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Abstract

We prove that the two quantifier theory of the Turing degrees with order, join
and jump is undecidable.

1 Introduction

Our interest here is in the structureD of all the Turing degrees but much of the motivation
and setting is shared by work on other degree structures as well. In particular, Miller,
Nies and Shore [2004] provides an undecidability result for the r.e. degrees R at the two
quantifier level with added function symbols as we do here for D. To set the stage, we
begin then with an adaptation of the introduction from that paper including statements
of some of its results and so discuss R, the r.e. degrees and D(≤ 0′), the degrees below
0′ as well.

A major theme in the study of degree structures of all types has been the question
of the decidability or undecidability of their theories. This is a natural and fundamental
question that is an important goal in the analysis of these structures. It also serves as
a guide and organizational principle for the development of construction techniques and
algebraic information about the structures. A decision procedure implies (and requires) a
full understanding and control of the first order properties of a structure. Undecidability
results typically require and imply some measure of complexity and coding in the struc-
ture. Once a structure has been proven undecidable, it is natural to try to determine
both the extent and source of the complexity. On the one hand, one wants to determine
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the degree of the theory. On the other hand, one strives to find the dividing line be-
tween decidability and undecidability in terms of fragments of the theory. The first has
frequently brought with it considerable information about second order properties such
as definability and automorphisms. The second requires the most algebraic information
and development of construction techniques.

For D and D(≤ 0′) the results came fairly early. The first paper on the structure D of
the Turing degrees as a whole, Kleene-Post [1954], developed the finite extension method
(essentially Cohen forcing for one quantifier formulas of arithmetic) and proved that all
finite partial orderings can be embedded in both D and D(≤ 0′). As these structures are
partial orderings, this suffices to show that the one quantifier (∃) theories are decidable.
(An existential sentence is true in either structure if and only if it is consistent with the
theory of partial orders, or equivalently, if there is a partial order with a domain of size
the number of variables in the formula which satisfies the formula.)

Once the embedding problem is settled, the next level of algebraic questions about the
structures concern extension of embeddings. The first example here is density (or, from
the other side minimal covers). A long development of construction techniques building
on Spector’s original construction [1956] of a minimal degree, essentially by forcing with
recursive trees, lead to Lachlan’s [1968] result that every countable distributive lattice
is isomorphic to an initial segment of D. This coding of distributive lattices is sufficient
to get the undecidability of the theory as Lachlan [1968] notes. Combining these initial
segment techniques with simultaneous control of the join and Spector’s [1956] exact pair
theorem, Simpson [1977] showed that the theory of D is recursively isomorphic to Th2(N),
true second order arithmetic.

Finding the dividing line between decidability and undecidability required Lerman’s
[1971] result that every finite lattice (not just the distributive ones) is isomorphic to an
initial segment of D. On one hand, combining this with the finite extension method
solved the extension of embedding problem in such a way that it gave the decidability of
the two quantifier (∀∃) theory of D (Shore [1978] and Lerman [see 1983, Appendix A]).
(By the extension of embedding problem we mean determining for which partial orders
X ⊆ Y does every embedding of X into D have an extension to one of Y .) The ability
to code all finite lattices also sufficed for Schmerl (see Lerman [1983, Appendix A]) to
prove that the three quantifier (∀∃∀) theory of D is undecidable.

A similar analysis ofD(≤ 0′) was then carried out. First came a significant elaboration
of the construction techniques to get enough initial segments results below 0′ to give
undecidability (Epstein [1979] and Lerman). Lerman then proved the full analog that
every finite (even recursive) lattice is isomorphic to an initial segment of D(≤ 0′) (Lerman
[1983, XII]). This immediately gives the undecidability of the three quantifier theory.
Then these results were extended and combined with extension of embedding results
below an arbitrary r.e. degree (Lerman and Shore [1988]) to get the decidability of the
two quantifier theory. They were also used to show (Shore [1981]) that the theory of
D(≤ 0′) is recursively isomorphic to true first order arithmetic.
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The road has been much longer for the analysis of the r.e. degrees, R. It began
with the finite injury (or 0′) priority method of Friedberg [1957] and Muchnik [1956]
that produced incomparable r.e. degrees and so an embedding of the simplest partial
(nonlinear) order. This method sufficed to embed all finite (even countable) partial
orderings (Sacks [1963]) and so decide the one quantifier theory of R in the same way
that Kleene and Post’s work decided that of D and D(≤ 0′). As the r.e. degrees are dense
(by the infinite injury (or 0′′) methods of Sacks [1964]), the next steps in the analysis
could not follow the path laid out for D. Many years of development of construction
techniques and algebraic information ensued. Lachlan’s monster (or 0′′′ injury) methods
were eventually used by Harrington and Shelah [1982] to prove thatR is undecidable. The
degree of its theory, as by now one should expect, is also that of true first order arithmetic
(Harrington and Slaman; Slaman and Woodin; Nies, Shore and Slaman [1998]).

This leaves us with determining the boundary line between decidability and undecid-
ability for R. Once again, a long hiatus and much work on other developments led to
the undecidability of the three quantifier theory by Lempp, Nies and Slaman [1998]. The
extension of embedding problem was solved by Slaman and Soare [2001] but the question
of the decidability of the two quantifier theory of R remains open. A major obstacle
is the lattice embedding problem of determining which finite lattices can be embedded
in R. Despite some forty years of effort by many researchers on both embedding and
nonembedding results, this question is still unsolved. The best result to date is Lerman
[2000] which shows that the question for an important class of lattices is of degree at most
0′′. Even if the lattice embedding problem is shown to be decidable, there are further
difficulties related to Lachlan’s [1966] nondiamond result that there is no embedding of
the four element Boolean algebra into R that preserves both 0 and 1.

The situation for these three degree structures is summarized in the following table:

R D D(≤ 0′)
∃(≤) Dec Dec Dec
∀∃(≤) ? Dec Dec
∀∃∀(≤) Undec Undec Undec
Th(≤) Th(N) Th2(N) Th(N)

Thus we remain a long way from the decidability of the two quantifier theory of R.
On the other hand, the methods used to prove undecidability of other degree structures,
interpretation of theories with simple fragments known to be undecidable, cannot work
for the two quantifier theory ofR with just≤T , or even any extension by relation symbols,
since the most we can code into this fragment is the validity (perhaps in all finite models)
of an ∀∃ sentence in a finite relational language but this problem is always decidable.
(The point here is that, since the language is relational, any such sentence with n variables
is satisfiable if and only if it is satisfiable in some structure of size at most n. As there are
only finitely many such structures, this question is decidable. The basic result is classical
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(Bernays and Schönfikel [1928] and Ramsey [1930]). Its application to interpretations in
structures such as R is pointed out in Shore [1999, p. 179].)

