
Aspects of the Turing Jump

Theodore A. Slaman∗

University of California, Berkeley
Berkeley, CA 94720-3840, USA
slaman@math.berkeley.edu

1 Introduction

Definition 1.1 The Turing Jump is the function which maps a set X ⊆ N to
X ′, the halting problem relative to X. Fixing a recursive enumeration of all
Turing machines,

X ′ =
{
e : The eth Turing machine with oracle X halts.

}
X ′ is the canonical example of a set which is definable from X but not

recursive in X. The Turing degree of X ′ depends only on the Turing degree of
X, so the jump induces an increasing function on the Turing degrees D.

In this paper, we will discuss two aspects of the jump and its iterations.
First, we will show that they are implicitly characterized by general properties
of relative definability. Second, we will present the Shore and Slaman [1999]
theorem that the function x 7→ x′ is first order definable in the Turing degrees.
Finally, we will pose analogous questions about the relation y is recursively
enumerable in x and discuss what is known about them.

Our discussion will rest on two technical facts, which are generalizations of
the following two theorems.

Theorem 1.2 (Friedberg [1957]) Suppose that x ≥T 0′. Then there is a g
such that g′ = x.

In other words, every sufficiently complicated degree is the jump of some
degree.

Theorem 1.3 (Posner and Robinson [1981]) Suppose that 0 6≥T x. Then
there is a g such that x ∨ g = g′.

Similarly, every nontrivial degree is the jump relative to some other degree.
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1.1 Hierarchies of definability

The arithmetic and hyperarithmetic hierarchies provide the context in which
we can extend the inversion and join theorems.

The arithmetic hierarchy.

Definition 1.4 1. Σ0
0 and Π0

0 denote the set of bounded formulas in first
order arithmetic.

2. Σ0
n+1 denotes the set of formulas (∃n1, . . . , nk)ψ, where ψ ∈ Π0

n.

3. Π0
n+1 denotes the set of formulas (∀n1, . . . , nk)ψ, where ψ ∈ Σ0

n.

Definition 1.5 1. X ⊆ N is Σ0
n or Π0

n if and only if it is definable in arith-
metic by a formula of the corresponding type.

2. X ⊆ N is ∆0
n if and only if it is both Σ0

n and Π0
n.

As is known very well, X is ∆0
n+1 if and only if X ≤T ∅(n). Thus, the

arithmetic sets are generated from the empty set by applying the jump and
recursive functionals.

The hyperarithmetic hierarchy. Davis [1950] extended the arithmetic hierarchy
into the transfinite by iterating the jump along recursive well-orderings of N.
At limits λ, he used the recursive presentation of λ to form the recursive join of
the sets associated (by that presentation) to ordinals less than λ.

For example, ∅(ω) = {(n,m) : m ∈ ∅(n)} represents the ωth jump of the
empty set.

Spector [1955] showed that any two sets associated with the same recursive
ordinal have the same Turing degree. Consequently, we have degree invariant
functions X 7→ X(α). Of course, we can define the hyperarithmetic hierarchy
relative to a presentation of any countable ordinal, and then we obtain a degree
invariant function X 7→ X(α) which is defined on those X’s which compute that
presentation of α.

1.1.1 Jockusch–Shore REA-operators

Definition 1.6 (Jockusch and Shore [1984]) An REA-operator is a func-
tion J from 2N to 2N such that there is an e such that for all X, J(X) is the
join of X with the eth set which is recursively enumerable relative to X (in a
fixed recursive enumeration of all the relativized recursive enumerations).

An α-REA-operator is an α-length iteration of REA-operators, where the it-
eration is organized using a recursive presentation of α as in the hyperarithmetic
hierarchy. For example, the canonical 2-REA operator is the map A 7→ A′′. But,
note that not every 2-REA operator is degree invariant.
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1.2 Extensions of the prototypes

Surprisingly, the inversion and join properties of the Turing jump are shared by
all α-REA operators.

Theorem 1.7 (Jockusch and Shore [1984]) Suppose that C ≥T ∅(α) and J
is an α-REA operator. There is a G such that J(G) ≡T C.

Thus, every sufficiently complicated degree is in the range of J .

Theorem 2.1 (Shore and Slaman [1999]) Suppose that J is an α-REA op-
erator and for all β < α, ∅(β) 6≥T X. There is a G such that X ⊕G ≡T J(G).

Similarly, every nontrivial set represents the value of J relative to some set.
We will outline the proof of Theorem 2.1 in Section 2. We should note that
there is a history behind it, with substantial preliminary results by Jockusch
and Shore and by Cooper. A full account is given in [Shore and Slaman, 1999].

We can interpret Theorems 1.2 and 1.3, and their generalizations to Theo-
rems 1.7 and 2.1, as asserting a fundamental role for the jump and its iterations.
By Theorem 1.3, the only way by which a set can be not recursive is by being
equivalent to the jump relative to some other set. And by Theorem 2.1, the
same phenomenon is repeated through the transfinite. The applications which
follow can be viewed as realizations of this interpretation.

