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1. Introduction

Our goal is to convince the reader that recursion theoretic knowledge and ex-
perience can be successfully applied to questions which are typically viewed as set
theoretic. Of course, we are not the first to make this point. The detailed analysis
of language, the absoluteness or nonabsoluteness of the evaluation of statements,
and the interaction between lightface and relativized definability are thoroughly
embedded in modern descriptive set theory. But it is not too late to contribute,
and recursion theoretic additions are still welcome. We will cite some recent work by
Slaman, Hjorth, and Harrington in which recursion theoretic thinking was applied
to problems in classical descriptive set theory.

It is the parameter-free or lightface theory that seems closest to our recursion
theoretic heart. Where another might see a continuous function, we see a function
which is recursive relative to a real parameter. In the same way, we can see the
Borel sets through the hyperarithmetic hierarchy and the co-analytic sets by means
of well-founded recursive trees. We will make our way through most of the relevant
mathematical terrain without invoking concepts which are not natively recursion
theoretic. At the end, we will mention some problems which are similarly accessible.

We owe a debt to Sacks’s (1990) text on higher recursion theory and to Kechris’s
(1995) text on descriptive set theory. These are valuable resources, and we recom-
mend them to anyone who wishes to learn more about what we will discuss here.
In the following, we will cite theorems from the nineteenth and early twentieth
centuries without giving the original references; the motivated reader can find the
history of descriptive set theory well documented in these texts.

2. The Classical Theory

Here is the framework. We speak exclusively about subsets of Baire space, ωω,
and refer to an ω sequence of natural numbers as a real number. A basic open set
B(σ) is determined by a finite sequence σ from ω<ω: x ∈ B(σ) if and only if σ is
an initial segment of x. A function f : ωω → ωω is continuous if any finite initial
segment of f(x) is determined by a finite initial segment of x. If we think of this
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correspondence between the argument and the domain as having been coded by a
real number, then f is recursive relative to that real. Conversely, if f is is recursive
relative to some real parameter, then f is continuous.

Definition 2.1. 1. The Borel subsets of ωω are those sets which can be
obtained from open sets by a countable iteration of countable union and
complementation.

2. The analytic sets are the continuous images of the Borel sets.

The classical notions correspond to levels in the descriptive hierarchy of second
order arithmetic.

Definition 2.2. 1. A is a Σ1
1 set if and only if membership in A is defin-

able as follows.

x ∈ A ⇐⇒ (∃w)(∀n)R(n, x � n, w � n, a � n)(1)

where a is a fixed element of ωω, w ranges over ωω, n ranges over ω, and R
is recursive.

2. A is a ∆1
1 set if and only if both A and its complement are Σ1

1 sets.

Here is the connection. A set C is closed if and only if there is an a ∈ ωω and
there is a recursive predicate R, such that for all x,

x ∈ A ⇐⇒ (∀n)R(n, x � n, a � n).

By a classical fact, for every analytic set A, there is a closed set C such that for
all x, x ∈ A if and only if there is a witness w such that (x,w) ∈ C. Thus, a set is
analytic if and only if it is Σ1

1.
Similarly, by a classical theorem of Suslin, the Borel sets are exactly those

analytic sets whose complements are analytic. Consequently, B is Borel if and only
if it is ∆1

1.

Definition 2.3. The projective sets are obtained from the Borel sets by closing
under continuous images and complements.

Similarly to the above, the projective sets are those sets which can be defined
in second order arithmetic using real parameters.

Initially, the projective sets were studied topologically. Much of the progress
was limited to the Borel sets and the Σ1

1 sets, for which a variety of regularity
properties were established.

2.1. Perfect set theorems. Recall, a set P is perfect if it is nonempty, closed,
and has no isolated points. Equivalently, P is perfect if and only if there is a
(perfect) tree T ⊆ ω<ω such that every element of T has incompatible extensions
in T and P is [T ], the collection of infinite paths through T .

Theorem 2.4. 1. (Cantor–Bendixson) Every uncountable closed subset of
ωω has a perfect subset.

2. (Alexandrov, Hausdorff) Every uncountable Borel subset of ωω has a perfect
subset.

3. (Suslin) Every uncountable analytic subset of ωω has a perfect subset.

