
On Turing Reducibility

Marcia J. Groszek

Theodore A. Slaman

Abstract. We show that the transitivity of pointwise Turing reducibility
on the recursively enumerable sets of integers cannot be proven in P− + IΣ1,
first order arithmetic with induction limited to Σ1 predicates. We produce a
example of intransitivity in a nonstandard model of P−+IΣ1 by a finite injury
priority construction.

§1. Introduction

In Turing reducibility, a set of integers X is computable from, or relative
to, another set Y (X ≤w Y), if there is an algorithmic procedure answering
any atomic question aboutX by referring to finitely many atomic conditions
on Y . Relative computability is a transitive relation: Suppose that X
is computable from Y by procedure P and Y is computable from Z by
procedure Q. We can use Z to compute X as follows. Follow the steps
in P ; whenever required to ask a question about Y , use Q to compute the
answer from Z. This composition of algorithms is itself an algorithm. The
computation of a particular value of X from Y involves only finitely many
questions to Y ; each of the answers is computed in finitely many steps from
Z. The computation from Z is finite by this simple fact: A finite union of
finite sets is finite.

Consider this situation from an axiomatic point of view. The statement
that a finite union of finite objects is still finite is formally phrased as an
instance of replacement or bounding: for any number b and any function f
with domain the numbers less than b, there is a bound on the range of f .
In the previous paragraph, we applied an instance of bounding relative to
a function that was recursive in Z.

We will work with models of P− + IΣ0, a weak fragment of arithmetic.
First, we will show that the natural proof of the transitivity of ≤w can
be formulated and applied to the recursively enumerable sets in a straight
forward way using only P− +BΣ2, bounding for Σ2 formulas.

The authors’ research was supported by NSF grants DMS-8601777 and DMS-8601856,
respectively. In addition, Slaman was supported by Presidential Young Investigator Award
DMS-8451748 and by the Japan Society for the Promotion of Science. The authors wish
to thank Professors Hájek and Kučera whose paper [4] ignited their interest.

The majority of this paper is devoted to showing that the transitivity of
≤w on the recursively enumerable sets is independent of P−+IΣ1, induction
for Σ1 sets. Here, the proof is more interesting. First, we take a model N
of full Peano Arithmetic with nonstandard element p. In N, we form M,
a Skölem hull of {p}, by closing under the Skölem functions for Σ1 and
bounded Π1 formulas. M is a model of P− + IΣ1. Moreover, there is a
function µ from ω onto M that is the limit of a recursive sequence in M.

In M, or any other nonstandard model with these properties, there are
recursively enumerable sets A ≤w B ≤w C so that A 6≤w C. We use a finite
injury priority construction in M to enumerate A, B and C. The failure
of BΣ2 given by µ is used to give a priority ordering of order-type ω to the
requirements. Namely, if i is less than j then the requirements indexed by
µ(i) have higher priority than those indexed by µ(j). We prove that all of
the requirements are satisfied by induction on ω.

§2. Basic Definitions

Fragments of Peano Arithmetic. Following standard usage, say that
a formula is Σ0 or Π0 if all of its quantifiers are bounded. A formula is
Σk+1 if it is a string of existential quantifiers followed by a formula in Πk.
A formula is Πk+1 if it is the negation of a Σk+1 formula. If we include an
additional symbol for a predicate Z, then we form the formulas Σn in Z

(ΣZ
n), similarly.

2.1. Definition. (1) By P− we mean the subtheory of Peano Arith-
metic with addition, multiplication and exponentiation containing no
instances of the induction scheme. It consists of the universal closures
of the following axioms.

x′ 6= 0

(x′ = y′) =⇒ (x = y)

x 6= 0 =⇒ 0′ ≤ x

x < y ⇐⇒ (∃t)[x+ t′ = y]

x < y ∨ x = y ∨ x > y

x+ y = y + x; x · y = y · x
x+ (y + z) = (x+ y) + z; x · (y · z) = (x · y) · z
x+ 0 = x; x · 0 = 0; x0 = 1

x+ y′ = (x+ y)′; x · y′ = (x · y) + x; xy′ = xy · x

2

x · (y + z) = (x · y) + (x · z)
x+ y = x+ z =⇒ y = z

Here, we use the abbreviations: x ≤ y for (∃t)[x + t = y] and x < y

for x ≤ y & x 6= y.
(2) If Γ is a set of formulas, BΓ is the bounding scheme for elements of

Γ. It consists of the universal closures of the formulas

(2.2.) (∀x)
[
(∀y < x)(∃w)ϕ(y, w) =⇒ (∃b)(∀y < x)(∃w < b)ϕ(y, w)

]

for each ϕ in Γ. Formula (2.2) states that the search for the witnesses
w(y) for a bounded set {ϕ(y,−) y < x} of instances of ϕ, is itself
bounded.

(3) A related and usually stronger scheme is IΓ, the induction scheme
for elements of Γ. It consists of the universal closures of the formulas(

ϕ(0) & (∀x)[ϕ(x) =⇒ ϕ(x+ 1)]
)

=⇒ (∀x)ϕ(x)

for ϕ in Γ.
(4) Peano Arithmetic (PA) is defined by

PA = P− ∪
⋃

k∈ω

IΣk.

The basic result in the area of fragments of arithmetic is due to Kirby
and Paris, 1977.

2.3. Theorem [5]. For all k, the following implications hold in the presence

of P− + IΣ0.

IΣk+1 =⇒ BΣk+1 =⇒ IΣk

IΣk ⇐⇒ IΠk

Further, the only true implications are the ones indicated.

Recursion Theoretic Definitions. We take as our base theory P− +
IΣ0. In this theory, one can prove the basic facts of number theory. Fol-
lowing standard development, see Enderton [2], we can use the exponential
function to represent sets of elements by single elements. The number rep-
resenting a set is called its code.

3

2.4. Definition. Suppose that M is a model of P− + IΣ0. A set F is
M-finite if and only if it has a code in M.

We will treat the M-finite sets exactly like elements of M. Similarly, we
will treat M as if it were closed under M-finite sequences. We will denote
the sequence with elements m1, . . . ,mk by 〈m1, . . . ,mk〉. This can be done
without affecting the complexity of formulas which quantify over M-finite
sets, even in P−; see Enderton [2].

2.5. Notation. If M is a model of P− + IΣ0 and m is an element of M,
let <m denote the set of x in M such that x is less than m.

2.6. Definition. If M is a model of P− + IΣ0 and Z is contained in M,
then Z is an amenable subset of M if for every m in M, the intersection
of Z with <m is M-finite.

For the basics of recursion theory, we follow the standard presentation.
For example, see Soare [7].

2.7. Definition. A subset W of M is recursively enumerable in M if W
is Σ1 with parameters in M.

2.8. Definition. Suppose that M is a model of P− + IΣ0.

(1) A Turing reduction or Turing functional Φ is a recursively enumer-
able set of quadruples 〈x, y, P,N〉 where x and y are elements of M
and P and N are M-finite sets. We refer to the elements of Φ as
computations.

(2) Suppose that X is a subset of M. Φ(x,X) = y if and only if there is a
computation 〈x, y, P,N〉 in Φ so that P ⊆ X and N ∩X = ∅. In this
case, we say that the computation 〈x, y, P,N〉 applies to X. Similarly,
we say that 〈x, y, P,N〉 is a computation from X, or relative to X, or
an X-computation. Note, we allow the possibility that Φ(−, X) does
not define a function; it may not be single valued. P is called the
positive condition, and N the negative condition, of the computation.
The pair 〈P,N〉 is called a neighborhood condition satisfied by X.