1.3 Abstract closure operators

In our first application, we argue that the iterations of the Turing jump have
a special role within relative definability. In the following definition, we are
thinking of M as a function which maps X in 2N to the set of those Y ’s in 2N

which are definable from X (in some specific way).

Definition 1.8 A closure operator is a map M : 2N → 22N
with the following

properties.

1. For all X ∈ 2N, X ∈M(X).

2. For all X and for all Z, if Z is recursive in finitely many elements of M(X),
then Z ∈M(X). M(X) is closed under join and relative computation.

3. For all X and Y in 2N, if X is recursive in Y then M(X) ⊆M(Y ). M is
monotone.

The functions mapping X to the collection of subsets of N recursive in X,
recursive in X ′, or arithmetically definable from X are closure operators.
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Comparing closure operators.

Definition 1.9 If M1 and M2 are closure operators, then M1 ≤M2 if and only
if there is a set of natural numbers B, such that for all X, if B is recursive in
X, then M1(X) ⊆M2(X).

In other words, M1 ≤ M2 if and only if for all sufficiently complicated X,
M1(X) ⊆ M2(X). We say M1 and M2 are equivalent when for all sufficiently
complicated X, M1(X) = M2(X).

Remark 1.10 This notion is a 2N → 22N
variation on Martin’s ordering of

degree invariant functions on reals. See [Kechris and Moschovakis, 1978] for
further information on the Martin order and on Martin’s conjectures concerning
that order.

1.3.1 Implicitly characterizing the hyperarithmetic hierarchy

With the following theorem, we give a complete classification of the Borel closure
operators, up to equivalence.

Theorem 3.1 If M is a closure operator such that the relation Y ∈ M(X) is
Borel, then one of the following conditions holds.

1. There is a countable ordinal α such that M is equivalent to the map

X 7→ {Y : Y is recursive in X(α)}.

2. There is a countable ordinal α such that M is equivalent to the map

X 7→ {Y : (∃β < α)[Y is recursive in X(β)]}.

3. M is equivalent to the map X 7→ 2N.

In items 1 and 2, we fix a presentation of α and define the relevant iterations
of the jump for all X relative to which that presentation is recursive.

Thus, the only Borel closure operators are those obtained by iterating the
Turing jump. We will prove Theorem 3.1 in Section 3. We note that both the
theorem and its proof have precursors in Slaman and Steel’s [1989] analysis of
the Borel order preserving functions from D to D.

It follows from Theorem 3.1 that the Borel closure operators are well-ordered.
In analogy to Martin’s conjectures concerning degree invariant functions, one
can ask whether the Axiom of Determinacy implies that the set of all closure
operators is well-ordered. The fact that we will use Martin’s [1975] theorem
that all Borel games are determined to prove Theorem 3.1 could be taken as
evidence supporting an affirmative answer. On the other hand, this use of
Borel determinacy may not be necessary. It is not known whether the proof
of Theorem 3.1, like Borel Determinacy, requires the use of uncountably many
iterations of the power set operation.
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1.4 A Degree Theoretic Definition of the Jump

For our second application, we outline Shore and Slaman’s [1999] proof that the
jump is definable by a first order formula in D, the partial order of the Turing
degrees.

First, we invoke a theorem of Slaman and Woodin.

Theorem 1.11 (Slaman and Woodin [n.d.]) The function x 7→ x′′ is first
order definable in D.

Theorem 1.11 is proved by applying the Slaman and Woodin analysis of
automorphisms of the Turing degrees. This analysis involves a fair amount of
metamathematics, but not much technical recursion theory.

Second, we apply Theorem 2.1 to the canonical 2-REA operator, the double-
jump. And so, we define 0′ in D.

Theorem 1.12 (Shore and Slaman [1999]) 0′ is defined within D as the
greatest degree z such that there is no g such that z ∨ g is equal to g′′.

Proof: Clearly no degree less than or equal to 0′ can join any g to g′′. Theo-
rem 2.1 states that any degree not below 0′ does join some g up to g′′. Conse-
quently, 0′ is first order definable in terms of order, join and the double-jump.
Order and join are clearly definable in D and, by Theorem 1.11, so is the double-
jump.

We can relativize the above proof to obtain the following definition of the
function mapping x to x′ in D.

Theorem 1.13 (Shore and Slaman [1999]) For any degree x, x′ is defin-
able from x within D as the greatest degree z such that there is no g greater
than or equal to x such that z ∨ g is equal to g′′.

We note that Cooper has claimed to define the jump by different means.

1.5 Recursive enumerability

Finally, we investigate whether the above properties of the jump have analogs
for the relation of relative recursive enumerability.

To set the context, recall that recursive enumerability generates a finer hi-
erarchy of degrees than the hyperarithmetic hierarchy.

