1 (s ≥ n). For σ ∈ T (f, n)[s] with σ = 〈x1, x2, . . . , xk〉, we denote

the first component of xk by nσ and the second component of xk by sσ. When
k = 0 (i.e., σ = ∅), we let nσ = sσ = 0 for convenience. Suppose σ is a maximal
element of T (f, n)[s]. We say that σ fails to guess f at stage s + 1 if s ≥ sσ and
(f � 2≤nσ )[s+ 1] 6= (f � 2≤nσ )[sσ].

If there is no maximal element σ of T (f, n)[s] which fails to guess f at stage
s + 1, then do nothing at this stage. Otherwise, take the rightmost element σ of
T (f, n)[s] which is maximal in T (f, n)[s] and which fails to guess f at stage s+ 1,
and do the following.

(1) For every maximal element τ of T (f, n)[s] such that nτ ≥ nσ, enumerate
τa〈2s+13s+1〉 into T (f, n). Thus, τ is not maximal in T (f, n)[s+ 1].

(2) For every maximal element τ of T (f, n)[s] such that nτ = nσ, enumerate
pd(τ)a〈2nσ3s+1〉 into T (f, n).

By construction, if σ ∈ T (f, n), σ is enumerated at stage sσ. Thus, the tree
T (f, n) is recursive. Further, if σ, τ are maximal in T (f, n)[s] and nσ ≤ nτ , then
we have sσ ≤ sτ .

Each maximal element of T (f, n)[s] represents the stage s approximation of f .
Suppose τ is maximal in T (f, n)[s]. We guess at stage s that (f � 2≤nτ )[sτ ] is the
correct value of f � 2≤nτ . If the guess fails at stage s + 1, then we cancel it and
start a new guess about f as follows. Take the rightmost σ which is maximal in
T (f, n)[s] and fails to guess f at stage s+ 1. If nτ ≥ nσ, then since τ fails to guess
f at stage s+ 1, we start a new approximation of f � 2≤s+1 with (f � 2≤s+1)[s+ 1]
by extending τ . At the same time, if nτ = nσ, then we guess that the correct value
of f � 2≤nτ is (f � 2≤nτ )[s+1] by creating a new node on the immediate right of τ .

Figure 1 illustrates how the tree T (f, n) grows when n < s1 < s2 < s3 < s4 and

(f � 2≤n)[s1] 6= (f � 2≤n)[n],(2.1)

(f � 2≤s1)[s2] 6= (f � 2≤s1)[s1],(2.2)

(f � 2≤s2)[s3] 6= (f � 2≤s2)[s2],(2.3)

(f � 2≤n)[s4] 6= (f � 2≤n)[s1].(2.4)
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Figure 1

First, we guess that the correct value of f � 2≤n is (f � 2≤n)[n]. However, by
(2.1), we see that this guess is incorrect at stage s1. Thus, we change the guess
about f � 2≤n to (f � 2≤n)[s1]. And at the same time, based on this guess, we
start the approximation of f � 2≤s1 with (f � 2≤s1)[s1]. But, then by (2.2), we see
at stage s2 that the approximation of f � 2≤s1 is not correct while the guess about
f � 2≤n does not fail yet. Thus, we change the guess about f � 2≤s1 to (f � 2≤s1)[s2]
and start the approximation of f � 2≤s2 with (f � 2≤s2)[s2] based on this guess. By
(2.3), the approximation of f � 2≤s2 is seen to be incorrect at stage s3. We thus
change the guess about f � 2≤s2 to (f � 2≤s2)[s3] and start the approximation of
f � 2≤s3 with (f � 2≤s3)[s3]. Finally, by (2.4), we see at stage s4 that the guess
about f � 2≤n fails again. Therefore, we must cancel all of the approximations of
f done so far, and start the approximation of f � 2≤s4 with (f � 2≤s4)[s4] based on
the guess that the correct value of f � 2≤n is (f � 2≤n)[s4].

2.4. Terminal elements. Given s and x, if there is a t > s such that (f � 2≤x)[t] 6=
(f � 2≤x)[s] , then we let hf (x, s) be the least such t. Otherwise, let hf (x, s) = s.
Definition 2.2. (1) df (x, 0) = x, df (x, j + 1) = hf (x, df (x, j)).

(2) df (x) = limj→∞ df (x, j).
(3) s〈f,n〉

0 = n, s
〈f,n〉
i+1 = df (s〈f,n〉

i ).
(4) For i ≥ 1 and j ≥ 0, s〈f,n〉

i,j = df (s〈f,n〉
i−1 , j).