(3) IfX and Y are subsets ofM thenX is weakly recursive in Y , X ≤w Y ,
if there is a Turing reduction Φ such that, for all x in M, X(x) =
Φ(x, Y). Here, we are identifying the set X with its characteristic
function.

4

(4) X is strongly recursive in Y , X ≤s Y , if the sets

{
P P is an M-finite subset of X

}
{
N N is an M-finite set with N ∩X = ∅

}

are weakly recursive in Y .

The important difference between the weak and strong reducibilities is
that strong reducibility is transitive by its very definition. The transi-
tivity of the weaker reducibility depends on whether M-finitely many Y -
computations can be amalgamated to produce a single M-finite computa-
tion.

The distinction between weak and strong reducibilities was studied in
depth in α-recursion theory. Driscoll [1] proved in 1968 that the metare-
cursive analogue of ≤w is not transitive on the metarecursively enumerable
sets. The distinction was rediscovered by Hájek and Kučera [4] for frag-
ments of arithmetic.

We begin with the positive results.

2.9. Proposition. (P− + IΣ0)

(1) If X ≤s Y ≤s Z then X ≤s Z.

(2) Suppose that Z is an amenable subset of M and M is a model of

BΣZ
1 . If Y ≤w Z, then Y ≤s Z, Y is amenable and M is a model of

BΣY
1 . Hence, if X ≤w Y ≤w Z then X ≤s Y ≤s Z and so X ≤s Z.

Proof: We work in M and prove the propositions in order.
First suppose that X ≤s Y and that Y ≤s Z. That is, there are Turing

reductions Φ, Φ̄, Ψ, Ψ̄ such that:

A = {P P is an M-finite subset of X} = Φ(−, Y)

B = {N N is an M-finite subset of M−X} = Φ̄(−, Y)

C = {P P is an M-finite subset of Y } = Ψ(−, Z)

D = {N N is an M-finite subset of M− Y } = Ψ̄(−, Z)

To show X ≤s Z, we must show A ≤w Z and B ≤w Z; the two cases are
the same, so we consider A. Define the Turing reduction Γ to be the set of

5

computations 〈x, y, P,N〉 such that:

(∃H)(∃H̄)(∃F ′)(∃F ′′)(∃G′)(∃G′′) F ′ ⊆ P & F ′′ ⊆ P & G′ ⊆ N & G′′ ⊂ N &〈
H, 1, F ′, G′

〉
∈ Ψ &

〈
H̄, 1, F ′′, G′′

〉
∈ Ψ̄ &

〈
x, y,H, H̄

〉
∈ Φ

(Intuitively, Γ is the composition of the procedure Φ with Ψ and Ψ̄.) Be-
cause Ψ, Ψ̄ and Φ are recursively enumerable, so is Γ. In case 〈x, y, F,G〉 ∈
Γ, F ⊆ Z and G∩Z = ∅, we have (by Ψ) H ⊆ Y , and (by Ψ̄) H̄ ∩Y = ∅;
thus, (by Φ) A(x) = y. Conversely, by taking the union of two neigh-
borhood conditions, if A(x) = y, we can find F ⊆ Z and G such that
G∩Z = ∅, such that 〈x, y, F,G〉 ∈ Γ. Thus, A(x) = Γ(x,Z), as desired.

For the second claim, we first show that if M is a model of BΣZ
1 and

Y ≤w Z then Y ≤s Z. Fix Φ such that Y = Φ(−, Z). We show how to
compute A = {F F is an M-finite subset of Y } from Z.

First, we define a modification of Φ, Φ′, the set of computations〈
x, y,H, H̄

〉
such that:

(∃J)(∃J̄)
[
J ⊆ H & J̄ ⊆ H̄ &

〈
x, y, J, J̄

〉
∈ Φ

]
.

Φ′ has the property that for all X, Φ′(−, X) = Φ(−, X), and in addition, Φ′

is monotone: If
〈
x, y, J, J̄

〉
∈ Φ′, J ⊆ H, and J̄ ⊆ H̄ then

〈
x, y,H, H̄

〉
∈ Φ′.

Next, we show that if F is M-finite, there is a single neighborhood con-
dition

〈
G, Ḡ

〉
satisfied by Z such that

(∀m ∈ F)(∃x)
[〈
m,x,G, Ḡ

〉
is a Z-computation from Φ′

]
.

This is an application of BΣZ
1 : Suppose F ⊆ <n. Since Y = Φ(−, Z),

(∀m < n)(∃w)
[
w is a Z-computation of Φ′(m,Z)

]
.

By applying BΣZ
1 , we get

(∃b)(∀m < n)(∃w < b)
[
w is a Z-computation of Φ′(m,Z)

]
.

Fix b. Since “w is a Z-computation” means w codes some
〈
m, y,H, H̄

〉
where H ⊆ Z and H̄ ∩Z = ∅, by the nature of the coding, H ⊆

6

<w ⊆ <b. By the amenability of Z, G = {z z < b & z ∈ Z} and
Ḡ = {z z < b & z 6∈ Z} are M-finite. By the monotonicity of Φ′ and
the choice of b,

〈
G, Ḡ

〉
has the desired property.

Now, this implies, for our given M-finite F and this neighborhood con-
dition,

(∀m ∈ F)(∃i ∈ {0, 1})(
〈
m, i,G, Ḡ

〉
∈ Φ′) &F ∈ A ⇐⇒ (∀m ∈ F)

[〈
m, 1, G, Ḡ

〉
is a Z-computation from Φ′

]
F 6∈ A ⇐⇒ (∃m ∈ F)

[〈
m, 0, G, Ḡ

〉
is a Z-computation from Φ′

]

Finally, we can define a Turing reduction Ψ such that A = Ψ(−, Z): Let
Ψ be the set of

〈
F, y,G, Ḡ

〉
such that

(
y = 0 & (∃m ∈ F)

[〈
m, 0, G, Ḡ

〉
∈ Φ′

])
or(

y = 1 & (∀m ∈ F)
[〈
m, 1, G, Ḡ

〉
∈ Φ′

])
.

The definition of Ψ is Σ1 by a standard application of BΣ1, to interchange
the bounded quantifier (∀m ∈ F) with the unbounded quantifier in Φ′.

To see that Y is amenable, choose n, and show that Y ∩ < n is M-finite.
As above, there is a neighborhood condition on Z,

〈
G, Ḡ

〉
, such that

(∀m < n)(∃y)
[〈
m, y,G, Ḡ

〉
is a Z-computation of Φ′(m,Z) = Y (m)

]
.

Fix G and Ḡ. Then, by an additional use of BΣ1, there is a common bound
b to the witnesses to

〈
m, y,G, Ḡ

〉
∈ Φ′, for all m < n and y = 0 or y = 1.

This shows

Y ∩ < n =
{
m m < n & (∃w < b)

[
w witnesses

〈
m, 1, G, Ḡ

〉
∈ Φ′

]}
.

This is a bounded Σ0 set, hence, by IΣ0, M-finite.
Given that Y ≤s Z, y ∈ Y and y 6∈ Y are ΣZ

1 predicates on y. Thus,
any ΣY

1 formula is equivalent to a ΣZ
1 formula (using BΣZ

1 to interchange
bounded quantifiers.) Therefore, M is also a model of BΣY

1 , so if X ≤w Y ,
then X ≤s Y and X ≤s Z. ♦

The commonly used properties of the recursively enumerable sets have
proofs at different levels of the hierarchy of induction schemes. The follow-
ing is a list of the results we will use. The reader is asked to consult [6] for
the proof.