Suslin’s Theorem follows directly from the representation of analytic sets given
in 1. Suppose that A is uncountable and is defined by

x ∈ A ⇐⇒ (∃w)(∀n)R(n, x � n, w � n, a � n).
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We build a tree T of pairs (τ, σ) ∈ ω<ω × ω<ω such that if (τ, σ) ∈ T then there
are uncountably many x extending τ for which there is a w extending σ such that
(∀n)R(n, x � n, w � n, a � n). We use the fact that A is not countable to ensure
that the projection of T onto the first coordinates of its elements is a perfect tree
T1. Each path x through T1 is an element of A, as it is associated with a witness
w to that fact in T .

2.2. Representations of Borel sets. A diagonal argument shows that there
is no universal Borel set. However, in a different sense, the Borel sets are closer to
having a universal element than one might have thought.

Theorem 2.5 (Luzin–Suslin). For every Borel set B, there is a closed set C
and a continuous function f which maps C bijectively to B.

Proof. Whether x belongs to B is determined at a countable ordinal in the
jump hierarchy relative to x and the Borel code b for B. Let C be the set of triples
(x, b, s) such that s is the Skolem function verifying the relevant hyperarithmetic
statement about x and b.

Corollary 2.6. Every uncountable Borel subset of ωω is a continuous injec-
tive image of the sum of ωω with a countably infinite discrete set.

Proof. By Theorem 2.5, it is enough to show that every uncountable closed
set is a continuous injective image of the sum of ωω with a countably infinite discrete
set. This follows from the Cantor–Bendixson analysis of closed sets.

Now, we prove the converse.

Theorem 2.7 (Luzin–Suslin). Suppose that B is a Borel subset of ωω, and that
f is a continuous function that is injective on B. Then the range of f applied to B
is a Borel set.

Proof. Clearly, f ′′B is a Σ1
1 set. Let b be a real parameter used in the Borel

definition of B.
Note, if x ∈ f ′′B then

f−1(x)(n) = m ⇐⇒ (∃z)[z ∈ B and z(n) = m and f(z) = x]

So, f−1(x) is uniformly Σ1
1(x, f, b) definable and similarly ∆1

1(x, f, b) definable.
Consequently, x ∈ f ′′B if and only if there is an ordinal β less than ωx,f,b

1 and a z
in Lβ [x, f, b] such that Lβ [x, f, b] satisfies the conditions that z ∈ B and f(z) = x.
This gives a Π1

1 definition of f ′′B.
Consequently, f ′′B is a Π1

1 set, and therefore is a Borel set.

Corollary 2.8. The Borel sets are exactly the injective continuous images of
the sum of ωω with a countably infinite discrete set.

2.3. Sierpiński’s Problem. Sierpiński (1936) raised the question whether
there is an analogous version of Theorem 2.7 for the analytic sets.

Question 2.9 (Sierpiński (1936)). Does there exist a subset U of ωω such that
for every uncountable Σ1

1 set A, there is a continuous function f that maps U
bijectively to A?

Of course, the complete Σ1
1 set has all of the desired properties except for the

key property that f should be injective.
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2.3.1. Solution to Sierpiński’s problem.

Theorem 2.10 (Slaman (1999)). • There is no Σ1
1 set which satisfies all

of the Sierpiński properties.
• There is a set U which satisfies all of the Sierpiński properties.

Proof. The proof of the first claim is short enough to include here, but we will
only point to (Slaman, 1999) or (Hjorth, n.d.) for the proof of the second claim.

To prove the first claim, we proceed by contradiction. Let U be an Σ1
1 set such

that for every uncountable Σ1
1 set A, there is a continuous function f that maps U

bijectively to A.
Let f be a continuous bijection from U to ωω. As above, for x ∈ ωω, f−1(x) is

∆1
1(x, f). Then for all y ∈ ωω, y ∈ U if and only if y = f−1(f(y)), and so U is ∆1

1.
Now apply the Luzin–Suslin theorem. Since the complete Σ1

1 set of reals is a
continuous bijective image of U , it is ∆1

1, an impossibility.

2.3.2. Hjorth’s theorem. Slaman (1999) raised the question, is there a projec-
tive U as in Theorem 2.10? Hjorth (n.d.) gave the best possible example.

Theorem 2.11 (Hjorth (n.d.)). There is a Π1
1 set U which provides a positive

solution to Sierpiński’s problem. In fact, the set of reals which are hyperjumps

H = {Ox : x ∈ ωω}
is such a set U .

It takes us beyond the usual recursion theoretic horizon, but Sierpiński’s ques-
tion is sensible at any level of the projective hierarchy.