The only hope for an undecidability result at the two quantifier level for R then is to
add function symbols. One would then try to interpret some theory with function symbols
or, more directly, to code register machines. (The coding of register machines is at the
base of much of the work on undecidability of various severely restricted quantification
classes of formulas as in Börger, Grädel and Gurevich [1997].) This raises the natural
question about the boundary between decidability and undecidability for all these degree
structures: What happens when we add additional function symbols to the language?

In all these settings the most natural one to be considered is the join operator ∨.
As the structures remain uniformly locally finite the arguments for the unlikeliness of
interpretations of theories providing undecidability remain in place. (The closure of
any finite set is finite with size bounded by a fixed recursive function of the cardinality
of the starting set and so cannot, on its own, be used to generate the infinite (or at
least unbounded) structures need for coding even register machines.) Indeed, for all the
degrees, the ∀∃ theory of this structure, D(≤,∨), is decidable by Jockusch and Slaman
[1993].

The next thing to try in terms of the known structural work on R is the infimum
operator ∧. This has the advantage that finitely generated substructures can be infinite
(Lerman, Shore and Soare [1984]). The obvious problem with this approach is that not
every pair of r.e. degrees has an infimum and so ∧ is not a total function on R as is
required. We can, of course, consider total extensions of the partial infimum relation
but would not want the undecidability to be an artifact of our (perhaps perverse) choice
of extension. The solution of Miller, Nies and Shore is to prove undecidability in a
sufficiently uniform way so that the proof is independent of the choice of extension.

Theorem 1.1 (Miller, Nies and Shore [2004]) For any total extension ∧ of the partial
infimum relation on R, the two quantifier (∀∃) theory of R(≤,∨,∧) is undecidable.

They noted that the coding methods used for this result can be applied to both D
and D(≤ 0′) along with known initial segment constructions to get similar results.

Corollary 1.2 (Miller, Nies and Shore [2004]) For any total extension ∧ of the partial
infimum relation on D (D(≤ 0′)), the two quantifier (∀∃) theory of D (D(≤ 0′)) with ≤,
∨ and ∧ is undecidable.

In the setting of the degrees as a whole, however, there is a second natural operator to
consider adding to our language, the jump operator. The jump is definable in D by Shore
and Slaman [1999] but the definition involves coding models of arithmetic and discussing
automorphisms. Its complexity is very high and so sheds no light on the boundary
between decidability and undecidability in D(≤,′ ), the degrees with jump which is our
topic here.
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Decidability results to date on the theory with the jump operator include the follow-
ing:

Theorem 1.3 (Jockusch and Soare, see Lerman [1983] III.4.21) The theory of D with
just ′ (no ≤) is decidable.

Theorem 1.4 (Hinman and Slaman [1991]): The ∃-theory of D(≤,′ ) is decidable.

Theorem 1.5 (Montalban [2003]): The ∃-theory of D(≤,∨,′ ) is decidable.

We show that Montalban’s decidability result is the best possible (actually, our result
was proven first so he provided the proof of sharpness for our result) and so solve problem
IV.7 (attributed to Jockusch) of Arslanov and Lempp [1999]:

Theorem 1.6 The ∀∃-theory of D(≤,∨,′ ) is undecidable.

Our route to undecidability is via the coding of register machines as in Miller, Nies
and Shore [2004]. We describe the machines and their coding in predicate logic in the
next section. Once we see how they are interpreted in predicate logic it will be clear that
our undecidability result would follow immediately from the existence of a ∆0 formula
with x free and additional free variables such that, as the additional variables range over
the degrees, the sets defined by the formula range over all countable subsets of D. This
result is provided by our main technical theorem.

Theorem 1.7 Given {yi|i ∈ ω} and {zj|j ∈ ω} disjoint countable sets of degrees, there
are g and h such that ∀i, j ∈ ω ( (yi ⊕ g)′ ≤T (yi ⊕ h)′ & (zj ⊕ g)′ �T (zj ⊕ h)′).

Corollary 1.8 If C is any countable set of degrees then it is uniformly ∆0-definable in
parameters, i.e. there is a single formula which defines every such C as the parameters
vary.

Proof. Choose any strict upper bound z for C. Let {yi} = {x < z : x ∈ C} and
{zj} = {x < z : x /∈ C}. Apply the theorem to get the degrees g and h. C is then
{x < z : (x ∨ g)′ ≤T (x ∨ h)′} and so our desired formula is x < w& (x∨ u)′ ≤T (x∨ v)′.
�

We prove this theorem in §3. In the final section we summarize the state of affairs
and point out some new problems suggested by our view of these matters.
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2 Coding Register Machines

In this section we will explain the algebraic aspects of our codings and derive the main
theorem, assuming these codings can be interpreted in D(≤,′ ). The next section will
provide the recursion theoretic arguments to show that the structures described here
can be realized in D(≤,′ ). For completeness, we reprise (with some small simplification
allowed by our construction here) the presentation of coding register machines in Miller,
Nies and Shore [2004] beginning with a standard description of the k-register machines of
Shepherdson and Sturgis [1963] and Minsky [1961] and their representation in predicate
logic as in Nerode and Shore [1997, III.8] or Börger, Grädel and Gurevich [1997, 2.1].

A k-register machine consists of k many storage locations called registers. Each
register contains a natural number. There are only two types of operations that these
machines can perform in implementing a program. First, they can increase the content
of any register by one and then proceed to the next instruction. Second, they can
check if any given register contains the number 0 or not. If so, they go on to the next
instruction. If not, they decrease the given register by one and can be told to proceed to
any instruction in the program. Formally, we define register machine programs and their
execution as follows:

A k-register machine program I is a finite sequence I1, . . . , It, It+1 of instructions
operating on a sequence of numbers x1, . . . , xk, where each instruction Im, for m ≤ t, is
of one of the following two forms:

(i) xi := xi + 1 (replace xi by xi + 1)

(ii) If xi 6= 0, then xi := xi− 1 and go to j. (If xi 6= 0, replace it by xi− 1 and proceed
to instruction Ij.)

It is assumed that after executing some instruction Im, the execution proceeds to
Im+1, the next instruction on the list, unless Im directs otherwise. The execution of such
a program proceeds in the obvious way on any input of values for x1, . . . , xk (the initial
content of the registers) to change the values of the xi and progress through the list of
instructions. The final instruction, It+1, is always a halt instruction. Thus, if It+1 is
ever reached, the execution terminates with the current values of the xi. In general, we
denote the assertion that an execution of the program I is at instruction Im with values
n1, . . . , nk of the variables by Im(n1, . . . , nk).