7

2.10. Definition. Suppose that M is a model of P− + IΣ0 and W is
recursively enumerable in M. Then, we can order the elements of W in the
order of their being witnessed to belong toW . We call this order the natural
enumeration of W and let W [s] be the subset of W ∩<s enumerated by
witnesses less than s.

Note that x ∈W [s] is a Σ0 predicate on x and s.

2.11. Theorem. (1) (H. Friedman) Suppose that M is a model of P− +
IΣk and A is a Σk predicate on M. Then A is amenable.

(2) Suppose that M is a model of P−+BΣk+1, i is less than or equal to

k and A is a Σi predicate on M. If W is recursively enumerable in A,

then W is Σi+1 in M.

2.12. Corollary. If M is a model of P−+BΣ2 then ≤w is transitive on

the recursively enumerable predicates in M.

Proof: Suppose that M is given as above and that W is recursively enu-
merable in M. Theorem 2.11 shows that W is amenable and that M sat-
isfies BΣ1 relative to W . By proposition 2.9, ≤w is equal to ≤s below W

and so is transitive there. ♦

2.13. Corollary. Suppose that M is a model of P− + IΣ1 and W is

recursively enumerable in M. For any Turing reduction Φ, Φ(x,W) = y if

and only if there is a computation in Φ that applies toW [t] for all sufficiently

large t.

Proof: By Theorem 2.11, W is an amenable subset of M. Suppose that
〈x, y, F,G〉 is a computation that applies to W . Let m be an upper bound
on the elements of F . By BΣ1 in M, fix s so that W ∩<m is equal to
W [s]∩<m. For any t greater than or equal to s, 〈x, y, F,G〉 applies to
W [t]. The converse is clear. ♦

Corollary 2.13 gives us the ability to apply the basic intuition of the
priority method. During a construction of A, we can wait for a stage
when Φ(x,A[s]) is defined. If no such stage appears, then Φ(x,A) will be
undefined.

§3. The Model

We will focus our attention on the difference between IΣ1 and BΣ2. In
particular, we will work with a model of IΣ1 that is not a model of BΣ2.

8

We obtain this model by forming a limited Skölem hull in a nonstandard
model of Peano Arithmetic.

During our discussion of nonstandard models and their elements, we will
reserve the word integer for a standard element of ω.

Let N be a model of Peano Arithmetic with nonstandard element p. We
build a Σ1-substructure M of N with an additional property: If X is Π1

definable in N with parameters from M and has an element less than some
element of M, then the N-least element of X is in M.

Let ~ϕ and ~ψ be standard recursive enumerations of the Σ1 and Π1 for-
mulas of arithmetic, respectively. Note, in N, we can specify N-recursive
enumerations having ~ϕ and ~ψ as initial segments.

We build M in ω many steps. Begin by putting p into M.
At the beginning of the k + 1st step, we have determined that M[k] =

m1, . . . ,mi is contained in M. First, for each of the first k statements in ~ϕ
about elements in M[k] true in M, if there is no witness to this (existential)
statement among the elements of M[k], we add the N-least witness to M.
Secondly, for each ψ among the first k formulas in ~ψ and each sequence of
parameters ~m from M[k], if there is an x in N such that x is a solution
to ψ relative to ~m and x is less than some element of M[k], then we add
the N-least solution of ψ(−, ~m) to M. M[k + 1], the set of elements we
have now determined lie in M, consists of the union of M[k] with the set
of elements added at step k + 1.

3.1. Proposition. IfN is a nonstandard model of P andM is constructed

from N as above then the following conditions hold.

(1) M is a Σ1-substructure of N, written as M≺Σ1 N . That is, for any

Σ1-formula ϕ and elements ~m of M,

M |= ϕ(~m) ⇐⇒ N |= ϕ(~m).

Note that (1) implies that there is no difference in the interpretation
of Σ1 or Π1 formulas between N and M. We will no longer specify
where such a formula is to be interpreted.

(2) Suppose that θ is a Π1-formula and ~m is contained in M. If θ(~m,−)
defines a nonempty subset X of M, then the N-least element of X is

an element of M. Consequently, M is a model of IΣ1.

(3) Let µ denote the function that maps i to the ith element added to

M. In M, µ is recursive in ∅′, the complete Σ1 set.

(4) In M, there is a recursive function of two variables µ(−, s) such that,

9

for all i in ω,

M |= lim
s→∞µ(i, s) = µ(i).

Proof: For the first claim, note that each element of M is introduced
at some finite point in the recursion. Once ~m is known to be contained
M, the remaining steps of the construction include the action of adding to
M a witness for each Σ1 statement true about ~m in N. This ensures that
M≺Σ1 N .

The second claim follows by an analogous argument. We took active steps
to ensure that the N-least element of a Π1 subset of M is the same as the
M-least one. Since N is a model of Peano Arithmetic, every Π1 subset of
N that is not empty has a least element. The same is then true in M.
This condition is equivalent to induction for all Σ1 formulas in M (see [5,
Kirby-Paris]).

For the third claim, note that the action taken during the kth step of
the construction is determined by the satisfaction predicate in N on a fi-
nite set of Σ1 and Π1 statements about elements from M. As M is a Σ1-
substructure ofN, the satisfaction predicate for these statements is identical
between M and N. Thus, the action taken during this step is accurately
described by ∅′, the complete Σ1 subset of M.

For the final claim, consider the function

µ(i, s) =

µ(i, ∅′[s]), if this function converges by a computation

less than s;

0, otherwise.

By corollary 2.13, the values of µ(i, s) will be correct for all sufficiently
large s. ♦

§4. An instance of intransitivity in ≤w among the

recursively enumerable sets

Let M be the model described in the previous section. In particular, M
is a model of P− + IΣ1 and not a model of BΣ2. In M there is a function
µ from ω onto M, which is the limit of a recursive function of two variables
µ(−, s): For all i in ω, M |= lims→∞ µ(i, s) = µ(i).

4.1. Proposition. In M, there are recursively enumerable sets A, B and

C such that A ≤w B ≤w C but A 6≤w C.

The proposition has the next theorem as an immediate corollary.

10

4.2. Theorem. There is no proof from P−+ IΣ1 that ≤w is transitive on

the recursively enumerable sets.

The remainder of this section is devoted to presenting a proof of Propo-
sition 4.1.

Priority constructions. We follow the conventional form for a priority
construction using stages and strategies. A stage is just an element s of M
viewed in the context of a definition by recursion.

In the usual dynamic picture of a priority argument, the construction of a
set A is viewed as an enumeration of A (or of the sequence 〈A[s] s ∈M〉),
guided at stage s by a finite collection Σ(s) of strategies. Σ(s) also speci-
fies for each strategy certain parameters whose role will become clear later,
such as the state of the strategy and the restraint imposed by the strategy,
and generally specifies a priority ordering on the strategies. We specify the
construction by giving a recursive procedure that, given the construction
〈A[s],Σ(s) s < t〉 up to stage t, specifies the construction 〈A[t],Σ(t)〉 at
stage t. Informally, we interpret Σ(t − 1) as a collection of constraints on
the continuation of the construction, and give a procedure to produce a con-
tinuation that respects as many of those constraints as possible. Formally,
we define a recursive set X (of appropriate partial constructions) such that,
given any sequence 〈A[s],Σ(s) s < t〉 in X, there is at least one 〈A[t],Σ(t)〉
such that 〈A[s],Σ(s) s ≤ t〉 is in X. From this, we conclude that there is a
recursive construction 〈A[s],Σ(s) s ∈M〉, such that each initial segment
〈A[s],Σ(s) s < t〉 is in X. The theory IΣ1 is just strong enough to justify
such a conclusion. Therefore, the dynamical presentation of a construction
(given a construction up to stage t, take certain recursively specified actions
to determine the construction at stage t) is valid when working in a model
of IΣ1. (Generally, the proof that a construction presented in this manner
satisfies the desired properties may require a stronger form of induction.)

