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Abstract. We show that, over the base theory RCA0, Stable Ramsey’s The-
orem for Pairs implies neither Ramsey’s Theorem for Pairs nor Σ0

2-induction.

1. Introduction

This paper resolves two questions in reverse mathematics about the strength of
Stable Ramsey’s Theorem for Pairs. Ramsey’s Theorem for Pairs states that if f
is a coloring of the set of pairs of natural numbers by two colors, then there is
an infinite set H all of whose pairs of elements have the same color under f . H
is said to be f -homogeneous. Closely related to Ramsey’s Theorem for Pairs, and
intuitively a more controlled coloring scheme, is Stable Ramsey’s Theorem for Pairs,
which asserts the existence of an infinite f -homogeneous set for stable colorings: i.e.
those f ’s such that for every x, all but finitely many y’s are assigned the same color
by f . Our purpose here is to investigate the logical aspects of these two theorems,
considered as principles onto themselves.

We will be working with models of second order arithmetic,

M = 〈M, S,+,×, 0, 1, ǫ〉.

These structures consist of two parts: 〈M,+,×, 0, 1〉 is a version of the natural
numbers with addition and multiplication; S is a version of the power set of the
natural numbers, whose elements are subsets of M . When the arithmetic structure
is understood, we will abbreviate our notation to 〈M, S〉. Our base theory, RCA0

as is standard in this context, is the mathematical system that incorporates the
basic rules of the arithmetical operations, closure of sets under Turing reducibility
and join, and mathematical induction for existential formulas, I Σ0

1, (see Simpson
(2009)). There are two canonical ways to obtain models of RCA0. We can take
the arithmetic part of our model to be the natural numbers N with its standard
structure of arithmetic, and let S either be the set of recursive subsets of N or be
the set of all subsets of N. Ultimately, we are attempting to understand what is
true of the natural numbers and of the relationships between one closure property
of 2N and another, so models of second order arithmetic of the form 〈N, S〉, so-called
ω-models, are particularly important.
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We let RT 2
2 be the formal assertion of Ramsey’s Theorem for Pairs and let SRT 2

2

be the assertion restricted to stable colorings. Both can be expressed in the lan-
guage of second order arithmetic. An early recursion theoretic theorem of Jockusch
(1972) states that there is a recursive coloring of pairs with no infinite homogeneous
set recursive in the halting set ∅′, or equivalently with no infinite homogeneous set
that is ∆0

2-definable. In particular, this coloring has no infinite recursive homo-
geneous set, so in weak form Jockusch’s Theorem implies RCA0 6⊢ RT 2

2. Though
stable colorings do have ∆0

2 infinite homogeneous sets, another recursion theoretic
argument shows that there is a recursive stable coloring with no infinite recursive
homogeneous set, so the stronger RCA0 6⊢ SRT 2

2 also holds.
The strength of these two combinatorial principles, RT 2

2 and SRT 2
2, has been a

subject of considerable interest in reverse mathematics. Strengthening Hirst (1987)
for RT 2

2, Cholak, Jockusch, and Slaman (2001) showed that SRT 2
2 implies the

Σ0
2-bounding principle, BΣ0

2, an induction scheme equivalent to ∆0
2-induction (see

Slaman (2004)) and whose strength is known to lie strictly between Σ0
1 and Σ0

2-
induction (see Paris and Kirby (1978)). It is also shown in Cholak et al. (2001)
that RT 2

2 is Π1
1-conservative over RCA0+ the Σ0

2-induction scheme I Σ0
2, i.e. any Π1

1-
statement that is provable in RT 2

2 +RCA0 + I Σ0
2 is already provable in the system

RCA0 + I Σ0
2. It follows immediately that any subsystem of RT 2

2 + RCA0 + I Σ0
2

(such as replacing RT 2
2 by SRT 2

2) is Π
1
1-conservative over RCA0 + I Σ0

2.
Investigations of aspects of Ramsey’s Theorem in the context of subsystems

of second order arithmetic over the past two decades have shed much light on
the strength of the theorem. Three problems relating to RT 2

2 and SRT 2
2 are of

particular interest: (1) whether over RCA0, RT
2
2 is strictly stronger than SRT 2

2;
(2) whether RT 2

2 or even SRT 2
2 proves I Σ0

2, given that they already imply BΣ0
2;

and (3) whether RT 2
2, or even SRT 2

2, is Π1
1-conservative over RCA0 + BΣ0

2. Of
course, a positive answer to (3) would provide a negative answer to (2).

It has been generally believed that RT 2
2 is stronger than SRT 2

2, and the ap-
proach to establishing this as fact has been to look for a collection of subsets of N
satisfying Ramsey’s Theorem for Pairs for stable colorings and not for general ones.
Historically, using ω-models to study Ramsey type problems has been successful,
as witnessed by further work of Jockusch (1972) which, when cast in the language
of subsystems of second-order arithmetic, shows that Ramsey’s Theorem for triples
implies arithmetic comprehension, the results presented in Cholak et al. (2001),
Seetapun’s theorem (see Seetapun and Slaman (1995)) separating RT 2

2 from Ram-
sey’s Theorem for triples, and recent work of Liu (2012) showing Weak Kőnig’s
Lemma to be independent of RT 2

2 . However, the search for an ω-model separating
RT 2

2 from SRT 2
2 has been unsuccessful.