The standard translation of a register machine M describes the action of M by a
system of universal axioms in the language of one unary function s thought of as the
successor function on N. For technical reasons peculiar to our later coding, we want to
use distinct domains Di with least elements 0i. In our application here, these sets will
be of the form {q(n)

i |n ∈ ω} for arithmetically independent degrees qi. The successor
operators si will all be the jump operator. For now, we describe the axioms needed in
predicate logic with additional k-ary relations Pm corresponding to the instructions Im.

For each instruction Im, 1 ≤ m ≤ t, include an axiom of the appropriate form:
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(i) Pm(x1, . . . , xk) → Pm+1(x1, . . . , xi−1, si(xi), xi+1, . . . , xk).

(ii) Pm(x1, . . . , xi−1, 0, xi+1, . . . , xk) → Pm+1(x1, . . . , xi−1, 0, xi+1, . . . , xk)
∧ Pm(x1, . . . , xi−1, si(y), xi+1, . . . xk) → Pj(x1, . . . , xi−1, y, xi+1, . . . , xk).

(Note that being a successor is equivalent to being nonzero, i.e. not equal to qi which is
the 0i of Di.)

Let P (I) be the finite set of universal axioms corresponding in this translation to reg-
ister program I. It is easy to prove that, program I halts on input (n1, . . . , nk) if and only
if the sentence Fk(n1, . . . , nk) ≡ P1(s

n1(0), . . . snk(0)) → ∃x1, . . . ,∃xk[Pt+1(x1, . . . , xk)] is
a logical consequence of P (I). As it is a classical fact (Shepherdson and Sturgis [1963];
Minsky [1961]) that the halting problem for 2-register machine programs is r.e. complete,
it suffices to code all such models with binary predicates to get undecidability.

As usual for interpretations, we now want to provide formulas ∆i(~q, x), Πm(~q, x, y)
defining, for each choice of parameters ~q, sets Di (i = 1, 2) and binary relations Pm on
D1 ×D2 (1 ≤ m ≤ t+ 1). (Remember si will be interpreted as the jump operator.) We
take q1 and q2 to be the interpretations of 0 in D1 and D2 respectively. We now interpret
our formulas P (I) → F (n1, . . . , nk) in the usual way. We relativize the quantifiers to
the appropriate domain, i.e. ∃xi(. . . ) becomes ∃xi(∆i(~q, xi)∧ . . . ) and ∀xi(. . . ) becomes
∀xi(∆i(~q, xi) → . . . ). We then replace occurrences of si(xi) by x′i and ones of Pm(x1, x2)
by Πm(~q, x1, x2). We indicate this translation by ∗. We also need a correctness condition
Θ that says that qi ∈ Di and the jump is a function on the Di: ∆1(~q, q1) ∧ ∆2(~q, q2)∧
∀x1(∆1(~q, x1) → ∆1(~q, x

′
1) ∧ ∀x2(∆2(~q, x2) → ∆2(~q, x

′
2)). The class of sentences of

R(≤,∨,∧) that we want will then be those of the form ∀~q[Θ → (P (I)∗ → F ∗
2 )] where I

ranges over programs for 2-register machines.

It is clear that to get these sentences to be ∀∃ ones it is sufficient to get quantifier
free definitions (∆i and Πm) of the domains and relations (and the worst that would
work would be equivalent Σ1 and Π1 definitions). For the undecidability it suffices,

of course, for the Di to include ones isomorphic to {q(n)
i } and the relations to include

all binary relations on the D1 × D2 as the parameters vary. If we take q1 and q2 to
be arithmetically independent, i.e. q

(m)
i ≤T q

(n1)
1 ∨ q

(n2)
2 ⇔ m ≤ ni then we can code

any relation Rm ⊆ D1 × D2 in a ∆0 way from the Dj and one additional countable

set of degrees Tm = {q(n1)
1 ∨ q

(n2)
2 : 〈n1, n2〉 ∈ Rm} by Rm(x1, x2) ⇔ x1 ∈ D1 &x2 ∈

D2 &x
(n1)
1 ∨ x(n2)

2 ∈ Tm.

So to prove our ∀∃ undecidability result for D(≤,′ ) it suffices to be able to define
arbitrary countable subsets of D by a ∆0 formula in parameters. As we pointed out at
the end of the introduction, Theorem 1.7 provides this ∆0 formula.
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3 The Coding Theorem

We now prove our main technical result that says that by joining arbitrary given degrees
with degrees g and h of our choosing we can make the jumps of the results be comparable
or not as desired.

Theorem 1.7 Given {yi|i ∈ ω} and {zj|j ∈ ω} disjoint countable sets of degrees, there
are g and h such that ∀i, j ∈ ω ( (yi ⊕ g)′ ≤T (yi ⊕ h)′ & (zj ⊕ g)′ �T (zj ⊕ h)′).

We fix representatives Yi and Zj (i, j ∈ ω) of the degrees yi and zj, respectively
and construct sets G and H such that for every i, j ∈ ω the following requirements are
satisfied:

• Ci : (Yi ⊕G)′ ≤T (Yi ⊕H)′.

• Dj : (Zj ⊕G)′ �T (Zj ⊕H)′.

Our construction will be a forcing argument. Our coding procedure for the Ci re-
quirements relies on the fact that, for any A and B, A′ ∈ ΠB

2 ⇒ A′ ≤T B′ (Theorem
4.3 of Soare [1987, IV] relativized to B). Thus our plan for satisfying Ci is to make sure
that, for almost every n, if (we force) n ∈ (Yi ⊕ G)′ then we immediately force some
canonically chosen Π0

2 fact (the h(n)th one for some recursive h) about Yi⊕H to be true.
On the other hand, if (we force) n /∈ (Yi ⊕G) we want to immediately force this fact to
be false. Thus h provides a one-one reduction from A′ to the complete ΠB

2 set and so
shows that A′ ∈ ΠB

2 . We make a list of the corresponding subrequirements Ci,n where h
is some specific recursive function that we will define later:

• Ci,n : n ∈ (Yi ⊕G)′ ⇔ h(n) /∈ (Yi ⊕H)′′.

To satisfy Ci we must satisfy Ci,n for almost every n.

Our diagonalization strategy to satisfy the requirements Dj is based on the fact that
if A′ ≤T B′ then ΣA

1 ∈ ∆B
2 and so ΠA

2 ∈ ΠB
2 . Thus there is a ∆0 formula θ such that if

(Zj ⊕G)′ ≤T (Zj ⊕H)′ then there is a recursive function fk such that n /∈ (Zj ⊕G)′′ ⇔
∀u∃vθ(fk(n), u, v, Zj, H). (Here we have listed all the recursive functions as fk, k ∈ ω.)
Our plan is then for each k (i.e. for each recursive function) to choose an n and, at some
stage s of the construction, meet the following subrequirement:

• Dj,k : ∃n¬[n /∈ (Zj ⊕G)′′ ⇔ ∀u∃vθ(fk(n), u, v, Zj, H)].