In the following, we will drop the superscripts f and 〈f, n〉 for notational sim-
plicity. By definition, for i ≥ 1, we have

• si,0 = si−1 ≤ si,1 ≤ si,2 ≤ . . . <∞,
• si = limj→∞ si,j ,
• f � 2≤si−1 = (f � 2≤si−1)[si].

We call an element of T (f, n) terminal if it is maximal in T (f, n). Since the
approximation of f � 2≤n terminates at stage s1, σ1 = 〈2n3s1〉 is the rightmost
terminal element of T (f, n). If s1 = s0 = n, then σ1 is never extended in T (f, n)
and σ1 is the unique terminal element of T (f, n). Otherwise, let j1 be the least
j such that s1,j+1 = s1. Then, at stage s1, 〈2n3s1,j1 〉 is extended by adding a
new node with label 2s13s1 and the approximation of f � 2≤s1 starts with f �
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2≤s1 [s1]. The approximation terminates at stage s2 and σ2 = 〈2n3s1,j1 , 2s13s2〉
is enumerated into T (f, n) as a terminal element. σ2 is the rightmost maximal
element of T (f, n)−{σ1}. In the case where s2 > s1, let j2 be the least j ≥ s1 such
that s2,j+1 = s2. Then, 〈2n3s1,j1 , 2s13s2,j2 〉 is extended by adding a new node with
label 2s23s2 and the approximation of f � 2≤s2 starts with (f � 2≤s2)[s2]. In the
same manner, we see that σ3 = 〈2n3s1,j1 , 2s13s2,j2 , 2s23s3〉 is a terminal element of
T (f, n) and also the rightmost maximal element of T (f, n) − {σ1, σ2}. In general,
we let σk be the rightmost maximal element of T (f, n) − {σ1, . . . , σk−1}. Then,
σk is terminal in T (f, n) and sσk

coincides with sk. In view of this, we define the
approximation of sk at stage s, sk[s], as follows. First, take the list σ1, . . . , σm of
maximal elements of T (f, n)[s] such that

• for each k ≥ 1, σk is the rightmost element of T (f, n)[s]− {σ1, . . . , σk−1};
• if 1 ≤ k < m, then pd(σk) has at least two extensions in T (f, n)[s];
• σm is the unique extension of pd(σm−1) in T (f, n)[s]− {σ1, . . . , σm−1}.

Then, for 1 ≤ k ≤ m, we define sk[s] = sσk
. For convenience, we set s0[s] = 0.

Note that sm[s] = sm−1[s], and that if s ≥ sk then sk[s] = sk.

2.5. The relation RG. Let G be a given infinite subset of ω, and let P be a
recursive infinite subset of ω. Let gk denote the k-th element of G in increasing
order.

G = {g0 < g1 < · · · < gk < · · · }.
We define a G-recursively enumerable relation RG ⊆ P × T (f, n) so that for each
p ∈ dom(RG), ζG(p) = {σ | RG(p, σ)} is a maximal path in T (f, n), and such that
for each maximal finite path ζ in T (f, n), there are infinitely many p ∈ P such that
ζ = ζG(p). As before, RG[s] denotes the subset of RG which we have enumerated
by stage s.

Stage 0. Let p0 be the least element of P and enumerate the pair 〈p0, ∅〉 into
RG.

Stage s + 1. For each maximal path ζ in T (f, n)[s + 1], pick a new element p
from P and enumerate 〈p, τ〉 into RG for all τ ∈ ζ. This will ensure that infinitely
many elements of P are associated with each maximal finite path in T (f, n).

If ζG(p)[s] = {η ∈ T (f, n)[s] | 〈p, η〉 ∈ RG[s]} is not a maximal path in T (f, n)[s+
1], then let σ be its maximal element and find the smallest k ≥ 0 such that sσ <
sk[s+ 1] and do the following.

Case 1. If gk < sk[s+1], then pick the rightmost maximal path ζ in T (f, n)[s+1]
extending ζG(p)[s] and enumerate 〈p, τ〉 into RG for all τ ∈ ζ.

Case 2. If gk ≥ sk[s+ 1], then we wait until the construction of T (f, n) reaches
the stage gk and associate p with the rightmost maximal path in T (f, n)[gk] which
extends ζG(p)[s].
Lemma 2.3. If {k | sk ≤ gk} is infinite, then ζG(p) is finite for every p ∈ P .

