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RANDOM REALS, THE RAINBOW RAMSEY THEOREM,
AND ARITHMETIC CONSERVATION

CHRIS J. CONIDIS AND THEODORE A. SLAMAN

Abstract. We investigate the question “To what extent can random reals be used as a tool to establish

number theoretic facts?” Let 2-RAN be the principle that for every real X there is a real R which is 2-random

relative to X . In Section 2, we observe that the arguments of Csima and Mileti [3] can be implemented in the

base theory RCA0 and so RCA0 +2-RAN implies the Rainbow Ramsey Theorem. In Section 3, we show that

the Rainbow Ramsey Theorem is not conservative over RCA0 for arithmetic sentences. Thus, from the Csima-

Mileti fact that the existence of random reals has infinitary-combinatorial consequences we can conclude

that 2-RAN has non-trivial arithmetic consequences. In Section 4, we show that 2-RAN is conservative over

RCA0 +BΣ2 for Π1
1-sentences. Thus, the set of first-order consequences of 2-RAN is strictly stronger than

P−+ IΣ1 and no stronger than P−+BΣ2.

§1. Introduction. One of the benefits to having a precise formulation of the con-
cept “random infinite binary sequence” is that one can ask and precisely answer
questions about what types of objects can be computed from random input and about
what sorts of theorems can be proven from the existence of a random sequence.

In [3], Csima and Mileti gave an intriguing example of the first type. Their example
concerns the Rainbow Ramsey Theorem, which states that if C is a coloring of size-k
subsets of N such that there is a uniform finite bound on the number of sets assigned
to any particular color, then there is an infinite set X such that C is injective on the
size-k subsets of X , i.e. X is a C -rainbow. As is described below, they give a proof of
the Rainbow Ramsey Theorem for pairs (k = 2) by showing that if R is a sufficiently
random sequence relative to C , then R can be used to compute a C -rainbow. In a
sentence, Csima and Mileti show how a random source can be used to produce a
solution to a infinitary-combinatorial problem. Further, since they also show that
there is a recursive such C with no recursive rainbow, any general method to produce
rainbows for colorings must be driven by some such non-recursive data.

In this article, we analyze the second question with respect to theorems about finite
sets. For this question, we shift the setting from the examination of the computation
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of infinite sets from a random source to the examination of proofs from the assertion
that there is a random source.

As is documented in Simpson’s text [15], there is a well-established methodology to
frame the question. Namely, fix a base theory T , intended to capture a collection of
tools with which to work with real numbers. Obtain a new theory T ∗ by adding to T
the statement that for every real number X there is a real R which is random relative
to X . Then ask the question, “Are there statements of first order arithmetic which are
provable from T ∗ but not from T ?” If not, then we say that T ∗ is conservative over T
for arithmetic sentences.

We take as given the minimal base theory RCA0, which formalizes the theory of first
order arithmetic through induction for Σ0

1 sets and the formal assertion that the real
numbers are closed under relative computability.

Let 2-RAN be the principle that for every real X there is a real R which is 2-random
relative to X . We will review the hierarchy of arithmetical randomness below, which
specifies 2-randomness exactly. We will show that 2-RAN has number-theoretic con-
sequences that go beyond those of RCA0. In fact, 2-RAN proves the principle CΣ2

defined by Seetapun and Slaman in [14], a version of the pigeon-hole principle.
It is possible to prove CΣ2 from 2-RAN by directly manipulating the conditions on

being 2-random. However, we will proceed in two steps. First, we will implement the
Csima-Mileti argument in the theory RCA0 +2-RAN to derive the Rainbow Ramsey
Theorem for pairs, RRT 2

2. Then, we will show that RCA0 + RRT 2
2 proves CΣ2, an

apparently stronger non-conservation theorem.
Finally, we give an upper bound on the first order part of RCA0 +2-RAN . Since any

model of first order Peano Arithmetic (PA) can be extended to a model of arithmetic
comprehension, which is then a model of RCA0 +2-RAN , RCA0 +2-RAN is arithmeti-
cally conservative over PA. A more involved but still familiar argument, using the
existence of 2-random reals that are low2, would show that RCA0 +2-RAN is arith-
metically conservative over Peano Arithmetic with induction limited to Σ2-formulas
[2].

We will argue for a sharper upper bound and show that if aφ is aΠ1
1-sentence which

is provable from RCA0 +2-RAN , then φ is provable from RCA0 +BΣ2, the principle of
bounding for relativized Σ0

2 formulas.

1.1. Effective Randomness. We begin by reviewing the prerequisites on effective
randomness. Downey and Hirschfeldt [4] and Nies [13] give thorough treatments of
this material. We assume that the reader is familiar with the basics of recursion theory,
such as the first few chapters of [4, 13, 16].

