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Abstract

We �rst prove a theorem about reals (subsets of N) and classes of reals: If a
real X is �11 in every member G of a nonempty �

1
1 class K of reals then X is itself

�11. We also explore the relationship between this theorem, various basis results in
hyperarithmetic theory and omitting types theorems in !-logic. We then prove the
analog of our �rst theorem for classes of reals: If a class A of reals is �11 in every
member of a nonempty �11 class B of reals then A is itself �11.

1 Introduction

We work in Cantor space 2N and call its members X � N, reals. We think of members
of Baire space NN as functions F : N! N (coded as real consisting of pairs of numbers).
We use the standard normal form theorems for reals and classes of reals as follows: A
real X is �11 (in a real G) if it is of the form fnj9F8xR(F � x; x; n)g for a recursive (in G)
predicateR. A classK of reals is �11 (inG) if it is of the form fXj9F8xR(X � x; F � x; x)g
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for a recursive (in G) predicate R. A real or class of reals is �1
1 (or hyperarithmetic) (in

G) if it and its complement are �11 (in G). Our �rst main theorem is the following:

Theorem 2.1. If a real X is �11 in every member G of a nonempty �
1
1 class K of reals

then X is itself �11.

While the statement of this theorem and certainly the proof we provide in the next
section seem to have little to do with either results of hyperarithmetic theory or model
theory they are all, in fact, connected along a couple of paths. Indeed, we were thinking
about related matters when we proved the theorem.
A basis theorem in recursion theory typically says that every nonempty class of some

sort contains a member with some property. For example, the classes may be arbitrary
�11 classes K of reals. One, the Gandy Basis Theorem (see Sacks [1990, III.1.5]), says
that every nonempty �11 class of reals contains one Z such that !Z1 = !CK1 . (For any
Z, !Z1 is the least ordinal not recursive, or equivalently not �

1
1 in Z; !

CK
1 is !Z1 for Z

recursive (or �1
1).) Another, the Kreisel Basis Theorem (see Sacks [1990, III. 7.2]) , says

that if a real X is not hyperarithmetic (i.e. �1
1) then K also contains a real Z in which

X is not �1
1. An equivalent version is that if X is �1

1 in every member of K then X is
�1
1.
Our �rst theorem is the generalization of the Kreisel basis theorem where �1

1 is
replaced by �11. (To see that it implies the result of Kreisel note that it says that if X
and �X are both �11 (i.e. �

1
1) in every member of K then they are both �11 (and so �1

1)).
Our theorem also implies the basis result of Gandy: As Kleene�s O is not �11 there is a
Z 2 K in which O is not �11. By classical results of Spector (see Sacks [1990, II. 7.7]),
this implies that !Z1 = !CK1 . (See Theorem 2.9.)
Sacks also provides results of hyperarithmetic theory as corollaries to Kreisel�s the-

orem and others that, as he points out, can be viewed as omitting types theorems in
!-logic. They are also immediate consequences of our theorem as we indicate in the next
section. We discus these and other related results in next section after we prove our
theorem.
After his proof, Sacks [1990, p. 75] says of this connection that "The recursion theorist

winding his way through a �11 set is a brother to the model theorist threading his way
through a Henkin tree." Our proof, which requires no knowledge of either hyperarithmetic
theory or model theory, shows that there is another sibling traipsing (or perhaps treading
carefully) through a forcing construction.
Our theorem should have been a classical one of hyperarithmetic theory. It also has

analogs, both recent and classical, in other settings. When we told Stephen Simpson
the result he remarked that Andrews and Miller [2015, Proposition 3.6] had recently
proven the analogous result for �01 classes in place of �

1
1 classes. We rephrase it in our

terminology as follows:

Theorem 1.1 (Andrews and Miller). Let P be a nonempty �01 class. If X is �01 in
every member of P then X is �01. (Or, equivalently, if X is �01 in every member of P
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then X is �01.)

Their proof is a forcing proof similar to ours but using �01 classes instead of �
1
1 ones.