We will accomplish this by arranging that either we force ∃u∀v¬θ(fk(n), u, v, Zj, H)

at stage s while immediately forcing the Π
Zj⊕G
2 fact that n /∈ (Zj ⊕ G)′′ to be true

or, at stage s we force ∀u∃vθ(fk(n), u, v, Zj, H) while immediately making the Σ
Zj⊕G
2
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fact n ∈ (Zj ⊕ G)′′ true. In either case, we violate the biconditional equivalent to
(Zj ⊕G)′ ≤T (Zj ⊕H) and meeting Dj,k for all k guarantees that (Zj ⊕G)′ �T (Zj ⊕H)
as required to satisfy Dj.

To give us immediate control (both positively and negatively) over a canonical list
of Π2 facts, we employ a variation of Kumabe-Slaman forcing (See Shore and Slaman
[1999]). That forcing builds a (not necessarily recursive) Turing functional Φ and allows
one to immediately guarantee that, for any set X, Φ(X) is a finite function (a canonical
ΣX⊕Φ

2 fact). We wish to extend this to allow such control over a recursive set of such
facts and to also allow “immediate forcing” of their negations. The first goal is achieved
by considering the action of Φ(X) on individual columns (of inputs) rather than all
possible inputs. The second is met by adding on an additional second set of restraints on
extensions that prevent the Σ2 fact of interest from ever being immediately forced (for
any witness). General genericity arguments will then guarantee that once we have done
this, the Π2 fact will immediately be forced.

We now supply the formal definitions of our forcing relation.

Definition 3.1 A Turing functional Φ is a set of sequences (x, y, σ) (the axioms) such
that x is a natural number (the input), y is either 0 or 1 (the output), and σ is a finite
binary sequence (the use). Furthermore, for all x, for all y1 and y2, and for all compatible
σ1 and σ2, if (x, y1, σ1) ∈ Φ and (x, y2, σ2) ∈ Φ, then y1 = y2 and σ1 = σ2. (This says
that only one axiom in Φ applies to a particular oracle on any particular input. It is
technically useful.)

We write Φ(x, σ) = y to indicate that there is an initial segment τ of σ, possibly equal
to σ, such that (x, y, τ) ∈ Φ. If X ⊆ ω, we write Φ(x,X) = y to indicate that there is an
` such that Φ(x,X � `) = y, and write Φ(X) for the function evaluated in this way. (Note
that the set of axioms need not be recursively enumerable so the functions computed are
partial recursive in the functional Φ plus the input set X.)

Definition 3.2 Conditions p in our forcing notion P are triples 〈Φp,Xp,Wp〉 where Φp

is a finite Turing functional and both Xp and Wp are finite collections of pairs 〈X,n〉
(or 〈W,n〉) consisting of one set and one natural number such that Xp ∩Wp = ∅. We
say that q extends p, q ≤ p, if

1. Φp ⊆ Φq &( [(x, y, σ) ∈ Φp & (x′, y′, σ′) ∈ Φq − Φp] → |σ| < |σ′|).

2. Xp ⊆ Xq &Wp ⊆ Wq .

3. (∀x, y, 〈X,n〉 ∈ Xp)(Φq(〈n, x〉, X) = y → Φp(〈n, x〉, X) = y).

If K is a filter on P then ΦK = ∪{Φp|p ∈ K} is a Turing functional. It is this
functional that will be our generic object Φ and about which we will be able to speak
in our forcing language. The second clause of (1) says that only longer axioms than the
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ones we already have can be added on by an extension. Clause (3) says that no new
axioms can be added which apply to the oracle X on any input in column n.

One can now give a common definition (in the setting of forcing in arithmetic) of
p  ψ for p ∈ P and ψ a sentence of arithmetic with bounded as well as unbounded
quantifiers and an added unary relation symbol Φ (for the generic Turing functional) as
well as ones Yi and Zj for our fixed choice of representatives of the degrees mentioned in
Theorem 1.7.

Definition 3.3 We define p  ψ by induction on formulas where we view ∀x as an
abbreviation for ¬∃x¬ and consider sentences with leading (unbounded) quantifiers (∃
and ∀) and negation symbols followed by a bounded formula.

1. If ψ is ∆0 (i.e. has only bounded quantifiers) then p  ψ if and only if ψ(ΦK) is
true for every filter K on P containing p. (Thus if ψ and ψ′ are logically equivalent
∆0 formulas then p  ψ ⇔ p  ψ′.)

2. p  ∃nψ(n) if and only if there is an n ∈ ω such that p  ψ(n).

3. p  ¬ψ if and only if no q ≤ p forces ψ.

We say that a filter K on P is 1-generic if for every ∆0 formula ψ(x) there is a p ∈ K
such that either p  ∃xψ(x) or p  ¬∃xψ(x) (or equivalently, p  ∀x¬ψ(x)).

Clause (3) of Definition 3.2 is the key to making our canonical Π2 facts false as
putting 〈X,n〉 into Xp immediately forces Φ(X) � ω[n] to be finite. The restriction
that Xp ∩Wp = ∅ means that once a pair 〈W,n〉 has gone into Wp then it can never
go into Xp and so, if Φ is sufficiently generic (even 1-generic) Φ(W ) will be total on
ω[n]. Thus we see that our canonical ΠX⊕Φ

2 facts can be taken to be that Φ(X) is
total on ω[n]. Putting 〈X,n〉 into Xp will immediately force this sentence to be false
while putting it into Wp will make it true as long as K is at least 1-generic. In the
terminology of the subrequirements Ci,n this corresponds to choosing a recursive h such
that h(n) /∈ (X ⊕ Φ)′′ ⇔ ∀x∃y(Φ(〈n, x〉, X) = y) for every Φ and X.

We now list some of the basic facts about this forcing relation. Key among them
are that forcing for bounded sentences is recursive (in the set parameters) and that, if p
belongs to a 1-generic filter K and p  Θ(Φ), where Θ is Σ2 or Π2, then Θ(ΦK) holds.
These facts allow us to control the forcing relation when needed and guarantee that
forcing the sentences relevant to our requirements makes them true of the functionals
associated with the 1-genreic filters that we construct.

Remark 3.4 If ψ is ∆0 and K is a filter on P then we have the following facts:

1. p  ∃uψ(u,Φ) ⇒ ∃q ≤ p∃u[(Φq, ∅, ∅)  ψ(u,Φ)] since some initial segment Φq

of any ΦK with p ∈ K suffices to guarantee the truth of the ∆0 sentence. Of
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course, if p ∈ K then ∃xψ(x,ΦK) is true. Conversely, if ∃xψ(x,ΦK) is true then
∃p ∈ P(p  ∃xψ(x,Φ)) for the same reason and the fact that the definition of the
forcing order guarantees that once a use σ is included in an axiom of Φ then no
axioms (with codes) smaller than σ can ever be inserted.