Let ω= {0,1,2, . . . } denote the standard set of natural numbers. Unless otherwise
indicated, lower case letters a,b,c, . . . , y, z (possibly with sub/superscripts) will al-
ways denote natural numbers. Let 2<ω denote the set of all finite binary strings, and
2n ⊂ 2<ω denote the set of finite binary strings of length n. Let 2ω be the set of all
infinite binary strings. Elements of 2ω are called reals. We will identify every real f ∈ 2ω

with the unique set X f ⊆ω such that f is the characteristic function of X f . Unless oth-
erwise indicated, lower case Greek letters α,β, . . . ,ψ (possibly with sub/superscripts)
will always denote finite binary sequences. We write f � n to denote the first n bits of
f .

For every finite binary string σ ∈ 2<ω, let [σ] ⊆ 2ω denote the set of all infinite binary
strings extending σ. More generally, for any set A ⊆ 2<ω, let [A] ⊆ 2ω denote set of all
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infinite binary strings extending some element of A –i.e. [A] =∪σ∈A[σ]. The sets [σ],
σ ∈ 2<ω, form the basis of a topology on 2ω. The resulting topological space is known
as Cantor space. In this context, an open set U is recursively enumerable if there is a
recursively enumerable set of finite strings A such that U = [A]. Furthermore, for each
σ ∈ 2<ω, let |σ| ∈ω denote the number of bits of σ, and define the measure of [σ] to be
2−|σ|. This measure extends uniquely to Cantor space, and is known as the Lebesgue
measure. If X ⊆ 2ω is measurable, then we denote its (Lebesgue) measure by µ(X ).

A Martin-Löf test is a uniformly recursively enumerable sequence of open sets,
{Un}n∈ω, Un ⊆ 2ω, such that µ(Un) ≤ 2−n for all n. We say that f ∈ 2ω is 1-random
whenever f ∉ ∩n∈ωUn for any Martin-Löf test {Un}n∈ω. More generally, we can rela-
tivize the definition of Martin-Löf test to any oracle A ⊆ω, by considering uniformly
recursively enumerable open sets relative to A, and we say that f ∈ 2ω is A−random
whenever f ∉ ∩n∈ωUn for any Martin-Löf test relative to A. We say that f is (n +1)-
random whenever f is random relative to ;(n) (i.e. the nth Turing jump). One may
also speak of n-randomness relative to an oracle.

We will mostly be concerned with the class of 2-random reals in the context of
second-order arithmetic and RCA0 (see Section 1.3 for more details). Since RCA0 does
not necessarily imply the existence of incomputable sets [15], in order to define the
notion of a 2-random real in RCA0 we need a characterization of 2-randomness that
mentions only recursively definable sets/functions. Using the limit lemma, as well

as the fact that Σ;′
1 subsets of ω are the same as Σ2 subsets of ω and the standard

recursive approximation theorem for Σ2 sets, it follows that f ∈ 2ω is a 2-random real
iff for all {0,1}-valued total recursive approximation functions g (n,σ, s) such that

U g
n = {σ : liminf

s→∞ g (n,σ, s) = 1}

satisfies µ([U g
n ]) ≤ 2−n , we have that f ∉∩n∈ω[U g

n ]. In other words, for all such g there
exists n such that for all m ∈ω there exist infinitely many s such that g (n, f �m, s) = 0.

A tree is a set T ⊆ 2<ω that is closed under initial segments. If T is a tree then [T ] ⊆ 2ω

denotes the set of infinite paths through T . For any given oracle A ⊆ω, we say that
X ⊆ 2ω is a Π0

1-class relative to A, and write X is a Π0,A
1 -class, whenever there exists

a tree TX ≤T A such that X = [TX ]. Π0,A
1 -classes are exactly the effectively closed sets

relative to the oracle A. We say that σ is on T whenever σ ∈ T . By taking complements

while thinking of aΠ0,;′
1 -class as the complement of a uniformly recursively enumer-

able sequence of open sets relative to ;′ (i.e. a Σ0,;′
1 -class) and replacing g (above)

with 1− g , the characterization of 2-randomness of the previous paragraph can be
reworded to the following equivalent definition.

DEFINITION 1.1. A real f ∈ 2ω is 2-random if for all {0,1}-valued recursive approxi-
mation functions h(n,σ, s) such that for all n,σ, lims→∞ h(n,σ, s) exists and

T h
n = {σ : lim

s→∞h(n,σ, s) = 1}

is a tree with µ([T h
n ]) > 1−2−n , we have that f ∈ [T h

n ], for some n.