At the level of �12 classes, a standard basis theorem gives the analogous result (as
pointed out to us by John Steel). The classical result (see Moschovakis [1980, 4E.5])
is that the �1

2 reals are a basis for the �
1
2 classes of reals. Thus if K is �12 it contains

a �1
2 real G and, of course, any real X which is �12 in G via � is itself �12. (X =

fnj9G(	(G) & �(G; n))g where 	 is the �12 formula saying G satis�es its �1
2 de�nition.)

Similar basis results hold at higher levels of the projective hierarchy assuming various set
theoretic axioms. (See Moschovakis [1980, 5A.4 and 6C.6].)

About the only facts about �11 reals and classes that we use in our proof are the the
standard normal form theorems mentioned at the beginning of this Introduction.

Our second main theorem is one analogous to Theorem 2.1 but at the level of classes
of real.

Theorem 3.1. If a class A of reals is �11 in every member of a nonempty �
1
1 class B

of reals then it is �11.

Our proof of this theorem requires some familiarity with e¤ective descriptive set
theory. We give some of the basic facts needed and the proof in §3.

2 The Proof for Reals

We now give the promised forcing style proof of our main theorem.

Theorem 2.1. If a real X is �11 in every member G of a nonempty �11 class K of reals
then X is itself �11.

Proof. We use the language of Gandy-Harrington forcing. Forcing conditions are non-
empty �11 classes L of reals with set containment as extension. We view the �11 formulas
'(G; n) as of the form 9F8xR(G � x; F � x; x; n) with R recursive. We say that L 
'(G; n) if (8Z 2 L)('(Z; n)). If, as usual, we say L  :'(G; n) if (8L̂�L)(L̂ 1 '(G; n)),
this de�nition is then equivalent to (8Z 2 L)(:'(Z; n)). The point here is that if there
is a Z 2 L such that '(Z; n) then L̂ = L \ fZj'(Z; n)g is a nonempty extension of L
which obviously forces '(G; n).

We now list all the �11 formulas �k(G; n). These are the formulas that could po-
tentially de�ne the reals �11 in any G. We consider an X which is a candidate for
being �11 in every G 2 K. We build a sequence Lk of conditions beginning with L0 =
K =fGj9F08xRm0(G � x; F0 � x; x)g as well as initial segments k (of length at least k) of
our intended G and �i;k of witnesses Fi (of length at least k) showing that G 2 Lk. More
precisely, each Lk will be of the form G � k & 8i � k9Fi � �i;k8xRmi

(G � x; Fi � x; x)
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for some recursive Rmi
(independent of k). Thus, if we successfully continue our con-

struction keeping Lk nonempty for each k then the Fi = limk �i;k for i � k will witness
that G = limk k is in every Lk as we guarantee that Rmi

(k � x; �i;k � x; x) holds for
every i; x < k and every k.

We begin with 0 = ; = �0;0 and Rm0 as speci�ed by K. So our G will at least be in
K as desired. Suppose we have de�ned j and �i;j for j; i � k and wish to de�ne Lk+1,
k+1 and �i;k+1 for i � k + 1 so as to prevent X from being �11 in G via �k. We ask if
there is an m 2 ! and a nonempty L � Lk such that

1. m =2 X and L  �k(G;m) or

2. m 2 X and L  :�k(G;m).

Suppose there is such an L of the form 9Fk+18xRmk+1
(G � x; Fk+1 � x; x). As L � Lk

is nonempty we can choose k+1 � k and �i:k+1 � �i;k for i � k and some �k+1;k+1 all
of length at least k + 1 such that Lk+1 as given by G � k+1 & (8i � k + 1)(9Fi �
�i;k+1)(8xRmi

)(G � x; Fi � x; x) is a nonempty subclass of L (and so, in particular,
Rmi

(k+1 � x; �i;k+1 � x; x) for every i; x � k + 1). We can now continue our induction.