2. (Φq, ∅, ∅)  ψ(u,Φ) is a uniformly recursive relation in q, u, ψ,Φ and the Yi and
Zj appearing in ψ as the truth of ψ(u,ΦK) depends only on initial segments of ΦK

(and the Yi and Zj). We abbreviate this relation as Φq  ψ(u,Φ).

3. If p  ∀uψ(u,Φ) then [(Φp,Xp, ∅)  ∀uψ(u,Φ)] as otherwise there would be a
u ∈ ω and q ≤ (Φp,Xp, ∅) such that q  ¬ψ(u,Φ) and so a q′ ≤ q such that
(Φq′ , ∅, ∅)  ¬ψ(u,Φ) but then (Φq′ ,Xp,Wp) extends p but also forces ¬ψ(u,Φ) for
a contradiction.

4. If p  ∀uψ(u,Φ) and p ∈ K then ∀uψ(u,ΦK) as otherwise there would be a u
such that ¬ψ(u,ΦK) and so a q ∈ K such that q  ¬ψ(u,Φ) contradicting the
compatibility required by p, q ∈ K and the definition of forcing. Conversely, if
K is 1-generic and ∀uψ(u,ΦK) then ∃p ∈ K(p  ∀uψ(u,Φ)) as otherwise there
would be a q ∈ K such that q  ∃u¬ψ(u,Φ) and so ∃u¬ψ(u,ΦK) would hold for a
contradiction.

5. If p  ∃x∀yψ(x, y,Φ) and p ∈ K then ∃x∀yψ(x, y,ΦK) by the definition of forc-
ing and (4). Similarly, if K is 1-generic, p ∈ K and p  ∀x∃yψ(x, y,Φ) then
∀x∃yψ(x, y,ΦK) as otherwise there would be an x such that ¬∃yψ(x, y,ΦK), and
so (by 4) a q ∈ K such that q  ¬∃yψ(x, y,Φ). Again the compatibility of p and
q gives us an r extending both for a contradiction (as r ≤ q, r  ∃x¬∃yψ(x, y,Φ)
but as r ≤ p, this contradicts the assumption that p  ∀x∃yψ(x, y,Φ).

We will build G and H to be the Turing functionals corresponding to two 1-generic
filters K and L for this forcing and to satisfy a specific list of other conditions by building
two sequences ps, qs such that ∪Φps = ΦK = G and ∪Φqs = ΦL = H. The requirements
that we have to satisfy in addition to those for 1-genericity are ones to guarantee that Ci

and Dj are true of G and H.

As described above, our plans with our now known list of canonical Π2 facts are as
follows. To satisfy Ci we make sure that, for almost every n, if n ∈ (Yi ⊕ G)′ then we
put 〈Yi, n〉 into Wqm for some m while if n /∈ (Yi ⊕ G)′ we put it into Xqm for some
m. In the first case, this makes h(n) /∈ (Yi ⊕ H)′′, indeed dom ΦL(Yi) � ω[n] = ω[n] for
any 1-generic L containing q. In the second case, this makes dom ΦL(Yi) � ω[n] finite
and so h(n) ∈ (Yi ⊕H)′′. Thus, if for almost all n we meet the requirements Ci,n, then
(Yi ⊕G)′ ∈ ΠYi⊕H

2 and (Yi ⊕G)′ ≤T (Yi ⊕H)′ as required.

To satisfy Dj, our plan is, for each k, to choose an n such that n /∈ (Zj ⊕ G)′′ ⇔
(G(Zj) � ω[n] is total) and, at some stage s of the construction, meet the subrequirement
Dj,k that ¬[n /∈ (Zj ⊕ G)′′ ⇔ ∀u∃vθ(fk(n), u, v, Zj, H)], i.e. ¬[G(Zj) � ω[n] is total ⇔
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∀u∃vθ(fk(n), u, v, Zj, H)] by arranging that either qs  ∃u∀v¬θ(fk(n), u, v, Zj,Φ) while
〈Zj, n〉 ∈ Wps which guarantees thatG(Zj) � ω[n] is total; or qs  ∀u∃vθ(fk(n), u, v, Zj,Φ)
while 〈Zj, n〉 ∈ Xps which guarantees that G(Zj) � ω[n] is finite. In either case we violate
the biconditional equivalent to (Zj ⊕G)′ ≤T (Zj ⊕H)′. Meeting Dj,k for all k guarantees
that (Zj ⊕G)′ �T (Zj ⊕H) as required. We now give the details of the construction.

Construction: We make an ω-list of the subrequirements Ci,n, Dj,k described above as
well as others Pm to decide the one quantifier sentences ∃wψm about G and H. We
begin at stage 0 with the empty conditions p0 = q0 = 〈∅, ∅, ∅〉. Suppose we are at stage
s + 1 with ps, qs defined. We let ti be the least s at which Yi is mentioned in one of the
conditions, i.e. 〈Yi,m〉 ∈ Xps ∪Wps ∪Xqs ∪Wqs for some m. Our action depends on the
requirement assigned to s, i.e. the sth one on our list.

Pm : If there is a finite Φ′ ⊇ Φps (consistent with ps, i.e. (Φ′,Xps ,Wps) ≤ ps) and a w
such that 〈Φ′,Xps ,Wps〉  ψm(w,Φ) then we choose one and set ps+1 = 〈Φ′,Xps ,Wps〉.
If not we let ps+1 = ps. We then do the same for H to define qs+1 from qs.

Ci,n : If 〈Yi, n〉 is already on either list in qs let ps+1 = ps and qs+1 = qs. Otherwise, ask
if there is a finite Φ′ ⊇ Φps (consistent with ps) such that 〈Φ′,Xps ,Wps〉  n ∈ (Yi⊕Φ)′.
If so, choose one and let ps+1 = 〈Φ′,Xps ,Wps〉 and qs+1 = 〈qs,Xqs ,Wqs ∪ {〈Yi, n〉}〉. If
not, let ps+1 = ps and qs+1 = 〈Φqs ,Xqs ∪ {〈Yi, n〉},Wqs〉.

Dj,k : Choose an n such that 〈Zj, n〉 does not appear on either list in ps. Ask if
there is a u and q′ ≤ qs (which by Remark 3.4 can be to assumed to have Wq′ = Wqs)
such that q′  ∀v¬θ(fk(n), u, v, Zj,Φ) and a p′ ≤ ps (which again by Remark 3.4 can be
assumed to have Wp′ = Wps) so that for any m and any ti ≤ s such that Yi ≤T Zj and
〈Yi,m〉 ∈ Xq′ −Xqti

we have that p′  m /∈ (Yi ⊕ Φ)′.