Definition 1.14 (Ershov, 1968) The Difference Hierarchy :

1. A set X is n-recursively enumerable if it has a recursive approximation

X(k) = lim
s→∞

ψ(k, s)

such that there are at most nmany numbers s such that ψ(k, s+1) 6= ψ(k, s).
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2. For infinite α, X is α-recursively enumerable relative to a recursive system
S of notations for ordinals if and only if there is a partial recursive function
ψ such that for all k, X(k) is equal to ψ(k, z), where z is the S-least
notation b for an ordinal less than α such that ψ(k, b) converges.

Jockusch and Shore [1984] showed that every α-re set is α-REA. The con-
verse fails, as every α-re set is ∆0

2.
In fact, every ∆0

2 set appears in the difference hierarchy, in the following
precise sense.

Theorem 1.15 (Ershov, 1968) For every path S through O, Kleene’s com-
plete set of notations for the recursive ordinals, and for every set X ∈ ∆0

2, there
is a recursive ordinal α such that X is α-recursively enumerable relative to S.

However, there is no analog for Spector’s theorem. The stratification of the
∆0

2 sets by the difference hierarchy depends on S, the choice of notations for the
recursive ordinals.

1.5.1 Inversion and join

How do inversion and join apply to the operators which appear in the difference
hierarchy? Since the difference hierarchy is contained the the REA-hierarchy,
Theorem 1.7 applies to increasing α-re operators and provides an inversion the-
orem for them. We also suspect it provides the optimal result, although that
is yet to be proven. The following example shows that Theorem 2.1 cannot be
improved to reflect the resolution of the difference hierarchy.

Theorem 4.1 There is a 2-re operator D : Z 7→ D(Z) ≥T Z and a 2-re set X
with the following properties.

1. X is not of recursively enumerable degree.

2. For all G ⊆ N, X ⊕G 6≡T D(G).

We will present the proof of Theorem 4.1 in Section 4.
The existence of a counterexample to a sharp join theorem would lead us to

believe that recursive enumerability and the difference hierarchy behave differ-
ently than the jump and the hyperarithmetic hierarchy. The following questions
test this hypothesis.

A. Is there an implicit characterization for recursive enumerability and/or for
the difference hierarchy?

B. Is there a degree theoretic definition of the relation y is recursively enu-
merable relative to x?

Of course, the second question is well known. See [Rogers, 1967].
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1.5.2 Σ-closure operators

In the following, we are again thinking of M(X) as the set of Y ∈ 2N which
are definable from X, but we are not assuming that the degrees of the definable
sets are closed downward in D.

Definition 1.16 A Σ-closure operator is a map M : 2N → 22N
with the follow-

ing properties.

1. For all X ∈ 2N, X ∈M(X).

2. For all X ∈ 2N and all {Z1, . . . , Zk} ⊆ M(X), every set which is Turing
equivalent to the join

⊕
i≤k Zi is an element of M(X).

3. For all X and Y in 2N, if X is recursive in Y then M(X) ⊆M(Y ).

Every closure operator is a Σ-closure operator, but there are others as well.
For example, the maps sendingX to the collection of sets with degree recursively
enumerable in X or to the collection of sets with degree 2-re in X are Σ-closure
operators which are not closure operators.

An implicit characterization of REA. The relation Y ∈ REA(X) is an invariant
of the class of Σ-closure operators.

Theorem 5.2 For any Borel Σ-closure operator M , if there is a cone of X’s
for which M(X) 6⊆ ∆0

1(X), then there is a cone of X’s such that M(X) contains
all of the sets which are REA in X.

In the sense of Theorem 5.2, recursive enumerability is an unavoidable con-
sequence of nontriviality. Additionally, Theorem 5.2 provides operational limits
on the possible uniformly definable in X divisions of the class REA(X). We
prove it in Section 5.

Despite Theorem 5.2, there is no classification of the Borel Σ-closure opera-
tors as simply presented as the one for closure operators given in Theorem 3.1.
Shore has pointed out that the REA and difference hierarchies give different
resolutions of ∆0

2, so there are natural incomparable (under eventual pointwise
inclusion) Σ-closure operators. Horowitz has shown that the Borel Σ-closure
operators are not well-founded.

1.5.3 Is relative recursive enumerability degree theoretically definable?

Cooper has claimed that the relation w is recursively enumerable relative to x is
definable in D, but his proof relied on a join principle for 2-re operators which
is contradicted by Theorem 4.1. Cooper has since claimed to use additional
properties of specific 2-re operators to circumvent this problem, but the full
proof is not yet available.



2 Proving the join theorem 8

2 Proving the join theorem

In this section, we outline the proof of the Shore and Slaman [1999] Join Theo-
rem for α-REA operators.

Theorem 2.1 (Shore and Slaman [1999]) Suppose that J is an α-REA op-
erator and for all β < α, ∅(β) 6≥T X. There is a G such that X ⊕G ≡T J(G).