Theorem 2.12 (Hjorth). The following statements are equivalent.
1. Every uncountable Π1

1 set contains a perfect set. Equivalently, for all z ∈ ωω,
ℵ1 is inaccessible in L[z].

2. Every uncountable Σ1
2 set is the continuous injective image of H.

Though not contained in its entirety, much of the proof of Theorem 2.12 con-
tained in (Hjorth, n.d.).

2.3.3. Harrington’s theorem. In Theorem 2.10, we observed that no analytic
set could be a universal injective preimage for all of the uncountable analytic sets.
We argued that if U is analytic and ωω is a continuous injective image of U , then
U is Borel. Then, we concluded that U could not be universal.

Steel raised the question, could an analytic set be a universal injective preimage
for all of the properly analytic sets? Harrington provided the answer.

Theorem 2.13 (Harrington). The following statements are equivalent.
1. There is a Σ1

1 set A such that every non-Borel analytic set is a continuous
injective image of A.

2. For every real x, the real x# exists. Equivalently, Σ1
1-determinacy holds.

In fact, under Σ1
1-determinacy, every non-Borel Σ1

1 set satisfies the property of
A in (1).

It may seem that we have wandered far from our recursion theoretic home base,
but that is not the case. The principal ingredients in Harrington’s proof are the
Kleene Fixed Point Theorem and Steel forcing over Σ1-admissible sets. What could
be more recursion theoretic?
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3. Directions for further investigation

In the previous section, we saw that a recursion theorist can travel into the set
theoretic domain without becoming completely lost. Now, we turn to some open
questions which can be found there.

3.1. Harrington’s question.

Definition 3.1. For subsets A and B of ωω, we say A ≥W B if there is a
continuous function f such that for all x in ωω, x ∈ B if and only if f(x) ∈ A.

When A ≥W B, we say that B is Wadge reducible to B. Wadge reducibility
between sets of reals is analogous to many-one reducibility between sets of natural
numbers.

Theorem 3.2 (Wadge). Under the Axiom of Determinacy, for all subsets A
and B of ωω, either A ≥W B or B ≥W A, where B is the complement of B in ωω.

Corollary 3.3. For any two properly Σ1
1 sets A and B, A ≡W B.

Steel (1980), and later Harrington in more generality, sharpened Corollary 3.3
to add injectivity to the reducing function.

Theorem 3.4 (Steel (1980)). Under the Axiom of Determinacy, for any two
properly Σ1

1 sets A and B there is an injective continuous function f such that for
all x, x ∈ B if and only if f(x) ∈ A.

Corollary 3.5. Under the Axiom of Determinacy, for any two properly Σ1
1

subsets A and B of ωω, there is a Borel permutation π of ωω such that π[A] = B.

Theorem 3.6 (Harrington (1978)). Suppose that every Σ1
1 subset A of ωω is

either Borel or ≥W -complete. Then the Axiom of Determinacy holds for Σ1
1 sets.

Harrington’s proof of Theorem 3.6 involves a fair amount of set theory. Though
off topic for us, Harrington has raised the interesting question of whether Theo-
rem 3.6 is provable from the usual axioms of second order arithmetic. More on
topic is his question of whether determinacy follows from the weaker hypothesis
that the Wadge degrees of the Σ1

1 sets are linearly ordered.

Question 3.7 (Harrington). Suppose that any two Σ1
1 non-Borel subsets of

ωω are ≥W comparable. Does the Axiom of Determinacy hold for Σ1
1 sets?

3.2. Hjorth’s question. Let D denote a countable discrete set.

Question 3.8 (Hjorth (n.d.)). Suppose that for any uncountable Σ1
2 set B

and Π1
1 non-Borel set C, B is the continuous image of C ⊕ D. Then, must Σ1

1-
determinacy hold?

3.3. Comparing the Wadge and Sierpiński orderings.

Definition 3.9. For subsets A and B of ωω, say that A ≥S B if there is a
function f which is partial recursive in some real parameter whose restriction to A
is a bijection from A to B.

Question 3.10. 1. What is the structure of ≥S?
2. Is there a relationship between ≥W and ≥S?

We first heard the following question from Hjorth, who also told us that it is
not original to him.

Question 3.11. What is the structure of ≥S on countable metric spaces?
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3.4. Steel’s question.

Definition 3.12. Say that two subsets A and B are homeomorphically equiv-
alent if there is a homeomorphism f : ωω → ωω such that f [A] = B.

Question 3.13 (Steel). Is there a natural classification of the analytic sets up
to homeomorphic equivalence?
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