Informally, a strategy σ is a recursive procedure to be applied during a
enumeration of sets and functionals (Turing reductions). During each stage
of the enumeration, the strategy exerts enough control over what happens
during that stage to force the desired properties in the limit.

The direct effects of a strategy are called actions. One possible action of
a strategy is to impose constraints on the possible continuation of the enu-
meration. For example, σ may restrain w from entering A by not allowing
the construction to enumerate w. Similarly, σ may require that a particular
number enter A or that the intersection of A with some nonempty M-finite
set is not empty. In the last case, σ does not determine which element
enters A, but leaves that decision open to the effects of other strategies.

11

A second possibility is that a strategy may constrain the actions of later
strategies in a way that is not so directly phrased in terms of the sets be-
ing enumerated. For example, we will use strategies that prohibit later
strategies from imposing too large a restraint.

In addition to actions, a strategy may change its actions in response to
the construction’s taking a favorable turn. We call this changing state. The
actions taken by a strategy in a fixed state produce an environment for the
remaining strategies.

All of our strategies are recursively specified in terms of some parameters
from M. The parameters for a specific strategy will be chosen during the
construction so as to be consistent with the environment produced by the
actions of earlier strategies. When we choose these parameters, we say that
we have initialized the strategy.

When we refer to a construction, we will always mean an enumeration of
sets and functionals together with the evolution in the states and actions of
the strategies involved. The construction will be presented by a recursion
wherein the continuation of the construction from stage s− 1 to stage s is
recursively determined from the earlier stages.

We say that a construction is an execution of a strategy if for every stage
the actions of the construction during that stage are compatible with the
constraints of the strategy.

To prove the theorem, we will represent its statement as an infinite con-
junction of requirements. Each requirement will be assigned a set of strate-
gies designed to influence the construction so as to produce sets that satisfy
the requirement. At the beginning of stage s, we will choose a specific se-
quence of strategies. Some initial segment of these will have been in use
during the previous stage and will have reached a particular state by the
end of that stage. Our first move during stage s is to initialize the new
strategies so as to work in the environment imposed by earlier strategies.
Once initialized, each strategy determines a constraint on the allowed ac-
tions in the construction during that stage. The actions we take are chosen
to respect the longest possible initial segment of the sequence of strategies.

During the construction, we will use [s] as a suffix to indicate that the
preceding expression is to be approximated by the information available at
the beginning of stage s. Consistently with the notation already established,
we use A[s] to indicate the numbers that have already been enumerated
into A by earlier action. Similarly, Φ(x,A) = y[s] indicates that there is a
computation of Φ at x relative to A[s] which is less than s and gives value
y.

12

The reader interested in a more elaborate exposition and foundational
treatment of the priority method may consult [3, Groszek-Slaman], to ap-
pear.

We make the following definitions for the sake of this proof.

4.3. Definition. An enumeration of a set A is a recursive sequence
〈A[s] s ∈ I〉 (I some initial segment of M) of M-finite sets such that A[0]
is the empty set and, for all s, A[s] ⊆ A[s+ 1].

If I = M, this is a full enumeration; if I = <t+ 1, a finite enumeration
of length t. The set enumerated is A = ∪{A[s] s ∈ I}. We say that x is
enumerated into A at stage s if and only if x ∈ A[s + 1] and for all r ≤ s,
x 6∈ A[r]. We leave the following lemma to the reader.

4.4. Lemma. (In P−+ IΣ1) Suppose that 〈A[s] s ∈ I〉 is a recursive enu-

meration. For all s < t, A[s] ⊆ A[t]. Furthermore, if x ∈ A, then there is a

unique s such that x is enumerated into A at stage s.

Requirements. We will enumerate sets A, B and C in M by means
of a Π1-priority construction (finite injury). The function µ from ω onto
M will be used to arrange the requirements in order type ω. We use µ so
that we can impose an M-finite bound on the number of strategies which
are active at any stage. This allows us to prove that the requirements
are satisfied by induction on ω. This is useful, because M satisfies only a
limited induction scheme, whereas the proof of the theorem uses a stronger
instance of induction than is satisfied by M. Since µ(−) is not recursive,
during the construction we will use its recursive approximation µ(−, s) and
change the priority order when the approximation changes.

4.5. Definition. The value µ(i) changes at stage s if µ(i, s) 6= µ(i, s− 1).
If µ(j) changes at stage s for some j less than i, then µ � i changes at stage
s.

By the properties of µ, for any i, there is a stage t such that µ � i does
not change at any stage greater than t, if and only if i is an integer.

The following lemma is a standard application of induction.

4.6. Lemma. (In P− + IΣ1) If there is any i such that µ(i) changes at

stage s, then there is a least such i.

There are three conditions to be satisfied:

(1) B ≤w C;
(2) A ≤w B;
(3) A 6≤w C.

13

Each of the first two will be ensured by a family of coding strategies.
The third condition is divided into a conjunction of diagonal requirements,
Θ(−, C) 6= A, for each Turing functional Θ in M. The coding strategies
must be gentle enough so that the diagonal strategies D(Θ) are dense, that
is, are always allowed the option of taking action.

The coding strategy C(B→C). Globally, the coding strategy is fairly
passive. For a particular Turing functional Φ, C(B→C) will act at each
stage s to enforce Φ(−, C) = B[s]. This will ensure that, if Φ(m,C) is
defined in the limit, it is equal to B(m). For every m in M, we use an
additional strategy C(B→C,m) to ensure that Φ(m,C) is defined in the
limit. Note, even when given the correct value for B(m) it will not be
possible to recursively identify the limiting computation of Φ(m,C).

We recursively view M as isomorphic to M×M. Let the nth column of
C be defined by

C(n) =
{
x 〈n, x〉 ∈ C

}
.

We enumerate m into C(n) by enumerating 〈n,m〉 into C.

4.7. Definition. x is enumerated into C(m) at stage s if and only if 〈x,m〉
is enumerated into C at stage s. C(m)[s] = (C[s])(m).

C(B→C) codes B into C as follows: For all m, there is a c(m) such that
C(m) is equal to <c(m), and m is an element of B if and only if c(m) is
odd.

The stage-by-stage effect of C(B→C) is to require, for every stage s and
every m in M less than s, if c(m) is the least element not in C(m)[s] then
C(m) = <c(m) and

m ∈ B[s] ⇐⇒ c(m) is odd.

In particular, to ensure the first condition, C(B→C) requires if 〈m, c〉 is
enumerated into C and x is less than c, then 〈m,x〉 must also enter C (if
not already in C). Further, C(B→C) imposes a condition on the use of
later strategies: no strategy can restrain the mth column of C without also
restraining m from entering B.

The additional effect of the strategy C(B → C,m) is to ensure that if
m is not enumerated into B during stage s, then the least element of the
complement of C(m)[s] is not enumerated into C(m) during stage s. Consider
the functional Φ that is computed as follows. For argument m relative to
predicate X, first compute the least element c(m) of the complement of
X(m); if c(m) is odd give the value 1 and if c(m) is even give the value 0.