The most direct approach to separating SRT 2
2 was that suggested by Cholak

et al. (2001). SRT 2
2 is equivalent to the condition that for every ∆0

2-predicate P
on the numbers, there is an infinite set G such that either all of the elements of G
satisfy P or none of the elements of G satisfy P .1 The suggestion was that if for
every ∆0

2-predicate there were such a set G which is also low (i.e. G′ = ∅′), then
by an iterative argument one could produce an ω-model of SRT 2

2 in which every
set was low, and hence ∆0

2. By the result of Jockusch (1972) mentioned above, this

1The equivalence requires BΣ0
2 in the proof. However it is known that each of the statements

implies BΣ0
2. Hence such a condition does not impose additional assumption to the base theory.

See Chong, Lempp, and Yang (2010).
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model would not satisfy RT 2
2. However, this approach was ruled out by Downey,

Hirschfeldt, Lempp, and Solomon (2001), who exhibited a ∆0
2 predicate for which

there is no such G that is low.
Here, we exhibit a model M = 〈M0, S〉 of RCA0 + BΣ0

2 + ¬I Σ2, hence not an
ω-model, that is a model of SRT 2

2 but not RT
2
2 . Thus, we have a positive answer to

the first question and partial negative answer to the second. While Downey et al.
(2001) demonstrated an insurmountable obstruction to the low-set proposal in the
context of ω-models, quite the contrary is true in the realm of nonstandard models,
where we are able to make use of the customized features of M0. In M, we do
manage to bring the original proposal to fruition and all of the sets in S are low
in the sense of M. The existence of M is a prima facie demonstration that Stable
Ramsey’s Theorem for Pairs does not imply Σ0

2-induction over the base theory
RCA0. Finally, by observing that Jockusch’s theorem is provable in RCA0 + BΣ0

2,
we conclude that M is not a model of RT 2

2 .
The paper is organized as follows. In Section 2, we review the basic facts about

subsystems of first and second order arithmetic, and state the main results. In
Section 3, we construct the first order modelM0. In Section 4, we show how to solve
the one-step problem, given a ∆0

2-predicate P there is a low set G either contained
in or disjoint from P . In Section 5, we construct the collection of subsets of M0

used to satisfy SRT 2
2. This is where we establish the results already mentioned.

We also extend the method to show that SRT 2
2 + WKL0 6⊢ RT 2

2, so the assertion
that 2N is compact does not strengthen SRT 2

2 sufficiently to prove RT 2
2. We draw

some conclusions in Section 6.

2. Subsystems of Arithmetic

We recall some basic notions and notations. We will focus on subsystems of first
order arithmetic in the first part of this section and on subsystems of second order
arithmetic in the second part. We will use the recursion theoretic notation Σ0

n to
describe formulas in which all of the quantifiers range only over numbers and Σ1

n to
describe formulas with quantifiers over sets of numbers. Unless indicated otherwise,
all formulas are allowed to mention parameters.

2.1. First Order Arithmetic. Let P− denote the standard Peano axioms without
mathematical induction. For n ≥ 0, let I Σ0

n denote the induction scheme for Σ0
n-

formulas. Suppose M = 〈M,+,×, 0, 1〉 is a model of P− + I Σ0
1. A bounded set S

in M is M-finite if it is coded in M, i.e., there is an a ∈M which M interprets as
a Gödel number for a set with exactly the elements of S. It is known (Paris and
Kirby (1978)) that I Σ0

n is equivalent to the assertion that every Σ0
n-definable set

has a least element. We will use this fact implicitly throughout the paper.
BΣ0

n denotes the scheme given by the universal closures of

(∀x < a)(∃y)ϕ(x, y) → (∃b)(∀x < a)(∃y < b)ϕ(x, y),

in which ϕ(x, y) is a Σ0
n-formula, possibly with other free variables. Intuitively,

BΣ0
n asserts that every Σ0

n-definable function with M-finite domain has M-finite
range. In Paris and Kirby (1978), it was also shown that for all n ≥ 1,

· · · → I Σ0
n+1 → BΣ0

n+1 → I Σ0
n → BΣ0

n → · · · ,

and that the implications are strict. Our interest here concerns the hierarchy up to
level n = 2.
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A cut I ⊂ M is a set that is closed downwards as well as under the successor
function. I is a Σ0

n-cut if it is Σ
0
n-definable over M. The next proposition is well-

known and we state it without proof.

Proposition 2.1. If M |= P− + IΣ0
1, then M |= IΣ0

n if and only if every bounded
Σ0

n-set is M-finite. If IΣ0
n fails, then in M there is a Σ0

n-cut I and a Σ0
n-definable

function that maps I cofinally into M.

We next turn our attention to sequences and trees. By a sequence, we will mean
an element of M<M , as defined in M by way of a standard Gödel numbering.
We use σ ≺ τ to mean σ is an initial segment of τ and use τ0 ∗ τ1 to denote the
concatenation of the two sequences in the indicated order. We will refer to a subset
of the numbers which appear in the range of τ simply as a subset of τ . A tree T is a
subset of the M-finite sequences fromM, such that T is closed underM-finite initial
segments. T is binary or increasing if each sequence in T is binary or increasing,
respectively. T is recursively bounded if there is a function f which is recursive in
the sense of M such that for all s ∈M , there are at most f(s) many elements in T
of length s. These trees will be important later, when we use them in the context
of compactness arguments.

Sequences in M can also be used to define subsets of ω. We say that X ⊆ ω is
coded in M if there is a binary sequence σ ∈ M such that for every i ∈ ω, i ∈ X if
and only if σ(i) = 1. In this case, we say that σ is a code for X on ω. The existence
of codes in nonstandard models of PA is a feature of the model-theoretic saturation
of those models and will be important later.

Finally, a set X ⊆ M is amenable if its intersection with any M-finite set is
M-finite. If M |= BΣ0

n, then every X that is provably ∆0
n in M is amenable.

