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Differences Between Resource Bounded Degree
Structures

Michael E. Mytilinaios and Theodore A. Slaman

Abstract We exhibit a structural difference between the truth-table degrees of
the sets which are truth-table abovea@d thePTIME-Turing degrees of all sets.
Though the structures do not have the same isomorphism type, demonstrating
this fact relies on developing their common theory.

1. Introduction

For setsA and B, Ais recursive inB (A <7 B) if and only if there exists an algo-
rithm to computeA given complete information abo@. If A andB are recursive
in each other, we say that they have the same Turing degree. The Turing degree of
a set is a measurement of the information which is contained in the diagram of that
set. The Turing degrees are partially ordereddyyon their representatives.

By restricting the class of allowed algorithms, we obtain finer notions of degree.
For example,A is truth-table reducible t& (A <i B) if and only if there is a
total recursive functiory and an algorithm to comput& from B such that for each
n, the algorithm runs in less thag(n) many steps. The truth-table degrees are the
associated equivalence classes. Similatlyis PTIME-computable fromB if the
function g is a polynomial, and th®TIME-degrees are the associated equivalence
classes. With sub-exponential time classes, the representation of sets is important;
we will always work with sets of finite binary strings and calculate the run-time of
programs in terms of the lengths of their inputs.

In general, ifu is a collection of total recursive functions, we say thak, B if
there is g in u and an algorithm to determine atomic facts ab&ditom B such that
the run-time of the algorithm is bounded by Typically, u is taken to represent a
natural class of time complexity. We I&€};; denote the partial order of the truth-table
degreesDpTive the PTIME-degrees, and, theu-degrees.
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Dyt is an odd member among the above collection of bounded resource degree
structures. The others are uniformly recursive; that is to say that there is a single
recursive functiorn(n, m) of two variables such that for evegy g € u if and only if
there is aim such that for alh, g(n) = h(n, m). However, this difference disappears
if we considerDy (>;0'), the truth-table degrees of sets above the halting problem
and leth be recursive in 0

Downey raised the question whether moving to the degrees aboembves the
differences betweemy; and the more complexity theoretic degree structubgs

The answer is both no and yes. We will show tliat(>;0') is not isomorphic to
Dp1ive. However, we come to this conclusion by exploiting the extensive similari-
ties between the two structures.

We will show thatDy; (>1;0') and DpTime are not isomorphic by showing that
Dyt (>1t0) is locally more complicated thamprve. For this, we will use finite
sequencep of degrees to specify infinite sequences. Working@ia(>:0'), we will
show that ifp specifies the sequen¢g : i € w), then there is another finite sequence
g below the join ofp such thaig specifies the subsequen@e : i € 0”). However,
in Dp1iME, there is g specifying a sequendgi : i € w) such that for every finite
sequence below the join ofp, q does not specify the subsequerige: i € 0”) (in
the sense of the previous sentence).

2. Isomorphism types

2.1 Defining w-sequences from parameters

Conventions.  In Section 2.1, we develop a common part of the theories of
Dt (=t0) and Dprive. The following can be applied equally well in either of
the two, so we will refer simply taD. Similarly, we will let O refer to a representa-
tive of the least element @b: @ whenD = Dp1ime and 0 whenD = D (>1t0).
Finally, we will use uppercase Greek letters, suchbaand ¥, to denote Turing
functionals which corresponds to reductions of typeand refer to them a®-
functionals. For example, &pTve-functional is a Turing functional that runs in
polynomial time. To keep the notation uncluttered, we will not explicitly join our
sets withO, but we will make the convention that agy-functional can refer to the
oracleO.

Definition 2.1 1. Anidealin D is a set{ that is closed under join and closed
downward.
2. Intersection gives an operation of meet on ideals. Union followed by closure
underD'’s join and closure downward gives an operation of join for ideals.
3. Given ak in D, let (k) denote{x : x <gp k}. Clearly, (k) is an ideal.
Similarly, if X is a set of elements i, let (X) denote the ideal generated
by the elements of(.

There are many ways by which finitely many parameters can be used to generate an
infinite sequence iD. In Definition 2.2, we specify one such method, with features
motivated by Shore [6] and Nies et al. [4]. This method is well suited to specifying
subsequences from presentation of sequences.