14

The elementary fact that these strategies together ensure that Φ(−, C) = B,
is recorded below.

4.8. Definition. An enumeration of sets B and C respects the coding
strategy C(B→C) at stage s if and only if, for all m,

(1) For all x, if x is enumerated into C(m) at stage s, so is every number
less than x which is not already in C(m)[s].

(2) If m is not enumerated into B at stage s, then the least number not
in C(m)[s+1] has the same parity as the least number not in C(m)[s].

(3) If m is enumerated into B at stage s, then the least number not in
C(m)[s+ 1] is odd.

4.9. Definition. An enumeration of sets B and C respects the coding
strategy C(B→C,m) at stage s if and only if, if m is not enumerated into
B at stage s then nothing is enumerated into C(m) at stage s.

4.10. Lemma. Suppose an enumeration of B and C respects C(B→ C)
at every stage s, and for every m there is a t, such that the enumeration

respects C(B→C,m) at every stage s greater than or equal to t. Then,

B ≤w C.

Proof: We show, for each m, there is a number c(m) such that C(m) is
equal to <c(m) (i.e. x ∈ C(m) if and only if x < c(m),) and furthermore,
c(m) is odd if and only if m ∈ B. From this it is easy to show that B ≤w C.

Let m be given. By IΣ1 and the fact that the enumeration respects
C(B→C) at every stage, for each s there is a c(m, s) such that C(m)[s] =
<c(m, s), and c(m, s) is odd if and only if m ∈ B[s].

Now let t be a stage such that the enumeration respects C(B→C,m) at
every stage s greater than or equal to t, and if m ∈ B, then m ∈ B[t]. By
IΣ1 and C(B→C,m), for all s ≥ t, C(m)[s] = C(m)[t] = <c(m, t); c(m, t)
is odd if and only if m ∈ B[t] if and only if m ∈ B. Therefore, letting c(m)
equal c(m, t), we are done. ♦

Note, it is not hard to produce enumerations of this sort. Given any
enumeration of a set B, and any function f : M→M which is a limit of
recursive approximations (in the sense that µ is), there is an enumeration
of a set C such that the pair of enumerations satisfies the hypotheses of the
lemma, and for all m, C(m) 6= C(m)[f(m)]. (This uses IΣ1.)

The coding strategy C(A → B). The strategies for coding A into
B are very similar to, but not identical with, those that code B into C.
The difference is that we code A into B using a nonstandard negative
neighborhood condition on B.

15

Recall that p is a nonstandard element of M. We define the strategies
C(A→B) and C(A→B,m) analogously to C(B→C) and C(B→C,m)
so that the pth element of the complement of B(m) records whether m
is an element of A. (This is in analogy to saying the first element of the
complement of C(m) records whether m is an element of B.) That is, during
each stage s, C(A→B) enforces the condition

m ∈ A ⇐⇒ the pth element of the complement of B(m) is odd.

C(A→B,m) enforces the condition that the first p elements of the com-
plement of B(m) can only be changed under the condition that m enters
A.

4.11. Convention. We will take p to be odd so that before any numbers
are enumerated in any set Ψ is correctly computing A from B. Note, 0 is
the first element of M.

Let Ψ(x,X) be computed by finding the pth element b(x) of the comple-
ment of X(x) and giving answer 0 if b(x) is even and answer 1, otherwise.

4.12. Definition. An enumeration of sets A and B respects the coding
strategy C(A→B) at stage s if and only if, for all m,

(1) For all x, if x is enumerated into B(m) at stage s (x ∈ B(m)[s + 1]),
then at most p− 1 numbers less than x are not in B(m)[s+ 1].

(2) If m is not enumerated into A at stage s, the pth element in the
complement of B(m)[s+ 1] has the same parity as the pth element in
the complement of B(m)[s].

(3) If m is enumerated into A at stage s, the pth element of the comple-
ment of B(m)[s+ 1] is odd.

4.13. Definition. An enumeration of sets A and B respects the coding
strategy C(A→B,m) at stage s if and only if, if m is not enumerated into
A at stage s, then nothing is enumerated into B(m) at stage s.

4.14. Lemma. Suppose that an enumeration respects C(A→B) at every

stage, and for each m there is a t, such that the enumeration respects

C(A→B,m) at every stage s greater than or equal to t. Then A ≤w B.

Proof: Exactly analogous to the coding of B into C in Lemma 4.10. ♦
Again, it is easy to find such enumerations and even to find enumerations

of sets A, B and C such that the hypotheses of Lemmas 4.10 and 4.14 are
satisfied.

16

The diagonal strategies.

4.15. Definition. Given a Turing reduction (functional) Φ, we say
Φ(x,C) = y[s] if and only if there is a C[s]-computation 〈x, y, P,N〉 in
Φ[s].

Under IΣ1, Φ(x,C) = y if and only if there is a computation 〈x, y, P,N〉
in Φ which is a C[s]-computation for all sufficiently large s.

Let Θ be a given Turing functional, and suppose that q is a nonstandard
element of M. We will describe a strategy D(Θ) to work in an environment
where the columns of C with indices in F are restrained from being changed,
and some M-finite set may be restrained from A.

(0) First, chose w so that w is not prohibited from entering A but has
not yet done so. The number w will be a witness to inequality. We
restrain the construction from enumerating w in A and go to (1). This
is the initialization of the strategy; it takes place whenever a strategy
of higher priority changes state. The move from (0) to (1) does not
constitute a change of state for D(Θ).

(1) If Θ(w,C) = 0[s] by a computation whose negative condition involves
less than q many columns of C whose indices are not mentioned in
F , then go to (2).

Otherwise: If Θ(w,C) = 0[s] (with negative condition necessarily
spanning q or more C-columns not mentioned in F), we require that
some element from the negative condition associated with the least
such computation must be enumerated into C during stage s. This
“destroys” the potential computation Θ(w,C) = 0 seen at stage s.
Thus, we force the construction to produce a predicate C such that, if
Θ(w,C) is defined then its computation uses a negative condition on
C that is contained in the union of less than q many columns of C
beyond those indexed in F .

(2) We are given that Θ(w,C) = 0[s] by means of a computation with
permitted negative condition. We restrain all of the elements of the
C-columns beyond those in F mentioned in the negative part of the
computation of Θ(w,C)[s] from entering C. Further, if C(m) is re-
strained then we also restrain m from entering B. In addition, we
require that w be enumerated into A. This is the usual diagonal step:
preserve a computation from C and change A so as to diagonalize.

4.16. Definition. An enumeration of sets A and C, sequence st =
〈st(r) r > t〉 (of D(Θ)-states), and sequence res = 〈res(r) r > t〉 (of
D(Θ)-restraints) respects the strategy D(Θ) at stage s ≥ t (with param-

17

eter q, witness w, initialization stage t, and initial restraint F on columns
of C) if and only if:

(1) If m ∈ F then nothing is enumerated into C(m) at stage s. (The
columns of C indexed by F are restrained.)

(2) If s = t: st(t + 1) = 1 (D(Θ) is in state 1 at the end of stage t),
res(t + 1) = ∅ (D(Θ) is restraining no columns of C at the end of
stage t), and w 6∈ A[t+ 1].

(3) If res(s) = X and m ∈ X, then nothing is enumerated into C(m) at
stage s. (The columns of C indexed by res(s) are restrained.)