We first show that it is sufficient to prove a weak join theorem for the α-REA
operators X 7→ X(α). Namely, it is sufficient to show that if X and α are given
so that α is a recursive ordinal and for all β < α, ∅(β) 6≥T X, then there is a G
such that X ⊕G ≥T G(α).

Suppose that X and α are given as above and that J is an α-REA operator.
Assuming the weak join theorem for the α-jump, fix G so that X ⊕G ≥T G(α).
By Theorem 1.7 relative to G, there is an H ≥T G such that J(H) ≡ X ⊕ G.
But then X ⊕ H ≥T X ⊕ G ≡T J(H). Similarly, J(H) ≡T X ⊕ G ≥T X,
since J is increasing in degree J(H) ≥T H, and so J(H) ≥T X ⊕ H. Thus,
J(H) ≡T X ⊕H, as required to verify the join theorem for J .

Turing functionals. We begin with a formalization of the way by which one set
is recursive in another.

Definition 2.2 1. A Turing functional Φ is a set of sequences (x, y, σ) such
that x and y are natural numbers and σ is a finite binary sequence. Fur-
ther, for all x, for all y1 and y2, and for all compatible σ1 and σ2, if
(x, y1, σ1) ∈ Φ and (x, y2, σ2) ∈ Φ, then y1 = y2 and σ1 = σ2.

2. Φ is use-monotone if the following conditions hold.

(a) For all (x1, y1, σ1) and (x2, y2, σ2) in Φ, if σ1 is a proper initial seg-
ment of σ2, then x1 is less than x2.

(b) For all x1 and x2, y2 and σ2, if x2 > x1 and (x2, y2, σ2) ∈ Φ, then
there are y1 and σ1 such that σ1 ⊆ σ2 and (x1, y1, σ1) ∈ Φ.

3. We write Φ(x, σ) = y to indicate that there is a τ such that τ is an initial
segment of σ, possibly equal to σ, and (x, y, τ) ∈ Φ. If X ⊆ N, we write
Φ(x,X) = y to indicate that there is an ` such that Φ(x,X � `) = y, and
write Φ(X) for the function evaluated in this way. We say that Φ(X) = Y
if and only if Φ(X) is equal to the characteristic function of Y .

In Definition 2.2, we do not require that Φ be recursively enumerable. Con-
sequently, if Φ is a Turing functional and X ⊆ N, then Φ(X) is recursive only
in the join of Φ and X. Note also that in this formulation, a Turing functional
is just a particular way to define a continuous function from 2N to 2N.

In this language, X ≥T Y if and only if there is a recursive Turing functional
Φ such that Φ(X) = Y .
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Kumabe–Slaman forcing. Kumabe and Slaman introduced the following notion
of forcing in an earlier join theorem for the ω-jump.

1. A condition is a pair p = (Φp,Zp) consisting of a finite use-monotone
Turing functional and a finite subset of 2N.

2. If p = (Φp,Zp) and q = (Φq,Zq) are conditions, then p ≥ q if and only if

(a) i. Φp ⊆ Φq and
ii. for all (xq, yq, σq) ∈ Φq \ Φp and all (xp, yp, σp) ∈ Φp, the length

of σq is greater than the length σp,

(b) Zp ⊆ Zq,

(c) for every x, y, and Z ∈ Zp, if Φq(x, Z) = y then Φp(x, Z) = y.

Hence, a condition p specifies all of the elements (x, y, σ) in Φ for which σ has
length less than or equal to the maximum length occurring in Φp and specifies
finitely many sets relative to which Φ is only defined at arguments where Φp is
already defined.

2.1 An illuminating special case

By fixing a recursive α, it is sufficient to build a Φ with the following properties.

1. Every atomic statement about Φ(α) is decided by a Kumabe-Slaman con-
dition on Φ.

2. Φ(X) = Φ(α). Hence, X ⊕ Φ ≥T Φ(α).

We will only give the argument for the case when α = 1. The general proof
involves a transfinite analysis of the Kumabe-Slaman forcing relation for atomic
statements about Φ(α).

Deciding Σ0
1(Φ) sentences. Our goal is to decide an atomic statement about Φ′

while maintaining Φ(X) = Φ′.
Given a condition p = (Φp;Zp) and a Σ0

1-sentence ψ(Φ), one of the following
conditions holds.

1. There is a q = (Φq,Zp) extending p such that Φp(X) = Φq(X), and ψ(Φq)
is satisfied by means of a witness less than the length of some σ such that
there are x and y with (x, y, σ) ∈ Φq.

2. For all q extending p, if ψ(Φq) then there is a (x, y, σ) ∈ Φq \Φp such that
X extends σ.

In the first case, (Φq,Zp) is a condition extending p as required.
Otherwise, it is not possible to extend Φp to make ψ hold without adding

a computation relative to X or one of the elements of Zp. We convert this
situation into a definition.



