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Abstract. Sacks [Sa1966a] asks if the metarecursively enumerable degrees

are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman
and Shore proved that they are not. This paper provides a simpler proof of

that result and characterizes the degree of the theory as O(ω) or, equivalently,

that of the truth set of LωCK
1

.

1. Introduction

The study of recursive ordinals and hyperarithmetic sets that began with the
work of Church and Kleene [ChKl1937], Church [Chu1938] and Kleene [Kl1938]
suggested many analogies between the Π1

1 and hyperarithmetic sets and the recur-
sively enumerable and recursive ones, respectively. The analogy was not perfect,
however. At the basic level, for example, the range of a hyperarithmetic function
on a hyperarithmetic set is always hyperarithmetic rather than an arbitrary Π1

1 set.
At a deeper level, all nonhyperarithmetic Π1

1 sets are of the same hyperarithmetic
degree. Kreisel [Kre1961] studied this situation and came to the realization that
while Π1

1 is analogous to r.e., the correct analog for hyperarithmetic is not recur-
sive but finite. This insight lead first to the development with Kreisel and Sacks
[KreSa1963, KreSa1965] of metarecursion theory as the study of recursion theory
on the recursive ordinals (those less than ωCK

1 , the first nonrecursive ordinal) or,
equivalently, on their notations in a Π1

1 path through Kleene’s O. In this setting, the
meta-r.e. subsets of ω are the Π1

1 ones and the metafinite ones are hyperarithmetic.
Another approach to generalizing recursion theory to ordinals started with

Takeuti’s [Ta1960, Ta1965] development of Gödel’s [Go1939] constructible universe
L through a recursion theory on the class of all ordinals. These two approaches
came together in the common generalization of recursion on admissible ordinals
of Kripke [Kri1964] and Platek [Pl1965]. Here the domain of discourse is an
ordinal α or the initial segment Lα of L up to α for admissible α, i.e. Lα satisfies
Σ1-replacement. In this vein, α-r.e. is Σ1 over Lα, α-recursive is then ∆1 over
Lα while α-finite means a member of Lα. These notions coincide with those of
metarecursion theory when α = ωCK

1 .
We should also note that care has to be taken in the definition of “α-recursive in”,

the analog of Turing reducibility. Here too, the crucial issue is that of finiteness. It
no longer suffices to require that one be able to answer single membership question
about A in a computation from B to say that A is reducible to B. Instead one
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defines α-reducible, ≤α, by requiring that all α-finite sets of such questions about
A can be computed on the basis of α-finitely much information about B.

The motivation and goals for generalizing recursion theory in this way included
the hopes of elucidating the underlying nature of the notions fundamental to re-
cursion theory and the essences of the constructions that are used to prove its
most important theorems. In accordance with Kreisel’s insight, a prominent role
should be played by the analysis of finiteness along with recursive and recursively
enumerable. Such an analysis might lead to a good axiomatic treatment or reveal
approaches that would be less dependent on the specific combinatorial properties
of ω exploited in these notions and constructions. In this way the study might
also produce applications to both classical recursion theory and other domains (set
theory, model theory, proof theory and, in hindsight, computer science) where the
notions of effectiveness play many roles.

It was relatively easy to formalize the basic notions or recursion theory in these
settings but also in much more general ones. Kreisel’s test of a generalization
worthy of investigation was the Freidberg-Muchnik theorem solving Post’s problem
by showing that there are incomparable r.e. degrees. As Sacks [Sa1990, p. ix] puts
it, this brings us from the static or syntactic realm into the dynamic one. It is in
this domain that priority arguments and the deeper investigations into the notion
of enumerability and relative computability were developed in classical recursion
theory. First metarecursion theory (Sacks [Sa1966b]) and then α-recursion theory
(Sacks and Simpson [SaSi1972]) passed this test.

The route to the solution to Post’s problem in α-recursion theory was the ability
to make Σ1-replacement suffice for arguments that in classical recursion theory
seemed to naturally rely on Σ2-replacement (or induction). Further investigations in
α-recursion theory indicated that many of the more complicated priority arguments
of the classical subject used yet higher levels of replacement and did not generalize
so readily to all admissible α. The density theorem was successfully generalized
to all admissible α (Shore [Sh1976a]) but to this day the theorems epitomizing
the basic construction of classical recursion theory have not been settled for all
admissible ordinals. Almost always more admissibility suffices and at times other
conditions as well. Early examples include the existence of an incomplete high
α-r.e. degree (Shore [Sh1976b]) and minimal pairs (Lerman and Sacks [LeSa1972])
for which Σ2 admissibility suffice and at times something less.

Perhaps not surprisingly, the first differences between α-r.e. sets for various α
arose early on in the set theoretic realm rather than in the setting of the α-degrees.
Here one works in E∗α, the lattice of α-r.e. sets modulo the α∗-finite (i.e. α-finite
and of order type less than α∗) ones. The first examples concerned maximal sets
which do not exist in E∗ℵ1

by Sacks ([Sa1966c]) and in general exist for an arbitrary
α if and only if α is projectable into ω in a specific reasonably effectively way
by Lerman ([Le1974]). Many other differences were found in this setting among
different α (see Lerman ([Le1978]) for a large array of examples). None of them,
however, provably distinguished between ω and ωCK

1 in terms of classical theorems
about E∗α.

The problem of provably distinguishing between different admissible α was more
difficult in the setting of the α-r.e. degrees. Eventually, an elementary difference
even between the r.e. degrees and the α -r.e. degrees for some α was established
by finding certain admissible ordinals for which, contrary to Lachlan’s [La1975]



THE THEORY OF THE METARECURSIVELY ENUMERABLE DEGREES 3

nonsplitting theorem, one can combine splitting and density for all pairs of α-r.e.
degrees (Shore [Sh1978]). (That is, for certain α it is always possible to find, for
every pair a < b of α -r.e. degrees, two incomparable α-r.e. degrees b0 and b1

between a and b such that b0 ∨ b1 = b.) This work did indeed elucidate the role
of various replacement or induction like principles in recursion theoretic arguments
and much later played a role in analyzing such arguments in reverse mathematics
(e.g. Slaman and Woodin [SlWo1989] and Mytilinaios [My1989]). Other aspects of
generalized recursion theory found applications in complexity theory (e.g. Shinoda
and Slaman [ShSl1990]). They did not however have much to say directly about
the role of finiteness. Moreover, once the basic techniques are understood, all these
constructions can be fairly easily carried out in metarecursion theory.