Note that if we can successfully de�ne nonempty Lk in this way for every k then we
build a G = limk k and Fi = limk �i;k for each i such that 8xRmi

(G � x; Fi � x; x). In
particular 8xRm0(G � x; F0 � x; x) and so G 2 K. Similarly, G 2 Lk for every k > 0. If X
is �11(G) as assumed, then X = fnj�k(G; n)g for some k. We consider the construction
at stage k+1 and the L chosen at that stage. If we were in case (1) then as L  �k(G;m)
and G 2 Lk+1, �(G;m) is true but m =2 X for a contradiction. Similarly, if we were in
case (2), as L  :�k(G;m) and G 2 Lk+1, :�(G;m) is true but m 2 X again for a
contraction.

Thus we can assume that there is some �rst stage k+ 1 at which there are no m and
L � Lk as required in the construction. In this case we claim that X is �11 as desired.
Indeed, we claim that X is de�ned as a �11 real by m 2 X , (9Z 2 Lk)�k(Z;m). To
see this suppose �rst that (9Z 2 Lk)�k(Z;m). Then L as de�ned by Lk & �k(G;m) is
a nonempty �11 class such that L  �k(G;m) and so we would have m 2 X as desired
by the assumed failure of (1) at stage k + 1 of the construction. On the other hand, if
(8Z 2 Lk)(:�k(Z;m) then Lk  :�k(G;m) and so by the failure of (2) at stage k + 1
of the construction, m =2 X as desired.

As usual, we may relativize the Theorem to any real C.

Our theorem easily implies several basic results of hyperarithmetic theory without any
appeal to the theory of hyperarithmetic sets as used, for example, in Sacks [1990]. Many
of them can also be seen as consequences of type omitting theorems for certain classes of
generalized logics. These type omitting arguments are also immediate consequences of our
Theorem. We presented two basis theorems of this sort in the introduction and note here
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that the proof of Kreisel�s in Sacks [1990] uses several deep facts about hyperarithmetic
reals and �11 classes.

Following his proof of the Kreisel basis theorem Sacks [1990] gives as a corollary a
result of Kreisel about the intersections of all !-models of various theories of second order
arithmetic from which follow some previous speci�c results. We state that result now
along with some similar ones earlier in Sacks�s presentation. These can all be seen as
type omitting arguments. After stating them, we explain a general setting which includes
them all and give the relevant type omitting theorems as Corollaries of Theorem 2.1.

Theorem 2.2 (Sacks [1990, III. 4.10]). The intersection of all !-models of �1
1 com-

prehension is HYP, the class of all hyperarithmetic sets or equivalently the class of all
�1
1 sets.

More generally, we have the following result of Kreisel.

Theorem 2.3 (Sacks [1990, III.7.3]). Let K be a �11 set of axioms in the language of
analysis (i.e. second order arithmetic). If a real X belongs to every countable !-model
of K then X is �1

1.

A similar result is the following.

Theorem 2.4 (Sacks [1990, III.4.13]). The intersection of all !-models of �11 choice
downward closed under many-one reducibility is also HYP.

In all of these results it is easy to see that the class of models described is �11 and, of
course, every member X of such a model is recursive in it and so any real in every such
model is �11 but these models are all trivially closed under complementation. So they all
follow from our Theorem.

Moving to the type omitting point of view we, somewhat more generally, consider two
sorted logics (N ;M; : : :) in the usual sense of having two types of variables one ranging
over the elements of N and the other over those ofM in addition to the usual apparatus
of function, relation and constant symbols of ordinary �rst order logic. While formally
merely a version of �rst order logic gotten by adding on predicates forN andM , this logic
can be turned into a much stronger one (N -logic) by requiring that all models have their
�rst sort (with some functions and relations on it as given in the structure) isomorphic to
some given countable �rst order structure. The most common example of these logics is
!-logic where we require that N be isomorphic to the ordinal ! or the standard model N
of arithmetic (depending on the language intended). Again, the most common examples
are given by classes of !-models of fragments T of second order arithmetic as mentioned
above. Here, in addition to requiring that N be the standard model of arithmetic we
intend that the elements ofM are subsets of N and the membership relation 2 between
members of N and those ofM is in the language (with the usual axiom of extensionality
so that the elements ofM may be identi�ed with true subsets of N = N). As being an
N model, or even also satisfying some �11 theory T , is clearly �

