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Abstract. We show that the set of absolutely normal numbers is Π0
3-complete in the

Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers
is Π0

3-complete in the effective Borel hierarchy.

1. Introduction. What is the descriptive complexity of the set of ab-
solutely normal numbers? Alexander Kechris posed this question in the
early 1990s when he asked whether the set of real numbers which are
normal to base two is Π0

3-complete in the Borel hierarchy. Ki and Lin-
ton [5] proved that, indeed, the set of numbers that are normal to any fixed
base is Π0

3-complete. However, their proof technique does not extend to
the case of absolute normality, that is, normality to all bases simultane-
ously.

We show that the set of absolutely normal numbers is also Π0
3-complete.

In fact, it is Π0
3-complete in the effective Borel hierarchy. We give, explicitly,

a reduction that proves the two completeness results. By a feature of this
reduction we also provide an alternate proof of Ki and Linton’s theorem.
Our analysis here is a refinement of our algorithm for computing absolutely
normal numbers in [1].

2. Preliminaries

Notation. As usual, N is the set of positive integers. A base is an integer
b greater than or equal to 2, a digit in base b is an element of {0, . . . , b− 1},
and a block in base b is a finite sequence of digits in base b. The length
of a block x is |x|. We denote the set of blocks in base b of length ` by
{0, . . . , b−1}`. We write the concatenation of two blocks x and u as xu. For
arbitrarily many blocks ui, for i = 1, . . . ,m,

∏
1≤i≤m ui is their concatena-
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tion in increasing order of i. When the starting value for the index is 1, we
abbreviate this expression as

∏
i≤m ui.

In case x is a finite or an infinite sequence of digits, x�i is the subblock
of the first i digits of x, and x[i] is the ith digit of x. A digit d occurs in x at
position i if x[i] = d. A block u occurs in x at position i if x[i+ j− 1] = u[j]
for j = 1, . . . , |u|. The number of occurrences of the block u in the block x
is occ(x, u) = #{i : u occurs in x at position i}.

For each real number R in the unit interval we consider its unique ex-
pansion in base b, R =

∑∞
i=1 aib

−i, where the ai are digits in base b, and
ai < b−1 infinitely many times. This last condition over ai ensures a unique
representation for every rational number. We write (R)b to denote the ex-
pansion of a real R in base b given by the sequence (ai)i≥1.

2.1. On normal numbers. Among the several equivalent definitions of
absolute normality the following is the most convenient for our presentation.
For a reference see the books [2] or [6].

Definition 2.1.

(1) A real number R is simply normal to base b if, for each digit d in
base b, limn→∞ occ((R)b�n, d)/n = 1/b.

(2) R is normal to base b if it is simply normal to the bases b` for every
integer ` ≥ 1.

(3) R is absolutely normal if it is normal to every base.
(4) R is absolutely abnormal if it is non-normal to any base.

Notice that absolute normality is equivalent to being simply normal to
every base, but absolute abnormality is not equivalent to being non-simply
normal to every integer base.

Lemma 2.2. If a real number R is simply normal to at most finitely
many bases then R is absolutely abnormal. If a real number R is normal to
at most finitely many bases then R is absolutely abnormal.

Proof. Fix a base b. By contraposition, if R were normal to base b, then
it would be simply normal to all bases b`, a contradiction to the hypothesis
of the first claim. Simple normality to all bases b` implies by definition
normality to all bases b`, which contradicts the hypothesis of the second
claim.

The simple discrepancy of a block in base b indicates the difference be-
tween the actual number of occurrences of the digits in that block and their
expected average. The definition of normality can be given in terms of dis-
crepancy (see [2]).
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Definition 2.3. Let u be a block of digits in base b. The simple dis-
crepancy of the block u to base b is

D(u, b) = max{|occ(u, d)/|u| − 1/b| : d ∈ {0, . . . , b− 1}}.
Let ` be a positive integer. The block discrepancy of the block u to blocks
of length ` in base b is

D`(u, b) = max{|occ(u, v)/|u| − 1/b`| : v ∈ {0, . . . , b− 1}`}.
Notice that D(u, b) is a number between 0 and 1− 1/b, and D`(u, b) is a

number between 0 and 1−1/b`. By the definition of simple discrepancy, a real
number R is simply normal to base b if and only if limn→∞D((R)b�n, b) = 0.
Instead of asking for simple discrepancy for every base b`, ` ≥ 1, it is possible
to characterize normality using block discrepancy.