The crucial fact about ωCK
1 needed to carry out all these arguments is that

there is a metarecursive projection of ωCK
1 into ω. This allows one to arrange

priority requirements in an ω list and so carry out constructions in such a way
that one only ever really needs to worry about there being truly finitely many
predecessors of any requirement. For example, density was proved by Driscoll
[Dr1968] and minimal pairs constructed by Sukonick [Su1969]. It seemed as if
everything one could do in classical recursion theory could be done in metarecursion
theory as well. It was in this setting that Sacks [Sa1966a] posed as his final Question
whether RωCK

1
, the meta-r.e. degrees with ωCK

1 -reducibility, and R, the r.e. ones
with Turing reducibility, are elementarily equivalent. This seemed possible at the
time. Indeed, at that time people still thought that there should be some nice
characterization of the structure R that would indicate that it was simple in some
way. Shoenfield’s conjecture that it was ω-saturated and so categorical had been
disproven with the construction of a minimal pair of r.e. degrees but, nonetheless,
Sacks still conjectured in [Sa1966a] that the theory was decidable and that the
structure was isomorphic to the degrees r.e. in and above d for every degree d.

Both of these conjectures turned out to be false (Harrington-Shelah [HaSh1982],
Shore [Sh1982]). Indeed, these results and others showed that R was very compli-
cated in various ways. Shore [Sh1982] showed that it is not recursively presentable
and later Harrington and Slaman and Slaman and Woodin (see Slaman [Sl1991])
showed that its theory is recursively isomorphic to true arithmetic. These sorts
of results changed the paradigm for understanding R from a hope for simplicity
to an approach to its characterization by its complexity. (For more of the history
and further discussion, see Shore [Sh1997] and [Sh1999]). Once one had this view
of R, it became natural to believe that the answer to Sacks’ question was “no”
just because it seemed that one could prove all the results of classical recursion
theory in metarecursion theory. If the meta-r.e. degrees, like the r.e. ones, are as
complicated as possible then RωCK

1
is more complicated than R. In this way, Odell

[Od1983] established an analog of Shore [Sh1982] for the meta-r.e. degrees to show
that RωCK

1
is not arithmetically presentable and so not isomorphic to R. Once

Harrington and Slaman and Slaman and Woodin had proven that the theory of R
is recursively isomorphic to true arithmetic, it became, as Sacks is fond of saying,
“morally certain” that the two structures are not even elementarily equivalent.

Shore and Slaman, as announced in Shore [Sh1997], managed to carry out enough
of the relevant constructions in metarecursion theory to prove this result. The proof
was fairly elaborate and required lifting several major theorems of classical recursion
theory to ωCK

1 . It also failed to give a full characterization of the degree of the
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theory ofRωCK
1

. The expected result was that it should be recursively isomorphic to
the theory of 〈LωCK

1
,∈〉 or, equivalently, of degree O(ω). This result awaited further

developments in classical recursion theory. Nies, Shore and Slaman [NiShSl1998]
provided a definable standard model of arithmetic in R and so a more direct proof
that the degree of its theory is 0(ω). This work also provided a simpler and more
powerful approach to the analysis of other definability aspects of R. In the present
paper, we follow the same original intuition from the 60s about the similarity of R
and RωCK

1
to lift enough of Nies, Shore and Slaman [NiShSl1998] to metarecursion

theory to prove that a standard model of arithmetic with a predicate for O is
definable in RωCK

1
and so its theory, as expected, is recursively isomorphic to both

that of LωCK
1

and to O(ω).
Once again, the crucial property of ωCK

1 is its metarecursive projectability into
ω and the results on the definability of a standard model of arithmetic are carried
out for all such admissible ordinals. The proofs also show that there is a standard
model of arithmetic with a predicate for any ∆2(Lα) set definable from parameters
in the α-r.e. degrees if α∗, the Σ1 (or equivalently the α-recursive) projection of
α is ω. Thus no two of these structures are isomorphic and none are elementarily
equivalent to R.

Our results thus answer Sacks’s original question by providing an elementary
difference between R and RωCK

1
. However, they do so by continuing along the

path following the intuition that one can lift all constructions of r.e. degrees to
ωCK

1 by using projectability to convert requirements lists to ones of length ω and
to any admissible ordinal satisfying enough replacement to handle requirements in
order type α. These illusions will be dispelled in further work by the first author
(Greenberg [Gr2006]) that, for the first time in the setting of the α-r.e. degrees,
illuminates the role of true finiteness in various classical constructions. Ones similar
to those used here will be shown to require that α have cofinality ω in some effective
sense. Entirely different ones will show that there are simple theorems about lattice
embeddings in the r.e. degrees that can be true of the α-r.e. ones only if α is actually
countable in a strong, effective way. These constructions will be shown to rely very
explicitly on considerations involving true finiteness. All of the work taken together
will show that no Rα is elementarily equivalent to R. 1

For the rest of the paper we assume a basic familiarity with α-recursion theory
and refer to the standard texts of Sacks [Sa1990] or Chong [Cho1984] for background
and terminology with one caveat. Purely as a notational simplification, we generally
drop the initial α. Thus for the rest of this paper, recursive means α-recursive,
r.e. means α-r.e., regular means α-regular, unbounded means unbounded in α,
etc. However, in keeping with our eventual goal of understanding the role of true
finiteness, it will remain necessary to distinguish between finite and α-finite and so
finite means finite. We also assume that the reader is familiar with Nies, Shore and
Slaman [NiShSl1998].

1Recent work yields a single, natural sentence that differentiates between R and Rα for any

admissible α, including ωCK
1 . The first author (Greenberg [Gr2006]) has shown that for any

admissible α > ω, an incomplete α-r.e. degree bounds a copy of the 1-3-1 lattice in Rα iff it

bounds a critical triple iff it can compute a counting of α. However, in recent work, Greenberg

and Downey ([DoGr], see [DoGr2006]) have shown that there is an r.e. degree which bounds a
critical triple but not a copy of the 1-3-1 (this degree is totally < ωω-r.e. but not totally ω-r.e.)
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2. Coding

Suppose that α is an admissible ordinal such that α∗ = ω. We use the coding
machinery developed in [NiShSl1998], and apply it to the (α-)r.e. degrees. We code
models of arithmetic into the r.e. degrees by using SW-sets. We recall that the
domain of an SW set determined by parameters p̄ = (p,q, r, l) is the collection of
degrees g below r which are minimal with respect to the property g ∨ p ≥ q, and
that a partial ordering on this domain is given by

g ≤p̄ g′ ⇔ g ≤ g′ ∨ l.