Proof. Assume that {k | sk ≤ gk} and ζG(p) are both infinite. Then, the sequence
{sk}k∈ω is strictly increasing. Take a sufficiently large k ≥ 2 so that sk ≤ gk and p
is enumerated into dom(RG) at some stage < sk−1. Let σ be a maximal element of
T (f, n)[sk−1] ∩ ζG(p). Since σ is a maximal element of T (f, n)[sk−1] which is not
terminal, it must be the case that nσ = sσ = sk−1. Since sσ = sk−1 < sk ≤ gk,
by the construction of RG, ζG(p) takes the rightmost extension of σ in T (f, n)[gk],
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which is τ = σa〈2sk−13sk〉 and is terminal, a contradiction. Thus, we see that
ζG(p) is finite. �

3. The model

Suppose F̃ is a uniformly ∆0
2 family of dense functions. We assume that a

recursive enumeration of F̃ × ω is fixed, and we denote the i-th element of F̃ × ω
by 〈f (i), n(i)〉.

3.1. The model M(G). Let L consist of a constant symbol 0, unary function
symbols s, t, and binary relation symbols R and <T . Given an infinite subset
G = {g0 < g1 < · · · } of ω, we define an L-structure M(G) as follows.

• The constant 0 is interpreted by 〈0, ∅〉.
• The function s is interpreted on the set {〈i, ∅〉 | i ∈ ω} by sM(G)(〈i, ∅〉) =
〈i+ 1, ∅〉, and sM(G) is identity on all points not in {〈i, ∅〉 | i ∈ ω}. We use
i to denote si(0). Thus, ( i )M(G) = 〈i, ∅〉.

• <
M(G)
T is defined on

⋃
i({i} × T (f (i), n(i))) as

〈i, σ〉 <M(G)
T 〈j, τ〉 ⇐⇒ i = j & σ ( τ.

• For σ ∈ T (f (i), n(i)), we define tM(G)(〈i, σ〉) = ( 2nσ3sσ )M(G).
• Let {Pi}i be a recursive family of infinite disjoint subsets of ω, and
RG

i ⊆ Pi×T (D(i), n(i)) be the G-recursive relation defined as in the preced-
ing section which picks out paths in T (f (i), n(i)). Using {RG

i }i, we define
RM(G) ⊆

⋃
i Pi × ({i} × T (f (i), n(i))) as follows.

RM(G)(p, 〈i, σ〉) ⇐⇒ RG
i (p, σ).

Finally, we let the universe of M(G) be the set of all elements mentioned above.
Since the above interpretations of L is uniformly recursive in G, there is a recursive
functional M such that M(G) gives a presentation of M(G).

3.2. The model M. From Lemma 2.3, we see that if G satisfies the condition

(∗) {k | s〈f,n〉
k ≤ gk} is infinite for all 〈f, n〉 ∈ F̃ × ω,

then for all p ∈ dom(RG
i ), ζG

i (p) is finite, where

ζG
i (p) = {σ ∈ T (f (i), n(i)) | RG

i (p, σ)}.

Also, for every maximal finite path ζ in T (f (i), n(i)), there are infinitely many
elements p of Pi such that ζ = ζG

i (p). From these facts, we obtain the following
lemma.

Lemma 3.1. If G1 and G2 satisfy the condition (∗), then M(G1) and M(G2) are
isomorphic.

Definition 3.2. Let M be the isomorphism type of the models M(G) which satisfy
(∗).
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4. Proof of Theorem 2.1

For a dense function f , let Γ(f, n) denote the dense function associated with
the dense set of all p ∈ 2<ω such that there is a k for which the k-th element of
{x | p(x) = 1} is defined and greater than or equal to sf,n

k . Now let F be a uniformly
∆0

2 family of dense functions on 2<ω. Let F̃ be the closure of F under Γ. Namely,
F̃ is the smallest family of dense functions such that

• F ⊆ F̃;
• (∀f, n)[f ∈ F̃ =⇒ Γ(f, n) ∈ F̃].

Then, it is easy to see that F̃ is also uniformly ∆0
2.

We let C be the set of all F̃-generic reals, and define the models M(G) and M
as in the preceding section. We will show that C and M thus defined satisfy the
conditions of Theorem 2.1.

The first condition (1) of Theorem 2.1 is trivial since each element of C is F̃-
generic.

To prove (a)⇒ (b) of (2), suppose G is recursive in X and G ∈ C. Since G is
F̃-generic and F̃ is closed under Γ, we see that M(G) ' M by Lemma 2.3. Thus,
M(G) gives a presentation of M which is recursive in G and hence recursive in X.

For the proof of (b)⇒ (a), let Φ be a recursive functional and X be a real such
that Φ(X) ' M. We will construct a recursive functional Ψ so that Ψ(X) is the
characteristic function of a F̃-generic real.