1
1 in N , we immediately
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get all the results from Sacks [1990] mentioned above as a corollaries of our theorem.
Indeed, we have the following generalization of Kreisel�s result in Sacks [1990, III.7.3]:

Theorem 2.5. If T is a �11 set of sentences in the two sorted language of (N ;M; : : :) and
N is a countable structure for the appropriate sublanguage (restricted to the �rst sort),
T has an N -model and p is a n-type (i.e. a complete consistent set of formulas '(x) with
n free variables in the language of (N ;M; : : :)) which is not �11 in N , then there is an
N -model of T not realizing p. (Note that, as types are complete sets of formulas, p being
�11 (in N ) is equivalent to its being �1

1 (in N ).

Proof. Being an N model of T is a �11 in N property and so by our Theorem (relativized
to N ) there is even an N -model (N ;M; : : :) of T in which p is not even �11. (Of course,
any type realized in (N ;M; : : :) is recursive in the complete diagram of (N ;M; : : :) and
so hyperarithmetic in (N ;M; : : :).)

Viewing our theorem as a type omitting argument suggests that we should be able
to omit any countable sequence of types (reals) of the appropriate sort rather than just
one. A simple modi�cation of our proof gives the expected result.

Theorem 2.6. If K is a nonempty �11 class reals and Xn a countable sequence of reals
none of which is �11, then there is a G 2 K such that no Xn is �11 in G. Similarly if no
Xn is �1

1, then there is a G 2 K such that no Xn is �1
1 in G.

Proof. Repeat the proof of the Theorem but at step k + 1 = hn; ji of the construction
replace X by Xn and �k by �j. If we successfully pass through all steps k then the pre-
vious argument shows that no Xn is �11 in G 2 K. On the other hand, if the construction
terminates at step k + 1 = hn; ji then the previous argument shows that Xn is de�ned
as a �11 real by m 2 Xn , (9Z 2 Lk)�j(Z;m) for a contradiction. For the �1

1 version,
simply consider the sequence Yn where Yn = Xn if Xn is not �11 and Yn is the complement
if Xn otherwise (i.e. Xn is not �11). As now no Yn is �

1
1(G), no Xn is �1

1(G).

This version of our Theorem also extends the analog of the result actually given by
Andrews and Miller [2015, Proposition 3.6].

Of course, we can relativize this theorem as well to any real C. To give a somewhat
di¤erent example of a such type omitting argument application of this last theorem we
provide one for nonstandard models of ZFC for which we have uses elsewhere.

Corollary 2.7. For every real C and reals Xn not �1
1 in C, there is a countable !-model

of ZFC containing C but not containing any Xn whose well founded part consists of the
ordinals less than !C1 , the �rst ordinal not recursive in C.

Proof. Being a countable !-model of ZFC containing (a set isomorphic to) C (under the
isomorphism taking the ! of the model to true !) is clearly a �11 in C property. Now
apply Theorem 2.6 adding on a new real X0 = OC (i.e. Kleene�s O relativized to C) to
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the list. It supplies a countable !-model of ZFC containing C but not containing any of
the Xn. As it contains C it contains every ordering recursive in C and so order types
for every ordinal less than !C1 . On the other hand, if there were an ordinal in the model
isomorphic to !C1 then, by standard results of hyperarithmetic theory, O

C would be in
the model as well.

Finally, we point out that the complexity of the G of Theorem 2.6 (and hence of
Corollary 2.7 as well) can be as low as possible.

Theorem 2.8. If K is a nonempty �11 class reals and Xn a countable sequence of reals
uniformly �1

1 (recursive) in O none of which is �11, then there is a G 2 K with G �1
1

(recursive) in O such that no Xn is �11 in G. Indeed, G can be chosen to be of strictly
smaller hyperdegree than O, i.e. O is not �1

1 in G. As in Theorem 2.6, if we assume
only that the Xn are not �1

1 then we may conclude that none are �
1
1 in G.