2.2. Second Order Arithmetic. RCA0 is the system consisting of P−, IΣ0
1 and

the second-order recursive comprehension scheme

(∀x)[ϕ(x) ↔ ¬ψ(x)] → (∃X)(∀x)[x ∈ X ↔ ϕ(x)],

where ϕ and ψ are Σ0
1-formulas with parameters (we will refer to such formulas as

∆0
1-formulas). Let M = 〈M, S,+,×, 0, 1〉 be a model of RCA0.
There is a well-developed theory of computation for structures M that satisfy

RCA0 plus BΣ0
n or IΣ0

n, albeit with restricted inductive power. In particular,
one may define notions of computability and Turing reducibility over M. Thus, a
set is recursively (computably) enumerable (r.e.) if and only if it is Σ0

1-definable.
It is recursive (computable) if both the set and its complement are recursively
enumerable. If X and Y are subsets of M , then X ≤T Y (“X is Turing reducible
to Y ”) if there is an e such that for any M-finite o, there exist M-finite sets P ⊂ Y

and N ⊂ Y satisfying
o ⊆ X ↔ 〈o, 1, P,N〉 ∈ Φe

and
o ⊆ X ↔ 〈o, 0, P,N〉 ∈ Φe,

where Φe is the eth r.e. set of quadruples. Two subsets of M (note that it is not
required that they belong to S) have the same Turing degree if each is reducible to
the other. If n ≥ 1 and M |= BΣ0

n, then as in classical recursion theory there is
a complete Σ0

i -set ∅
(i) for 1 ≤ i < n, and Post’s Theorem holds: X ⊂ M is ∆0

i+1

if and only if X ≤T ∅(i). A set in M is low if its Σ0
1-theory (otherwise called its

jump) is recursive in ∅′. From the point of view of recursion theory, a structure M
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is a model of RCA0 if S is closed under Turing reducibility and join and M satisfies
P− + IΣ0

1.
We include set variables Ǧ and Ǧi, where i < ω, in the language of second-

order arithmetic which will be used to denote the generic homogeneous sets to be
constructed. We let ψ(Ǧ) denote a Σ0

1-formula of the form ∃sϕ(s, Ǧ) where ϕ is a
bounded formula possibly with first and second order parameters. The relationship
between ψ and ϕ will always be as shown above and will be assumed without
further mention. We will often not distinguish between a set and its characteristic
function unless there is possibility of confusion. If ψ(Ǧ) is a Σ0

1-formula, and o is
an M-finite set, then we adopt the convention that M |= ψ(o) (or “ψ(o) holds”)
means (∃s ≤ max o)ϕ(s, o) is true in M. If G ⊂ M , then M[G] is the structure
containing G but having the same first-order universe M , and in addition all the
sets recursive in G generated over M.

Let M |= RCA0. We list two combinatorial principles which are central to the
subject matter of this paper. The first is D2

2 (the second, WKL0, will be introduced
subsequently):

• D2
2: Every ∆0

2-set contains an infinite subset in it or its complement.

As mentioned earlier, D2
2 is equivalent to SRT 2

2 over RCA0. The main technical
theorem we will establish is the following:

Theorem 2.2 (Main Theorem). There is a model M = 〈M, S,+,×, 0, 1, ǫ〉 of
RCA0 +BΣ0

2 but not IΣ0
2 such that every G ∈ S is low and M |= D2

2.

Corollary 2.3. The statement “There is a ∆0
2-set with no infinite low subset in it

or its complement” is not provable in P− +BΣ0
2.

The following result of Jockusch (1972), appropriately adapted to the setting of
second order arithmetic, yields Corollary 2.5 from Theorem 2.2:

Proposition 2.4. Let M = 〈M, S〉 |= RCA0 + BΣ0
2 and X ∈ S. There is an

X-recursive two coloring of pairs with no X ′-recursive infinite homogeneous set in
M.

Proof. We repeat here the argument for Theorem 3.1 of Jockusch (1972). Define an
X-recursive two-coloring r and b (for red and blue respectively) of pairs of numbers
in M for which no ∆0

2(X)-set is homogeneous.
Since M |= BΣ0

2, every ∆0
2(X)-set is amenable. Furthermore, A is ∆0

2(X) if
and only if A ≤T X ′. Now there is a uniformly recursive collection of X-recursive
functions fe such that lims fe(s, x) = Ae(x) for all x if and only if Ae is ∆0

2(X).
Furthermore, if Ae is such a set, then by BΣ0

2 again, for each a, the “∆0
2(X)

convergence of fe to Ae” is tame, i.e. there is an sa such that for all s ≥ sa,
fe(s, x) = Ae(x) whenever x ≤ a. For each e and s, let De[s] be the set with 2e+2
numbers that appear to be the first 2e+2 members of Ae at stage s. There are two
possible reasons for the guess to be wrong: The correct stage s has not yet been
reached, or Ae has less than 2e + 2 elements. If Ae has at least 2e + 2 elements,
then by tameness of ∆0

2(X)-sets, a correct se exists such that De[s] = De[s] for
all s ≥ se. Define the coloring C as follows: (i) At stage s, in increasing order of
e ≤ s, if De[s] is not defined, skip to the next e. Otherwise, there must be at least
two (least) numbers x and y in De[s] such that no colors have been assigned to
(x, s) and (y, s). Color one r and the other b; (ii) For all (x, s), x ≤ s, not colored
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following the above scheme, let C(x, s) = r. This diagonalization procedure ensures
that no ∆0

2(X)-set is homogeneous for C.
We note that no priority argument is involved and the coloring C requires only

BΣ0
2 for the desired conclusion to hold. �

Corollary 2.5. SRT 2
2 does not imply RT 2

2.