3 Proof of the hierarchy theorem 10

Definition 2.3 Fixing k, τ ∈ (2k1)k is essential if and only if for all finite
Φq extending Φp, if ψ(Φq), then there is a (x, y, σ) ∈ Φq \ Φp such that σ is
compatible with some component of τ .

The set of essential k-sequences form a finitely branching Π0
1 tree T .

Now consider the second case in the analysis of ψ. Let k be the size of
Zp ∪ {X}. Zp ∪ {X} determines an infinite path through T .

Since X is not recursive, T has another path with coordinates Y such that
X 6∈ Y . Consequently, q = (Φp,Zp∪Y ) forces ψ(Φ) and is the desired condition.

3 Proof of the hierarchy theorem

Theorem 3.1 If M is a closure operator such that the relation Y ∈ M(X) is
Borel, then one of the following conditions holds.

1. There is a countable ordinal α such that M is equivalent to the map

X 7→ {Y : Y is recursive in X(α)}.

2. There is a countable ordinal α such that M is equivalent to the map

X 7→ {Y : (∃β < α)[Y is recursive in X(β)]}.

3. M is equivalent to the map X 7→ 2N.

In items 1 and 2, we fix a presentation of α and define the relevant iterations
of the jump for all X relative to which that presentation is recursive.

Proof: In this argument, we apply some effective descriptive set theory. The
reader may consult [Sacks, 1990] for the relevant background material.

First, suppose that there is a cone of X’s such that M(X) does not include
all of the sets which are hyperarithmetic in X. Fix B so that B is the base of
such a cone and so that the relation Y ∈ M(X) is ∆1

1 relative to B. Then, for
all X ≥T B, there is an α(X) such that ωX

1 > α(X) and X(α(X)) 6∈M(X). By
Spector’s [1955] Bounding Theorem, there is a single α such that ωB

1 > α and
for all X ≥T B, X(α) 6∈M(X). Let α0 be such an α.

By Martin’s [1975] Borel Determinacy, for every β less than α0, either there
is a cone of degrees X such that X(β) ∈ M(X) or there is a cone of degrees
X such that X(β) 6∈ M(X). Since every countable set of degrees has an upper
bound and α0 is countable, by increasing B and decreasing α0 as needed, we
may assume that for all β less than α0 and all X ≥T B, X(β) ∈M(X) and that
for all X ≥T B, X(α0) 6∈M(X).

Now, we claim that for all X ≥T B, if Y ∈ M(X) then there is a β < α0

such that Y ≤T Xβ . Suppose not, and let X and Y be a counterexample to
the claim. By Theorem 2.1 relative to X, there is a G such that G ≥T X and
Y ⊕G ≥T G(α0). But then, since G ≥T X, M(X) ⊆M(G) and so Y ∈M(G).
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Since M is a closure operator, G ∈M(G) and so Y ⊕G ∈M(G). Consequently,
G(α0) ∈M(G), which is a contradiction.

Thus for all X ≥T B and all Y , Y ∈ M(X) if and only if there is a β < α0

such that Y is recursive in X(α0), and the theorem is proven for this case.
Now, suppose that in every cone there is an X such that M(X) includes all

of the sets which are hyperarithmetic in X.
Fix B so that the relation Y ∈M(X) is ∆1

1 relative to B and so that every
set hyperarithmetic in B belongs to M(B). Let HYP(B) denote the collection
of sets Y such that Y is hyperarithmetic in B. Since HYP(B) is not ∆1

1 relative
to B, let Y be a set in M(B) \HYP(B). By a result of Woodin (unpublished),
a join theorem for the hyperjump, there is a G ≥T B such that Y ⊕G ≡T OG,
where OG is the complete Π1

1 subset of N relative to G. As above, OG is an
element of M(G). But now consider the set {Y : Y 6∈ M(G)}. This set is ∆1

1

relative to G. If it were nonempty, then it would have an element recursive in
OG. But OG ∈ M(G) implies that every set recursive in OG belongs to M(G).
Consequently, M(G) = 2N. Finally, note that if X ≥T G then M(G) ⊆M(X).
Thus, for every X, if X ≥T G then M(X) = 2N, and the theorem is proven in
this case as well.

4 A 2-re operator without the join property

Theorem 4.1 There is a 2-re operator D : A 7→ D(A) ⊕ A and a set X such
that the following conditions hold.

1. The Turing degree of X is not recursively enumerable.

2. For all A, D(A)⊕A and X ⊕A have different Turing degrees.

We present the proof of Theorem 4.1 in two parts. In Section 4.1, we con-
struct a 2-re set X. As stated above, we will ensure that the Turing degree
of X is not recursively enumerable. We will also ensure that the recursive
approximation to X is self-restraining, a dynamic feature which we explain in
Definition 4.3. In Section 4.2, we start with any ∆0

2 set X with a self-restraining
recursive approximation, and we produce a 2-re increasing operator D such that
for all A, D(A) and X ⊕ A do not have the same Turing degree. Theorem 4.1
follows: apply the method of Section 4.2 to the set of Section 4.1 to produce D
and X as required.