Proof. Suppose we are at step k = hn; ji of the construction. We know that either
there is an m 2 Xn such that (8Z 2 Lk)(:�k(Z;m)) or an m =2 Xn such that (9Z 2
Lk)(�k(Z;m)). As the Xn are uniformly �1

1 (recursive) in O, and the rest of the con-
ditions considered in the construction are either �11 or �

1
1, O can hyperarithmetically

(recursively) decide which case to apply. As choosing the k+1 � k and �i:k+1 � �i;k for
i � k and so Lk+1 now only require �nding ones for which the corresponding �11 class
Lk+1 is nonempty, this step is also recursive in O: Of course, as we can add O onto the
list of Xn; we then guarantee that O is not �11 in G and so, of course, not �1

1 in G as
required.

Note that by a result of Spector�s (see Sacks [1990, Theorem II.7.6(ii)]) !CK1 < !A1
implies that O is �1

1 in A (indeed there is a pair of �11 formulas '(X;n) and �(X;n)
which de�ne O and its complement for any X with !X1 > !CK1 ), we have the Kleene and
Gandy basis theorem for �11 classes as well.

Theorem 2.9 (Kleene and Gandy Basis Theorems). Every nonempty �11 class of
reals K contains an element A recursive in and of strictly smaller hyperdegree than O.
In particular, one with !A1 = !CK1 .

3 The Proof for Classes of Reals

In this section we prove our result for classes of reals.

Theorem 3.1. If a class A of reals is �11 in every member of a nonempty �
1
1 class B of

reals then it is �11.

The proof relies on several basic and important results of e¤ective descriptive set
theory. To ease reading the proof, we state the most important ones now. We state
lightface versions without parameters. Relativizations to individual real parameters are
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routine. (Note that, when ordinals or lengths of well-ordered relations are involved,
relativization to Z includes replacing !CK1 by !Z1 . ) We don�t need the full boldface
versions. These facts can be found in basic books on e¤ective descriptive set theory such
as Moschovakis [1980], higher recursion theory such as Sacks [1990] or Hinman [1978] or
even reverse mathematics such as Simpson [2009].

Proposition 3.2 (Codes). We can code �1
1 classes of reals V as either �1

1 reals C (�1
1

codes) or as numbers e by coding the �1
1 code C as a number e (hyperarithmetic codes

for �1
1 reals). In either case, the property of being a code is �

1
1 and membership of a real

Z in the set coded by C or e is a �1
1 relation given that C and e are codes. Similarly,

membership of a number n in a �1
1 real with hyperarithmetic code e is a �

1
1 relation.

We can pass in a �1
1 way between these types of codes and the syntactic ones given by

the formulas required in our de�nition of �1
1 reals and classes given that all the objects

are, in fact, codes. In this situation we often abuse notation by writing Z 2 C to denote
the assertion that Z is in the class coded by C. When C and D are both codes, we use
D � C to denote the assertion that 8Z( Z 2 D ! Z 2 C) and similarly for D � C.
These relations are then all �11. These facts also imply that the predicate Z is �

1
1(X) is

�11. (We also use C � A for an arbitrary class A of reals to mean that every real in the
set coded by C is in A.)

Proposition 3.3 (Representation Theorem). If V is a �11 class then there is a �1
1

function F such that Z 2 V , F(Z) 2 WO where WO is the class of reals Z which,
viewed as a set of pairs of numbers, represents a well ordering. If Z 2 WO, we write jZj
for the ordinal represented by Z.

Proposition 3.4 (Bounding). If V is a �11 class of reals, F is as in Proposition 3.3
then V is �1

1 if and only if there is a bound < !CK1 on the order types of F(Z) for
Z 2 V. Moreover, if V contains only �1

1 reals and G is a �1
1 subset of V then such

a bound (expressed as either a real or a number coding a recursive well-ordering) for
fF(Z)jZ 2 Gg (or even any �11 subset of the �1

1 well orderings) can be found in a �
1
1

way from the codes (or indices) for F , G and V. As a consequence we may, in this case,
divide V into an increasing,continuous sequence



Viji < !CK1

�
of uniformly �1

1 sets given
by Vi = fZ 2 Vj jF(Z)j < ig.