Corollary 2.6. SRT 2
2 does not imply IΣ0

2.

Let T be a tree in M. A path on T is a maximal compatible set of strings in
T . A Π0

1-class is the collection of paths on a recursively bounded recursive tree T .
Note that not all paths on T have to be in M. The next combinatorial principle is
known to be independent of RT 2

2 (Liu (2012)).

• WKL0 (Weak Kőnig’s Lemma): If T is an infinite subtree of the full binary
tree, then T contains an infinite path.

Theorem 2.7. There is a model M of RCA0 + SRT 2
2 + WKL0 + BΣ0

2 in which
RT 2

2 fails.

Corollary 2.8. SRT 2
2 + WKL0 does not prove RT 2

2 over RCA0 +BΣ0
2.

Definition 2.9. Given two models M0 = 〈M0, S0〉 and M = 〈M, S〉 of RCA0, we
say that M is an M0-extension of M0 if M0 = M and S0 ⊆ S, i.e. only subsets of
M0 are added to form M.

In the next section, we exhibit a model M0 |= RCA0 + BΣ0
2 that satisfies a

bounding principle called BME . The models for Theorems 2.2 and 2.7 will be
M0-extensions of M0.

3. The First Order Part of a Model of SRT 2
2

3.1. A Σ1-Reflecting Model. We will now describe M0, the first order part of
our model of SRT 2

2. As indicated in Proposition 3.1, M0 has three features which
will be important in what follows. The first feature is that M0 is a union of Σ1-
reflecting initial segments (Ik : k ∈ ω), such that each Ik is a model of PA. The
use of Σ1-reflection has a long tradition in higher recursion theory to bound the
scope of existential quantifiers for which there are no a priori bounds (see Sacks
(1990), the use of α-stable ordinals in α-recursion theory), and we will see another
such application here. The second feature is that M0 has an explicit failure of I Σ0

2

and that ω is a Σ0
2-cut in M0. This gives not only the obvious conclusion that

SRT 2
2 does not imply I Σ2, but also that M0 has definable cofinality ω. The third

feature of M0 is that it is highly saturated, which we exploit to exhibit parameters
that capture the behavior of our constructions as they appear at the various points
along M0’s cofinal sequence.

Proposition 3.1. There is a countable model M0 = 〈M0,+,×, 0, 1〉 of P− + BΣ0
2

within which there is a Σ0
2-function g behaving as follows.

(1) M0 is the union of a sequence of Σ1-elementary end-extensions of models
of PA:

I0 ≺Σ1,e I1 ≺Σ1,e I2 ≺Σ1,e · · · ≺Σ1,e M0

(2) For each i ∈ ω, g(i) ∈ Ii, and for i > 0, g(i) 6∈ Ii−1, hence M0 6|= IΣ0
2.

(3) Every M0-arithmetical subset of ω is coded on ω.



THE METAMATHEMATICS OF STABLE RAMSEY’S THEOREM FOR PAIRS 7

Proof. We will give a direct, though metamathematically inefficient, proof of the
existence of the desired model.

We begin with an uncountable model V of set theory such that NV, the natural
numbers of V, is nonstandard and such that every subset of ω is coded in V on ω.
For example, V could be any ω1-saturated model of a large fragment of ZFC . Fix
b to be a nonstandard element of NV.

Working in V, our second step is to define a sequence of theories Ti. We will
use SΠ0

1
to indicate the set of Π0

1 sentences with parameters defined within a model

of PA using that model’s definition of Π0
1-satisfaction. For a definable theory T ,

CON (T ) is the assertion that T is consistent, expressed in the usual way using
Gödel numbering. Let

T0 = PA + SΠ0
1
,

Ti+1 = Ti + CON (Ti).

Our third step is to define a sequence of Σ1-elementary end-extensions of length
b:

NV = I0 ≺Σ1,e I1 ≺Σ1,e I2 ≺Σ1,e I3 ≺Σ1,e · · · ≺Σ1,e Ib.

In V, we will appear to be constructing a finite Σ1-elementary sequence of models by
injecting inconsistencies while unfolding the iterated consistency statements used
to define the theories Ti, for i < b. We begin by setting I0 = NV and noting
that I0 satisfies PA + CON (Tb−1), since it is the standard model of arithmetic in
V. Thus, from I0’s perspective, Tb−1 is consistent. However, by the Gödel second
incompleteness theorem, which is provable in PA and thereby holds in I0, I0 satisfies
that Tb−1 cannot prove CON (Tb−1). Finally, by the arithmetical completeness
theorem, there is an I1 such that I0 ≺e I1,

I1 |= Tb−1 + ¬CON (Tb−1),

and I1 is definable in I0. (See McAloon (1978) for more details on applications of the
arithmetical completeness theorem.) We could even take I1 to be defined in I0 as a
low predicate relative to 0′. Note, by the definition of Tb−1, I1 |= PA+CON (Tb−2).

Working in V, we can iterate this step b many times. For 0 < i < b, we define
Ii+1 to be an end-extension of Ii such that Ii+1 is a definable low model in Ii and

Ii+1 |= Tb−(i+1) + ¬CON (Tb−(i+1)).

The only difference between the initial and the general inductive step is that we
are required to find an end-extension of Ii, which V sees to be a nonstandard.
It is for this reason that we invoke the fact that Ii |= PA + CON (Tb−(i+1)) and
then apply the Gödel second incompleteness theorem (as a consequence of PA)
and the arithmetical completeness theorem in Ii to obtain an Ii-definable model of
Tb−(i+1) + ¬CON (Tb−(i+1)).