From now on we will take this to be the definition of 2-randomness. When we say
µ([T h

n ]) > 1−2−n we mean that for all r the fraction of finite binary strings of length r
on T h

n is strictly greater than 1−2−n . When we say that f ∈ [T h
n ] we mean that for all r

the string f � r is on T h
n .
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In the above, it would be sufficient to restrict to sequences of trees which are
uniformly computable from X (k) in polynomial time, or within any other reasonable
time bound. For example, given a recursive tree T , we could define the new tree T ∗
by letting σ belong to T ∗ if and only if for every initial segment τ of σ, there is no
computation that τ 6∈ T which converges in time |σ|. Then, [T ] = [T ∗] and whether
σ ∈ T ∗ can be computed in a polynomial of |σ| many steps.

Finally, we recall the following fact.

PROPOSITION 1.2 (Martin-Löf [12]). There is a recursive tree T such that every infi-
nite path in T is 1-random and such that [T ] has positive measure. Furthermore, this
fact holds relative to any set.

1.2. Effective Infinitary Combinatorics. Recently, effective infinitary combina-
torics has played a prominent role in recursion theory and reverse mathematics. One
of the earliest works in effective infinitary combinatorics is [7], in which Jockusch
examined the effectivity of Ramsey’s Theorem (for n−tuples and k colors). Fix natural
numbers n,k, and let [ω]n denote the set of unordered n−tuples of natural numbers.
Ramsey’s Theorem for n−tuples and k colors says that for any given function/coloring
c : [ω]n → {0,1, . . . ,k −1} that assigns a color to each n−tuple there exists an infinite
set H ⊆ω such that c is constant on [H ]n ⊆ [ω]n –i.e. the set of n−tuples all of whose
members are contained in H . We say that H is homogeneous for (or with respect to)
the coloring c . It is not difficult to see that if n = 1 and c is recursive coloring then there
is a recursive homogeneous set for c. In [7], Jockusch constructs a recursive coloring
of pairs c2 : [ω]2 → {0,1} with no recursive homogeneous set. Jocksuch also constructs
a recursive coloring of triples c3 : [ω]3 → {0,1} such that every infinite homogeneous
set for c3 computes Turing’s Halting Set. For more details consult [7].

More recently, Csima and Mileti [3] studied the effectivity of the Rainbow Ramsey
Theorem (for n tuples and k−bounded colorings). Fix numbers n,k. We say that a
coloring of n−tuples c : [ω]n →ω is k−bounded, k ≥ 1, whenever |c−1(x)| ≤ k for all
x ∈ω. The Rainbow Ramsey Theorem for n−tuples and k−bounded colorings, k ≥ 1,
says that if c : [ω]n → ω is a k−bounded coloring of n−tuples then there exists an
infinite set R ⊆ω such that c is injective on [R]n . We call R a rainbow for c. Among
other things, Csima and Mileti construct a recursive 2−bounded coloring of pairs
c2 : [ω]2 → ω for which there is no recursive rainbow for c2. They also show that if
c : [ω]2 → ω is a recursive k-bounded coloring of pairs and X is a 2-random real,
then X computes a rainbow for c. For more details, consult [3] or the discussion in
Section 2.

1.3. Subsystems of Second Order Arithmetic. We now give the necessary back-
ground on second-order arithmetic. Simpson [15] gives a thorough treatment of this
material, and much more.

The basic symbols of first-order logic are ∀,∃,¬,∨,∧,→,↔,=, (, ), and variables
x1, x2, . . . along with the standard symbols from arithmetic 0,1,+, ·,<. Formulas and
sentences are constructed in the usual way.

Let P− denote the axioms of Peano arithmetic, without the induction scheme. In
other words, P− consists of the axioms for the nonnegative part of a discretely ordered
ring. All of the theories we consider will be extensions of P−, and all of our models
will satisfy P−.
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The language of second-order arithmetic is an extension of the language of first-
order arithmetic via set variables X1, X2, . . . . More specifically, the language of second
order arithmetic, denoted L2, is a two-sorted language consisting of number variables
x1, x2, . . . , and set variables X1, X2, . . . . The number variables x1, x2, . . . range over
natural numbers, while the set variables X1, X2, . . . range over sets of natural numbers.
Formulas and sentences are constructed in the usual way. Boldface characters such as
x,Y represent sequences of type x,Y , respectively.

The axioms of second-order arithmetic include P− (above), along with the induction
axiom

0 ∈ X ∧ (∀x)[x ∈ X → x +1 ∈ X ] → (∀x)[x ∈ X ]

and the comprehension scheme

(∃X )(∀x)[x ∈ X ↔ ϕ(x)],

where ϕ is an L2-formula in which X does not occur freely.
Second-order arithmetic consists of the formal system consisting of the axioms of

second-order arithmetic, together with all formulas deducible from these axioms via
the usual logical rules of inference. A subsystem of second-order arithmetic is a formal
system consisting of some subset of the theorems of second order arithmetic.