Definition 2.2 A finite sequence of elements ofD specifies the infinite sequence
(gi : 1 € w) ifand only if there are set&;, F1, E2, F2, D1, andD2 which represent
the elements op in order, and there are set&; : i € w) which represent the
elements ofg; : i € w), in order, and the following conditions hold.
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1. For any finite seGp,, ..., Gp, and Gy, if for all j < k, nj # m, then
({Gnys - -+ G ) N (Gm) = (O).
2. (a) D1 #9 Dy, and
(b) foreachn € w, D1 ® G, >p Do.
3. Foreach € w,
(a) if nis odd, thenF1 & Gn) N (E1) = (Gpt1), and
(b) if nis even, ther(F> & Gp) N (E2) = (Gnt1)-

If p specifies a sequence, then the set of elements of that sequence is not necessarily
first order definable fromp, but it is associated within a way that is invariant under
isomorphism.

For the next definition, lep specify the sequenc@; : i € w) and adopt the
notation of Definition 2.2. Further, h = (p1,..., px) andq is a degree, then let
p~(q) denote the sequences, ..., pk, q) obtained by appendingto p.

Definition 2.3  Suppose thaj is a degree iD andQ is a set of degregq. We say
that the sequenge™(q) specifies the subsequengg : i € S) if and only if, for all
i 1

i €S < @AX)[Gj=p XandX ® D1 >p DrandQ =45 X].

The technology to control meets @p1ve Was developed in Ambos-Spies [1]. It
was developed further in Shinoda and Slaman [5] and Shore and Slaman [7]. We
apply some of that technology in the next theorem. But first, we introduce a Skolem-
ized version of Definition 2.2.

Definition 2.4 A verified sequencis a finite sequence ab-Turing functionals
((©1,j, 02, ®j11) : ] < i) with these three conditions, where we identify with
Go.
1. For all even;j strictly less than, @1 j(F2 @ Xj) = O,j(Ez) and X1 is
their common value.
2. For all oddj strictly less than, ©1 j(F1 ® Xj) = 02 (Ey) and Xj 1 is
their common value.
3. For allj strictly less tharn, ®j11(D1 & Xj41) = Da.

We can think of a verified sequence as just a finite sequence of numbers, the indices
of the functionals. If{(®1 j, ©2j, ®j+1) : ] < i) is a verified sequence, then each
Xj+1 named above is a nontrivial element @;1). In the other direction, for
everyi, G; is the last element of some verified sequence.

Theorem 2.5 Suppose thab specifies the sequen¢g : i € w) in D. Let P be a
representative of the join of representativep.ofor S C w, the following conditions
are equivalent.
1. SiszY(P).
2. There is a Q of degree q such that=Pp Q andp™(q) specifies the subse-
quenceg; :i € S).

Proof We begin with (1). Let us suppose that there iQ af degreeq such that
P >o Qandp™(q) specifies the subsequengg : i € S). Then,

i €S < @AX)[Gj=p XandX ® Dy >p DrandQ =45 X].
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First, we can expand the right-hand-side of the equivalence so that

] There arelq, Wy, and® such that
eSS <<
Vo (W1(Gj) @ D1) = Dy and®(Q) = V1(Gj),

wherewq, W,, and® areD-functionals. Second, the ideal bel@y is characterized

by the recursion relations in Definition 2.2. So, saying that theredg auch that
W1(Gj) has a certain property can also be expressed as follows. We can say that
there is a verified sequence ending withsuch thatX; has the property in question.
Equality betweerD-Turing reductions isl‘lg relative toP; the existence of thi;’s

can be asserted by the existence of a vector of indice®fduring reductions; and

s0, the reformulation of the right-hand-side iE%(P) property.

Part (2) of the proof of Theorem 2.5 is the construction of an appropQaté/e
will describe the strategies involved and then discuss a construction combining them.

Suppose thabis Eg( P), and letR be a bounded formula such that foriall € S
if and only if InvmR(i, n, m, P). For the moment, let us focus on satisfying the
statement, If(®1,j, ©2j, ®j41) : ] < i) is a verified sequence, théh > X if
and only ifi € S.

Our strategy to satisfy this statement will have two types of substrategies, which
we will describe in isolation. Before we describe these, we discuss some mechanical
preliminaries.

In the first type of substrategy, we will work with a humbreand approximate
whethervmR(i, n, m, P). For this, we will do the firss-many computational steps
of the process to check whethBfi, n, 0, P), R(i, n, 1, P), R@, n, 2, P), etc. We
say thatymR(i, n, m, P) is verified up to stags if and only if this s-step process
does not reveal am such thatR(i, n, m, P) is not true.