(4) If s > t and st(s) = 1 then:
(a) If Θ(w,C) 6= 0[s], then st(s+ 1) = st(s), res(s+ 1) = res(s), and

w is not enumerated into A at stage s.
(b) If Θ(w,C) = 0[s] and the least such computation in Θ[s] has a

negative condition G spanning q or more columns of C whose
indices are not in F , then an element of G is enumerated into
C at stage s (“destroying” that computation), st(s + 1) = st(s),
res(s+ 1) = res(s), and w is not enumerated into A at stage s.

(c) If Θ(x,C) = 0[s] and the least computation of this has a negative
condition G spanning columns of C whose indices are in F ∪X,
where X is disjoint from F and has size less than q, then w is
enumerated into A at stage s (so A[s + 1](w) = A(w) = 1), for
any m ∈ X nothing is enumerated in C(m) at stage s (so the
computation Θ(w,C) = 0[s] is preserved, giving at this stage
an inequality between Θ(w,C) and A(w)), st(s + 1) = 2, and
res(s+1) = X. (The columns of C indexed by X are restrained.)

(5) If s > t and st(s) = 2, res(s) = X, then st(s+1) = 2 and res(s+1) =
X. (Continue to restrain the columns of C indexed by X, preserving
an inequality between Θ(w,C) and A(w).)

4.17. Notation. We use D(Θ, q, w, t, F) to refer to the strategy D(Θ)
with parameter q, witness w, initialization stage t, and initial restraint F
on the columns of C.

4.18. Lemma. If a full enumeration of sets A and C, sequence st, and

sequence res, respect D(Θ, q, w, t, F) at every stage s greater than or equal

to t, then Θ(w,C) 6= A(w).

Proof: First, by IΣ1, the sequences st and res are uniquely defined by
the enumerations of A and C. The state st(r) is 1 if w 6∈ A[r] and 2 if
w ∈ A[r]. The restraint res(r) is empty if w 6∈ A[r] and X if w ∈ A[r],
where X is defined in (4c) above.

18

If w ∈ A, then w is enumerated into A at some stage s > t; st(s) = 1, and
case (4c) holds at stage s. I.e. Θ(w,C) = 0[s] via a computation 〈w, 0, P,N〉
whose negative condition N spans columns of C[s] indexed by F ∪X. We
set st(s + 1) = 2, res(s + 1) = X. By IΣ1, for m ∈ F ∪X and r ≥ s,
C(m)[r] = C(m)[s], so C(m) = C(m)[s]. This means, since N ∩C[s] = ∅,
N ∩C = ∅; i.e., 〈w, 0, P,N〉 is a C-computation. Thus, Θ(w,C) = 0; but
A(w) = 1, as desired.

If w 6∈ A, we must show that it is not the case that Θ(w,C) = 0; suppose
then that Θ(w,C) = 0. Using the amenability of C, we can show that there
is a least C-computation 〈w, 0, P,N〉 in Θ, and furthermore, there is a stage
s greater than t such that it is the least C[s] computation in Θ[s]. At stage
s, then, we are in case (4b) (it cannot be case (4c), since we assume w 6∈ A.)
But we then enumerate an element of N into C at stage s, so N ∩C 6= ∅,
contradicting the assumption that 〈w, 0, P,N〉 is a C-computation. ♦

Enumerating sets A and C to satisfy these hypotheses is not a problem;
when we try to combine D(Θ) with C(B → C) and C(A→ B), we first
see a potential conflict: In case (4c), D(Θ) requires that w enter A and
certain numbers are kept out of C. But as w enters A, C(A→B) requires
that something enter B, and so C(B→C) requires that something enter
C; conceivably, one of the same numbers that D(Θ) requires be kept out
of C.

This is why the distinction is made between cases (4b) and (4c): in case
w is to enter A at stage s, we are in case (4c), and fewer than |F |+ q many
columns of C are being restrained; as w enters A, we have a choice of p
many numbers (the first p elements of the complement of B(w)[s]) which
can enter B in order to satisfy C(A→B); if p ≥ |F |+ q, one of these must
index a column of C which is not being restrained.

To see why case (4c) is necessary at all (in other words, why not let
q = 0,) we need to consider the nature of finite injury priority arguments.
Usually, in a finite injury construction, we consider a sequence of strategies
S1, S2, S3, . . . ordered according to decreasing priority. At a given stage
s, some initial segment S1, . . . , Sn of strategies has been initialized (with
certain parameters) and each is currently imposing some constraints on
the construction. We look to see which is the least Si that requires action
involving a change of state. At stage s we take that action, while continu-
ing to respect the constraints imposed by the strategies of higher priority
S1, S2, . . . , Si−1. (In general, Si has been initialized so that this is possible;
e.g., if Si = D(Θ), the initial restraint F on columns of C is the restraint
imposed by S1, . . . , Si−1, and the witness w is a number not restrained from

19

entering A by any of the S1, . . . , Si−1.) We do not, however, worry about
respecting Si+1, . . . , Sn; these lower priority strategies are injured, and must
be re-initialized to be consistent with the new state of Si. This combina-
torial pattern works provided any strategy, if not injured, will only change
state finitely often: S1 will never be injured, so eventually will stop acting.
After that, S2 will not be injured, so eventually will stop acting, and so
forth. Thus, we can (using IΣ2 on the priority ordering) put together a
construction which eventually respects every Si.

Each D(Θ), if never injured (i.e. always respected,) changes state at
most once; however, it may act positively as in case (4b) infinitely often.
This action is not a problem, if it is taken in a way that does not injure
any strategy, even those of lower priority. The way to guarantee this is
to choose q so large that the total restraint imposed by strategies of lower
priority at any stage will involve fewer than q columns of C; thus, in case
(4c) there will always be an element of G whose column is not indexed in F
and is not restrained by any strategy. This element of G can be enumerated
into C without injuring anything.

In the final construction, we will show how to choose parameters q for
each D(Θ) so the sizes of their restraints fit together appropriately. The
following lemma illustrates the use of the function µ to order strategies, in
such a way that a singleD(Θ) can be respected in a way which is compatible
with all of the coding strategies.

4.19. Lemma. Suppose Θ is a Turing functional, F is an M-finite set, and

q and r are non-standard integers, such that |F |+ q ≤ p and r < q. Let w

and t be any numbers in M. Then, there are full enumerations of sets A,

B, C, and sequences st and res, satisfying the hypotheses of Lemmas 4.10,

4.14, and 4.18.

Proof: For s ≤ t, let A[s] = B[s] = C[s] = ∅. We will inductively define
these enumerations, for s ≥ t, so that at stage s they respect C(A→B),
C(B→C), C(A→B,m) and C(B→C,m) for any m = µ(x, s) for x < r.
(Simultaneously, of course, we will define suitable sequences st and res.)
Since for all m, there is a standard x such that m = µ(x, s) for sufficiently
large s, this will prove the lemma.

Define st(t+ 1) = 1, res(t+ 1) = ∅, A[t+ 1] = B[t+ 1] = C[t+ 1] = ∅.
Given s > t, suppose the enumerations are defined up to stage s. At

stage s, we have four possible cases for D(Θ).
In case (4a) or (5) no action is called for: let A[s+ 1] = A[s], B[s+ 1] =

B[s], C[s+ 1] = C[s], st(s+ 1) = st(s), and res(s+ 1) = res(s).
In case (4b), we need to enumerate an element of G into C: G spans at

20

least q columns of C whose indices are not in F ; as r < q, at least one
of those columns has an index m not in {µ(x, s) x < r}. Enumerate that
element into C, along with any other elements of the mth column needed
to guarantee C(B → C) is respected (i.e. all smaller numbers, and the
next largest if that is necessary to preserve the correct parity of the least
element of the complement of C(m)[s].) Enumerate nothing into any other
column of C, and let A[s + 1] = A[s], B[s + 1] = B[s], st(s + 1) = st(s),
res(s+ 1) = res(s).