Structures in the language of arithmetic are coded by partial orderings, again
as described in [NiShSl1998]: The domain is the collection of minimal elements;
further elements code pairs of numbers (an element c codes (a, b) if there is a 2-
chain from a to c and a 3-chain from b to c). Binary functions (such as + and ×)
are now coded by the pairs (add a 4-chain from a+ b to (a, b) and a 5-chain from
ab to (a, b)).

In this paper, we wish to code models of arithmetic with an extra set of natural
numbers, also coded by the partial ordering. To a structure coded as above, we add
a 6-chain above every number in the set coded. Overall, we get a coding scheme
SM (p̄) to code models of arithmetic (with a subset) in the α-r.e. degrees. We will
find a (nonempty) correctness condition on p̄ which will ensure that the model
coded is a standard model of arithmetic, and that the set coded is Kleene’s O.
For this we will use the comparison maps described in [NiShSl1998]. In fact, once
we prove the following theorems, we can simply repeat the coding arguments in
[NiShSl1998] without change to get a correctness condition which implies that the
model coded is standard, and get a uniform scheme for the isomorphism between
any two such models:

Theorem 2.1. If � is a ∆2(Lα) partial ordering on ω, and a > 0 is any r.e degree,
then there is some low SW set coding � below a (i.e. some p̄ such that ≤p̄

∼=� with
r ≤ a and low.)

Theorem 2.2. If � is a ∆2(Lα) partial ordering on ω, H a recursive set of �-
minimal elements, 〈ui〉i∈H a sequence of uniformly r.e. degrees, and 〈vi,j〉i∈H,j<ω

an array of uniformly r.e., uniformly low degrees such that for all i ∈ H and j < ω,
ui 6≤ vi,j, then there is a low SW set 〈gi〉i<ω coding � such that for i ∈ H and
j < ω, gi ≤ ui and gi 6≤ vi,j.

Now Kleene’s O is r.e. (α-finite if α > ωCK
1 ), and so the partial ordering coding

the standard model of arithmetic together with O is ∆2(Lα). Hence some of the
models satisfying the correctness condition of [NiShSl1998] code O. Now if ψ(Y )
is any arithmetic statement, we can add it to the correctness condition to demand
that the set coded satisfies ψ. There is such a ψ such that O is the least (inclusion-
wise) set satisfying ψ (see [Sa1990, p. 8]). Using the comparison maps between
the coded models (with sets satisfying ψ), we can isolate the models coding O
by a further correctness condition (stating that the set coded is included in the
set coded in every other model). This coding shows that Th(ω; +,×,O), which is
clearly (ω)-recursively isomorphic to O(ω), is 1-1 reducible to Th(Rα;≤α).

Theorem 2.3. Let α = ωCK
1 . The following are ω-recursively equivalent:

Th(Lα;∈), Th(Rα;≤α), and O(ω).
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Proof. We clearly have Th(Rα;≤α) 1-1 reducible to Th(Lα;∈). Now (Lα;∈) can
be coded by an r.e. subset of ω (use a recursive bijection between Lα and α, and
then a 1-1 recursive map from α into ω); this set is of course Π1

1 and hence reducible
to O. �

3. Preliminaries

The rest of the paper is devoted to the proofs of theorems 2.1 and 2.2. We fix a
partial recursive, onto p : ω � α.

All the sets we will get involved with will be regular and hyperregular. Regularity
allows us to use Turing functionals which only appeal to initial segments of their
oracles. We use both weak Turing functionals (which take numbers as input) and
(strong) Turing functionals (which give answers for α-finitely many questions at
once). By regularity of the set being computed, we always ask about initial segments
of the computed set. Thus elements of the functionals are of the form (σ, τ) for
σ, τ α-finite binary strings with ordinal domain (and the pair means: from oracle
σ compute τ) or for weak functionals (σ, x, i) where σ is such a string, x < α and
i ∈ {yes,no}.

Terminology. For a functional Ξ with intended oracle A, ξ(A;β) (for β < α) is the
use of the computation (if convergent): the least γ < α such that Ξ(A � γ;β) ↓.
However, we often use the same notation to mean A � ξ(A;β), i.e. the actual
information used. This should rarely cause confusion. Similarly, we have ξ(A;β)[s]
(the use of the computation at stage s).

Regularity also allows us to assume that if Ξ is a functional and Ξ(A;x) ↓ then the
use ξ(A;x) > x. We note that for hyperregular sets, there is no difference between
≤α and ≤wα, thus there is no distinction in this case between the computing power
of strong or weak functionals.

Say A is an intended oracle for Ξ; we can alter Ξ and its approximation according
to an enumeration of A, such that if Ξ(A;x) ↓ [s], t > s and A did not change below
the use of the computation at s, then Ξ(A;x) ↓ [t] with the same use.

The constructions all involve low sets, that is, sets A such that A′ ≤α ∅′. All
low r.e. sets are regular and hyperregular ([Sh1976b]). A sufficient criterion for a
regular r.e. set A to be low is the existence of an effective enumeration A[s] of s such
that for all weak Turing functionals Ξ and all α-finite sets K, if for every x ∈ K
there are unboundedly many stage s at which Ξ(A;x) is convergent, then at some
stage s∗, for all x ∈ K, Ξ(A;x) ↓ via an A-correct computation.

Also, if A is low and Ξ is a functional, then we can alter our approximation to
Ξ(A) (or more precisely, redefine when Ξ(A;x) ↓ [s]) such that the last property
holds (without changing the value of Ξ(A)). A recursive index for this approxi-
mation (for all functionals) can be obtained uniformly from a lowness index for
A.