Now, we prove the proposition. For each n ∈ ω, define IVn to be the universe
of In and define MV

0 = ∪n∈ωI
V
n . Define g(0) = 0. For n > 0, define g(n) to be

the shortest proof in M
V
0 of ¬CON (Tb−n). Whether a formula belongs to Tn is a

Π0
1-property of that formula and Π0

1-properties are absolute between all the models
being discussed, so the function g is Σ0

2 in M
V
0 . Finally, since M

V
0 ≺Σ1,e Ib, M

V
0 is a

model of BΣ0
2 (see Kaye (1991) chapter 10). Thus, MV

0 , g, and the initial segments
I
V
n satisfy the first two conditions of the proposition.
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To finish, let M0 be a countable substructure of MV
0 such that the following

conditions hold.

(1) b ∈ M0.
(2) M0 with predicates for the In ∩M0 is an elementary substructure of MV

0

with predicates for the In.
(3) Every M0-arithmetical subset of ω is coded on ω.

We can obtain M0 by closing under the usual Skolem functions for first-order el-
ementarity and also under the additional Skolem function that for each definable
predicate adds a parameter coding the restriction of that predicate to ω. We let
In = IVn ∩M0 and let g be defined in M0 as in M

V
0 .

M0, g, and the In satisfy the first two conditions of the proposition by elemen-
tarity. They satisfy the third condition of the proposition by construction. �

Notation 3.2. We fix the notation M0, {In : n < ω} and g to refer to the model,
cuts and function constructed in Lemma 3.1.

3.2. Monotone Enumerations. We will have two notational conventions in this
subsection, to be interpreted in the models that we just constructed.

(1) When written with no argument, V will denote a procedure to compute a
recursively-bounded tree. Then, V (X) will denote the procedure applied
relative to X to compute an X-recursively-bounded X-recursive tree. In
the context of relativizing V , we will use τ to denote a finite string. Then,
V (τ) will be the finite tree that can be computed from τ according to V .
We follow the usual convention that if m is the maximum of the length of τ
and its greatest element, then V (τ) is defined only for arguments less than
m such that the evaluation of V relative to τ takes less than m steps and
τ is queried only at arguments for which it is defined.

(2) When written with no argument, E will denote a procedure to recursively
enumerate a finitely-branching enumerable tree. We will use σ to denote
a finite string in the context of relativizing E, with E(X) and E(σ) inter-
preted as above.

(3) When clear from context, we will also use V or E to refer to the recursive
or recursively enumerable trees defined by them.

Definition 3.3. We say that E is a monotone enumeration if and only if the
following conditions apply to its stage-by-stage behavior.

(1) The empty sequence is enumerated by E during stage 0.
(2) Only M-finitely many sequences are enumerated by E during any stage.
(3) Suppose that τ is enumerated by E during stage s and let τ0 be the longest

initial segment of τ that had been enumerated by E at a stage earlier than
s. Then,

(i) τ0 had no extensions enumerated by E prior to stage s and
(ii) all the sequences enumerated by E during stage s are extensions of

τ0.

Let E[s] denote the set of sequences that have been enumerated by E by the end
of stage s. Condition (3) above asserts that if E[s + 1] \ E[s] is not empty, then
there is a maximal path τ0 in E[s] such that for every element τ of E[s+ 1] \E[s],
τ0 ≺ τ , i.e. τ = τ0 ∗ τ1, for some nontrivial sequence τ1. Here, ≺ and ∗ indicate
initial segment and concatenation according to the conventions of Section 2.1. We
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τ0

τ

Figure 1. Monotone Enumeration

display this situation in Figure 1, where the nodes enumerated by E during that
stage are indicated by dashed lines.

Similarly, we can define E’s being a monotone enumeration relative to a predicate
X , or even relative to all strings σ in a recursive tree V.

Definition 3.4. Suppose that E is a monotone enumeration.

(1) For an element τ enumerated by E, let k be the number of stages in the
enumeration by E during which τ or an initial segment of τ is enumerated.
Let (τi : i < k) be the stage-by-stage sequence of the maximal initial
segments of τ associated with those stages.

(2) We say that E’s enumeration is bounded by b if for each τ in E, its stage-
by-stage sequence has length less than or equal to b.

Proposition 3.5. Suppose that M |= P− + IΣ0
2 and that E is a monotone enu-

meration procedure in M which is bounded by b. Then M |= “E is finite”.

Proof. Work in M to show by induction on ℓ that there are only M-finitely many
τ such that the stage-by-stage sequence associated with E’s enumeration of τ has
length ℓ. �

By Proposition 3.5, I Σ0
2 is sufficient to show that bounded monotone enumera-

tions are M-finite. However, that is not the case for BΣ0
2.

Proposition 3.6. There is a model M |= P− + BΣ0
2 such that in M there is a

monotone enumeration E which is bounded by b, but yet the enumeration of E is
not finite in M.

Proof. Let N be a nonstandard model of PA and let b be a nonstandard element
of N. To fix some notation, let ∅′ denote the universal Σ0

1-predicate in N and let
∅′[s] denote the recursive approximation to it given by bounding the existential
quantifier in its definition by s.

Define the function t : N → N by recursion: Let t(0) = 0, let t(1) = b and
let t(x + 1) be the least s such that ∅′[s] ↾ t(x) = ∅′ ↾ t(x). Define M to be the
substructure of N with elements given by

x ∈ M ⇐⇒ (∃n ∈ ω)N |= x < t(n).