Lemma 2.4 ([2, Theorem 4.2]). A real number R is normal to base b if
and only if, for every ` ≥ 1, limn→∞D`((R)b�n, b) = 0.

The next lemma bounds the discrepancy of a concatenation of blocks.
We use it very often in what follows, without making explicit reference to
it.

Lemma 2.5. If u1, . . . , un are blocks of digits in base b, then

D
(∏

j≤n
uj , b

)
≤

n∑
j=1

D(uj , b)|uj |
/ n∑

h=1

|uh|.

Proof. Let d be a digit in base b with |occ(
∏

j≤n uj , d)/|
∏

j≤n uj | − 1/b |
maximal. Then

D
(∏

j≤n
uj , b

)
=

∣∣∣∣occ
(∏

j≤n
uj , d

)/∣∣∣∏
j≤n

uj

∣∣∣− 1

b

∣∣∣∣
≤
∣∣∣∣( n∑

j=1

occ(uj , d)
/ n∑

h=1

|uh|
)
− 1

b

∣∣∣∣
≤
∣∣∣∣ n∑
j=1

occ(uj , d)− |uj |
b

∣∣∣∣/ n∑
h=1

|uh|

≤
n∑

j=1

|uj |
∣∣∣∣occ(uj , d)

|uj |
− 1

b

∣∣∣∣/ n∑
h=1

|uh|

≤
n∑

j=1

D(uj , b)|uj |
/ n∑

h=1

|uh|.

Borel’s fundamental theorem showing that almost all real numbers are
absolutely normal is underpinned by the fact that, for any base, almost
every sufficiently long block has small simple discrepancy relative to that
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base. The next lemmas provide an explicit bound for the number of blocks
of a given length having simple discrepancy larger than a given value.

Lemma 2.6 ([1, Lemma 2.5] adapted from [3, Theorem 148]). Let pb(k, i)
be the number of blocks of length k in base b where a given digit occurs
exactly i times. Fix a base b and a block length k. For every real ε such

that 6/k ≤ ε ≤ 1/b,
∑k/b−εk

i=0 pb(k, i) and
∑k

i=k/b+εk pb(k, i) are at most

bke−bε
2k/6.

Lemma 2.7 ([1, Lemma 2.6]). Let t ≥ 2 be an integer and let ε and δ
be real numbers between 0 and 1, with ε ≤ 1/t. Let k be the least integer
greater than the maximum of d6/εe and − ln(δ/2t)6/ε2. Then, for all b ≤ t
and for all k′ ≥ k, the fraction of blocks x of length k′ in base b for which
D(x, b) > ε is less than δ.

2.2. On descriptive set theory. Recall that the Borel hierarchy for
subsets of the real numbers is the stratification of the σ-algebra generated by
the open sets with the usual interval topology. For references see Kechris’s
textbook [4] or Marker’s lecture notes [7].

A set A is Σ0
1 if and only if A is open, and A is Π0

1 if and only if A is
closed. A is Σ0

n+1 if and only if it is a countable union of Π0
n sets, and A is

Π0
n+1 if and only if it is a countable intersection of Σ0

n sets.

A is hard for a Borel class if and only if every set in the class is reducible
to A by a continuous map. A is complete in a class if it is hard for this class
and belongs to the class.

When we restrict to intervals with rational endpoints and computable
countable unions and intersections, we obtain the effective, or lightface,
Borel hierarchy. One way to present the finite levels of the effective Borel
hierarchy is by means of the arithmetical hierarchy of formulas in the lan-
guage of second-order arithmetic. Atomic formulas in this language assert
algebraic identities between integers or membership of real numbers in inter-
vals with rational endpoints. A formula in the arithmetic hierarchy involves
only quantification over integers. A formula is Π0

0 and Σ0
0 if all its quantifiers

are bounded. It is Σ0
n+1 if it has the form ∃x θ where θ is Π0

n, and it is Π0
n+1

if it has the form ∀x θ where θ is Σ0
n.

A set A of real numbers is Σ0
n (respectively Π0

n) in the effective Borel
hierarchy if and only if membership in that set is definable by a formula
which is Σ0

n (respectively Π0
n). Notice that every Σ0

n set is Σ0
n and every Π0

n

set is Π0
n. In fact for every set A in Σ0

n there is a Σ0
n formula and a real

parameter such that membership in A is defined by that Σ0
n formula relative

to that real parameter.