In case (4c), D(Θ) changes state: we must enumerate w into A (let
A[s + 1] = A[s]∪{w}) and let st(s + 1) = 2, res(s + 1) = X. We must
also enumerate an element m into B, which is one of the first p elements
of the complement of B(w)[s], in order to respect C(A→B); let B[s+ 1] =
B[s]∪{m}. Finally, we enumerate the least element of the complement of
C(m)[s] in order to respect C(B→C) (and enumerate nothing else into C.)
In order to respect D(Θ), we must choose m properly, so that m 6∈ F and
m 6∈ X. But by our choice of F and q, |F |+ |X| < p; thus we can chose m
so that m 6∈ F ∪X. To specify the construction unambiguously, let m be
the least such number.

It is easy to check that, in any case, we have respected all the necessary
strategies at stage s. ♦

Compatibility between strategies. It only remains to chose strategies
for each requirement so that all of the strategies are compatible and, for
each requirement, the strategies associated with it are dense. This will
follow from a judicious choice of parameters q for the strategies D(Θ).

4.20. Definition. Let r be any non-standard number, and let p = 22r +1.
For 0 < i < r, let qi = p−1

2i = 22r−i.

4.21. Lemma. (1)
∑r−1

j=1 qj + r =
∑2r−1

k=r+1 2k + r = 22r − 2r+1 + r < p.

(2)
∑r−1

j=i+1 qj + r = 22r−i − 2r+1 + r = qi − 2r+1 + r < qi.

Proof: Elementary calculation. ♦

4.22. Definition. An enumeration of sets A, B, and C is an execution of
the sequence of strategies 〈D(Θi, qi, wi, ti, Fi), C(A→B, xi), C(B→C, xi)〉
provided

(1) Each ti is less than the length of the enumeration.
(2) C(A→B) and C(B→C) are respected at every stage.
(3) C(A→B, xi) and C(B→C, xi) are respected at every stage s ≥ ti.
(4) D(Θi, qi, wi, ti, Fi) is respected at every stage s ≥ ti. (This means

there are appropriate sequences st and res defined from the enumer-

21

ation and parameters Θi, qi, wi, ti, Fi; let Xi denote the final, or in
the case of a full enumeration the limiting, value of res(s).)

(5) Fi =
⋃ {Xj j < i}∪ {xj j < i}. (Fi is the set of columns of C re-

strained by the strategies of higher priority, or equivalently, of lower
index, than D(Θi).)

(6) wi 6∈ {wj j < i} . (No strategy of higher priority thanD(Θi) restrains
wi from entering A.)

4.23. Corollary. If this is a finite sequence with length at most r, then

for any i, |Fi|+ qi < p, and | {xj j ≥ i}∪⋃ {Xj j > i} | < qi.

Proof: As each Xj has size less than qj , this is a corollary to Lemma 4.21.
♦

4.24. Lemma. If a full enumeration of sets A, B and C is an execution of a

sequence of strategies 〈D(Θi, qi, wi, ti, Fi), C(A→B, xi), C(B→C, xi)〉 such

that each Turing reduction Θ appears as one of the Θi, and each number

m appears as one of the xi, then A ≤w B, B ≤w C, but A 6≤w C.

Proof: A ≤w B and B ≤w C follow from Lemmas 4.10 and 4.14. A 6≤w C

follows from Lemma 4.18, since if A ≤w C, we must have A = Θi(C) for
some Θi, which is impossible. ♦

To complete the proof of the theorem, we will construct in M an enumer-
ation of sets A, B and C, which is an execution of a sequence of strategies
〈D(Θi, qi, wi, ti, Fi), C(A→B, xi), C(B→C, xi) 1 ≤ i < ω〉 such that each
Turing reduction Θ appears as one of the Θi and each number m appears
as one of the xi. This sequence of strategies will of course not be recur-
sive, but it will be the limit of a recursive sequence which we will construct
simultaneously with the enumerations.

First we prove a lemma showing how such a construction can be extended
at a given stage.

4.25. Lemma. Suppose a finite enumeration of sets A, B and C of length

t is an execution of a sequence of strategies

〈D(Θi, qi, wi, ti, Fi), C(A→B, xi), C(B→C, xi) 1 ≤ i < r〉 .

(The qi are as defined in Definition 4.20.) Let k be such that no strategy

D(Θi) for i < k needs to change state at stage t.

Then there is a continuation of the enumeration to length t+ 1 which is

an execution of

(4.26) 〈D(Θi, qi, wi, ti, Fi), C(A→B, xi), C(B→C, xi) 1 ≤ i ≤ k〉 .

22

Furthermore, given any sequences
〈
Θ̄i k < i < r

〉
and 〈x̄i k < i < r〉, the

continuation of the enumeration can be chosen to be an execution of the

sequence of strategies in (4.26) extended by

〈
D(Θ̄i, qi, w̄i, t, F̄i), C(A→B, x̄i), C(B→C, x̄i) k < i < r

〉
for an appropriate choice of w̄i and F̄i.

Proof: There are two cases to consider.
Case 1. D(Θk) needs to change state at stage t, due to a computation

with negative condition spanning columns in C indexed by Fk ∪X, where
|X| < qk. Then we enumerate wk into A at stage t (A[t+1] = A[t]∪{wk}.)
Since wk 6∈ {wi i < k} this is compatible with respecting D(Θi) for all
i ≤ k.

To continue to respect the coding strategies, we choose m = 〈y, wk〉 such
that y is one of the first p elements of the complement of B(wk)[t], and
m 6∈ Fk ∪X. We enumerate m into B at stage t, and we enumerate the
least element of the complement of C(m)[t−1] into C(m) at stage t. (We will
also enumerate other numbers into C.) This is compatible with respecting
D(Θi) for i ≤ k; we can choose m 6∈ Fk ∪X since |Fk ∪X| < p by Corollary
4.23.

We enumerate other numbers into C at stage t as follows. In order to
respect D(Θi) for i ≤ k, we must avoid columns of C indexed by Fk ∪X. In
order to respect C(B→C, xi) for i ≤ k and C(B→C, x̄i) for i > k, we must
avoid columns of C indexed by xi, i ≤ k, or x̄i, i > k; i.e. the elements of a
set of size r, which we call Y . For i < k, Xi is already given; set Xk = X.
For each i < k such that D(Θi) requires enumerating something into C

because of a computation 〈wi, 0, P,N〉, N spans at least qi columns of C not
indexed by Fi. The number of columns which must be avoided in addition
to those indexed by Fi (i.e., those indexed by Y ∪⋃ {Xj i < j ≤ k}) is
by Corollary 4.23 less than qi. Hence we can find a column of C, C(m),
which meets N , such that m 6∈ Fk ∪Xk ∪Y ; enumerate into that column
an element of N , and other elements as necessary to satisfy C(B→C). This
is compatible with respecting D(Θj), j ≤ k, and all coding requirements
with parameters xj , j ≤ k, and x̄j , j > k.

Finally, we must initializeD(Θ̄i), i > k, so the enumeration respects these
at stage t. To do so, choose w̄i 6∈ A[t+ 1], such that the w̄i are all distinct
and disjoint from the wi. Define F̄i inductively as in Definition 4.22 (the
definition of execution.) We say the original strategies indexed by i > k

are canceled. Note ti for i > k has been replaced by t.