If not (Π2 outcome), then we let ps+1 = 〈Φps ,Xps ∪ {〈Zj, n〉},Wps〉 and qs+1 = qs.

If there are such u, q′ and p′ (Σ2 outcome) then we claim (and will verify in Lemma
3.8 below) that we can choose such a q′ with no 〈Yi, l〉 ∈ Xq′ −Xqs with Yi �T Zj and
a p′ for which 〈Zj, n〉 /∈ Xp′ . We choose such and set ps+1 = 〈Φp′ ,Xp′ ,Wp′ ∪ {〈Zj, n〉}〉
and qs+1 = q′.

Verifications: It is clear that there are no difficulties carrying out these instructions
when the requirement being considered is Pm or Ci,n. Moreover, it is also clear that, in
the case of Pm, we have guaranteed that the Σ1 formula is forced at s + 1 if possible
and otherwise no extension forces it. Thus K and L are 1-generic. Similarly, in the
case of Ci,n, as long as from some stage t onward no actions other than for Ci,m put any
〈Yi,m〉 on any list in qs without our forcing the corresponding outcome for m ∈ (Yi⊕G)′,
then we satisfy Ci. In fact, our actions guarantee a bit more. If 〈Yi,m〉 is put into
Xqs at s ≥ ti (by Ci,m or some Dj,k acting for its Σ2 outcome as described above) then
ps+1  m /∈ (Yi ⊕ Φ)′ as required; and no action other than for Ci,m can put 〈Yi,m〉 into
Wqs for s ≥ ti. Thus we are left with analyzing the way we decide the Π2 questions for
Dj,k at sj,k.
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The simpler case is the Π2 outcome. Here we only have to show that, for each
u, when we consider the requirement Pm for the formula ∃vθ(fk(n), u, v, Zj,Φ) for H
at s > sj,k that we force the Σ1 outcome. If not, then by our construction, qs 
∀v¬θ(fk(n), u, v, Zj,Φ) and qs ≤ qsj,k

. We now claim that if 〈Yi,m〉 ∈ Xqs −Xqti
then

ps  m /∈ (Yi ⊕ Φ)′ which would put us in the Σ2 outcome for a contradiction. To verify
the claim consider how 〈Yi,m〉 could have entered Xqs . No action for Pm adds anything
to either list. Action for Ch,l adds at most 〈Yh, l〉 to the X list but only when it already
forces l /∈ (Yh ⊕ Φ)′ (for G) as required. Finally, by the claim in the Σ2 case of the
construction (Lemma 3.8 below) action for some Dh,l at a stage t after ti (and before s)
puts 〈Yi,m〉 into Xqs only when it also makes pt+1  m /∈ (Yi ⊕ Φ)′ as required.

The Σ2 case requires a deeper analysis of the forcing relation along the lines of Shore
and Slaman [1999] albeit somewhat more elaborate combinatorially. The idea here (as in
Shore and Slaman [1999]) is that if there is a q′ ≤ q such that q′  ∀v¬θ(fk(n), u, v, Zj,Φ)
then, first, it can be taken to be of the form (Φ′,X′,Wq). Next, by the basic properties
of forcing, no extension q′′ = (Φ′′,X′′,Wq) of q′ forces ∃vθ(fk(n), u, v, Zj,Φ) so, if for
some m, some Φ′′ ⊇ Φ′ makes θ(fk(n), u,m, Zj, H) true then it must be incompatible
with the conditions imposed by X′, i.e. some axiom in Φ′′ − Φ′ with input in column e
applies to an Xi with 〈Xi, e〉 ∈ X′. We can form a tree of approximations to such an X′

by considering those sequences 〈σl, sl〉 such that any such Φ′′ has an axiom compatible
with one of the 〈σl, sl〉. Now we must also associate with any such q′ a condition p′ ≤ p
that forces m /∈ (Yi⊕Φ)′ for the i and m that we worry about in the definition of the Σ2

outcome. This adds one more layer of approximations to produce p′ from a path in the
appropriate tree along with q′. We are thus led to the following definitions.

Definition 3.5 Suppose we are given conditions p and q and an instance of one of our
formulas ∀v¬θ(a, u, v, Z,Φ) where we are thinking about H as the interpretation of Φ and
have written a for fk(n) and Z for Zj. We say that i is crucial (for p and q) if Yi ≤T Z
and Yi is on some list in p or q. Let t be larger than all numbers mentioned in p or q
(either in one of the lists or one of the Turing functionals) and such that U � t 6= V � t
for any sets U 6= V appearing on any list in p or q. For each m ≥ t and finite Turing
functionals Γ and Θ such that 〈Γ,Xp,Wp〉 ≤ p and 〈Θ,Xq,Wq〉 ≤ q we define the tree
Tm(Γ,Θ, p, q) = T whose nodes are sequences 〈〈σl, sl〉, ~τl〉l≤m (coded as numbers in some
fixed way as are all finite sets and sequences) where each ~τl is itself a sequence 〈τl,e, tl,e〉e≤m

with the following properties:

1. |σl|, |τl,e| ≥ m and all of these lengths are the same; 〈W, sl〉 ∈ Wq ⇒ σl � m * W �
m; 〈W, tl,e〉 ∈ Wp ⇒ τl,e � m * W � m.

2. If Θ′ ⊇ Θ with the code for Θ′ less than the one for the node and Θ′  θ(a, u, v, Z,Φ)
for some v also less than the code for the node, then Θ′ − Θ contains an axiom
(〈s, z〉, y, σ) such that, for some l ≤ m, s = sl and σ is compatible with σl.

3. If σl ⊆ Yi for some crucial i, Γ′ ⊇ Γ with the code for Γ′ less than the one for the
node and Γ′  sl ∈ (Yi ⊕ Φ)′ with a witness for convergence also less than the code
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for the node then Γ′−Γ contains an axiom (〈t, z〉, y, τ) such that, for some e ≤ m,
t = tl,e and τ is compatible with τl,e.

We order the nodes of T in the expected way: 〈〈σ′l, s′l〉, ~τ ′l 〉 �T 〈〈σl, sl〉, ~τl〉 ⇔
(∀l ≤ m)(σ′l ⊆ σl & sl = s′l & (∀e ≤ m)(τ ′l,e ⊆ τl,e & tl,e = t′l,e)).

Lemma 3.6 T is a finitely branching tree recursive in Z.