A is hard for an effective Borel class if and only if every set in the class is
reducible to A by a computable map. As before, A is complete in an effective
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class if it is hard for this class and belongs to the class. Since computable
maps are continuous, proofs of hardness in the effective hierarchy often yield
proofs of hardness in general by relativization. This is the case in our work.

3. Main theorem. By the form of its definition, normality to a fixed
base is explicitly a Π0

3 property of real numbers. The same holds for absolute
normality. Absolute abnormality is, for all bases, the negation of normality,
hence a Π0

4 property.

Lemma 3.1 (as in [7]). The set of real numbers that are normal to a
given base is Π0

3.

The set of real numbers that are absolutely normal is Π0
3.

The set of real numbers that are absolutely abnormal is Π0
4.

Thus, to prove completeness of the set of absolutely normal real numbers
for the class Π0

3 we need only prove hardness. We prove our hardness result
for the Borel hierarchy by relativizing a hardness result for Π0

3 subsets of the
natural numbers. Let L be the language of first-order arithmetic. As usual,
a sentence is a formula without free variables.

Theorem 3.2. There is a computable reduction from Π0
3 sentences ϕ in

L to indices e such that the following implications hold:

• If ϕ is true then e is the index of a computable absolutely normal
number.
• If ϕ is false then e is the index of a computable absolutely abnormal

number.

We postpone the proofs of Theorem 3.2 and its corollaries to the end of
the next section.

Corollary 3.3. The set of absolutely normal numbers is Π0
3-complete,

and hence Π0
3-complete.

The reduction in Theorem 3.2 gives just two possibilities: absolute nor-
mality or absolute abnormality; that is, normality to all bases simultane-
ously, or to no base at all. Consequently, it also separates normality in
base b from non-normality in base b, for any given b.

Corollary 3.4. For every base b, the set of normal numbers in base b
is Π0

3-complete, and hence Π0
3-complete.

This gives an alternate proof of Ki and Linton’s theorem in [5] for Π0
3-

completeness, that also covers the case of Π0
3-completeness. Another conse-

quence of Theorem 3.2 is that absolute abnormality, which is a Π0
4 property,

is hard for the classes Σ0
3 and Σ0

3.
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4. Proofs. We shall define a computable reduction that maps Π0
3 sen-

tences in the language of first order arithmetic L to indices of computable
infinite sequences of zeros and ones. If the given sentence is true then the
corresponding binary sequence is the expansion in base 2 of an absolutely
normal number. Otherwise, the corresponding binary sequence is the expan-
sion in base 2 of an absolutely abnormal number.

Our reduction is the composition of two reductions. We use Baire spaceNN,
the set of infinite sequences of positive integers, as an intermediate working
space. The first reduction maps sentences from L to programs that produce
infinite sequences of positive integers that reflect the truth or falsity of the
given sentences. The second reduction maps these programs to ones that
produce binary sequences with the appropriate condition on normality.

By relativizing this reduction, given a Π0
3 formula in second order arith-

metic and a real number X, we produce a binary sequence computably from
X which is absolutely normal or absolutely abnormal depending on whether
the given formula is true of X. This is exactly what is required to establish
Π0

3-hardness.

4.1. The first reduction. Recall that a Π0
3 formula in first order arith-

metic is equivalent to one starting with a universal quantifier ∀, followed by
the quantifier “there are only finitely many” ∃<∞ and ended by a com-
putable predicate; see Theorem XVII and Exercise 14-27 in [8]. The com-
putable predicate in this equivalent form comes from the Σ0

0 subformula of
the original.

Definition 4.1. The first reduction takes sentences in L to positive
integers by mapping ∀x∃<∞y C(x, y), where C is computable, to an index
of the following program: For every positive integer n in increasing order,
let x = max{z ∈ N : 2z divides n} and let y = n/2x. If y = 1 or C(x, y)
then append x, x+ 1, . . . , x+ y − 1 to the output sequence.

Lemma 4.2. If ϕ is a Π0
3 sentence in L then Definition 4.1 gives the

index of a program that outputs an infinite sequence f of integers such that
the subsequence of f ’s first occurrences is an enumeration of N in increasing
order and the following dichotomy holds:

• If ϕ is true then no positive integer occurs infinitely often in f .
• If ϕ is false then all but finitely many integers occur infinitely often

in f .