In both types of substrategy, we will approximate verified sequences. \Wg let
denoteGp. We say that a sequen¢@; j, Oz j, ®ji1) : | < i) is verified up tos
provided that all of the equalities in the list

1. For all evenj strictly less thari, ®1j(F> & Xj) = ©2(E2) and we let
Xj+1 denote common value.

2. For all oddj strictly less tharn, ©1 j(F1® Xj) = 02 j(E1) and we letXj 1
denote their common value.

3. For allj strictly less than, ®j,1(D1 & Xj11) = Da).

hold on the set of computations that can be verifieds imany steps. Clearly,
((®1,j,02j,®j+1) : | < i) defines a verified sequence if and only if for every
sitis verified up tos.

We are not being specific about what we mean by the set of computations that can
be verified ins many steps. Out construction is not sensitive on this point. Fix any
recursive method to eventually check through all the above identities at all possible
arguments, no matter how inefficient. Then take “the finstany steps” to mean the
first s many steps in this recursive process.

We will describe our construction as occurring in stages. S¢agidl consist of
calculating for allo of lengths, whethero is an element of). For each such, this
calculation will have length a constant multiplesst We note that membership in
Q has been decided for strings of length less thand that we can use information
aboutQ on short strings provided that we can compute that information within our
s? time bound.



Differences Between Degree Structures 5

Coding.  Fix the sequencé(®y j, ©2j, ®j11) : j < i) and a numben. The
coding substrategy acts as follows to ensure thgdh j, © j, ®j11) : j <i)isa
verified sequence andm)R(i, n, m, P) thenQ >4 X;.

It chooses a finite binary string, unused by any other substrategy. Looking
across all stages, it's action breaks into two states.
State1.  If ((®1,j, ®2,j, Pj4+1) : j < i) is verified up tos and no counter-example
(m) to (Ym)R(i, n, m, P) is discovered within a search efsteps, then the coding
substrategy acts as follows. Given a stréingt™ of lengths, it checks whethet* is
the concatenation of a sequence of O’s of length the run time of the computation rel-
ative to the appropriate (depending on the parity)dx used to determine whether
T € Xj, 1, and thert. If this is the case, then it sets

cTtTeQ &= teX.

Otherwise, it setg~t* ¢ Q. Note thatr and X;(r) can be computed a constant
multiple of s many steps from* and the appropriatEy.

State 2. If during stages ((©y1,j, ®2j, ®j41) : ] < i) is not verified up tcs or

in less thars we discover am such thatR(i, n, m, P), then the coding substrategy
imposes the constraint that for af™~t* of lengths, 6 ~1t* ¢ Q.

Effect. If ((®1, 02, ®j+1) : ] < i) is a verified sequence, then the coding
substrategy ensures thét is D-computable fromQ. Otherwise, it’s effect on the
construction ofQ is to ensure that there are only finitely many extensions tifat
belong toQ.

Diagonalization. ~ Our substrategy here is analogous to similar strategies found in
Ladner [3].

Suppose that we are given a sequef(é, j, ©2j, j41) : j < i). The diago-
nalization substrategy acts to ensure that if the sequence is a verified sequence then
®(Q) # Xj. It affects the construction as follows.

State 1. First, it checks whethef(®1 j, ©2j, ®j+1) : j < i) is verified up to

s. If so then it runs the firss many steps to check whether there is a counter-
example to® (Q) = X;. (Note, we restricP’s simulating queries t® so that those
queries are on arguments of length less thanlIf no counter-example is found,
then the diagonalization substrategy requires that far all lengths, o € Q if and

only if o is required to be iMQ by virtue of a coding substrategy which has higher
priority than it does. (We will organize our construction so that there are only finitely
many strategies of higher priority than this one. We will also ensure that none of the
strategies of higher priority code nontrivial sefsbelowG;.)