Remark 3.5. While we have not found an explicit statement in our references of the
uniformity described in this bounding theorem, it can easily be deduced from the uniform
version of the analogous theorem for sets of numbers (as in e.g. Sacks [1990, II.3.4]) by
translating the real codes for ordinals < !CK1 to numbers in O of at least as large a rank
given by Sacks [1990, I.4.3].

Proposition 3.6 (Gandy-Harrington Forcing). We can de�ne a general notion of
forcing whose conditions are �11 classes ordered by inclusion as extension. A simpli�ed
version of the proof of Theorem 2.1 that leaves out the diagonalization requirements shows
that we may construct a generic G in any given �11 class meeting any countable collection
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of dense sets. Thus we may use this forcing notion in any of the common ways. As
usual, we will be interested in forcing over countable standard models of fragments of
ZFC containing various speci�ed reals. In addition to the typical results about forcing
such as forcing equals truth, we note that, by the arguments in the proof of Theorem 2.1,
a �11 sentence '(G) about the generic G is forced by a condition (�

1
1 set) P if and only if

8Z 2 P('(Z)). We also note that if hG0; G1i is generic then both G0 and G1 are generic.
(See Miller [1995, §30] for more about this forcing notion and Lemma 30.3 there for this
last particular fact.) Absoluteness considerations will also play a role in our applications
of this forcing.

As a notational convenience in proving our theorem, we can, by the Gandy basis
theorem (Theorem 2.9) and the fact that !B1 = !CK1 is a �11 predicate (of B), assume
without loss of generality that !B1 = !CK1 for every B 2 B. (Note !B1 = !CK1 , 8e(fegB
is a well-ordering ! 9i9f(f is an isomorphism of fig and fegB).)
We begin with some crucial approximations to our class A and an analysis of their

properties.

Notation 3.7. We let DB = fCjC is a �1
1(B) code & C � Ag and AB = fAj(8C 2

DB)(A 2 C)g. Similarly, we let A0 = fAjA is a member of every �1
1 class containing

Ag. For B 2 B, we let  B(Z) be a �11(B) formula de�ning A.

Lemma 3.8. For B 2 B, DB is �11(B) and AB is �11(B).

Proof. Fix B 2 B. For any real C, C 2 DB if and only if C is a �1
1(B) code and

8Z( B(Z) ! Z 2 C). As  B is �
1
1(B), both conjuncts here are �

1
1(B) by Proposition

3.2 and so DB is �11(B) as required. The second claim now follows directly from the
de�nition of AB and Proposition 3.2. (Rephrase the de�nition of DB in terms of number
codes to make the quanti�er count work.)

Lemma 3.9. For any reals A and B in B with !A;B1 = !CK1 , A 2 A ,A 2 AB.

Proof. Clearly A 2 A implies that A 2 AB for every B 2 B by the de�nition of AB.
For the other direction suppose A =2 A. Let F 2 �1

1(B) be as in Proposition 3.3 for
the �11(B) class V = fZj: B(Z)g which is the complement of A. Thus F(A) is a well
ordering which is �1

1(A;B) and so, by hypothesis, less than some i < !CK1 . Thus the
(obviously �11) set fZjF(Z) < ig is equal to the �11 set fZj: B(Z) & (i + 1) � F(Z)g
and so is �1

1(B). It is disjoint from A and has A as a member by our choice of i. The
�1
1(B) code C for its complement is then a member of DB not containing A as a member.

This C is then a witness that A =2 AB as required.

Lemma 3.10. A0 is �11.

Proof. Consider the real J = feje is a hyperarithmetic index for a �1
1 code of a superset

of Ag = feje is a hyperarithmetic index for a real in DBg. This real J is �11(B) in every
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B 2 B by Lemma 3.8 and Proposition 3.2. So by Theorem 2.1 (formally applied to the
complements) is �11. Thus A0 which is the intersection of the sets coded by indices in J
is �11: Z 2 A0 , 8e(e 2 J ! Z is in the set coded by e).

Lemma 3.11. If B;C 2 B and !B;C1 = !CK1 , then AB = AC.