RCA0 is the subsystem of second-order arithmetic consisting of P−, along with in-
duction for Σ1 formulas, and comprehension for∆1-definable sets of natural numbers
(see Section 1.3.1 below). RCA0 will be our base theory throughout the rest of this
article. 2-RAN denotes the theorem of second-order arithmetic that says “for every
set X there exists Y such that Y is 2-random relative to X ” (recall our definition of
2-randomness given in the final paragraph of Section 1.1 above). 2-RAN will play a
prominent role in Sections 2 and 4 below. We will use N to denote the first-order part
of a model of RCA0, and when working in a subsystem of second-order arithmetic
we will sometimes use the term “bounded” to mean Σ0-definable and “recursive” to
mean ∆1-definable.

1.3.1. Arithmetic Formulas. We review some basic well-known facts concerning
arithmetic formulas in second-order arithmetic. More information on the material
presented here and more can be found in [5, 8, 15].

Recall that a formula ϕ(x,p,X) is Σn , n ≥ 1, if it is of the form

ϕ(x,p,X) = (∃x1)(∀x2) · · · [φ(x,p,X, x1, x2, . . . )],

where there are n −1 alternations of quantifiers and φ has only bounded quantifiers
and parameters p,X. Similarly, a formula ϕ(x,p,X) isΠn , n ≥ 1, if it is of the form

ϕ(x,p,X) = (∀x1)(∃x2) · · · [φ(x,p,X, x1, x2, . . . )],

where there are n −1 alternations of quantifiers and φ has only bounded quantifiers
and parameters p,X. A set X ⊆ω is ∆n-definable whenever it is defined by both a Σn

formula and aΠn formula.
IΣn represents the induction scheme for all Σn formulas. More specifically, IΣn

consists of all the sentences

(∀X)(∀p)[(ϕ(0,p,X) ∧ (∀x)(ϕ(x,p,X) → ϕ(x +1,p,X))) → (∀x)ϕ(x,p,X)]
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where ϕ is Σn . More intuitively, IΣn says that if a set A is defined by a Σn formula,
0 ∈ A, and A is closed under the successor function, then every number is in A. It is
known that IΣn is equivalent to IΠn , the induction scheme forΠn formulas.

Similarly, BΣn represents the bounding scheme for all Σn formulas. More specifi-
cally, BΣn consists of all the sentences

(∀X)(∀p)(∀a)[(∀x < a)(∃y)ϕ(x, y,p,X) → (∃b)(∀x < a)(∃y < b)ϕ(x, y,p,X)]

where ϕ is Σn (with parameters p,X). More intuitively, BΣn says that if for every
number x less than a, there are numbers y that satisfy a Σn-property relative to x,
then there is a bound b such that for all x less than a there is such a y that is less
than b. It is known that BΣn is equivalent to BΠn−1, the bounding scheme forΠn−1

formulas.
Working in the formal system P−, Kirby and Paris [11] proved that the schemes IΣn

and BΣm , n,m ≥ 1, form a strict hierarchy as follows (no arrow is reversible):

· · · −→ BΣn+1 −→ IΣn −→ BΣn −→ IΣn−1 −→ ·· · −→ IΣ1 −→ BΣ1.

Note that, in the context of Reverse Mathematics, Definition 1.1 above only makes
sense in the context of BΣ2, since it mentions f ∈ [T h

n ] for some limit computable tree
T h

n .
1.3.2. Formalizing effective randomness.

PROPOSITION 1.3. Suppose that (M ,R) |= RCA0 +BΣ2. Then, for every X ∈ R, there
is an unbounded X ′-recursive tree Tu such that if Y is an infinite path in Tu , then Y is
2-random relative to X .

PROOF. Here, one need only check that the proof of Proposition 1.2 can be carried
out relative to X ′ using BΣ2(X ), which we omit. a

PROPOSITION 1.4. Suppose that (M ,R) |= RCA0 +BΣ2 and X ∈ R. Then, if Y is 2-
random relative to X , then (M , X ,Y ) |= X ′ +Y ≥T Y ′. Further, for any Σ2-formula
θ2(X ,Y ) there is a Σ1-formula θ1(X ′,Y ) such that

(M , X ′+Y ) |= θ2(X ,Y ) ↔ θ1(X ′,Y ).

PROOF. First, we recall the argument that if Y is 2-random, then Y +0′ ≥T Y ′.
Consider an ε> 0 and a Σ0

1(Z )-formula (∃w)θ(w, Z � w), where θ has only bounded
quantifiers. There is a recursive enumeration of the set A consisting of those finite
sequences τ at which this formula first appears true, i.e. of the set of τ satisfying the
following formula.