Proof. Assume ϕ of the form ∀x∃<∞y C(x, y), where C is computable.
We say that a tuple 〈x, y〉 is appending if y = 1 or C(x, y). It is clear by
inspection that all possible pairs 〈x, y〉 with x, y ∈ N are processed, and that
〈x+ 1, y〉 and 〈x, y + 1〉 are always processed after 〈x, y〉.
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Thus, the first occurrence of an integer x+1 in f is due to the appending
tuple 〈x+1, 1〉 or an appending tuple 〈x′, y〉 with x′ < x+1 and x′+y > x+1.
In the first case, the appending tuple 〈x+1, 1〉 is processed after 〈x, 1〉, which
appends x to the output. In the second case, the processing of an appending
tuple 〈x′, y〉 with x′ < x+ 1 and x′+ y > x+ 1 appends x right before x+ 1
to the output. Thus, x+ 1 occurs for the first time in f after x.

Suppose now ϕ is true. For any x, there are finitely many appending
tuples of the form 〈x′, y〉 with x′ ≤ x. After all such appending tuples have
been processed, x will not be appended to the output sequence. Thus no
positive integer can occur infinitely often in f .

Now suppose ϕ is false. Let x be such that there are infinitely many y
such that C(x, y). Let z be any positive integer. Each time an appending
tuple of the form 〈x, y〉 with z < y is processed, x + z is appended to
the output. Since we assumed there are infinitely many such tuples, x + z
is appended to the output an infinite number of times. Thus, all integers
greater than x occur infinitely often in the output sequence.

4.2. The second reduction. We use the phrase b-adic interval to refer
to a semi-open interval of the form [a/bm, (a+ 1)/bm) for a < bm. We move
freely between b-adic intervals and base-b expansions. If x is a base-b block
and it is understood that we are working in base b, then we let .x denote the
rational number whose expansion in base b has exactly the digits occurring
in x. Given the block x, the reals such that their base-b expansions extend x
are exactly those belonging to the b-adic interval [.x, .x+ b−|x|). Conversely,
every b-adic interval [a/bm, (a + 1)/bm) corresponds to a block x as above,
where x is obtained by writing a in base b and then prepending a sufficient
number of zeros to obtain a block of length m. We use µ to denote Lebesgue
measure and log to denote logarithm in base 2.

Now we introduce some tools and establish a few of their properties.

Lemma 4.3 ([1]). For every non-empty interval I and base b, there is
a b-adic subinterval Ib of I such that µ(Ib) ≥ µ(I)/(2b). Moreover, such a
subinterval can be computed uniformly from I and b.

Definition 4.4 ([1]). A t-sequence is a nested sequence of t−1 intervals,
~I = (I2, . . . , It), such that I2 is dyadic and for each base b ≤ t, Ib+1 is a

(b+1)-adic subinterval of Ib such that µ(Ib+1) ≥ µ(Ib)/2(b+1). We let xb(~I )

be the block in base b such that .xb(~I ) is the expansion of the left endpoint
of Ib in base b.

We can iteratively apply Lemma 4.3 to obtain the following corollary.

Corollary 4.5. For every non-empty dyadic interval I and every in-
teger t ≥ 2, there is a t-sequence that begins with I. Moreover, such a
t-sequence can be computed uniformly from I and t.
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If ~I = (I2, . . . , It) is a t-sequence, then for any base b ≤ t and any real

X ∈ It, X has xb(~I ) as an initial segment of its expansion in base b. If,

further, ~I ′ = (I ′2, . . . , I
′
t′) is a t′-sequence with t ≤ t′ such that I ′2 ⊂ It and

X ∈ I ′t′ , then for each b ≤ t, ~I ′ specifies how to extend xb(~I ) to a longer

initial segment xb(~I
′) of the base-b expansion of X. As opposed to arbitrary

nested sequences, for t-sequences there is a function that gives a lower bound
for the ratio between the measures of Ib and Ib′ , for any two bases b and b′

both less than or equal to t. That is, assuming b > b′, we have

µ(Ib) ≥
µ(Ib′)

2b−b′b!/b′!
.

In what follows we use the above inequality repeatedly.