Definition 4.2 For Φ a Turing functional, let ϕ be the functional such that
ϕ(x,X) = ` if and only if (x, y,X � `) ∈ Φ.

In other words, ϕ(x,X) is the amount of X used to determine the value of
Φ(x,X). Note that Φ(X) and ϕ(X) have the same domain.

We will assume that all recursive Turing functionals are use-monotone; see
Definition 2.2. In particular, if Φ is a recursive Turing functional then, by our
convention, for every X, ϕ(X) is a nondecreasing function. We do not lose any
generality: if Y is recursive in X, then there is a use-monotone recursive Φ such
that Φ(X) = Y .
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4.1 Constructing X

In the following, we will write X(n)[s] to denote the value of a recursive binary
predicate at the pair of arguments n and s. We say that this predicate approx-
imates a set if for all n, lims→∞X(n)[s] exists and is equal to 0 or 1. In this
case, we will write lims→∞X(n)[s] = X(n). We are anticipating the case in
which X(n)[s] is the approximation to X(n) during stage s.

We will also approximate the application of a recursive functional Φ to sets
which are also being approximated. We will use the suffix [s] to indicate the
approximation to the preceding expression during stage s. We adopt the usual
convention that we will only approximate a functional’s having a value at stage
s when the use of that functional is less than s.

Definition 4.3 Suppose that lims→∞X(n)[s] = X(n). We say that X(n)[s]
is a self-restraining approximation to X if and only if there is an increas-
ing recursive function g from N to N such that for all ` and all s, if
X(`)[s] 6= X(`)[s + 1] then there are less than g(`) numbers t > s such
that (∃m ≤ s) [X(m)[t] 6= X(m)[t+ 1]].

The following construction is not original to this paper (cf. [Jockusch and
Shore, 1984, Theorem 1.6]). We reproduce it here so that we can verify that the
recursive approximation to the set constructed is self-restraining.

Theorem 4.4 There is recursive approximation X(n)[s] to a 2-re set X such
that the following conditions hold.

1. The Turing degree of X is not recursively enumerable.

2. The approximation X(n)[s] is self-restraining.

Proof: We define X(n)[s] by recursion on s, in the context of a finite injury
construction. We begin by setting X(n)[0] equal to 0. Equivalently, during
stage 0, X is empty. In a later stage s + 1, we may add n to X by setting
X(n)[s+ 1] equal to 1 when X(n)[s] was equal to 0, or we may remove n from
X by setting X(n)[s + 1] equal to 0 when X(n)[s] was equal to 1. For each n,
we will add n to X at most once and remove n from X at most once, and so we
will construct a 2-re set.

A single requirement. Suppose that W is a recursively enumerable set and that
Φ and Ψ are Turing functionals. We must satisfy the following requirement.

Ψ(W ) 6= X or Φ(X) 6= W

Our strategy works as follows.

1. Choose a number n larger than the current stage and larger than any
number ever mentioned in the construction prior to this point. Prohibit
n from entering X until reaching a stage s during which Ψ(n,W )[s] = 0,
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predicting that n is not an element of X, and for all m less than or equal
to ψ(n,W )[s], Φ(m,X)[s] is equal to W (m)[s]. We can visualize this
situation as in Figure 1.

X

n ϕ(ψ(n,W ), X)

W ψ(n,W )

ΦΨ

Fig. 1: Configuring Φ(W ) 6= X or Φ(X) 6= W .

Upon reaching such a stage s1, go to Step 2.

2. Put n into X upon entering Step 2 in stage s1.

Wait for a later stage s > s1 such that Ψ(n,W )[s] = 1. While waiting
for that stage, prohibit any strategy of lower priority from changing X at
any number less than or equal to s1. Upon reaching such a stage s2, go
to Step 3.

3. Take n out of X, and prohibit any strategy of lower priority from changing
X at any number less than or equal to s2. Thereby, we set X � s1 equal
to X[s1] � s1 (as approximated before we put n into X).

The strategy has three possible outcomes. It could wait forever in one of the
first two steps, in which case the requirement is clearly satisfied. Or the strategy
could reach Step 3. In this last case, X is equal to X[s1] on all numbers less
than or equal to s1. But some number m less than ψ(n,W )[s1] must have
entered W between stages s1 and s2 as Ψ(n,W )[s1] = 0 and Ψ(n,W )[s2] = 1.
Consequently, if the strategy reaches Step 3, then for this m, Φ(m,X) is not
equal to W (m).

Priority construction. We define the recursive approximation X(n)[s] to X by
applying the finite injury priority method. We arrange the strategies in order
type ω, with strategies later in the list having lower priority. During stage s,
we identify the highest priority strategy which is supposed to take action, either
by choosing its value for n or by going from one step to another, and follow
the instructions for that strategy. We say that the lower priority strategies are
injured, and we return them to the state in which they will begin Step 1 during
the next stage.