We will also make use of the notion of a uniformly low sequence 〈Ai〉; this is a
sequence of low sets such that a lowness index for Ai can be obtained effectively
from i. If 〈Ai〉 is such a sequence, and φ(x,X) is a Σ1(Lα) formula (with unary
predicate), then the relation P (x, i) ⇔ φ(x,Ai) is ∆2(Lα).
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4. Construction of an SW set

We first show how to construct an SW set in the r.e. degrees. We assume
familiarity with the techniques of constructing SW sets in the ω-r.e. degrees, as
presented in [NiShSl1998]. We build an ω-sequence of sets Gi, sets P , Q and
R, together with (weak) Turing functionals Γn and ∆n,j for n, j < ω. We let
R =

⊕
iGi = {(i, x) : x ∈ Gi}. Preserving the notation of [NiShSl1998], we

let 〈Ψe〉e<α be an enumeration of all (weak) Turing functionals, and similarly let
〈Ξe〉e<α enumerate all weak Turing functionals including ones appearing in the con-
struction with approximations as built in the construction. We let (Θi,Φi,Wi)i<α

enumerate all triples consisting of a Turing functional, a weak Turing functional,
and an r.e. set.

We strive to satisfy the following requirements:
(1) Tn: Γn(Gn ⊕ P ) = Q.
(2) Mi: If Θi(R) = Wi and Φi(Wi ⊕ P ) = Q then there are j and n such that

Gj =∗ ∆n,j(Wi).
(3) Di,j,e: If j 6= i, then Ψe(Gi) 6= Gj .
(4) Ke,K : If for every x ∈ K there are unboundedly many s s.t. Ξe(R⊕P⊕Q;x) ↓ [s]

then at some stage s∗, Ξe(R ⊕ P ⊕ Q;x) ↓ is correct for all x ∈ K. [Here
K ranges over all α-finite sets.]

(A =∗ B means that A and B are eventually equal, i.e. for some β < α,
A � [β, α) = B � [β, α). Regularity of Gj implies that the conclusion of Mi en-
sures that Gj ≤α Wi.)

The biggest obvious difference between the classical construction and this one
is the number of requirements. Initially, we arrange the requirements (except for
the T requirements) effectively in order-type α. We then use the map p in order
to re-arrange the requirements in order-type ω. Another way to visualize this is
to imagine we have ω agents on the construction site. Agent n, for n ∈ dom p,
works for the requirement in place p(n). We also let agent n work for Tn. An agent
working for some requirement might discover at some stage a stronger requirement
which just appeared; but this happens only finitely many times. The classical
approach to showing the construction is fair will now apply: showing that with
no disturbances, each requirement eventually ceases all action, will show that each
requirement gets its turn to act.

The fact that α > ω and as far as we can effectively tell, is a regular cardinal,
allows for some simplifications in comparison with the classical construction. We
no longer require a tree of outcomes to guess the true restraint on a particular
requirement (which is the liminf of the restraint over time); the fact that restraint
falls back on a (recursive) club allows us to show that the restraints of finitely many
requirements will fall back simultaneously. The price to pay is that the restraint
has to fall back on limits of expansionary stages, which may be not expansionary
themselves; thus in theory a requirement might wish to impose further restraint
at such a limit stage, and dropping the restraint might damage the success of the
requirement. This does not happen in our construction, as the responsibility to
act often lies with the lowness requirements associated with specific tasks (which
are of a simpler, finitary nature); the minimality (M) requirements only need to
act at successor expansionary stages, and so dropping the restraint at limits of
expansionary stages will not harm their success.
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Construction

We now give the formal construction of a SW-set.

Let #(s) be the largest number used in the construction by the end of stage s.
(The largest number used at a stage is recursive as a function of the stage, hence
#(s) < α and is a recursive function.)

Initialisation. The way agents impose finitary-type restraint is by initialising all
weaker agents. An agent n will initialize weaker agents whenever it first discov-
ers the requirement it works for (i.e. when p(n) ↓ first); whenever it enumerates
numbers into a set; and in general, whenever it declares victory. Further instances
at which specific requirements initialize weaker ones will be given as part of the
instructions for these requirements.

When an agent gets initialized, we cancel all of its followers and chits. We
disregard all functionals created by the agent and start new ones (formally, we
can build α functionals indexed by stages; at stage s, the agent n works with the
functional indexed by init(n, s) = sup{r < s : n was initialized at r}.)

Agreement, Expansion and Restraint. A number y is i-confirmed at a stage
s if Φi(Wi ⊕ P ; y) ↓= Q(y)[s] with use σ ⊕ π = φi(y)[s] and σ ⊂ Θi(R)[s]. We let

l(i)[s] = max{z | ∀y < z, y is i-confirmed at s}.
A stage s is i-expansionary if for all t < s, l(i)[t] < l(i)[s].

At stage s, if agent n is working for Mi, let

r(n)[s] =
{

0 if s is i-expansionary or a limit of i-expansionary stages,
#(t) if not, and t = sup{u < s : u is i-expansionary}.

Let Rest(n)[s] = maxm<n r(m)[s].

Followers. An agent n working for Di,j,e may have a follower . The follower is
targeted for Gj . A follower x is realized at stage s if Ψe(Gi;x) ↓= 0[s].

Chits. Say agent n works for Mi. n defines functionals ∆n,j (for j ≤ n), with
intended oracle Wi. n only tries to define ∆n,j(x) at stage s for the least x such
that ∆n,j(Wi;x) ↑ [s]. To each computation (σ;x, l) ∈ ∆n,j is associated a chit
(y, π) (we sometimes also refer to y as the chit). When n wishes to define ∆n,0(x),
it picks a new chit; a chit (y, π) is suitable to be picked if y ∈ α[n], y < l(i, s), and
φi(Wi ⊕ P ; y)[s] = σ ⊕ π. If n picked such a chit, then it defines ∆n,0(x) with use
σ.

For j > 0, to define ∆n,j(x) at s, n searches for a j−1-eligible chit, i.e. a chit (y, π)
for a computation ∆n,j−1(x′) with use σ, which is still active (i.e. σ⊕π ⊂Wi⊕P [s];
an inactive chit is called cancelled) and such that the computation ∆n,j−1(x′) is
failed , i.e. ∆n,j−1(Wi;x′) = 0 6= Gj−1(x′). If such a chit is found and used, then n
defines ∆n,j(x) with use σ. When we define ∆n,j(x) at s, we always let the value
be Gj(x)[s].