Our next task is to define a function that, for an integer i and a t-sequence
~I (for some t), constructs an (i+ 1)-sequence inside ~I with good properties.
The method is to determine the expansion of the rational endpoints of each
b-adic interval in the (i + 1)-sequence. Since the respective b-adic intervals
are nested, the determination of the expansions is done by adding suffixes.

We introduce three functions of i, (δi)i≥1, (ki)i≥1 and (`i)i≥1, that act
as parameters for the construction of an (i + 1)-sequence. The integer ki
indicates how many digits in base i + 1 can be determined in each step;
thus, kidlog(i+ 1)e indicates how many digits in base 2 can be determined
in each step (keep in mind that, in general, more digits are needed to ensure
the same precision in base 2 than in a larger base). The integer `i limits
how many digits in base 2 can at most be determined in each step. And
the rational δi bounds the relative measure of any two intervals in two
consecutive nested (i+1)-sequences. We let Refi be the function that given
~I constructs an (i+ 1)-sequence by recursion. It is a search through nested
(i+ 1)-sequences until one with good properties is reached. The choices we
make for (δi)i≥1, (ki)i≥1 and (`i)i≥1 allow us to prove the correctness of the
construction.

Definition 4.6. Let (ki)i≥1 and (`i)i≥1 be the computable sequences
of positive integers and let (δi)i≥1 be the computable sequence of positive
rational numbers less than 1 such that, for each i ≥ 1,

δi =
1

22i−2(i+ 1)!2
,

ki = least integer greater than

max

(
d6(i+ 2)e,− ln

(
δi

2(i+ 1)2

)
6(i+ 2)2

)
,

`i = kidlog(i+ 1)e+ d− log(δi)e.
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Definition 4.7. Refi maps a (p + 1)-sequence ~I = (I2, . . . , Ip+1) into

an (i+ 1)-sequence Refi(~I ) that we define recursively:

Initial step 0. Let ~I0 = (I0,2, . . . , I0,i+1) be an (i+1)-sequence where I0,2
is the leftmost dyadic subinterval of Ip+1 such that µ(I0,2) ≥ µ(Ip+1)/4.

Recursive step j + 1. Let ~Ij+1 be the (i+ 1)-sequence such that:

• Let L be the leftmost dyadic subinterval of Ij,i+1 such that

µ(L) ≥ µ(Ij,i+1)/4.

• Partition L into kidlog(i+ 1)e dyadic subintervals of equal measure

2−kidlog(i+1)eµ(L). For each such subinterval J2 of L, define the (i+1)-

sequence ~J = (J2, . . . , Ji+1).

• Let ~Ij+1 be the leftmost of the (i + 1)-sequences ~J considered above

such that D(ub( ~J ), b) ≤ 1/(i+ 2) for each base b ≤ i+ 1, where ub( ~J )

is such that xb(~Ij)ub( ~J ) = xb( ~J ).

Repeat the recursion until step n when all the following hold for every base
b ≤ i+ 1:

(a) |xb(~In)| > `i+1(i+ 3),

(b) D(xb(~In), b) ≤ 2/(i+ 2),

(c) D2`i(xb(
~In), b) > b−2`i−1.

Finally, let Refi(~I ) = ~In.

The following lemmas show that for every positive integer i, the func-
tion Refi is well defined and it is computable.

Lemma 4.8. There is always a suitable (i+ 1)-sequence ~J to be selected
in the recursive step of Definition 4.7.

Proof. Consider the recursive step j + 1 of Definition 4.7. Let S be the
union of the set of intervals Ji+1 over the 2kidlog(i+1)e (i + 1)-sequences ~J .

We have µ(L) ≥ µ(Ij,i+1)/4 and, as ~J and ~Ij are (i+ 1)-sequences,

µ(Ji+1) ≥
µ(J2)

2i−2(i+ 1)!
and µ(Ij,i+1) ≥

µ(Ij,2)

2i−2(i+ 1)!
.

Since the possibilities for J2 form a partition of L,

µ(S) ≥ µ(L)

2i−2(i+ 1)!
≥ µ(Ij,i+1)

2i(i+ 1)!
≥ µ(Ij,2)

22i−2(i+ 1)!2
= δiµ(Ij,2).