Proof. T is obviously finitely branching since the σl and τl,e are binary sequences. As m
is fixed the information needed in (1) is finite so it is a recursive condition. Since forcing
a ∆0 formula is recursive (in the set parameters), (2) is recursive in Z. The list of Yi

mentioned in p or q and recursive in Z is finite and Z can tell if σl is an initial segment of
one of these Yi while the rest of the condition is recursive given our bound on the witness
for convergence in sl ∈ (Yi ⊕ Φ)′. �

Lemma 3.7 If there are q′ = (Θ,Xq′ ,Wq) and p′ = (Γ,Xp′ ,Wp) as required in the
definition of the Σ2 outcome for Dj,k then for for some (large enough) m, Tm(Γ,Θ, p, q) =
T has an infinite path.

Proof. We claim that if Xq′ = {〈Sl, sl〉|l ≤ m} and Xp′ = {〈Te, te〉|e ≤ m} (we allow
duplications to keep the indexing the same and m ≥ t) then {〈〈Sl � n, sl〉l≤m, ~τl,n〉|n > m}
is a path in T where ~τl,n = 〈Te � n, te〉e≤m. Here we have chosen m larger than t and the
cardinalities of Xq′ and Xp′ as well as to insure that if U 6= V are mentioned in p′ or q′

then U � m 6= V � m. Note that if 〈X,n〉 ∈ Xq′ −Xq and 〈W,n〉 ∈ Wq then X 6= W by
the definition of the forcing ordering and so X � m 6= W � m and similarly for p. To see
that these nodes are on T check that each condition is satisfied for 〈〈Sl � n, sl〉l≤m, ~τl,n〉:

1. The lengths are all larger than m by definition. The restrictions associated with
Wq and Wp are satisfied by our choice of m and the note above.

2. If Θ′ ⊇ Θ and Θ′  θ(a, u, v, Z,Φ) for some v then Θ′ is not consistent with q′

and so Θ′ −Θ must contain an axiom (〈s, z〉, y, σ) such that there is an l ≤ m such that
sl = s and σ ⊆ Sl. Clearly this σ is compatible with Sl � n.

3. If Sl � n ⊆ Yi and i is crucial (and so, in particular, Sl = Yi by our choice of m),
Yi ≤T Z, Γ′ ⊇ Γ and Γ′  sl ∈ (Yi ⊕ Φ)′ then Γ′ is not consistent with p′ since by our
requirements when we acted for Dj,k, p

′  sl /∈ (Sl ⊕ Φ)′ and so Γ′ − Γ must contain an
axiom (〈t, z〉, y, τ) such that there is an e ≤ m such that t = te and τ ⊆ Te. Clearly this
τ is compatible with Te � n. �

Lemma 3.8 If there is an infinite path P = {〈〈σn,l, sl〉, ~τn,l〉〉l≤m|n ∈ ω} in some Tm(Γ,Θ, p, q)
= T then there are q′ and p′ as required by the claim in the implementation of the Σ2

outcome for Dj,k.
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Proof. Any infinite path clearly produces sets Sl = ∪{σn,l|n ∈ ω} for l ≤ m and
Rl,e = ∪{τn,l,e|n ∈ ω} for e ≤ m if Sl = Yi some crucial i. As T is recursive in Z and
has an infinite path we can choose one that does not compute any Yi �T Z by Jockusch
and Soare [1972] and so we may assume that no Sl = Yi for any crucial i. We let
q′ = (Θ,Xq ∪ {〈Sl, sl〉|l ≤ m},Wq) which is clearly a condition since no 〈Sl, sl〉 ∈ Wq by
clause (1) of the definition of T . We first argue that q′  ∀v¬θ(a, u, v, Z,H). If not, then
by Remark 3.4, there would be a (Θ′,Xq′ ,Wq′) ≤ q′ and a v such that Θ′  θ(a, u, v, Z,Φ).
By clause (2) of the definition of T there would then be an axiom (〈s, z〉, y, σ) ∈ Θ′ −Θ
and an l ≤ m such that s = sl and σ is compatible with σn,l ⊆ Sl for infinitely many
n and so σ ⊆ Sl. As this contradicts the definition of (Θ′,Xq′ ,Wq′) ≤ q′, we have that
q′  ∀v¬θ(a, u, v, Z,Φ) and there is no 〈Yi, h〉 ∈ Xq′ −Xq with Yi ≤T Z as required.

We next argue that p̄ = (Γ,Xp∪{Rl,e|Sl = Yi some crucial i and e ≤ m},Wp)  sl /∈
(Sl ⊕ Φ)′ for every 〈Sl, sl〉 ∈ Xq′ −Xqti

with Sl = Yi for some crucial i. Suppose Sl = Yi

for some crucial i but p̄ 1 sl /∈ (Sl ⊕ Φ)′. In this case, there is a Γ′ ⊇ Γ consistent with
p̄ such that Γ′  sl ∈ (Sl ⊕ Φ)′. By clause (3) of the definition of T , there must be a
(〈t, z〉, y, τ) ∈ Γ′−Γ such that, for some e ≤ m, t = tl,e and τ is compatible with τn,l,e for
infinitely many n. Thus τ ⊆ Rl,e ∈ Xp̄ and so Γ′ is not consistent with p̄ for the desired
contradiction.

Finally, we argue that we can find a p′ ≤ p such that 〈Z, n〉 /∈ Xp′ and p′  sl /∈
(Sl ⊕ Φ)′ for all the l’s for which Sl = Yi for a crucial i and 〈Sl, sl〉 /∈ Xqti

which will

complete the proof. For each such l we consider the tree Tm,l whose nodes are sequences
〈τe, te〉e≤m such that (∀e, e′ ≤ m)(|τe| = |τe′| > m& (〈W, te〉 ∈ W p → τe � m 6= W � m))
and (∀Γ′ ⊇ Γ) (if the code for Γ′ is less than the one for ~τ and Γ′  sl ∈ (Yi ⊕ Φ)′ with
a witness for convergence also less than the code for ~τ then Γ′ − Γ contains an axiom
(〈t, z〉, y, τ) such that, for some e ≤ m, t = te and τ is compatible with τe). We order
Tm.l by 〈τ ′e, t′e〉e≤m �Tm,l

〈τe, te〉e≤m ⇔ (∀e ≤ m)(t′e = te & τ ′e ⊆ τe).

This tree is finitely branching and recursive in Yi. Our original sequence 〈~τn,l|n ∈ ω〉
is a path in Tm,l and so there is one that does not compute Z �T Yi. (Note here that as
i is crucial Yi ≤T Z but by the assumption of the Theorem they have different degree.)
Let 〈~τ ′n,l|n ∈ ω〉 be such a path for each l as required and let R′

l,e = ∪{τ ′n,l,e|n ∈ ω}. As
before we know that pl = (Γ,Xp ∪ {〈Rl,e, t

′
l,e〉|e ≤ m},Wp)  sl /∈ (Sl ⊕Φ)′ while no R′

l,e

is Z. We can now get the required p′ as (Γ,Xp∪{〈R′
l,e, t

′
l,e〉|Sl = Yi for some crucial i and

〈Sl, sl〉 /∈ Xqti
& e ≤ m},Wp). As p′ extends every pl for l on our list, p′  sl /∈ (Sl ⊕ Φ)′

for all these l’s while 〈Z, n〉 /∈ Xp by our choice of n and no Rl,e = Z, p′ is as required to
implement the Σ2 outcome for Dj,k. �

4 Conclusions and Questions

We summarize much of the current state of affairs about the dividing line between de-
cidability and undecidability in the structures R, D and D(≤ 0′) in various languages in
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the following tables.