One last requirement on the suitability of a chit y for a ∆n,j computation is that
of size: if we wish to use it at stage s, and

r = sup{t < s : n defined a ∆n,j-computation at stage t} ∪ init(n, s),

then we require that y > #(r).
At a certain stage s, nmay wish to use a chit (y, π) for purposes of victory. A chit

(y, π) is cleared by Γm at stage s if it is not the case that Γm(Gm ⊕ P ; y) ↓= 0[s],
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or if Γm(Gm ⊕ P ; y) ↓= 0[s] with use γm(Gm ⊕ P ; y)[s] > domπ. The chit y is
victorious if it is i-confirmed at s, still active, y > Rest(n)[s], and is cleared by all
Γm for all m ≤ n.

Pointers. The modus operandi of an agent n which works for Ke,K , is at turns to
take an element x ∈ K, wait for Ξe(R ⊕ P ⊕ Q;x) to converge and then initialise
weaker agents so that this computation becomes correct; it then moves to another
element x ∈ K (or rests if all have been covered). The pointer i(n)[s] is the element
under consideration. Whenever n is initialised, we define i(n)[s] = minK. On a
segment of stages during which n is never initialised, i(n)[s] is non-decreasing, so
at limit stages s we let

i(n)[s] = minK \ lim t < si(n)[t]

[unless of course unboundedly often before s, n has been initialised, at which case
we consider n initialised at s.]

However, if K ⊆ limt<s i(n)[t] then all elements of K have been covered and n
is declared satisfied and never acts again (unless it is later initialised.)

The Construction. Stage s of the construction has two phases. First, we check
all agents in sub-stages. At the sub-stage devoted to agent n, if n declared victory
since init(n, s) or does not work for any requirement (other than Tn), we skip it,
and go to the next sub-stage. Otherwise, we describe n’s actions based on the type
of requirement for which it works:

Mi: If there is some σ ⊂ ΘR
i [s] and some x < domσ s.t. σ(x) = 0∧x ∈Wi[s],

declare victory (this is called “easy victory”).
If r(n)[s] > 0, skip this sub-stage. If we didn’t skip or win yet, look for

victorious chits. If there is one, enumerate the least one y into Q, and for
all m ≤ n, if Γm(Gm ⊕ P ; y) ↓= 0[s], put γm(Gn ⊕ P ; y)[s] − 1 into P .
Declare victory.

If we haven’t won yet, and the stage is i-expansionary, then try to extend
∆n,j(Wi) as described above. Suppose n just defined ∆n,j(x). Suppose that
agent m > n works for some D requirement at s, and that x is a follower
for m, targeted for Gj . Then m now initializes all weaker nodes.

Ke,x: If n is not currently satisfied, and if Ξe(R ⊕ P ⊕ Q; i(n)) ↓ [s], then
initialise all weaker agents, and redefine i(n)[s + 1] = minK \ i(n)[s] + 1,
i.e., the next element of K. [However, if i(n)[s] = maxK then n is now
declared satisfied.]

Di,j,e: If the agent n doesn’t have a follower, pick one in α[n], larger than
#(s). If the follower x is realized, n enumerates it into Gj and declares
victory.

If the next agent was initialized in this stage, we halt the first phase. Otherwise,
we move on to the next sub-stage.

At the second phase, we tend to the requirements Tn; for every n < ω, we find
the least x such that Γn(Gn ⊕ P ;x) ↑ [s], and set Γn(Gn ⊕ P ;x) ↓= Q(x)[s] with
large use (γn(Gn ⊕ P ;x) > #(s), and not a limit ordinal).

Verifications

We sketch the verifications, noting all the instances that are different from the
classical case.
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Fairness and finitary success. Suppose that n is an agent that eventually stops
being initialized, i.e. r∗ = init(n, α) < α.

Lemma 4.1. Suppose n works for Mi. Suppose s > r∗, ∆n,j(Wi;x) ↓ [s] with use
σ, and at t > s, σ ⊂ Θi(R)[t]. Then n does not redefine ∆n,j(x) at t.

Proof. n only redefines ∆n,j(x) if σ 6⊂ Wi[t]. But then, it would declare “easy
victory” and not define anything. �

Lemma 4.2. n eventually stops initialising weaker agents.

Proof. If n works for an M requirement, then n initializes at most once after r∗,
(when declaring victory). Suppose that n works for Ke,K . The collection K ′ of
x ∈ K such that at some s ≥ r∗ we have x = i(n)[s] is an initial segment of K
and hence is α-finite. The function taking x ∈ K ′ to the least s ≥ r∗ such that
x = i(n)[s] is recursive and so has bounded range, say bounded by some s∗. After
stage s∗, n initialises weaker agents at most once.

If n works for Di,j,e, then it either declares victory after r∗ and ceases all action
after that; or it has a permanent follower x. n may then initialize at s > r∗ for
the sake of a stronger agent m < n working for some Mk, when ∆m,j(x) gets
defined, say with use σ and chit (y, π). For each such m, this may happen at most
once after r∗, since σ ⊂ Θk(R) will be preserved; note that y < l(k)[s] since s is
k-expansionary, and y < l(k) when it is first picked. �

We can now verify that the requirements D succeed, just as in the classical case.
Also, each Ke,K succeeds: if it is not declared satisfied after some stage s∗ < α,
then x = i(n)[s] is eventually constant and it is not the case that Ξe(R⊕P ⊕Q;x)
converges at unboundedly many stages. As noted, we get that R ⊕ P ⊕ Q is low,
hence regular and hyperregular.

The success of Tn is also verified as in the classical case. The only difference is
in showing that dom Γn(Gn ⊕ P ) = α. As for ω, we know that for every x < α, if
Γn(Gn ⊕ P ) � x has stabilized by some stage s, then so would Γn(Gn ⊕ P ;x) (this
follows from the fact that attempts at defining Γn at x would be made each time it
isn’t defined, and from the success of the corresponding K-requirement). What we
need to show is that for limit x, if for all y < x, Γn(Gn⊕P ; y) eventually stabilizes,
then so does Γn(Gn ⊕P ) � x. The reason for this is the hyperregularity of Gn ⊕P ;
for each y < x, the least stage s at which Γn(Gn ⊕ P ; y)[s] = Γn(Gn ⊕ P ; y) is
computable from the oracle (simply find when the computation is correct), hence
the collection of such stages is bounded.