For each i ∈ ω, let TΦ(X)
i denote the tree {x | Φ(X) |= i <T x}. Since TΦ(X)

i '
T (f (i), n(i)) via tΦ(X), where 〈f (i), n(i)〉 is the i-th element of F̃ × ω, we will not
distinguish TΦ(X)

i and T (f (i), n(i)) hereafter. Also we denote by RΦ(X)
i the relation

{〈p, x〉 | x ∈ T
Φ(X)
i & Φ(X) |= R(p, x)}. Let fm denote the m-th element of

F̃. When 〈fm, n〉 is equal to 〈f (i), n(i)〉, we write i(m,n) = i. We may assume
that the function i(m,n) is recursive. We pick an element pi recursively in X from
dom(RΦ(X)

i ) for each i. The construction of Ψ(X) proceeds by stages. At stage s,
we will define an initial segment Ψ(X)[s] of Ψ(X) together with integers u(s) and
n(m, s).

Stage 0. We set Ψ(X)[0] = ∅, u(0) = 0 and n(m, 0) = 0 for all m ∈ ω.
Stage s + 1. Suppose that Ψ(X)[s], u(s) and n(m, s) have been defined. Also

suppose Ψ(X)[s] ∈ 2≤u(s). If u(s) ≥ s + 1, then do nothing at this stage, namely,
we just set Ψ(X)[s+ 1] = Ψ(X)[s], u(s+ 1) = u(s), and n(m, s+ 1) = n(m, s) for
all m.

Suppose u(s) < s+1. We say that fm requires attention at stage s+1 if there is
an element τ of T (fm, n)[s+1] which is a proper extension of σ where n = n(m, s),
i = i(m,n) and σ is a maximal element of T (fm, n)[u(s)] ∩ ζΦ(X)

i (pi). In this case,
we know that there is a proper extension of σ in T (fm, n) which is associated with
pi.

If there is no m ≤ s such that fm requires attention at stage s + 1, then do
nothing at this stage. Otherwise, take the least m such that fm requires attention
at stage s+ 1. We let u(s+ 1) be the first t such that T (fm, n(m, s))[t] contains a
proper extension τ of σ such pi(m,n(m,s)) is associated with τ by RΦ(X)

i(m,n(m,s)). We
then set Ψ(X)[s + 1] = fm[sτ ](Ψ(X)[s]). Note that Ψ(X)[s + 1] ∈ 2≤u(s+1) by
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(D1). Finally, we define n(j, s+ 1) as follows.

n(j, s+ 1) =

{
n(j, s), if j ≤ m;
sτ , if j > m.

We say that fm acts at this stage.
Verification. Ψ(X) is constructed uniformly from Φ(X) and the elements of F̃×

ω, from which it follows that Ψ is a recursive functional. To see that Ψ(X) is
F̃-generic, let fm be the m-th element of F̃. It is sufficient to show that there is an
s such that fm(Ψ(X)[s]) = Ψ(X)[s+ 1]. This is proved by finite injury argument.

First, we see, by induction on m, that every fm requires attention only finitely
often. Suppose that for every k < m, the number of stages where fk requires
attention is finite. Take a sufficiently large s0 so that no fk, k < m, requires
attention at any stage after s0. Then, n(m, s) has constant value, say n, for every
s > s0. Let i = i(m,n). In view of the construction, at each stage where fm

requires attention, we can find a new node of T (fm, n) with which pi is associated.
Since Φ(X) ' M, the number of such nodes is finite. Thus, we see that fm requires
attention only finitely often.

Let s + 1 be the last stage where fm acts. If f j , j < m, requires attention at
some stage, then all actions so far for fm are canceled at this stage and start to
require attention. Thus, any of f j , j ≤ m, does not require attention at any stage
after s + 1. Let σ be the maximal element of T (fm, n)[u(s + 1)] ∩ ζΦ(X)

i (pi). σ
must be a terminal element of T (fm, n) since otherwise σ could be extended at
later stage and fm would require attention again, which is a contradiction. By the
construction at stage s+ 1, we have

Ψ(X)[s+ 1] = fm(Ψ(X)[s])[sσ] = fm(Ψ(X)[s]).

This complete the proof of Theorem 2.1.

5. Questions

5.1. Is there a countable model M such that for all X, M is recursively presented
relative to X if and only some 1-generic real is recursive in X.

To remark on our first question, in our construction, we were given a family of
dense functions F, we extended it to F̃, and we produced a model M such that for
each real X, there is a presentation of M which is recursive in X if and only if there
is a F̃ generic real G which is recursive in X. In brief, we used the fact that if G is
F̃ generic then G can compute a function which is not dominated by the functions
which Skolemize the property that the functions in F̃ are dense. This property may
not hold for the original F.

5.2. Is there an analogous theorem with ‘measure 1’ in place of ‘co-meager’ in
Theorem 1.1?

5.3. Can ∆0
2 be improved in Theorem 2.1?
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