23

Case 2. D(Θk) does not need to change state at stage t. Then enumerate
nothing into A or B. Enumerate numbers into C for the sake of D(Θi),
i < k, as in Case 1; also, do so for D(Θk) if necessary. Initialize the D(Θ̄i),
i > k, as in Case 1. ♦

Note that in Case 1 it was necessary to re-initialize the D(Θi) for i > k

even if Θi = Θ̄i, since Fi will no longer satisfy the definition which F̄i must
satisfy.

It is important to note that A[t], B[t], C[t] (and w̄i, F̄i, for i > k) can be
defined uniformly and recursively from the enumeration up to stage t and
the sequences

〈D(Θi, qi, wi, ti, Fi), C(B→C, xi), C(A→B, xi) 1 ≤ i ≤ k〉

and
〈
Θ̄i, x̄i k < i < r

〉
.

Assigning priority. It only remains to recursively specify which se-
quence of strategies to use during each stage. For this we will use the
recursive approximation µ(x, s) to the function µ(x) that maps ω onto M.

4.27. Definition. For each s, let l(s) be the greatest x less than or equal
to s and less than r such that

(∀y ≤ x) [µ(y, s− 1) = µ(y, s)] .

The domain of µ(−) is ω. This provides us with two dynamic features:
first, there will be cofinally many s inM such that l(s) is an integer; second,
for any integer n, there is a t so that for each s greater than t, l(s) is greater
than n.

4.28. Definition. Let 〈Θm m ∈M〉 be an effective list in M of all of
the Turing functionals. Define P (s), the stage s priority sequence, to be
the following sequence.

C(B→C), C(A→B),

D(Θµ(1,s)), C(B→C, µ(1, s)), C(A→B,µ(1, s)), . . .

D(Θµ(l(s),s)), C(B→C, µ(l(s), s)), C(A→B,µ(l(s), s))

The construction. The construction C will be a recursive sequence
〈C[s] s ∈M〉. It will incorporate enumerations of sets A, B and C; C[s]
will have the form 〈A[s], B[s], C[s],Σ[s]〉. The last component Σ[s] will be

24

a sequence of strategies (given by the priority sequence P (s) of Definition
4.28), such that the enumeration of length s given by 〈C[t] t ≤ s〉 is an ex-
ecution (Definition 2.22) of Σ[s]. The parameters, witnesses, initialization
stages and initial restraints associated with the D(Θ) will also be given by
the Σ[s].

By IΣ1, we can define C by induction on s. We must guarantee that every
strategy is respected by a final segment of the enumeration of A, B and C.

4.29. Definition.

C = 〈C[s] s ∈M〉
C[s] = 〈A[s], B[s], C[s],Σ[s]〉

Σ[s] =
〈
D

(
Θµ(i,s), qi, wi,s, ti,s, Fi,s

)
,

C(A→B,µ(i, s)), C(B→C, µ(i, s))
1 ≤ i ≤ l(s)

〉

The qi are given by Definition 4.20, µ(i, s) by Proposition 3.1 and l(s) by
Definition 4.27. The rest we define inductively.

A[1] = B[1] = C[1] = ∅
wi,1 = i

ti,1 = 0

Fi,1 = {wj,1 j < i}

This guarantees the enumeration of length 1 is an execution of the strategies
Σ[1]. Assuming C[s] gives an enumeration of length s which is an execution
of Σ[s], we choose C[s+ 1] using Lemma 4.25:

Choose k(s) to be least such that D
(
Θµ(k(s),s)

)
is required to change state

at stage s, if there is such a strategy, and k(s) equal to l(s) otherwise. Use
the recursive method of Lemma 4.25 to define C[s+ 1] such that for i ≤ k,
wi,s+1 = wi,s, ti,s+1 = ti,s, Fi,s+1 = Fi,s, (and, as k ≤ l(s), D(Θµ(i,s+1)) =
D(Θµ(i,s))) and such that the enumeration of A, B and C through stage s
is an execution of Σ[s+ 1]. (For i greater than k, this method determines
wi,s+1 and Fi,s+1, and sets ti,s+1 equal to s.)

4.30. Lemma. The sets A, B and C enumerated by the construction C
satisfy the following conditions.

A ≤w B ≤w C

A 6≤w C

25

Proof: First, by IΣ1 in M, for every s in M, C[s] is defined, and the
enumeration of A, B and C through stage s is an execution of Σ[s].

By the conditions on the convergence of µ(s, i) to µ(i), for any given x in
M, there are an i in ω and a t in M such that

(∀s > t) [l(s) > i & µ(i, s) = x] .

(In particular, µ(i) = x.)
Given x in M, let i and t be as above. Then for all j ≤ i, there is a stage

t(j) ≥ t, such that for s ≥ t(j), k(s) > j.
This can be proven by induction on j: Suppose t(j − 1) is given. Then

for s ≥ t(j − 1), k(s) ≥ j, so by Definition 4.28,

D(Θµ(j,s), qj , wj,s, tj,s, Fj,s) = D(Θµ(j,s+1), qj , wj,s+1, tj,s+1, Fj,s+1).

By IΣ1 (induction on s) this strategy and its associated parameters
are unchanged for all s ≥ t(j − 1). We call this limiting value
D(Θµ(j), qj , wj , tj , Fj). Again by Definition 4.29, for for s greater than
or equal to t(j − 1), we can have k(s) = j only if this strategy is required
to change state at stage s, which can happen only once. If this happens at
some stage s greater than or equal to t(j−1), set t(j) equal to s+1; if not,
t(j) is equal to t(j − 1).

This induction on j less than i is valid because i is a standard integer.
Now we have shown that for any x, there are i in ω, and t(i) in M, such

that µ(i) = x, and for s greater than or equal to t(i) and j less than or
equal to i,

D(Θµ(j,s), qj , wj,s, tj,s, Fj,s) = D(Θµ(j), qj , wj , tj , Fj).

But then the full enumeration of A, B and C is an execution of the
sequence of strategies

〈
D

(
Θµ(i), qi, wi, ti, Fi

)
, C(A→B,µ(i)), C(B→C, µ(i)) 1 ≤ i ≤ ω

〉
.

Since each x in M occurs as one of the µ(i), by Lemma 4.24, our condi-
tions are satisfied. ♦

Lemma 4.30 directly implies Proposition 4.1, so we have completed its
proof. ♦

26

References

1. Driscoll, G. C., Jr., Metarecursively enumerable sets and their metadegrees, Jour. Sym.
Log. 33 (1968), 389-411.

2. Enderton, H. B., “A Mathematical Introduction to Logic,” Academic Press, New
York, 1972.

3. Groszek, M. J. and Slaman, T. A., Foundations of the priority method I: finite and
infinite injury, (to appear).

4. Hájek, P. and Kučera, A., On recursion theory in IΣ1, (to appear).
5. Kirby, L. A. S. and Paris, J. B., Σn-collection schemas in arithmetic, in “Logic Col-

loquium ’77,” North Holland, Amsterdam, 1978, pp. 199-209.
6. Mytilinaios, M. E. and Slaman, T. A., Σ2-collection and the infinite injury priority

method, Jour. Sym. Log. (to appear).
7. Soare, R. I., “Recursively Enumerable Sets and Degrees,” Perspectives in mathemat-

ical logic, Springer-Verlag, Berlin-Heidelberg, 1987.

Keywords. Turing reducibility, priority method, fragments of arithmetic.
1980 Mathematics subject classifications: Primary: 03D30.

Department of Mathematics and Computer Science, Dartmouth College, Hanover, NH
03755

Department of Mathematics, The University of Chicago, Chicago, IL 60637

27