∆∆∆n,j. The following will be useful here and in later proofs. Suppose that n works
for Mi and that j ≤ n.

Lemma 4.3. ∆n,j(Wi) is use-monotone: dom ∆n,j(Wi) is an ordinal and for
x0 < x1 < dom∆n,j(Wi), δn,j(Wi;x0) < δn,j(Wi;x1).

Proof. We show, by induction on s ≤ α, that dom ∆n,j(Wi)[s] is an ordinal, and
that if x0 < x1 < dom∆n,j(Wi)[s], then the computation ∆n,j(Wi;x0)[s] has
shorter use than the computation ∆n,j(Wi;x1)[s].

Suppose that s is a limit, x0 < x1, and that ∆n,j(Wi;x1) ↓ [s]. For some t < s,
∆n,j(Wi;x1) ↓ [t] is the same computation (which remains up till s). By induction,
∆n,j(Wi;x0) ↓ [t] with shorter use, and so this computation still holds at s.
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Assume the lemma at the beginning of s. At the beginning of s, a new number
is enumerated into Wi; it destroys some ∆n,j(Wi) computations, but an initial
segment remains. A new computation may be now defined for x1 = the new domain,
say with chit (y, π) and use σ ⊂Wi[s]. By suitability of the chit, y > δn,j(Wi;x0)[s]
for all x0 < x1, and domσ = φi(y) > y. �

It follows that if β < dom∆n,j(Wi), then ∆n,j(Wi) � β eventually stabilizes.
This is actually true also when β = dom ∆n,j(Wi) < α, from hyperregularity of Wi

in the case the hypotheses of Mi hold. (If they do not, then the length of agreement
is bounded and so the i-expansionary stages will be bounded, so eventually Mi

ceases all action. We do not use this fact and so omit the proof.)

Lemma 4.4. For all x, there is a stage after which n stops defining ∆n,j(Wi;x).

Proof. Use the K requirement protecting the functional which converges with use
ρ ⊂ R at stage s if at that stage ∆n,j(Wi;x) ↓ with use σ and σ ⊂ Θi(R) with
use ρ. If there are unboundedly many attempts by n to define ∆n,j(x), then this
functional converges unboundedly often (we noted before that whenever ∆n,j(x)
gets defined with chit y, y is i-confirmed) and so will get protected, and so for some
s and σ, ∆n,j(x) is defined with use σ, and σ ⊂ Θi(R) at the end. By lemma 4.1,
∆n,j(x) doesn’t get redefined after s. �

MMM i. Suppose agent n works for Mi. Let r∗ = init(n, α). If n declares victory after
r∗ then the hypotheses of Mi are false (so it succeeds). The proof is identical to
the classical one. From now on, we assume that the hypotheses of Mi are true.

Lemma 4.5. lims l(i)[s] = α.

Proof. This is because Wi ⊕ P ⊕ R is hyperregular. The least stage at which a
number x is i-confirmed with correct uses for Θi(R) and Φi(Wi⊕P ) is computable
(as a function of x) from Wi ⊕ P ⊕R; hence bounded on initial segments of α. �

It follows that there are unboundedly many i-expansionary stages.

Lemma 4.6. Rest(n)[s] is bounded on a recursive club.

Proof. Take anym < n which works for someMk. r(m)[s] is constant on a recursive
club: if there are unboundedly many k-expansionary stages, then the set of stages
at which r(m) = 0 is a (recursive) club. If not, then r(m)[s] is eventually constant.
A finite intersection of recursive clubs is a recursive club. �

Lemma 4.7. dom∆n,0(Wi) = α.

Proof. By induction on x, we show that ∆n,0(Wi;x) ↓. If x ≤ dom∆n,0(Wi), then
by hyperregularity of Wi, we know that ∆n,0(Wi) � x eventually stabilizes. It is
enough now to show that for unboundedly many s, ∆n,j(Wi;x) ↓ [s]; by lemma
4.4, after some t, n stops defining ∆n,0(x), hence all computations ∆n,0(Wi;x)[s]
for s > t must be the same computation, which is permanent.

Suppose by s∗ > r∗, ∆n,0(Wi) � x is permanent. Suppose t > r∗ and
∆n,0(Wi)(x) ↑ [t]. Find some i-expansionary stage s > t such that l(i)[s] is
large enough so that there is some y ∈ α[n] such that #(t) < y < l(i)[s]. Now if
n didn’t define ∆n,0(x) between t and s, then y is a suitable chit (because n did
not define any ∆n,0 computations between t and s), thus would define ∆n,0(x) at
s. �
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Lemma 4.8. Say j ∈ [1, n]. If there are unboundedly many chits which are even-
tually j − 1-eligible (and never cancelled), then dom ∆n,j(Wi) = α.

Proof. This is like the last lemma; we find an expansionary stage t > s such that at
t, there is a chit y which is eventually j−1 eligible and is never cancelled, such that
#(t) < y < l(i)[s]; this is possible by the assumption that there are unboundedly
many such y. �

Now just as in the classical case (with the same proof), if at s, y is an active chit
for a failed ∆n,n computation, then it is cleared by all Γm for m ≤ n; we only need
to notice that by the suitability of the chits, if y is a chit for ∆n,j(x) then x ≤ y.

Lemma 4.9. If there were unboundedly many chits which are eventually n-eligible
(and never cancelled), then n would declare victory after r∗.

Proof. On a recursive club C, Rest(n)[s] is constant (call the value Rest(n)), and
r(n)[s] = 0. If y > Rest(n) is a permanently n-eligible chit, and at some s ∈ C
it is i-confirmed and already assigned to a computation which is already failed,
then at s, y is victorious and n gets to enumerate it into Q and win. If there were
unboundedly many permanent, failed chits, then such y and s would be discovered,
since C is unbounded, and we can wait until y’s computation is failed and y is
i-confirmed. �

The following concludes the verifications.

Lemma 4.10. Suppose that j ≤ n and dom ∆n,j(Wi) = α but ∆n,j(Wi) 6=∗ Gj.
Then there are unboundedly many j-eligible chits which are never cancelled.