Then, M is a Σ1-substructure of N. Further, since N is an end-extension of M, M
satisfies BΣ0

2, an implication that we also noted in the construction of M0.
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Now, we give a monotone enumeration in M of a tree whose height is bounded
by b but which is not M finite. Again, we let E[s] denote the set of sequences that
have been enumerated by E by the end of stage s. At stage 0, E enumerates the
empty sequence. So, E[0] is the singleton set consisting of the empty sequence. At
stage 1, E enumerates all the sequences 〈x〉 of length one such that x ≤ b. At stage
s+1, we let m be the largest number that appears in any sequence in E[s]. If there
is an x ≤ m such that x ∈ ∅′[s+ 1] \ ∅′[s], then for each such x, for each sequence
τ ∈ E[s] such that x is the last element of τ , τ is maximal in E[s] and τ has length
less than b (if any), and for each y ≤ s+ 1, E enumerates τ ∗ 〈y〉. That concludes
stage s+ 1.

By construction, our enumeration of E is monotone. It remains to show that
the enumeration by E is not finite in M. For this, note that for each n ∈ ω, if
n is greater than 0, then t(n) appears on the nth level of E. We prove this by
induction on n. It is true for t(1), since t(1) is b and the first level enumerated by
E consists of all numbers less than or equal to b. Assume that E enumerates t(n)
on level n. When E enumerates the sequence τ0 ∗ 〈t(n)〉 of length n, for each x

less than t(n) E also enumerates the sequence τ0 ∗ 〈x〉. Now, M ≺Σ0
1
N and so the

enumeration of ∅′ ↾ t(n) viewed within M is completed exactly at stage t(n + 1).
Let x be an element less than t(n) that is enumerated into ∅′ at stage t(n+1) and
not before. The sequence τ0 ∗〈x〉 will be a maximal element of E[t(n+1)−1], since
x 6∈ E[t(n+ 1)− 1], and of length n, which is less than b. By construction, E will
enumerate τ0 ∗ 〈x〉 ∗ 〈t(n+ 1)〉 at stage t(n+ 1). �

Definition 3.7. Suppose that V is the index for a recursively bounded recursive
tree and suppose that E is a monotone enumeration procedure. For σ in the tree
computed by V , say that σ is E-expansionary if in the enumeration of E(σ) some
new element is enumerated at stage |σ|. We say that a level ℓ in the tree computed
by V is E-expansionary if there is an n such that ℓ is the least level in the tree
computed by V at which every σ in that tree with |σ| = ℓ has at least n many
E-expansionary initial segments.

Definition 3.8. A k-iterated monotone enumeration is a sequence (Vi, Ei)1≤i≤k

with the following properties.

(1) Each Vi is an index for a relativized recursive recursively-bounded tree.
(2) Each Ei is an index for a monotone enumeration procedure.
(3) For each 1 ≤ j ≤ k, if σ ∈ Vj is Ej -expansionary, then for every new element

τ enumerated in Ej(σ), Vj+1(τ) is a proper Ej+1-expansionary extension
of Vj+1(τ0), where τ0 is the longest initial segment of τ that had previously
been enumerated in Ej(σ), that is by a stage less than the length of σ.

Definition 3.9. A k-path of the k-iterated monotone enumeration (Vi, Ei)1≤i≤k is
a sequence (σi, τi)1≤i≤k such that σ1 ∈ V1 and τ1 is a maximal sequence in E1(σ1),
and for each j with 1 < j ≤ k, σj is a maximal sequence in Vj(τj−1) and τj is a
maximal sequence in Ej(σj).

Figure 2 shows a 3-iterated monotone enumeration as realized by a particular
3-path.
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σ1

V1
E1

τ1

E1(σ1)

V2

σ2

V2(τ1)
E2

τ2

E2(σ2)

V3

σ3

V3(τ2)
E3

τ3

E3(σ3)

Figure 2. An example of k-path when k = 3

Definition 3.10. (1) A k-iterated monotone enumeration is b-bounded if and
only if for every sequence enumerated in Ek(σk) by some k-path of the k-
iterated enumeration, its stage-by-stage enumeration has length less than
or equal to b.

(2) We say that M satisfies bounding for iterated monotone enumerations
(BME ) if and only if for every k ∈ ω, every b in M and every b-bounded
k-iterated monotone enumeration, there are only boundedly many E1-
expansionary levels in V1.

(3) If we restrict our attention to k-iterated monotone enumerations, we say
that M satisfies BME k.

Proposition 3.11. M0 satisfies BME.

Proof. Suppose that (Vi, Ei)i≤k is a k-iterated monotone enumeration and that in
M0 there are unboundedly many E1-expansionary levels in V1. We must show
that there is no b which bounds the lengths of the stage-by-stage enumerations of
elements of Ek on all k-paths of (Vi, Ei)i≤k.

Fix n so that b and the other parameters defining (Vi, Ei)i≤k belong to In. Since
In ≺e,Σ1

M0 and there are unboundedly many E1-expansionary levels in V1,

In |= There are unboundedly many E1-expansionary levels in V1.

In particular, since In is a model of PA,

In |= V1 is a recursively bounded infinite tree.

Again, since In |= PA, let X1 be an In-definable infinite path in V1. Note that
In[X1], obtained by adding X1 as an additional predicate to In, still satisfies PA
relativized to X1. Since E1 is a monotone enumeration and there are unboundedly
many E1-expansionary levels in V1,

In[X1] |= E1(X1) is a finitely branching unbounded tree.
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Now, we can let Y1 be an In[X1]-definable infinite path in E1(X1), and note that
In[X1, Y1] satisfies PA relative to (X1, Y1). Further, because each sequence τ enu-
merated in E1 exhibits a new E2-expansionary level in V2(τ),

In[X1, Y1] |= (Vi, Ei)1≤i≤k is a (k − 1)-iterated monotone enumeration.