θ(|τ|,τ) & (∀w < |τ|)¬θ(w,τ� w)

Further, 0′ can compute a cut-off point s such that all but measure less than ε of [A] is
contained in [A∩2≤s ]. Namely, 0′ can compute the least s in a non-empty Π0

1-subset
ofN. Now, uniformly in e, let Ue be the measure less than 2−e subset of those strings
at which the conjunction of the first e-many Σ0

1-formulas

(∃w1)θ1(w1, Z � w1)∧ (∃w2)θ2(w2, Z � w2)∧·· ·∧ (∃we )θe (we , Z � we )

first appears true and let se be the associated cut-off stage after which we begin to
enumerate Ue . The sequence (Ue : e ∈N) yields a Martin-Löf test relative to 0′ and
the function e 7→ se is recursive in 0′. So, if Y is 2-random, then there is an n such
that for all e > n, Y 6∈ [Ue ]. Further, for e > n, (∃w)θe (w,Y � w) holds if and only if
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(∃w < se )θe (w,Y � w). Thus, the complete Σ0
1(Y ) subset of N is recursive in Y +0′, as

required.
The above argument goes through unchanged in the formal theory RCA0 +BΣ2

relativized to a real parameter. Formally, one has to note that the definition of A is
valid, a use of bounded induction, and to demonstrate that the measure of a Σ0

1 set
[A] can be approximated within arbitrary accuracy, a use of Σ0

1-induction.
Now, consider the second claim, that Σ0

2-statements about Y are equivalent to Σ0
1-

statements about Y +0′. The above analysis gives a translation from Σ0
1(Y )-statements

to ∆0
1-statements about Y +0′, which also translates Σ0

2(Y ) to Σ0
1(Y +0′). The other

direction follows from the observation that Σ0
1-induction is sufficient to ensure that

the enumeration of any initial segment of 0′ is bounded. a
1.3.3. Formalizing effective combinatorics. We now define the formal subsystems

of second order arithmetic RT 2
2 (Ramsey’s Theorem for pairs and 2 colors) and RRT 2

2
(Rainbow Ramsey for pairs and 2−bounded colorings), and state a well-known con-
servation theorem for RT 2

2 due to Cholak, Jockusch, and Slaman [1].
Let RT 2

2 denote the L2-sentence that says

“For every coloring of (unordered) pairs c : [N]2 → {0,1} there exists an
infinite set H ⊆N such that c is constant on [H ]2 ⊆ [N]2.”

In [1], Cholak, Jockusch, and Slaman show that RCA0 + IΣ2 +RT 2
2 is conservative over

RCA0 + IΣ2 forΠ1
1 statements.

We define RRT 2
2 to be the L2-sentence that says

“For every k−bounded coloring of unordered pairs c : [N]2 →N, k ≥ 1, there
exists an infinite set R ⊆N such that c is injective on [R]2 ⊆ [ω]2.”

In the next section, we show that RCA0 +2-RAN implies RRT 2
2. In Section 3, we

prove that RRT 2
2 is not conservative over RCA0 for arithmetic statements.

§2. The Csima-Mileti Argument in RCA0 +2-RAN . We assume that the reader is
familiar with [3]. Our main goal in this section is to sketch a proof, in the formal system
RCA0 + 2-RAN , of the theorem of Csima and Mileti [3, Section 3] that says for any
recursive 2-bounded coloring of pairs c : [N]2 →N and any 2-random real X , there is a
rainbow R ⊆N for c that is recursive in X . We reason in RCA0 +2-RAN . Fix a recursive
2-bounded coloring of pairs c : [N]2 →N.

Since the proof of [3, Proposition 3.3] gives an effective algorithm that constructs an
infinite set of numbers N0 ⊆N such that c is a normal coloring when restricted to pairs
in N0, and uses at most Σ0-induction to verify this fact, it follows that [3, Proposition
3.3] holds in RCA0 and so without any loss of generality we can assume that c is
normal. Similarly, since the proof of [3, Proposition 3.5] can be carried out effectively
(its essence lies in an application of BΣ1 and the ∆1 finitary pigeonhole principle), it
follows that [3, Proposition 3.5] holds in RCA0. Also, for any given rational number
p < 1, the proof of [3, Proposition 3.9] can be carried out uniformly in p to produce
a binary tree Tp such that µ([Tp ]) ≥ p. Finally, recall that the trees constructed in
[3, Section 3] are all recursively enumerable (i.e. Σ1-definable).