Since each strategy acts only finitely often and for each strategy there are
only finitely many others of higher priority, each strategy will eventually be
implemented without injury and will satisfy its associated requirement.
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Self-restraint. Suppose that at stage s we change our approximation to X at `.
Since only the first ` strategies can change the approximation to X at `, each
strategy of index greater than or equal to ` is injured during stage s and will
not change X below s at any later stage. Similarly, each strategy of index less
than ` can change our approximation to X at most twice below s before it is
injured and then unable to change X below s. Consequently, we change X at a
number less than or equal to s at most 2` many times after stage s. It follows
that our construction is self-restraining.

This ends the proof of Theorem 4.4.

4.2 Constructing D

Suppose that X is a ∆0
2 set which is not of recursively enumerable degree and

has a self-restraining approximation X(n)[s]. It is safe to think of X as being
the set constructed during the proof of Theorem 4.4.

We construct the required 2-re operator. In our presentation, we will assume
that we are given the set A and will uniformly describe the set D(A) so that it
is 2-re relative to A.

We construct D(A) by a finite injury construction similar to that in the
previous section.

4.2.1 A single requirement

Suppose that Φ and Ψ are Turing functionals. We must satisfy the following
requirement.

Ψ(X ⊕A) 6= D(A) or Φ(D(A)⊕A) 6= X

We fix a recursive partition of N into infinitely many infinite subsets, and we
allocate one of these subsets, R, to this requirement. In the following description
of our strategy, the stage s approximation D(A)[s] to D(A) refers to the state
of D(A) at the beginning of stage s in the recursion being defined relative to A.
In contrast, the stage s approximation X[s] to X refers to the self-restraining
recursive approximation which is given.

1. Choose a numberm0 ∈ R larger than the current stage and larger than any
number ever mentioned in the construction prior to this point. Prohibit
any element of R which is greater than or equal to m0 from entering D(A)
until reaching a stage s during which the following conditions hold.

• Ψ(m0, X ⊕A)[s] = 0, predicting that m0 is not an element of D(A).
Let ` = ψ(m0, X⊕A)[s] be the length of the associated computation.

• For each i less than or equal to g(`) + 1, Ψ(mi, X ⊕A)[s] = 0, where
m1, . . . ,mg(`)+1 are the first g(`)+1 elements of R which are strictly
greater than m0. Let `∗ be ψ(mg(`)+1, X⊕A)[s]. By Convention 4.2,
`∗ is the least upper bound of ψ(mi, X ⊕ A)[s] for i between 1 and
g(`) + 1.
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• For all m less than or equal to `∗, Φ(m,D(A) ⊕ A)[s] is equal to
X(m)[s].

We can visualize this situation as in Figure 2.

X

A

D(A)
mg(`)+1· · ·m1 ϕ(`∗, D(A)⊕A)

Ψ

Φ

ψ(mg(`)+1, X ⊕A) = `∗· · ·ψ(m0, X ⊕A) = `

m0

Ψ

Fig. 2: Configuring Ψ(X ⊕A) 6= D(A) or Φ(D(A)⊕A) 6= X.

Upon reaching such a stage s0, let j = 0 and go to Step 2a.

2. (a) Put mj into D(A) upon entering Step 2a.
Wait for a later stage t > sj such that Ψ(mj , X ⊕ A)[t] = 1. While
waiting for that stage, prohibit any strategy of lower priority from
changing D(A) at any number less than or equal to s0, thus we main-
tain the viability of the computations seen during stage s0. Upon
reaching such a stage tj , go to Step 2b.

(b) Remove mj from D(A) upon entering Step 2b, thereby returning the
value of D(A) � s0 to D(A)[s0] � s0.
Wait for a later stage s > tj such that Φ(mj , D(A) ⊕ A)[s] = X[s]
on all numbers less than or equal to `∗. While waiting for that stage,
prohibit any strategy of lower priority from changing D(A) at any
number less than or equal to s0. Upon reaching such a stage s,
increase the value of j by 1, define sj to be equal to s, and go to Step
2a with these values for j and sj .

This strategy could wait forever in the Step 1, in which case the requirement
is clearly satisfied. Once the strategy leaves Step 1, it has defined ` and has
2(g(`) + 1) possible outcomes. If for some fixed j0 ≤ g(`) + 1, it waits forever
in Step 2a with j = j0 then the requirement is again clearly satisfied. Similarly,
the requirement is satisfied if for some fixed j0 < g(`) + 1, it waits forever in
Step 2b with j = j0.