By a k-length recursion, there is an In-definable sequence (X1, Y1, . . . , Xk, Yk) ex-
tending (X1, Y1) such that for each i, Xi is an infinite path in Vi−1(Yi−1) and Yi is
an infinite path in Ei(Xi). Consequently, the stage-by-stage enumeration of the ini-
tial segments of Yk in In[X1, Y1, . . . , Xk] is infinite, and there is no b which bounds
the lengths of the stage-by-stage enumerations of elements of Ek on all k-paths of
(Vi, Ei)1≤i≤k, as required. �

4. Low Homogeneous Sets

4.1. A Generic Instance of SRT
2
2. Let M0 be the model constructed in Propo-

sition 3.1. This section is devoted to a proof of the following theorem.

Theorem 4.1. Suppose that A is ∆0
2. There is a pair of sets (Gr, Gb) with the

following properties.

(i) Gr ⊆ A and Gb ⊆ A.
(ii) At least one of Gr or Gb has unboundedly many elements in M0. Call that

set G.
(iii) G is low in M0. Consequently, M0[G] satisfies BΣ0

2.

Given a set A, we refer to the numbers in A and in A as red and blue, re-
spectively. We first describe a way to select a homogeneous set which decides one
Σ0

1-formula ψ (meaning to make either ψ or ¬ψ true in the structure M0[G]). The
approach derives its inspiration from Seetapun and Slaman (1995) and is central
to the techniques developed in this paper. Two key notions—that of Seetapun
disjunction (to force a Σ0

1-formula) and that of U -tree (to force the negation of a
Σ0

1-formula)—will be introduced for this purpose. After analyzing the situation for
a single Σ0

1-formula, we will move to handling an M0-finite set of formulas, leading
to the definition of the notion of forcing in Definition 4.7, and then construct the
desired low homogeneous set stated in Theorem 4.1.

We will generalize from the notion of a Seetapun disjunction to that of an exit
tree, which is defined by a stage-by-stage enumeration. The enumeration of an
exit tree is the origin of the abstract notion of a k-iterated monotone enumeration
introduced in §3.2, and is key to our proof. On the other hand, the notion of a
U -tree used extensively in §4 and §5 is a concrete realization of the recursively
bounded recursive tree V in §3.2. Note also that the construction in this section
only requires the simplest version of the bounded monotone enumeration principle,
namely BME 1. The k-iterated version is required in §5, where we will implement
a scheme to perform iterations of a more complex construction in order to preserve
additionally BME in the generic extension.

4.2. Seetapun Disjunction for a Single Σ0
1-formula. We begin with some ter-

minology. We will refer to a recursive sequence of M0-finite sets ~o as a sequence of
blobs if for each s less than the length of the sequence, max os < min os+1. Let ~o
be an M0-finite sequence of blobs, say of length h. Consider the set of all choice
functions σ with domain h such that σ(s) ∈ os, together with their initial segments
σ ↾ h′ for h′ < h. By regarding them as strings and adding the empty string as root,
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the collection may be viewed naturally as a tree, called the Seetapun tree associated
with ~o.

Definition 4.2. Given a Σ0
1-formula ψ(Ǧ), a Seetapun disjunction δ (or S-

disjunction for short) for ψ is a pair (~o, S), where ~o is a sequence of blobs of length
h > 0 and S is the Seetapun tree associated with ~o, such that:

(i) For each s < h, M0 |= ψ(os) in the sense of §2.2.
(ii) For each maximal branch τ of S, there exists an M0-finite subset ι ⊆ τ

such that M0 |= ψ(ι) (here again we identify a string with its range and
M0 |= ψ(ι) is interpreted in the sense of §2.2. This convention will be
followed throughout the paper). We refer to the set ι as a thread (in τ).

Figure 3 is an illustration of a Seetapun disjunction:

·
·
·

o1 ι

τ

o0

oh−1

Figure 3. A Seetapun disjunction

Notice that an M0-finite tree’s being a Seetapun disjunction for a fixed Σ0
1-

formula ψ is a recursive property of that tree. The main feature of an S-disjunction
is that it anticipates all possible amenable sets. Namely, if an S-disjunction for ψ
is found, then for any amenable set A, ψ can be “forced” in a Σ0

1-way by either a
subset of A or a subset of A. We isolate this fact in the following lemma, which also
informally explains the meaning of a “disjunction” and the meaning of “forcing ψ”:

Lemma 4.3. Let ψ(Ǧ) be a Σ0
1-formula and δ be an S-disjunction for ψ. Then for

any amenable set A, one of the following applies:

(i) There is an M0-finite set o ⊆ A such that ψ(o) holds in M0.
(ii) There is an M0-finite set ι ⊆ A such that ψ(ι) holds in M0.

Proof. Assume that the S-disjunction δ is (~o, S) with code c. For any amenable set
A, let D and D be the M0-finite sets A ↾ (c + 1) and A ↾ (c + 1) respectively. If
D ⊇ o for some o in the sequence ~o, then (i) holds. Otherwise, every o in ~o contains
at least one element in D. By induction for bounded formulas and the definition of
δ, there exists a thread ι in some τ which is contained entirely in D such that ψ(ι)
holds, which establishes (ii). �

Definition 4.4. We define the exit taken by A from δ to be the (canonically) least
o or ι that satisfies Lemma 4.3.
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4.3. Forcing a Π0
1-Formula. Now assume that no S-disjunction for ψ exists. Then

it is possible to “force ¬ψ” as follows. Begin with enumerating a sequence of blobs
~o by stages. (The sequence ~o of blobs may be either M0-finite or M0-infinite.)