For each n ∈N let εn
0 ,εn

1 , . . . ∈Q be a recursive sequence of rational numbers less
than one such that for each m ∈N,

∏m
i=0 ε

n
i > 1−2−n . Let β0,β1, . . . ∈N be defined as
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β(0),β(1), . . . are in the proof [3, Proposition 3.9]. By recursively and uniformly ap-
proximating the method of Csima and Mileti described in [3, pages 1316-1318] we can
construct, in the formal system RCA0+2-RAN , a {0,1}-valued recursive approximation
function t (n,σ, s), σ ∈ 2<N, n, s ∈N, such that:

1. for all n,σ, t (n,σ, s) nondecreasing in s; (hence lims→∞ t (n,σ, s) = 1 iff
(∃s)[t (n,σ, s) = 1])

2. for all n, s, t (n,σ, s) = 1 whenever t (n,σz, s) = 1 for some z ∈ {0,1};
3. for all i ,n ∈N and σ ∈ 2βi such that t(n,σ, s) = 1 for some s ∈N, the fraction of

strings τ ∈ 2βi+1 extending σ such that t (n,σ, t ) = 1 for some t ∈N is at least εn
i .

Intuitively speaking, we think of t (n,σ, s) as a uniform recursive approximation to a
sequence of trees {Tn}n∈N such that for all n ∈N,σ ∈ 2<N,

σ ∈ Tn iff lim
s→∞ t (n,σ, s) = 1 iff (∃s)[t (n,σ, s) = 1].

Property 2 says that Tn is a tree for all n ∈ N. Property 1 follows from the fact that
the Csima-Mileti trees are recursively enumerable, and property 3 follows from [3,
Proposition 3.5]. In the next paragraph we will use properties 1, 2, and 3 to sketch an
argument that says for all n ∈N the measure of Tn is at least

∏
i∈N εi ≥ 1−2−n .

We now sketch a proof that says for all m,n ∈N the fraction of strings σ ∈ 2βm for
which there exists a stage s ∈N such that t (n,σ, s) = 1 is at least

∏m
i=0 ε

n
i > 1−2−n . By

property 2 it will then follow that for all m,n ∈N the fraction of σ ∈ 2m for which there
exists a stage s ∈ N such that t(n,σ, s) = 1 is strictly greater than 1−2−n . Suppose
that we are given m,n ∈N. Then, by property 1 and RCA0, there exists a large stage s0

such that our recursive approximation t (n,σ, s) has stabilized on all nodes of length
at most βm by stage s0.1 Now, using property 3 above and Σ1-induction on the length
of nodes up to length βm , one can show that the fraction of nodes σ ∈ 2βm such that
t (n,σ, s0) = 1 is at least

∏m
i=0 ε

n
i > 1−2−n (this is essentially the argument that Csima

and Mileti give in [3, Proposition 3.9]).
Now, the axiom 2-RAN says that there exists a real X ∈ 2N such that X ∈ [Tn], for

some n ∈N, and via the same decoding procedure described in [3, Proposition 3.9]
there is an X -recursive rainbow R for c. Thus, we have essentially used the Csima-
Mileti method [3, Section 3] to prove the following theorem.

THEOREM 2.1 (RCA0 +2-RAN). Let c : [N]2 → N be a 2-bounded coloring of pairs
and X be a 2-random real. Then there is an X -recursive rainbow R for c.

As in [3, Section 3], one can easily modify our method to prove the following more
general theorem.

THEOREM 2.2 (RCA0 +2-RAN). Let c : [N]2 → N be a k-bounded coloring of pairs,
k ∈N, k ≥ 2, and let X be a 2-random real. Then there is an X -recursive rainbow R for
c.

1Here we are using the fact that recursively enumerable (i.e. Σ1-definable) sets of natural numbers are
amenable in RCA0. A set defined by a formula ϕ is amenable in a theory T whenever every initial segment
of that set exists in every model of T (though the set itself might not exist). The amenability of recursively
enumerable sets in RCA0 is well-known and follows from the fact that any recursive (i.e. ∆1) approximation
to an r.e. (i.e. Σ1) set changes at most 2k times on the first k bits.
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§3. Non-conservativity of the Rainbow Ramsey Theorem over RCA0. In this sec-
tion, we show that the Rainbow Ramsey Theorem for Pairs, in the form RRT 2

2, is not
arithmetically conservative over P−+ IΣ1. Our argument is based on the Seetapun
and Slaman [14] proof of the same fact for Ramsey’s Theorem for Pairs, RT 2

2. It is open
whether Hirst’s [6] theorem, that RT 2

2 implies BΣ2 over RCA0, applies to RRT 2
2.

3.1. The Cardinality Scheme. Now, we recall a restricted form of the bounding
principle.

DEFINITION 3.1 (Seetapun and Slaman, [14]). We let Γ be a set of formulas and de-
fine the cardinality scheme CΓ for Γ. If φ(x, y) ∈ Γ then the universal closure of the
following formula is in CΓ: If φ(x, y) defines an injective function, then its range is
unbounded.