The last possibility is for the strategy to reach Step 2b with j = g(`) + 1.
In particular, it went from Step 2a to Step 2b during some stage t0 after s0.
But then, Ψ(m0, X ⊕ A)[s0] = 0 and Ψ(m0, X ⊕ A)[t0] = 1. It can only be
that the approximation to X changed during some stage s between s0 and t0
at some number `0 less than or equal to ψ(m0, X[s] ⊕ A)[s0] = `. By the
assumption that the approximation to X is self-restraining, the approximation
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to X changes no more than g(`0) times at numbers less than or equal to s
during stages after s. Now we can check some inequalities. By the terms of
Definition 4.3 g is increasing, and so the approximation to X changes no more
than g(`) times at numbers less than or equal to s during stages after s. Since
ψ(mg(`)+1, X[s0] ⊕ A) = `∗ is defined at stage s0, it’s value is less than s0.
Consequently, the approximation to X � `∗ changes no more than g(`) times
during stages after s. Finally, s is less than t0, and so the approximation to
X � `∗ changes changes no more than g(`) times during stages after t0.

But each time the strategy went from one step to the next, it must be that
the approximation to X � `∗ changed between the stage when the strategy
entered that step and the one when it went to the next step. Either, in reaction
to our adding mj to D(A), the approximation to X � `∗ changed to make
Ψ(mj , X ⊕ A)[s] = 1, and therefore it became incompatible with X[s0] � `∗.
Or, in reaction to our returning the value of D(A) � `∗ to D(A) � `∗[s0], the
approximation to X below `∗ returned to X[s0] � `∗ in order to agree with
Φ(mj , D(A) ⊕ A)[s0] � `∗. But then the approximation to X � `∗ changed at
least 2(g(`)+1)−1 = 2g(`)+1 times after stage t0. Notice that g(`) < 2g(`)+1,
and that we have a contradiction.

It follows that the strategy cannot reach Step 2b for j = `+ 1 and that the
requirement is satisfied.

4.2.2 Priority Construction

As in the previous section, we organize our strategies in a finite injury priority
construction. Once the strategies of higher priority have stopped acting, the
next one begins in Step 1 and ensures that its associated requirement is satisfied.

This completes the proof of Theorem 4.1

5 An implicit characterization of REA

In this section, we prove that every nontrivial Σ-closure operator eventually
extends the map X 7→ REA(X). Our proof makes use of the Shoenfield Jump
Inversion Theorem.

Theorem 5.1 (Shoenfield [1959]) Suppose that W is REA relative to ∅′.
Then there is a set W0 such that ∅′ ≥T W0 and W ′

0 ≡T W .

Theorem 5.2 For any Borel Σ-closure operator M , if there is a cone of X’s
for which M(X) 6⊆ ∆0

1(X), then there is a cone of X’s such that M(X) contains
all of the sets which are REA in X.

Proof: Suppose that M is a Borel Σ-closure operator and that there is a cone
of X’s for which M(X) 6⊆ ∆0

1(X). Choose B1 so that for all X, if X ≥T B1

then M(X) 6⊆ ∆0
1(X).

We first apply the argument from Section 3 to conclude the there is a cone
of X’s for which X ′ ∈M(X). Suppose that X ≥T B1. Let A be an element of
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M(X) such that X 6≥T A. By Theorem 1.3 relativized to X, choose G so that
G ≥T X and A⊕G ≡T G′. Then, A ∈M(X) ⊆M(G) and G ∈M(G), and so
G′ ∈M(G), since it is equivalent to the join of elements of M(G).

Consequently, for every X, there is a G such that G ≥T X and G′ ∈M(G).
Martin’s [1975] Borel Determinacy implies that there is a cone of G’s such that
G′ ∈M(G). Choose B2 so that for every G, if G ≥T B2 then G′ ∈M(G).

We will now argue that B′2 is the base of a cone as required. Suppose that
H is given with H ≥T B′2. Let W be a set which is REA relative to H. By
Theorem 1.2 relativized to B2, fix H0 so that H0 ≥T B2 and H ′

0 ≡T H. Finally,
by Theorem 5.1 relativized to H0, choose W0 so that H ≥T W0 ≥T H0 and
W ′

0 ≡T W . In Figure 5, we indicate the relationships between the degrees of
these sets. We use solid lines to indicate the Turing order with the higher set
being ≥T the lower one, and we use dotted lines to indicate the Turing jump
with the higher set having the same Turing degree as the jump of the lower one.

B2

H

W

W0

H0B′2

Fig. 3: Relationships between B2, B′2, the H’s, and the W ’s.

Now,W0 ≥T B2 implies thatW ′
0 ∈M(W0). SinceH ≥T W0,M(W0) ⊆M(H).

Consequently, W ′
0 ∈ M(H). Since W ′

0 ≡T W , W ∈ M(H). Since W was an
arbitrary set REA relative to H, every set REA relative to H belongs to M(H).
Since H was an arbitrary element of the cone above B′2, for every set H in the
cone above B′2, all of the sets which are REA relative to H belong to M(H), as
required.

It is open whether there is a Borel Σ-closure operator M with the following
property: there is a cone of X’s, such that

1. there is a set in M(X) whose degree is not recursively enumerable relative
to X

2. and there is a set D ≥T X which is 2-re in X and not in M(X).
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