State 2. If either (©1,j, ®2j, ®j11) : ] < i) is not verified up te or the diago-
nalization discovers a counter-examplet6Q) = X, then it imposes no constraint

on the construction during stage

Effect. ~ The diagonalization substrategy starts by imposing a constraint that, if per-
manent, would ensure th& is in the ideal generated from the sets coded by the
higher priority coding substrategies. Further, if this constraint were permanent, then
the verified sequence fof; would ensure thaX; is a nontrivial element ofG;) and

the substrategy’s never finding a counter-exampl® tQ) = X; would ensure that

Xj isin the ideal generated by these coded sets. Consequent}yisihot below the

join of the sets coded int@ by the action of higher priority coding substrategies,
then the diagonalization strategy cannot stay in State 1 indefinitely.
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The global strategy for ((®1,j, ®2j, ®j+1) : j <i). Now, we discuss the global
strategyg to ensure that if(®1,j, ©,,j, ®j+1) : j < i) is a verified sequence, then
Q >p Xjifandonly ifi € S. (Recall thatR is a bounded formula such that for all
i,i € Sifandonly ifInymR(i, n,m, P).)

The first action ofg, is to compute what we will call itstate as follows. § first
computes whethel(©4,j, ®2 j, ®j11) : | < i) is verified up tes. If the sequence is
not verified up tos, then we say thag is cancelled during stageand letcancelled
be its state during stage If it is not cancelled,then beginning withequal to 0§
performs the firss computational steps in the following recursion. (Below, we refer
to a standard recursive enumeration of fdunctionals(®p : h € w).)

1. If there amm less thars such that=R(i, n, m, P) then(n, 1) is not the state
of g.

2. If there is amx lesss such that®n(x, Q) # X;(n) then the state of. is not
(n, 2).

If G rules out both state®, 1) and(n, 2) then it increases the value oy one and
repeats the process.

If G is not cancelled, the state gfduring stages is the first pair(n, j) not ruled
out above. It points to the substrategy that we should use for the sakeafing
stages.

If g is not cancelled, then it does not impose any constraints on the construction.
Otherwise, letn, j) denote the state §f during stages. If j is equal to 1, theg acts
to enforce the state-1 constraints of the coding strategy on all string¢engths.
If j is equal to 2, the§ acts to enforce the state-1 constraints of the diagonalization
strategy on all strings of lengths.

Now, we describe our full construction .
Assigning priority.  FixX a recursive enumeration of all sequences of indices for pos-
sible verified sequencés®y j, ©2j, ®j11) : j < i). Of course, some of these may
not actually denote verified sequences as they may fail to satisfy one of the appropri-
ate equalities between terms. We $atdenote the strategy associated with étfe
such sequence (denoté@e.1,j, O¢2,j, Pe j+1, Xe j+1) ] <le)).

For distinct strategie$e, andge,, we say thage, in state(ny, ki) hashigher pri-
ority thange, in state(ny, ko) if and only either the maximum d&y, n1} is less than
the maximum offez, ny} or their maxima are equal ard is less thare,. Clearly,
for eachge, and stategny, k1), there are only finitely mange,’s and stategny, k)
which have higher priority.
Defining Q on sequences of length S.  During each stage of our construction, we
work through the following steps in order.

1. For each less thars, we compute the state g¢f during stages.

2. We order the strategies in their stagstates according to the priority given
above. Letge in stages state(ne, 2) have the highest priority among all of
these whose states have the fognj, 2) and for which there is no higher
priority Ge, in stages state(ne,, 1) for whichie = ig,. In other words ge
in stages state(ng, 2) has the highest priority among those strategies/states
Ge,/(Ng,, 2) for which there is no higher priority strategy/state which would
code a nontrivial element Qg,iel) into Q.
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3. Finally, if o has lengtts, theno is an element of if and only if some coding
strategyge, in a stages state of higher than or equal priority than thatgef
requires that belong toQ.

To summarize, we find the highest priority strategy/diagonalization-state pair
Ge/(Ne, 2) which is working on a value of for which there is no higher priority
active coding strategy, and we restrict ourselves to using only those strategy/coding-
state pairs of higher priority thafie/(ne, 2). We say thatge/(ne, 2) and these
strategies in their coding states are active during stage
Verifying that Q has the requisite properties.  First, we observe thaP >4 Q.
Suppose that is a string of lengtts. For eachi less thars, we calculate the stage-
state ofg; by simulating twos-step computations, one to test whether to caggel
and one to determine it®, j) state. Thus, the calculation of the strategy/state pairs
which are active during stageis done in a constant multiple sf many steps. We
then determine whetheris an element o) by checking whether it is put int@Q to
for a strategy which is active during stagieAs we indicated earlier, whetheris to
be put intoQ by an active coding strategy can be determined in linear time relative
to E1 and E2. Consequently, whether belongs toQ is computable fronP in a
constant multiple 062 many steps, and s > ¢ Q.