Proof. Much of the proof goes along classical lines. Given β < α, let the functional
Ξ converge at t > r∗ with use ρ ⊕ π ⊂ R ⊕ P [t] if there is some σ ⊂ Wi[t] such
that σ ⊂ Θi(R)[t] and there is some y > β such that at t, (y, π) is an active chit
for a failed ∆n,j computation. If Ξ converges unboundedly often, the success of the
relevant K-requirement would show that there is some j-eligible chit which is never
cancelled and is greater than β (since protection of ρ ⊕ π ⊂ R ⊕ P would ensure
that σ ⊂Wi).

Suppose that t∗ > r∗ is any stage. As in the classical proof, we take some
x > β, t∗ whose final ∆n,j computation is failed; suppose that that computation
was defined at stage s > t∗ with associated chit (y, π). Let t > s be the stage
at which this computation failed (i.e. some agent m > n enumerated x into Gj

at t), and let u be the least stage greater than t at which r(n) = 0. Classical
arguments show that until u, π ⊂ P is preserved (so the chit is still active): m
initialized at s and wasn’t initialized until after t, so π ⊂ P is protected between s
and t; no numbers went into P at t (since m acted at t); and n imposed restraint
between t and u. We now notice that by the nature of our definition of u, u must
be i-expansionary, and thus y is i-confirmed at u, and so Ξ converges at u. �

5. Ordering

We can code any ∆2(Lα) partial ordering � on ω by a SW-set, exactly as is
done classically, by adding a coding set L, so that n � m iff Gn ≤α Gm⊕L. When
enumerating a follower into its targeted set, D-agents also enumerate the follower
into L. New N requirements ensure the negative part of the coding; their action
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is as in the classical case, and the rest of the construction goes through without
changes.

6. Permitting

In this section we prove theorem 2.1. We are given a nonrecursive, regular r.e.
set A and construct a SW-set such that R,L ≤α A, by waiting for A to permit
followers (for the diagonalisation requirements D and N) to enter their target sets.
This might result in a requirement having an infinite set of followers. This would
worry us for two reasons: we need to argue for fairness, that such a requirement
will not initialize unboundedly often for the sake of these followers; and we need to
verify that if the requirement does not declare victory, there is a last follower which
isn’t realized at the end. Luckily, both conditions hold without further changes to
the construction.

Construction

We are given a ∆2(Lα) partial ordering � on ω. Let � [s] be a recursive ap-
proximation to �. We assume that at every stage s, n � n[s] for all n. We are also
given a nonrecursive, regular r.e. set A.

We describe the changes from the basic construction given above. We add new
requirements Ni,j,e: If j � i then Gj 6= Ψe(Gi ⊕ L). If agent n works for Ni,j,e

and j � i[s] changes at s, we initialize n (and, of course, all weaker requirements)
[Since i � j[s] stabilizes, this will not affect fairness].

Followers. At stage s, an agent n working for Di,j,e or Ni,j,e may have followers.
Followers are targeted for Gj and L in the D case, and for every Gl such that
j � l[s]. A follower x for Di,j,e is realized at stage s if Ψe(Gi;x) ↓= 0[s]; a follower
x for Ni,j,e is realized at s if Ψe(Gi ⊕ L;x) ↓= 0[s]. A follower x is permitted at s
if some y < x enters A at s.

The Construction. In the instructions for Mi: suppose that the agent n working
for Mi defines ∆n,j(x) at s, and x is a follower for some agent m > n; then
m initializes all weaker agents. [Note that we do this even if x is not currently
targeted for Gj , since it may be targeted for Gj later. This is not a problem since
there are only finitely many functionals ∆ defined by agents stronger than m.]

The new instructions for Di,j,e and Ni,j,e: Assume n works for this require-
ment and has not declared victory since init(n, s). We skip this sub-stage if the
requirement is Ni,j,e and j � i[s]. Otherwise: if some follower x is realized and
permitted, enumerate the least one into the target sets, and declare victory. If
not, and some follower x is realized but wasn’t realized before, initialize all weaker
agents. Otherwise, if there are no unrealized followers, pick a new, large follower in
α[n].

The rest of the construction is followed verbatim.

Verifications
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Fairness and finitary success. For fairness, we need to show that if r∗ = init(n, α) < α
and n works for Ni,j,e or Di,j,e, then it initializes on behalf of a stronger require-
ment m defining ∆m,j(x) for some follower x of n only boundedly many times. Of
course if n ever declares victory after r∗, then it succeeds, abandons all followers
and ceases all action for ever, so we assume this doesn’t happen. For s > r∗, let
Ks be the set of followers n has at the beginning of stage s.

Lemma 6.1. Every x ∈ Ks is realized at s, except perhaps for a maximal element.

Proof. We show this by induction on s. Note that if x ∈ Ks is realized at s then it
remains realized for ever by force of n’s initialisation at the least stage at which x
is realized.

Now assume that s is a limit stage and that x ∈ Ks is not maximal; take some
y > x, y ∈ Ks. For some t < s, x, y ∈ Kt. By induction, x is realized at t;
hence is realized at s as well. Assume the statement holds for Ks; then it holds for
Ks+1, since at stage s all previously realized balls are still realized, and n perhaps
appoints a new follower, larger than supKs, only if every x ∈ Ks is realized. �

Lemma 6.2. n eventually stops appointing new followers.

Proof. This is a standard permitting argument. If this fails, then we compute A by
asserting that whenever x ∈ Ks is realized, then A � x [s] = A � x; this is because
x will never be permitted. If n keeps appointing followers, then these followers
are unbounded in size (since we appoint large ones), and each follower appointed
eventually gets realized. �

We note that lemmas 4.1 and 4.3 hold for this construction. We can now verify
that for a particular ∆m,j for m < n, n eventually stops initialising. Let K be the
eventual set of followers for n; it is α-finite. Let K ′ be the set of followers x ∈ K
such that n initializes for the sake of a ∆m,j(x) computation. For x ∈ K ′, let s(x)
be the unique stage at which m defines ∆m,j(x) and n initializes for this reason.
Note that if x, y ∈ K ′ and x < y then s(x) < s(y), since initialisation ensures that
after s(y), ∆m,j(x) will not be defined again. This ensures that s[K ′] is bounded
(since it is r.e. and of α-finite order-type), and thus ensures fairness. [In fact, if
y ∈ K ′, x ∈ K and x < y, then x ∈ K ′. This is because ∆m,j(x) must be defined
at some times before s(y); at that stage, x is already a follower of n (it cannot be
chosen later, since it is chosen large), thus n would initialize for x at that stage.
Thus K ′ = K ∩ supK ′ is α-finite, which shows that s[K ′] is α-finite as well.]