Instances of the cardinality scheme follow from instances of the bounding scheme
by a pigeon hole argument. A Skolem hull argument, see Slaman and Seetapun [14],
shows that P−+ IΣ1 +CΣ2 is strictly stronger than P−+ IΣ1. Kaye [9] and [10] study
versions of CΓ and compare them with the hierarchy of induction and collection.
In particular, [10] exhibited structures to establish that P−+BΣn +⋃

k∈ωCΣk does
not prove BΣn+1. More recently Slaman has shown that P−+ IΣn +⋃

k∈ωCΣk does
not prove BΣn+1. The case of interest in the context of 2-RAN and RRT 2

2 is that
P−+ IΣ1 +CΣ2 does not prove BΣ2.

THEOREM 3.2 (Slaman, unpublished). P−+ IΣn +⋃
k∈ωCΣk 6` BΣn+1

3.2. RRT 2
2 implies CΣ2.

THEOREM 3.3. Working over the base theory RCA0, RRT 2
2 proves CΣ2.

PROOF. We assume that M is a model of P−+IΣ1 and that CΣ2 fails in M . We then
adapt an argument from Seetapun and Slaman [14] to exhibit a recursive 2-bounded
coloring of pairs c for which there can be no rainbow X such that IΣ1 holds relative to
X .

By the failure of CΣ2 in M , choose an element a of M and a Σ2 formula

φ(x, y) = (∃w)(∀z)φ0(x, y, w, z),

in which φ0 is bounded and possibly mentions parameters from M , such that φ(x, y)
defines an injection G from the entirety of M into the set of elements of M which are
less than a.

First, we define the stage-s recursive approximation g (−, s) to G−1 as follows. Let
≺ be the ordering on pairs defined by (x1, w1) ≺ (x2, w2) if the maximum of {x1, w1}
is less than the maximum of {x2, w2} or the maxima are equal and (x1, w1) is smaller
than (x2, w2) lexicographically. Then, ≺ is a total order of M ×M of order-type M .
Now, for y < a, let g (y, s) be x, if there is a w < s such that (∀z < s)φ0(x, y, w, z) and
also (w, x) is the ≺-least pair such that (∀z < s)φ0(x, y, w, z). If there is no x as above,
then we let g (y, s) = 0.

If G(x) = y , then by IΣ1 there is a least w such that (∀z)φ0(x, y, w, z). Further,
since G is injective, if x1 6= x or if w1 < w , then ¬(∀z)φ0(x1, y, w1, z). Consequently,
if (x1, w1) ≺ (x, w) then (∃z)¬φ0(x, y, w, z). By BΣ1, there is a b such that for all
(x1, w1) ≺ (x, w), (∃z < b)¬φ0(x, y, w, z). But then for all s > b, g (y, s) = x. In other
words, if y is in the range of G then lims→∞ g (y, s) exists and is equal to G−1(y).
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Now, we define the recursive 2-bounded coloring c : M ×M → M by recursion.
At stage s of the recursion, we define c(x, s) for all x less than s. Fix an M -recursive
Gödel numbering of subsets of M , extending the usual Gödel numbering of the finite
subsets of N. We will say that a set is M -finite if it has a Gödel number in M . By
recursion on y < a, if g (y, s) is the Gödel number of a set Ay of size greater than 2a,
then choose b1 and b2 from that set such that c(b1, s) and c(b2, s) are not yet defined.
Since the stage-s recursion has length a and Ay has size greater than 2a, there must
be such b1 and b2. Define c so that c(b1, s) = c(b2, s) with a value not previously used.
Once this stage-s recursion is complete, assign unique and previously unused values
to c(x, s), for each x such that c(x, s) was not already defined. By, IΣ1, c(x, s) is defined
for every pair (x, s) with x < s. By construction, c is 2-bounded.

By construction, for each M -finite set A of size greater than 2a, there are only
boundedly many elements s of M such that A∪ {s} is a rainbow. If X is an unbounded
subset of M and (M , X ) satisfies IΣ1(X ), then the order type of the elements of X is
that of M and every initial segment of X is M -finite. Consequently, X cannot be a
c-rainbow.

In conclusion, if M is the number-theoretic component of a model of RC A0+RRT 2
2,

then M |= P−+ IΣ1 and for every M -recursive 2-bounded coloring, there is a rainbow
X such that (M , X ) satisfies IΣ1(X ). By the above, M must satisfy CΣ2. a

§4. Π1
1-Conservativity of 2-RAN over RCA0 +BΣ2. We follow the now-standard

method for establishingΠ1
1-conservativity, originally due to Harrington and described

in Simpson [15].

THEOREM 4.1. Suppose that (M ,R) is a countable model of RCA0 +BΣ2 and that
there is an element X ∈ R such that for every Y ∈ R, (M ,R) |= Y is recursive in X . There
is an R∗ such that R ⊆ R∗ and (M ,R∗) |= RCA0 +BΣ2 +2-RAN.

Before proving the theorem, we draw the immediate corollary.2

COROLLARY 4.2. RCA0+BΣ2+2-RAN is conservative over RCA0+BΣ2 forΠ1
1-sentences.