Proof. If not, then we have, without loss of generality, an A 2 AC�AB. So there is a code
D 2 DB with A =2 D and A 2 AC . Now the nonempty classW =fZjZ 2 AC & Z =2 Dg is
�11(B;C) by Lemma 3.8 and Proposition 3.2. Thus by the Gandy basis theorem (relative
to B;C) (Theorem 2.9) there is aW inW and so inAC�AB with !W;B;C1 = !CK1 . Lemma
3.9, however, tells us that W 2 AB , W 2 A , W 2 AC for a contradiction.

Lemma 3.12. If B;C 2 B and !B;C1 = !CK1 , then for every X 2 DB there is a Y 2 DB
and a Z 2 DC such that Y � X and Z � Y � Z, i.e. Y and Z are codes for the same
set.

Proof. By Proposition 3.4, there is a uniformly �1
1 continuous increasing sequences DB;i

(i < !CK1 = !B1 ) with union DB. We can then set AB;i = fAj8C 2 DB;i(A 2 C)g.
This sequence is clearly nested and continuous with intersection AB. As DB;i and all
its members are �1

1(B), the AB;i are also uniformly �1
1(B) by Proposition 3.2 as we can

convert to number codes. Similarly, we have DC;i and AC;i (i < !CK1 = !C1 ). By Lemma
3.11 we know that for each i < !CK1 and Z 2 AB;i there is a j < !CK1 such that Z 2 AC;j.
By Proposition 3.4, there is a k < !CK1 such that for every Z 2 AB;i, Z 2 AC;k and we
can get k uniformly �1

1(B;C). Of course, the analogous fact switching B and C is also
true. Iterating and interleaving these �1

1(B;C) functions starting with any i < !CK1
produces a �1

1(B;C) increasing sequence of k < !CK1 . By Proposition 3.4, this sequence
has a bound and hence a supremum l < !CK1 and AB;l = AC;l.
Now consider any X 2 DB;i so X � AB;l for any l > i in !CK1 . We may now choose

one such that AB;l = AC;l. As AB;l 2 �1
1(B) and contains A, there is a code Y 2 DB for

it. Similarly there is a code Z 2 DC for AC;l. As AB;l = AC;l, these are then the desired
Y and Z.

Lemma 3.13. For every B 2 B, AB = A0.

Proof. Fix B 2 B. Clearly, it su¢ ces to prove that 8X 2 DB9Y 2 DB(X � Y & V =
fZjZ 2 Y g 2 �1

1). (As this says there is, for each X 2 DB, a �1
1 code V for a �1

1 class
V contained in the class coded by X and containing A (as Y 2 DB). This code shows
that A0 � AB by de�nition. On the other hand, AB � A0 for every B.)
Fix an X 2 DB. Consider now the class W = fC 2 Bj(8Y 2 DB)(X � Y !

fZjZ 2 Y g =2 �1
1(C)g. By Proposition 3.2, this class is �11(B). If it were nonempty then,

by the Gandy basis theorem (relative to B) (Theorem 2.9), it would have a member C
with !B;C1 = !CK1 . This would provide a counterexample to Lemma 3.12 and so W is
empty.
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We now work with a countable standard model which contains B and satis�es a frag-
ment of ZFC su¢ cient to guarantee the absoluteness of �11 formulas. Note, for example,
that all reals �1

1 in B (and so all in DB) are in this model.
Let G 2 B be a Gandy-Harrington generic over this model as in Proposition 3.6.

As G =2 W, there is a Y 2 DB such that X � Y and fZjZ 2 Y g 2 �1
1(G). Fix

a speci�c �1
1 de�nition of this class from G, i.e. �11(G) formulas ' and � such that

8Z('(G;Z) $ :�(G;Z)), 8Z(Z 2 Y ! '(G;Z)) and 8Z(Z =2 Y ! �(G;Z)). As
G is generic we have a �11 P forcing these sentences. Now consider the �11 class Q =
fhC;C 0i jC;C 0 2 P & 9Z('(C;Z) & �(C 0; Z) _ '(C 0; Z) & �(C;Z))g. If Q is nonempty
then there is a Gandy-Harrington generic hC;C 0i 2 Q. Each of C and C 0 is in P and
Gandy-Harrington generic by Proposition 3.6. Thus any Z witnessing that hC;C 0i 2 Q
would be a counterexample to one of the sentences above forced by P and hence true of
C and C 0. Thus Q is empty and so Z 2 Y , (8C 2 P)(:�(C;Z)) and Z =2 Y , (8C 2
P)(:'(C;Z)) and fZjZ 2 Y g is �1

1 as required.