We now have a finite injury argument to show th@tsatisfies a sufficient set
of requirements. To begin, for each strategy and each state which that strategy can
achieve, there are only finitely many strategy/state pairs of higher priority. Further,
for all strategie% and stategn, j), if (n, j) is ruled out for4e during stages, then
it is ruled out during every subsequent stage (for the same reason that it was ruled
out during stags).

We claim that no strateg§.e can reach a stat@e, 2) and remain actively in that
state during all subsequent stages. For the sake of a contradiction, suppose that the
claim is false. Lege and staténe, 2) be the highest priority counter-example. Since
Ge remains in staténe, 2), its sequencé(@e1,j, Oe 2 j, Pe j+1, Xe j+1) 1 | <le))
must be verified up te during ever stags, and so be a verified sequence. In par-
ticular, Xe i, is a nontrivial member ofG;,). Choose a stageso thatge is in state
(ne, 2) during stages and so that every strategy in a stagystate(n, 2) with no
active, higher priority, coding strategy has lower priority thg (ne, 2) does. By
the choice ofge, (Ne, 2), ands, if t is greater than or equal ®and if e, is in
a coding state of higher priority thae in state(ne, 2) thenig, is not equal tde.
Consequently, the join of the sets being coded @tby strategies of higher priority
is below a finite join ofG;’s such thaf is not equal tde. Since the degrees of the
setsG; are part of the sequence specifieddfgee Definition 2.2), any set below the
finite join aboveG;, has trivialD-degree. Sinc&e i, is the last element of a verified
sequenceXe,, is not trivial andXeji, € (Gj,). Thus,Xej, is not below the join of
the coded sets. Once the construction computes the witness to this effect and rules
out the staténe, 2) for e, as claimed.

By the previous paragraph, no strategy can remain in an active diagonalization
state indefinitely. Suppose thai®e 1 j, Oe2j, Pej+1) : ] < le) is a verified
sequence such thiat= i and that'vn)(3m)—R(, n, m). By the first assumptior§e
will have a state of the forrtm, j) during every stage of the construction greater than
or equal toe. We letn* be fixed for the moment, and we show tita{- (Q) # X.

Since the(n, 1) states of anye, with ie, = i are discarded when the construction
finds that(3m)—R(ie, N, M), N0 suchge, can be in one of these states indefinitely:



8 Michael E. Mytilinaios and Theodore A. Slaman

either the construction discovers tHé®e, .1, j, O¢;,2,j, Pey,j+1) 1 ] < ig) fails to

be verified up to the current stage or it discovers (Hat)—R(ie, N, m). So, there

is a staget after which everyge, with i, = ie rules out all of the statey, 1)

of higher priority than that ofie in state(n*, 2). Since no strategy can remain in
an active diagonalization state indefinitely and no state can be repeated once it is
ruled out, there is an even larger stage such that for all later stagisisifin state

(n*, 2) then it will be active. Since it cannot be active indefinitely, there must be a
stage during which we rule out the stdte, 2) for ge and this can only happen by
finding a stringr and a computation showing th@t (o, Q) is not equal taXe i (o).
Consequently, iftYn)(@m)—R(, n,m) and((Ge 1,j, Oe2,j, Pej+1) : j < ie)isa
verified sequence such that= i, then®,«(Q) # X;j. Sincen* was arbitrary, if
(Ym)@mM)—R(i, n,m) and((O¢1,j, Oc 2 j, Pej+1) : | < ie) is a verified sequence
such thaie =i thenQ # o X|, as required.

Dually, suppose thaf(®e1,j, @2, j, Pej+1) : | < lg) is a verified sequence
such thatie = i and that(3n)(Vvm)—R(i, n, m). Let n; be the smallest number
such that(vm)—R(i, n, m). Arguing as above, either there is a stagaich that all
of the higher priority states dfe are ruled out during every stage afteor there is
a higher priority strategy/coding-stagg, which is active indefinitely and for which
i, = 1. All of the strategy/diagonalization-states of higher priority ti§arin state
(ni, 1) which are ever active are eventually ruled outgifis ever made active in
state(n;, 1) it will be active during every subsequent stage. Consequently, gther
in state(n;, 1) is active indefinitely or there is a higher priority strategy/coding-state
Ge, Which is active indefinitely and for whicly, = i. (Note, the coding oK, into
Q could keepge in an earlier diagonalization state. However, in this case, we need
not argue thag. codesXe; into Q.)