Let us say that an (i+1)-sequence ~J is not suitable if for some base b ≤ i+1,

D(ub( ~J ), b) > 1/(i+ 2).
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Let N be the subset of S defined as the union of the set of intervals Ji+1

which occur in (i+1)-sequences which are not suitable. Each ~J considered at
stage i+1 is such that for every base b ≤ i+1 each interval Jb is a subinterval
of Ij,b. By definition, |ub( ~J )| > ki for each b and ~J . By Lemma 2.7 with
t = i + 1, ε = 1/(i + 2), δ = δi/(i + 1) and k = ki, for each base b ≤ i + 1,
the subset of Ij,b consisting of all reals with base-b expansions starting with

xb(~Ij)ub( ~J ) for which D(ub( ~J ), b) > 1/(i+2) has measure less than δµ(Ij,b),
and hence less than δµ(Ij,2). Therefore,

µ(N) < (i+ 1)δµ(Ij,2) = δiµ(Ij,2) ≤ µ(S).

This proves that S is a proper superset of N , therefore, there is a suitable
(i+ 1)-sequence.

Lemma 4.9. The recursion in Definition 4.7 finishes for every input se-
quence ~I.

Proof. Using Lemma 4.3 or Corollary 4.5 the needed b-adic subinter-
vals with the appropriate measure and (i+ 1)-sequences can be found com-

putably. Lemma 4.8 ensures that a suitable ~J can always be found in each
recursive step. All the other tasks in the recursive step are clearly com-
putable. It remains to check that the ending conditions of the recursion are
eventually met. Let ub,j+1 be such that

xb(~Ij)ub,j+1 = xb(~Ij+1),

and vb be such that

xb(~I0) = xb(~I )vb.

Then 1 ≤ |ub,j | and

|ub,j | = |xb(~Ij)| − |xb(~Ij−1)| = − logb
µ(Ij,b)

µ(Ij−1,b)

= − logb

(
µ(Ij,b)

µ(Ij,2)

µ(Ij,2)

µ(Ij−1,i+1)

µ(Ij−1,i+1)

µ(Ij−1,b)

)
≤ − logb

(
1

2b−3b!

1

4 · 2kidlog(i+1)e
1

2i+1−b(i+ 1)!/b!

)
≤ − log

(
1

2i−2(i+ 1)!

1

4 · 2kidlog(i+1)e

)
≤ kidlog(i+ 1)e − log δi ≤ `i.

The recursive step establishes that D(ub,j , b) ≤ 1/(i + 2), and also that

for any k, xb(~Ik) = xb(~I )vb
∏

j≤k ub,j . Notice that, in each of the three
conditions (a), (b) and (c), the right side of the inequality is fixed. For con-

dition (a), |xb( ~In)| = |xb(~I )vb
∏

j≤n ub,j | is strictly increasing in n, so it is
greater than the required lower bound for sufficiently large n. For condi-
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tion (b), observe that

D(xb( ~In), b) = D
(
xb(~I )vb

∏
j≤n

ub,j , b
)
≤ |xb(~I )vb|/|xb(~In)|+D

(∏
j≤n

ub,j , b
)

≤ |xb(~I )vb|/|xb(~In)|+ 1/(i+ 2).

On the right hand side, the first term approaches 0 for large n, so the entire
expression is less than 2/(i + 2) for sufficiently large n. For condition (c),
observe that the recursive step ensures that ub,j is never all zeros. So, a se-
quence of 2`i zeros does not occur in

∏
j≤n ub,j . By definition,

D2`i

(
xb(~I )vb

∏
j≤n

ub,j , b
)
≥
∣∣∣∣occ(xb(~I )vb

∏
j≤n ub,j , 0

2`i)

|xb(~I )vb
∏

j≤n ub,j |
− 1

b2`i

∣∣∣∣.
Since occ(xb(~I )vb

∏
j≤n ub,j , 0

2`i) is bounded by a constant, for sufficiently

large n, the discrepancy D2`i(xb(
~I )vb

∏
j≤n ub,j , b) is arbitrarily close to

b−2`i .

Lemma 4.10. Let ~I be an arbitrary (p+ 1)-sequence, i ≥ 1 be an integer

and ~R be Refi(~I ). For every base b ≤ min(i, p) + 1,

(1) R2 ⊆ Ip+1,

(2) D(xb(~R), b) ≤ 2/(i+ 2),

(3) D2`i(xb(
~R), b) > b−2`i−1,

(4) |xb(~R)| > `i+1(i+ 3),

(5) for each ` such that |xb(~I )| ≤ ` ≤ |xb(~R)|,

D(xb(~R)�`, b) ≤ D(xb(~I ), b) + d− log(δp)e/|xb(~I )|
+ 1/(i+ 2) + `i/|xb(~I )|.