PROOF OF COROLLARY 4.2. We show that if a Σ1
1-sentence is consistent with the

theory RCA0 +BΣ2, then it is consistent with the stronger theory RCA0 +BΣ2 +2-RAN ,
which is sufficient to prove the corollary.

Suppose that ∃Xψ(X ) is Σ1
1, where X is a second order variable andψ(X ) is an arith-

metic statement about X , and suppose that ∃Xψ(X ) is consistent with RCA0 +BΣ2.
Let (M ,RM ) be a countable model of RCA0+BΣ2+∃Xψ(X ) and take X so that X ∈ RM

and (M ,RM ) |=ψ(X ). Finally, let R be the subset of RM consisting of those Y ∈ RM

such that (M ,RM ) |= X ≥T Y . Then,
(M ,R) satisfies the hypothesis of Theorem 4.1. So, let R∗ be a superset of R such that

(M ,R∗) |= RCA0 +BΣ2 +2-RAN . Since X ∈ R and R ⊆ R∗, X ∈ R∗. The satisfaction of
ψ(X ) within (M ,R∗) depends only on M and X , hence (M ,RM ) |=ψ(X ) implies that
(M ,R∗) |=ψ(X ). Thus, (M ,R∗) |= RCA0+BΣ2+2-RAN + (∃X )ψ(X ), which establishes
the required consistency of that theory. a

Now, we turn to the proof of the theorem itself.

2Corollary 4.2 was proven independently by Wei Wang (unpublished).
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PROOF OF THEOREM 4.1. Let M , R, and X be fixed as in the statement of Theo-
rem 4.1.

We extend R to R∗ in ω-many steps, so as to close under instances of 2-RAN . At
each step, we will start with a model, like (M ,R), of RCA0 +BΣ2 in which there is a
set X ∗ of greatest Turing degree, like X . We will adjoin a new subset of M which is
2-random relative to X ∗ and which satisfies BΣ2 relative to X ∗. We complete the step
by closing under relative ∆0

1 definability. It is then sufficient to show that we can carry
out the plan for one step. Without loss of generality, we will show that we can carry
out the first step and extend (M ,R) by adding a set Y which is 2-random relative to X
and which preserves BΣ2.

Let Tu be the X ′-recursive tree of Theorem 1.3, for which any infinite path is 2-
random relative to X . We will build our Y by forcing with unbounded X ′-recursive
subtrees of Tu .

Now, fix an an unbounded X ′-recursive tree T (ultimately, to be contained in
Tu) and consider the hypothesis (∀x < a)(∃y)θ(x, y, (X ′ +Y ) � y) of an instance of
BΣ1(X ′+Y ), in which θ is bounded.

If for every x < a, there is an` such that for everyσ ∈ T of length`, (∃y < `)θ(x, y, (X ′+σ) � y),
then BΣ2 implies that there is a single ` such that for every x < a and for every σ ∈ T
of length `, (∃y < `)θ(x, y, (X ′+σ) � y). Thus, if Y is an infinite path in T , then

(M , {X ,Y }) |=
(

(∀x < a)(∃y)θ(x, y, (X ′+Y ) � y) →
(∃`)(∀x < a)(∃y < `)θ(x, y, (X ′+Y ) � y).

)
If, otherwise, there is an x < a such that there is no ` such that for every σ ∈ T of

length`, (∃y < `)θ(x, y, (X ′+σ) � y), then the set ofσ such that¬(∃y < |σ|)θ(x, y, (X ′+σ) � y)
is an unbounded X ′-recursive subtree Tx of T . Further, if Y is an infinite path in Tx ,
then

(M , {X ,Y }) |= ¬(∃y)θ(x, y, (X ′+Y ) � y).

Hence, for any instance of BΣ1(X ′+Y ) and any unbounded X ′-recursive tree T ,
there is an unbounded X ′-recursive subtree of T which ensures the satisfaction of
that instance of BΣ1(X ′+Y ) for all unbounded paths in the subtree. So, for Y generic,
(M , X ′+Y ) |= BΣ1.

Since we fix our initial condition to be the tree Tu , a generic Y is 2-random and
Proposition 1.4 applies. Thus, BΣ1(X ′+Y ) is equivalent to BΣ2(X ,Y ). Consequently,
for Y generic as above, adjoining Y to (M ,R) and closing under join and ≥T produces
a model of the appropriate form, with a sequence Y which is 2-random relative to X ,
which satisfies BΣ2, as was required. a

§5. Conclusion. The results of the previous sections bracket the set of first-order
consequences of 2-RAN between P−+CΣ2 and P−+BΣ2. This leaves the following
problem as still open.

PROBLEM 5.1. Characterize the set of first-order consequences of 2-RAN .
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