Consequently, there is &f and a verified sequence ending wil- ; such that
Q >9 Xi,., as required in this case.

Thus, Q satisfies the requirements necessary to verify the second part of Theo-
rem 2.5. O

Next, we show that it is possible for parameters to specify sequences. The following
theorem is not the best possible, in fact stronger results appear in Shore and Slaman
[8], but it is sufficient for our application. We include a direct proof of Theorem 2.6
here, since it is relatively short and avoids the complexities of [8] that are not relevant
here.

Theorem 2.6 There are sets | F1, E», F2, D1, and D, such that the following
conditions hold.

1. The degrees of £ F1, E2, Fp, D1, and D, specify a sequence.
2. The Turing jump of the join of all of these sets is recursive in the Turing jump
of the least element &b.

Proof Recall our notationQ is a representative of the least elemeniinf

We build E;, F1, E2, F2, D1, and D> by an effective forcing construction so that
the Turing jump of their join is recursive i@’.

We partition the set of finite binary strings with at least one nonzero value into
an infinite set of isomorphic copies of the set of all binary strings. (Det) be the
binary sequence withrmany 0’s followed by a 1. For a sé¢, we let X' denote
the set of strings such thair is in X ando is an extension of0' 1). We will let
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Ggzj = EZ) andGyj 41 = E5'*, and so by specifying; and Ex we will implicitly
specify all of the elements d¢f5; : i € w}, as well. Note that we have ensured that
distinct Gj’s have empty intersection, and that the set theoretic union of any set of
Gj's is aPTIME-upper bound for the ideal that they generate.

The forcing partial order. A condition p in P specifies finitely much about the sets
E1, F1, E2, Fp, D1, andD,. The information specified must satisfy the following
conditions.

1. (a) If p specifiesDo(c), Gi((0'1) o), andD1({0'1) " o), then

0, if D1((01) o) =G;((01) o);

Da(0) = { 1,  otherwise.

(b) Further, ifp specifies two of the above three values, then it specifies the
remaining one.
2. (@) Ifi > 0is odd andp specifiesG; ((0'1) ), F1((0'1) o), and
Gi;1((0*t11) ), then

o : 1"y — G (01 o)
(b) If i > 0O is even andp specifiesG;((0'1)” o), F2((0'1) o), and
Gi41((0+11) o), then

gm0 i R(01) ) =Gi(0) o)
G0 D) o) = { 1, otherwise.
(c) In each of the above casespifspecifies two of the above three values,
then it specifies the remaining one.

Conditions are ordered by inclusion.
Properties of a generic set. ~ The instances of comparability required to specify a
sequence are built into the partial order. Additionally, there is enough flexibility
in the partial order so that the other properties required by Definition 2.2 can be
ensured by deciding:f(O) sentences about the sets constructed. Specifically, we
must satisfy the following requirements.

D-requirements: For eachD-functional®, ®(D1) # D».
FE-requirements: For each pair ofD-functionals®; and®, and each,
e if i isodd andd1(F1 & Gj) = ®»(E1), then there is @-functional A
such thatA (Gj11) = ®2(E1), and
e ifi isevenandb(F> @ Gj) = ®»(E»), then there is @-functional A
such thatA (G ;1) = ®2(E1).

D-requirements.  Consider the first of these requirements. Supposegligt con-
dition. Choses so thatp does not specifiD,(o), and for alli, p does not specify
Gi((01) o) orD1({(0'1) o). We first extendp’s specification ofD; so as to deter-
mine the value o® (o, D1). Then we exteng’s specification ofD» so thatD2(o)

is different from the value 0 (o, D1). We extend the specification of tli&'s to
ensure thaD; @ G; codesD» in the manner prescribed in 1(a). Finally, we extend
F1 andF» so as to respect 2(a) and 2(b). Givyerwe can find the desired extension
recursively inO.



10 Michael E. Mytilinaios and Theodore A. Slaman

FE-requirements. ~ Now consider the first instance of the second requirement, when
i is odd. Suppose thai is a condition. By making a finite extension pf we may
assume that for af and alli, if either of F1((0'1) o) or F2((0'1) " o) is specified

by p, then so arés; (o), andG;j_1(c). We consider two cases.