Proof. As in the proof of Lemma 4.9, let ub,j+1 be such that

xb(~Ij)ub,j+1 = xb(~Ij+1),

and let vb be such that

xb(~I0) = xb(~I )vb.

Then 1 ≤ |ub,j | ≤ `i, D(ub,j , b) ≤ 1/(i + 2), and for any k we find that

xb(~Ik) = xb(~I )vb
∏

j≤k ub,j .

Fix a base b. Point (1) follows by induction on the recursive steps in

the definition of Refi(~I ), since each subsequent interval is contained in the
previous one. Points (2), (3) and (4) follow from the termination condition
in that recursion. For (5), use the above definition of vb and the parameter
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δp (see Definition 4.6):

|vb| = |xb(~I0)| − |xb(~I )| = − logb
µ(I0,b)

µ(Ib)

= − logb

(
µ(I0,b)

µ(I0,2)

µ(I0,2)

µ(Ip+1)

µ(Ip+1)

µ(Ib)

)
= − logb

(
1

2b−3b!

1

4

1

2p+1−b(p+ 1)!/b!

)
= − log

1

2p(p+ 1)!

≤ − log δp ≤ d− log(δp)e.
Then, for each m, D(

∏
j≤m ub,j , b) ≤ 1/(i+ 2) and

D
(
xb(~I )vb

∏
j≤m

ub,j , b
)
≤ D(xb(~I ), b) + d− log(δp)e/|xb(~I )|+ 1/(i+ 2).

Finally, fix ` and let m and `′ be such that (xb(~I )vb
∏

j≤m ub,j)(ub,m+1�`′) =

xb(~R)�`. Then

D(xb(~R)�`, b) = D
((
xb(~I )vb

∏
j≤m

ub,j

)
(ub,m+1�`

′), b
)

≤ D(xb(~I ), b) + d− log(δp)e/|xb(~I )|+ 1/(i+ 2) + |ub,m+1|/|xb(~I )|
≤ D(xb(~I ), b) + d− log(δp)e/|xb(~I )|+ 1/(i+ 2) + `i/|xb(~I )|.

Definition 4.11. We define the function LimRef that takes infinite
sequences of positive integers to real numbers in the unit interval, and

LimRef(f) is the unique element in

∞⋂
j=1

(~Rj)2,

where ~R0 = ([0, 1)) and ~Rj+1 = Reffj+1
(~Rj).

That is, LimRef(f) is the real obtained by iterating applications of
Refi where i is determined by the positive integers in f . By point (1) of
Lemma 4.10, for each j ≥ 1, LimRef(f) is inside every interval in every

(fj + 1)-sequence ~Rj , and therefore, for each base b ≤ fj + 1, xb(~Rj) is a
prefix of (LimRef(f))b.

Lemma 4.12. Let f be a sequence of positive integers such that the sub-
sequence of f ’s first occurrences is an enumeration of N in increasing order
and no positive integer occurs infinitely often in f . Then LimRef(f) is an
absolutely normal number.

Proof. Fix a base b and ε > 0. We prove that D((LimRef(f))b�`, b) ≤ ε
for each sufficiently large `. Let j0 be large enough such that fj>max(b, d8/εe)
for every j ≥ j0. Consider ` > |xb(~Rj0)|, and noticing that (|xb(~Rj)|)j∈N is an
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increasing sequence, let j be such that |xb(~Rj)| ≤ ` < |xb(~Rj+1)|. Observe

that (LimRef(f))b�` = xb(~Rj+1)�`. Now note that 1/(fj + 2) ≤ ε/8 and

apply point (2) of Lemma 4.10 to ~Rj = Reffj (
~Rj−1) to conclude that

D(xb(~Rj), b) ≤ 2/(fj + 2) ≤ ε/4.
By hypothesis, fj , fj+1 > b > 1, so let j1 < j be such that fj1 = fj − 1 and
j2 < j + 1 be such that fj2 = fj+1 − 1. By point (4) of Lemma 4.10,

|xb(~Rj)| ≥ |xb(~Rj1)| > `fj (fj + 2) > d− log(δfj )e(fj + 2),

and so
d− log(δfj )e/|xb(~Rj)| < 1/(fj + 2) ≤ ε/8.