Now we see that if n does not declare victory after r∗, then there is a last, largest
follower x appointed, and it never gets realized. This ensures success for n (together
with the fact that j � i[s] eventually stabilizes at the right value).

Ordering. Since numbers entering R and L are permitted by A, we get that
R,L ≤α A (note that we need the regularity of A here). Success of the N re-
quirements ensures that if j � i then Gj 6≤α Gi ⊕ L. Suppose that j � i; this is
detected from some point onwards, and so from some stage, if x enters Gj because
of some N requirement, then it enters Gi as well; otherwise it enters L. This ensures
that Gj ≤α Gi ⊕ L.

7. Cone Avoiding and Comparison

We prove theorem 2.2, by adding the Z requirements of the classical construction.
We are given a ∆2(Lα) partial ordering � on ω, and a recursive set of �-minimal
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elements H. We are also given uniformly r.e. arrays 〈Ui〉i∈H and 〈Vi,j〉i∈H,j<ω (of
regular sets), the latter being also uniformly low, and such that for all i ∈ H and
j < ω, Ui 6≤α Vi,j . We add the requirements Zi,j,e: If i ∈ H, then Gi 6= Ψe(Vi,j).

Construction

Followers. At stage s, an agent n working for Di,j,e, Ni,j,e or Zi,j,e may have
followers. If the requirement is Di,j,e, followers are targeted for Gj and L; for every
Gl such that j � l[s] if the requirement is Ni,j,e; and for Gi and L if the requirement
is Zi,j,e. A follower x for Di,j,e is realized at stage s if Ψe(Gi;x) ↓= 0[s]; a follower
x for Ni,j,e is realized at s if Ψe(Gi⊕L;x) ↓= 0[s]; a follower x for Zi,j,e is realized
at s if Ψe(Vi,j ;x) ↓= 0[s]. A follower x is permitted at s if the requirement is Dj,i,e,
Nj,i,e or Zi,j,e, i ∈ H and some y < x enters Ui at s; if i /∈ H, then every follower
is always permitted.

Guessing. Fix recursive functions f, g (whose exact identity will be revealed
shortly). Suppose that agent n works for Zi,j,e. Suppose that x ∈ Gi, and that
x is realized at s (i.e. Ψe(Vi,j ;x) ↓= 0[s]). To guess x’s success at s, n finds the
least t > s such that f(n, t) = 1, or such that the computation is discovered to be
incorrect by t (i.e. Vi,j changes on its use at t). n believes that x succeeds if at
that t, the former happens. Note that the fact that this search halts will depend
on the properties of the particular function f we pick later.

Suppose that x is a realized, permitted follower of n at s. To guess if x is useful
at s, it finds the least t > s at which g(n, t) = 1 or the computation (for x) is
discovered to be incorrect. It believes x is useful if the former happens.

The Construction. Directions for old requirements are identical to those of the
last construction (of course, the meaning of ‘permitted’ has changed for the D and
N requirements). Note that Z requirements initialize for M requirements just like
D and N requirements. Note that enumerated followers are not considered followers
here, even though the Z requirement never declares victory.

Instructions for n, working for Zi,j,e: If n believes that some realized x ∈ Gi[s] is
successful, skip this sub-stage. If not, and if there is some follower which is realized
and permitted, check if it is useful, and if so, enumerate it into Gi and L, and
initialize all weaker agents. If there are no useful followers, but all followers are
realized, pick a new, large follower from α[n].

Recursion Theorem. Since the Vi,j are uniformly low, the recursion theorem
implies the existence of total, recursive functions f, g such that if used above in
the construction, satisfy that for all n, lims→α f(n, s) and lims→α g(n, s) exists and
are either 0 or 1; and that if n works for Zi,j,e, then lims→α f(n, s) = 1 iff at
some stage of the construction there is a x ∈ Gi which is realized by a Vi,j-correct
computation; and lims→α g(n, s) = 1 iff at some stage of the construction we didn’t
skip the sub-stage devoted to n (due to some x ∈ Gi thought to be successful),
and at that stage there is some follower for n which is permitted and realized by a
correct computation.

One can see now that using these f and g in our construction, the guessing
procedures always terminate; a realized x ∈ Gi[s] is either incorrectly realized (and
this will be eventually discovered), or a witness to lim f(n, s) = 1; similarly for g.
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Verifications

Verifications follow closely the previous ones, or the classical ones. In particular,
verifications for Di,j,e for j /∈ H are as in the first construction, and for j ∈ H are
as in the proof of theorem 2.1, with Uj replacing A.

Now suppose that n works for Zi,j,e and r∗ = init(n, α) < α.

Lemma 7.1. n eventually stops appointing new followers or enumerating followers
into Gi.

Proof. This is classical. If lim f(n, s) = 1 then from some stage we skip n. If
lim g(n, s) = 1 then lim f(n, s) = 1; the witness for the former is believed useful
and enumerated. If lim g(n, s) = lim f(n, s) = 0 and both stabilize after t∗ > r∗,
then after t∗, no follower is deemed useful, so n doesn’t enumerate followers after
t∗. If n keeps appointing new followers, then each follower x is eventually correctly
realized; this is because at unboundedly many stages, larger followers are appointed,
and at those stages, x is realized; and Vi,j is low. A correctly realized follower cannot
be permitted after t∗ (or would get enumerated, since we do not skip n); this gives
us a procedure of computing Ui from Vi,j (since there are followers unbounded in
size). �

Just like for theD and N requirements, we get that n eventually stops initialising
for the sake of stronger requirements Mj , and so fairness is maintained. We can
now show that n succeeds: If lim f(n, s) = 1 this is clear. If not, and after t∗,
n ceases all action, then there is some follower x which isn’t eventually realized
(this ensures success); otherwise, there is a stage at which all permanent followers
are correctly realized (the function taking the follower to the stage at which it is
correctly realized is computable from Vi,j , which is hyperregular, and the set of
followers is α-finite.) But after that stage, n would appoint a new follower (we do
not skip it). The rest of the verifications follow as before.
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