R D D(≤ 0′)
∃(≤,∨) Dec Dec Dec
∀∃(≤,∨) ? Dec ?
∀∃∀(≤,∨) Undec Undec Undec

R D D(≤ 0′)
∃(≤,∨,∧) ? Dec Dec
∀∃(≤,∨,∧) Undec Undec Undec

D
∃(≤,∨,′) Dec

∀∃(≤,∨,′) Undec

The first and third tables are straightforward. The second requires some explanation
of the use of ∧. We understand decidability in the ∃ line to mean that every finite lattice
is embeddable, indeed this is true even if we preserve 0 and 1 (if it exists). (For R the
question of which lattices are embeddable even without preserving 0 or 1 is, of course,
still open.) Undecidability in the ∀∃ line means that the theory is undecidable (via the
same set of sentences) for every total extension of the partial infimum relation.

In addition to the long standing and well known open questions about R, these tables
suggest two other natural areas for investigation on the boundary between decidability
and undecidability. The first is the ∀∃ theory of D(≤,′ ). This is a very rich theory that
includes many interesting and difficult subproblems and a number of partial results. For
example, it includes the ∃ theory of D(≤,∨,′ ) shown decidable by Montalban [2003]. It is
also possible to define 0 at this level without any added complexity and so it is equivalent
to the ∀∃ theory of D(0,≤,′ ) which includes the ∃ theory of D(0,≤,∨,′ ). Now, for all the
other decidability results in these tables which do not involve the jump operator, adding
0 to the language presents no serious extra difficulties. This is far from true once we allow
the jump. Indeed even the ∃ theory of D(0,≤,′ ) is a complex problem about which there
are many difficult and interesting partial results. The crucial point is that the addition
of 0 requires very fine control over the complexity of the degrees realizing some given ∃
statement in the language with just ≤ and ′. The formula can now specify that witnesses
lie in precise intervals with endpoints of the form 0(n). In contrast, the realizations in
the decidability results for the ∃ theory of D(≤,′ ) and D(≤,∨,′ ) (Hinman and Slaman
[1991]; Montalban [2003]) produce witnesses which are not even hyperarithmetic.

Among the partial results on the ∃ theory with 0 we mention Lerman [1985] which
proves the decidability of the ∃ theory of D with ≤ and additional predicates for the
classes in the High/Low hierarchy. Montalban [2004] (answering a question of Lerman
[1985]) proves the decidability of ∃ theory of D with ≤, 0 and additional predicates for
the classes GLn, GHn and GI (for n ≥ 0) in the generalized high/low hierarchies (which
also falls within the ∃ theory of D(0,≤,∨,′ )). Lempp and Lerman [1996] prove the ∃
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theory of R with 0, 1,≤ and predicates for x(n) ≤T y(n) for every n is decidable. And
so, a fortiori, also the ∃ theory of D with 0,≤ and all of these predicates. Indeed, they
can even add ∨ to the language as long as 1 (0′) is omitted. It seems plausible that their
methods (which are very complex) may suffice to prove the decidability of the ∃ theory
of D(0,≤,′ ) and perhaps even with ∨ added to the language. (Added in proof: Lerman
(personal communication) has recently announced a proof of this result (with ∨) along
these lines.)

As for the full ∀∃ theory of D(≤,′ ), there are many difficult open problems along the
road to decidability (including, for example, controlling the jumps of initial segments).
On the other hand, the path to undecidability seems quite dark. It is not immediately
blocked by our general comments in the introduction on proving undecidability of ∀∃
theories since we do have a function symbol ′ that generates ω-sequences. The problem
is how to define them (and relations on them) in a ∆0 way using only ≤ and ′.

The new area suggested by these charts is the decision problem for the ∀∃ theory
of D(≤ 0′) with ≤ and ∨. This problem turns out to be far from straightforward. It
would seem that our only hope is to prove decidability. We have the required initial
segment results for decidability from the proof of decidability without ∨ (Lerman and
Shore [1988]). The extension of embeddings part, however, has, surprisingly, something
of the flavor of the ∀∃ theory of R.

Montalban has shown that we cannot reduce the full ∀∃ decision problem to the
extension of embedding problem as has been done in all the other successful proofs of
decidability at the ∀∃ level. (The extension of embedding problem for a structure M asks
for a characterization of the partial orders X ⊆ Y such that every embedding f : X →M
can be extended to one g : Y →M. The decision problem for ∀∃ sentences about one of
the degree structures is equivalent to deciding all problems of the form “every embedding
of X can be extended to an embedding of some Yi from a specified list”. A reduction
argument shows that the list can always be taken to have only one element.

Proposition 4.1 (Montalban) For every x1 < x2 in (0,0′) there is either a y such that
0 < y < x1 or one such that x1 < y < 1 and x2 ∨ y = 1 but neither disjunct holds for
every x1 < x2 in (0,0′).

Proof. If x1 /∈ L2 then it is not minimal and so there is a nonrecursive y < x1. On the
other hand, if x1 ∈ L2 then 0′ is high over x1 and so by the join theorem for high degrees
(Posner [1977] or see Lerman [1983 IV.9]) there is a y which joins x2 up to 0′. However,
there are counterexamples to each disjunct.

Of course, any minimal degree x1 < 0′ and any x2 between x1 and 0′ supply a
counterexample to the first disjunct. On the other hand, if we consider the construction
of Slaman and Steel [1989] of nonrecursive r.e. degrees a < b such that no degree c < b
joins a to b and apply the pseudojump inversion theorem of Jockusch and Shore [1983],
we get x1 < x2 < 0′ (replacing 0 < a < b) such that no y below 0′ and above x1 joins
x2 up to 0′ as required. �
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This is reminiscent of the nondiamond (and other) phenomenon in R. (The nondi-
amond theorem of Lachlan [1966] says that for every pair of incomparable r.e. degrees
x1,x2 there is either a y with x1,x2 ≤T y <T 0′ or one with 0 <T y ≤T x1,x2. On the
other hand, there are x1,x2 such that x1 ∨ x2 = 0′ and ones such that x1 ∧ x2 = 0.) It
suggests that there are many problems to consider here.
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