Similarly,
|xb(~Rj)| ≥ |xb(~Rj2)| > `fj+1

(fj+1 + 2),

hence
`fj+1

/|xb(~Rj)| < 1/(fj+1 + 2) ≤ ε/8.

Now consider Lemma 4.10 again, but applied to ~Rj+1 = Reffj+1
(~Rj). By

point (5),

D(xb(~Rj+1)�`, b) ≤ D(xb(~Rj), b) + d− log(δfj )e/|xb(~Rj)|

+ 1/(fj + 2) + `fj+1
/|xb(~Rj)|.

By the bounds established above, each term on the right side of the inequal-
ity is at most ε/4. So,

D((LimRef(f))b�`, b) = D(xb(~Rj+1)�`, b) ≤ ε.

By the choice of j0, j, j1, j2 the sequences ~Rj0 ,
~Rj , ~Rj1 ,

~Rj2 contain a b-adic
interval, hence the function xb is defined on them.

Lemma 4.13. Let f be a sequence of positive integers such that all but
finitely many occur infinitely often in f . Then LimRef(f) is absolutely ab-
normal.

Proof. Fix a base b such that b appears infinitely often in f . By the
conditions imposed on f , (LimRef(f))b+1 has infinitely many prefixes of

the form xb+1(Refb(~I )) for some ~I. By point (3) of Lemma 4.10,

D2`b(xb+1(Refb(~I )), b+ 1) > (b+ 1)−2`b−1.

Hence, for infinitely many prefixes of (LimRef(f))b+1 their discrepancy
to blocks of length 2`b in base b + 1 is bounded away from 0. Then, by
Lemma 2.4, LimRef(f) is not normal to base b + 1. Since all but finitely
many bases can be chosen as b + 1, LimRef(f) is not normal to all but
finitely many bases. By Lemma 2.2 it is absolutely abnormal.

We are ready to define the second reduction.
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Definition 4.14. The second reduction maps the index for a com-
putable infinite sequence of integers f to the index for the infinite binary
sequence (LimRef(f))2.

Since LimRef(f) is uniformly computable from the input f , the second
reduction is computable.

4.3. Proof of the main theorem and corollaries

Proof of Theorem 3.2. The needed reduction is the composition of the
first reduction, given in Definition 4.1, and the second reduction, given in
Definition 4.14. Apply Lemma 4.2 for the first reduction and Lemma 4.12 for
the second reduction to obtain the first implication in Theorem 3.2. Apply
Lemma 4.2 for the first reduction and Lemma 4.13 for the second reduction
to obtain the second implication.

Proof of Corollary 3.3. Lemma 3.1 states that the corresponding sets
are in the Π0

3 and Π0
3 classes. The hardness result in the effective case is

immediate from Theorem 3.2 by relativization. We have the reduction from
a Π0

3 sentence in first order arithmetic to an appropriate index for a com-
putable real number. By relativization, we obtain a reduction from a Π0

3

statement about a real number X to an appropriate index of a real number
which is computable from X.

For the general case, recall that to prove hardness of subsets of reals
at levels in the Borel hierarchy it is sufficient to consider subsets of Baire
space NN, because there is a continuous function from the real numbers to NN

that preserves Π0
3 definability. Baire space admits a syntactic representation

of the levels in the Borel hierarchy in arithmetical terms, namely a subset
of NN can be defined by a Π0

3 formula with a fixed parameter P ∈ NN.
The analysis given for the effective case, but now relativized to X and P ,
applies.

Proof of Corollary 3.4. Observe that normality in all bases implies nor-
mality in each base. And absolute abnormality is lack of normality in every
base. Thus, the same reductions used in the proof of Corollary 3.3 also prove
the completeness results for just one fixed base.

Acknowledgements. This research received support from CONICET
and Agencia Nacional de Promoción Cient́ıfica y Tecnológica, Argentina,
from the National Science Foundation, USA, under Grant No. DMS-1001551,
and from the Simons Foundation. V. Becher and P. A. Heiber are members of
the Laboratoire International Associé INFINIS, CONICET/Universidad de
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