Case 1.  For any strings and any two conditiong; and g, which extendp and
agree on the values specified f8r,1, the values ofb, (o, E1) determined by the
conditions are equal.

But then, for any way to extend the valuesmpbn theGj's, there is an extension
of the values ofF; F», D1, and D, which produces a condition. Consequenply
forces thatG;; can compute the value @b, (o, E1): the value ofd, (o, Ej) is
equal to that ofb,(o, Ep), whereEy is the set whose only elements are the union
of Gj1 with the set of elements specified to belondgpby p.

Case 2. Thereis a string and two conditionsg); andg, which extendp and agree
on the values specified f@B; 1, such that the values @b, (o, E1) determined by
the conditions are not equal, and we fix such.

By making a finite extension af;, we may assume thap specifies enough of
F, andG; to determine the value ab1 (o, F1 @ G;j). If this value is different from
®,(E1), then our requirement is satisfied. Otherwise, we proceed as follows to con-
struct a conditiom such that specifies the same values fef andG; asq; does,
andr specifies the values fdg; thatg, does. We start witki;. We change the values
specified forE; so as to agree with those specifieddysinceq; andg, specify the
same values foBj 11, this does not change the specificatiorpf. 1. Thus, we have
changed the specification of some of thg's with j even. We change the values of
theGj’s for j odd in order to maké&; @ Gj correctly code the new values Gfj ;.
Note that though we may change some of @gs for j even, we do not change
G;j, sinceF; & G; already code&; 1. We change the values &5 in order to make
F2® Gj correctly code then new values of tBg.1’s for j even. Finally, we change
D, so that for allj, D; @ Gj correctly coded;. In short, we can change all of the
evenGj’s with j # i + 1 and shunt the feedback away fey ® G;j. The condition
r ensures thab1(o, F1 & Gj) # ®2(o, E1).

In either case, the requirement is satisfied. The split into cas‘é%('@); and in
the second case, we can find the conditiamiformly recursively inO’.

Turing jump requirements.  Controlling the jump is a standard feature of construc-
tions of this sort; see Jockusch [2]. We can ensure that the join of the sets that we
produce has Turing jump recursive @ be ensuring that every‘l) sentence about
these sets is decided by an element of our partial order.

The construction. ~ For each of our requirements, we can go from a condifidn

a conditiong such that the requirement is satisfied for any sets exterdifgrther,

we can findg from p and the requirement recursively relative@. Consequently,

we can use recursion to construct sets of the desired sort, satisfying the requirements
one after the other. O

2.2 Comparing Di:(>1t0') and DpTivE
Theorem 2.7 Dy (>1t0") and Detyme are not isomorphic.

Proof First considetD;; (>10). Every element ofD;; (>;0) can compute Qand
so 0’ is Eg in every representative of an element®@f (>10'). By Theorem 2.5, if
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p specifies a sequencg; : i € ) in Dy (>110), then there is g below the join of
p such thap™(q) specifies the subsequengg : i € 0”).

Now considerDp1ve. Let p be the sequence of parameters produced in Theo-
rem 2.6. By the first clause of Theorem 26specifies a sequendg; : i € w) in
Dp1iMe- By the second clause, the Turing jump of join of the representativpssof
recursive in O Consequently, i is below the join ofp in Dp1mMe andQ is a repre-
sentative ofQ, then any seEJ(Q) is £2. But then, since 0 is not =3, Theorem 2.5
implies that the subsequen@ : i € 0") is not represented by amybelow the join
of the elements gpb. O

3. Conclusion

We have shown thaDy; (>110") and Dp1ime are not isomorphic. We firmly believe
that these structures have different first order theories. We believe that one could
find a difference between their theories by extending the apparatus of specifying se-
quences to an apparatus of specifying standard models of arithmetic. The structural
difference between the two structures would then be expressed in the first order lan-
guage of these structure®p1me Would have a sequence of parameters specifying a
standard model of arithmetic such thatepbelow the parameters specifies the com-
plete Eg predicate on that model. 1@ (>¢:0"), the opposite would be true. One
could attempt to apply the techniques in [5] in order to carry out this proposal.

The difference found betweeny; (>;0') and Dptime comes from the large dif-
ference in the Turing degrees of their least elements. Our methods do not answer the
following question.

Question 3.1 Let D gm be the elementary-time Turing degrees dsTive iSO-
morphic toDg L em?
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