We now prove our theorem on �11 classes.

Proof of Theorem 3.1: We claim that A 2 A if and only if A 2 A0 (which is �11 by
Lemma 3.10) and one of the following two �11 statements hold for a �

1
1 formula  that

we will de�ne below:

(1) !A1 = !CK1 or

(2) !A1 > !CK1 !  (A).

Now A 2 A ! A 2 A0 by the de�nition of A0. So we may assume that A 2 A0
and show that A 2 A , (1) or (2) holds. If (1) holds then by the Gandy basis theorem
(Theorem 2.9) (relative to A) we may choose a B 2 B with !A;B1 = !CK1 . Now by Lemma
3.9, A 2 A , A 2 AB while A 2 AB , A 2 A0 by Lemma 3.13. Thus, in this case,
A 2 A , A 2 A0 as required.
Assume then that (1) fails and so the hypothesis of (2) holds. We now must argue

that we have a �11 formula  (A) that, under these assumptions, is equivalent to A 2 A.
As mentioned just before Theorem 2.9, there is a pair if �11 formulas '(X;n) and �(X;n)
which de�ne O and its complement for any X with !X1 > !CK1 . By the Kleene basis
theorem (Theorem 2.9) there is a recursive index computing a B 2 B from O. By the
hypothesis of our theorem there is a �11(B) formula  B(Z) de�ning A. Thus there is
a �11 formula  ̂(X;Z) which de�nes A from any X with !X1 > !CK1 . We now take our
desired  to be  ̂(A;A).

As a �nal comment, we point out that if we had only wanted to prove Theorem 3.1
in the �1

1 case we would have a simple proof along the lines of the last paragraph of the
proof of Lemma 3.13. This argument also gives a proof of the analog for classes of reals
of the �1

1 case of Theorem 2.6.
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Theorem 3.14. If B is a nonempty �11 class of reals and Xn a countable sequence of
classes of reals none of which is �1

1, then there is a G 2 B such that no Xn is �1
1 in G.

Proof. Note that if Xm =2 �1
1(B) for every B 2 B then any G 2 B works for Xm. Thus

we may assume that for every n there is a Bn 2 B and 'n and �n �11 formulas with
two free real variables which, with Bn for the �rst variable, de�ne Xn and its comple-
ment. Let G 2 B be a Gandy-Harrington generic over a countable standard model of
a su¢ cient fragment of ZFC containing the Bn. We claim no Xn is �1

1(G). If not,
let ' and � be �11(G) formulas de�ning some Xn and its complement. Let P be a
condition which forces that (8Z)('n(Bn; Z) ! '(G;Z)), (8Z)(�n(Bn; Z) ! �(G;Z))
and (8Z('(G;Z) $ :�(G;Z)). Now consider the �11 class Q = fhC;C 0i jC;C 0 2
P & 9Z('(C;Z) & �(C 0; Z) _ '(C 0; Z) & �(C;Z))g. If Q is nonempty then there is a
Gandy-Harrington generic hC;C 0i 2 Q. Each of C and C 0 is in P and Gandy-Harrington
generic by Proposition 3.6. Thus any Z witnessing that hC;C 0i 2 Q would be a coun-
terexample to one of the sentences above forced by P and hence true of C and C 0. Thus
Q is empty and so Z 2 Xn , (8C 2 P)(:�(C;Z)) and Z =2 Xn , (8C 2 P)(:'(C;Z))
and so Xn is �1

1 for the desired contradiction.

Corollary 3.15. Any class A of reals which is �1
1 in every member of a �

1
1 class B of

reals is �1
1.

We do not know if the full analog of Theorem 2.6 for classes of reals , i.e. Theorem
3.14 with �1

1 replaced by �
1
1, is also true.
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