At stage 0, the blob sequence ~o[0] is empty.
At stage s+1, suppose ~o[s] has been defined. Check if there exists an M0-finite

set o such that the code of o is less than s + 1, min o > any number appearing in
any blob in the sequence ~o[s] and (∃t < s + 1)ϕ(t, o). If no such o exists, then let
~o[s + 1] = ~o[s]; otherwise, take o∗ to be the least (in a canonical order) such o.
Define ~o[s+ 1] = ~o[s] ∗ o∗ and proceed to the next stage.

The Seetapun tree associated with this blob sequence ~o which we defined
previously may now be given a precise description as follows. Let S[0] = ∅.
S[s + 1] = S[s] ∪ {τ ∗ x : τ ∈ S[s] ∧ x ∈ o[s + 1]}. Then S =

⋃
s S[s] is the

Seetapun tree. Moreover S is M0-finite if and only if ~o is M0-finite. There are two
possibilities to consider (corresponding to two possible ways of “forcing ¬ψ”):
Case 1. The Seetapun tree S is M0-infinite. Then the U -tree for ¬ψ defined as

U = {τ ∈ S : (∀s < |τ |)(∀ι ⊆ τ)¬ϕ(s, ι)}

is a recursively bounded increasing recursive tree due to the absence of a Seetapun
disjunction. Then as long as one stays within U (meaning the numbers to be used
at any stage in the rest of the construction are taken from one of its branches), ¬ψ
will always hold. We refer to this as forcing ¬ψ by thinning.
Case 2. The Seetapun tree S is M0-finite. Then by working with sets consisting
only of numbers larger than (the code of) S, ψ will never be satisfied. Hence ¬ψ is
forced instead. We refer to this action as forcing ¬ψ by skipping.

Notice that exactly how ¬ψ is forced depends on whether the Seetapun tree S is
M0-finite or infinite, which is a two-quantifier question. In general, ∅′ is unable to
answer this question. This is the reason that Seetapun’s original argument could not
produce low homogeneous sets. However, inM0 we will exploit the presence of codes
to reduce the complexity of the Π0

2-question above by one quantifier. First though,
we apply the blocking method, which is next discussed, to handle simultaneously an
M0-finite block of Σ0

1-formulas.

4.4. A Block of Requirements and Exit Trees.

4.4.1. Requirement Blocks. Fix an enumeration {ψe(Ǧ) : e ∈ M0} of all Σ0
1-

formulas. Given an M0-finite set B, we call the set of Σ0
1-formulas {ψe : e ∈ B}

a block of formulas. We will identify a formula ψe with its index e and loosely say
that ψe is in B when e is in B.

Given an M0-finite set B of Σ0
1-formulas, we first force in Σ0

1-fashion as many
formulas in B as possible using S-disjunctions. Each S-disjunction brings with it
exits o and ι each of which forces at least one formula in B. Lemma 4.3 says
that if A is amenable, then either there is an o ⊆ A or an ι ⊆ A. Since different
∆0

2-sets may take different exits, a situation which we cannot recursively decide,
one assumes that each exit is a possible subset of A or A, and use each exit as a
precondition to search for a new S-disjunction that will force another formula in B.

This brings up the two main issues in this subsection. One is the organization
of the exits as a tree, which we will call an exit tree; the other is the enumera-
tion of Seetapun disjunctions using previously enumerated exits as preconditions.
After clarifying these points, we will note that B’s being M0-finite implies that
our enumeration is bounded, and we invoke BME to argue that our enumeration
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process eventually stops. When that happens, we will have completed the portion
of forcing those formulas in B which can be decided in a Σ0

1-way. The formulas in
B not yet forced to be true by this stage will be forced negatively in a Π0

1-fashion
via a suitable recursively bounded recursive increasing tree.

We begin by introducing a modified version of the notion of a Seetapun disjunc-
tion.

Definition 4.5. Given two blocks Br and Bb of Σ
0
1-formulas, and a pair of disjoint

M0-finite sets ρ and β, a Seetapun disjunction δ for (Br, Bb) with preconditions
(ρ, β) is a pair (~o, S) as in Definition 4.2, such that:

(i) For each s < h, M0 |= ψe(ρ ∗ os) for some e ∈ Br.
(ii) For each maximal branch τ of S, there exists an M0-finite subset ι ⊆ τ

such that M0 |= ψd(β ∗ ι) for some d ∈ Bb.

We use the letters ρ and β to suggest red and blue, respectively. Given ε = (ρ, β),
define two blocks Br(ε) and Bb(ε) to be the set of formulas in B yet to be forced
by ρ and β, respectively. In other words, Br(ε) = B \ {e : M0 |= ψe(ρ)} and
Bb(ε) = B \ {d : M0 |= ψd(β)}. Lemma 4.6 is the generalization of Lemma 4.3 to
S-disjunctions with preconditions. The proof is similar and is omitted.

Lemma 4.6. Let ε = (ρ, β) be a pair of disjoint M0-finite sets. Let δ = (~o, S)
be an S-disjunction for (Br(ε), Bb(ε)) with preconditions (ρ, β). Let A be amenable
such that ρ ⊆ A and β ⊆ A. Then one of the following applies:

(i) There is an o ∈ ~o such that ρ ∗ o ⊆ A;
(ii) There is a τ ∈ S and a thread ι ⊆ τ such that β ∗ ι ⊆ A.

4.4.2. Exit Trees. We now enumerate the exit tree E for B as follows.
At stage 0, set E[0] to be the code of the empty set (as root of the exit tree).

Begin the search for a Seetapun disjunction δ for (B,B) with preconditions (∅, ∅).
We pause to explain the intuitive idea behind this enumeration procedure and

introduce some terminology. First we describe how the exit tree will look once the
first S-disjunction δ is enumerated. Assume that the exits in δ consist of blobs
o0, o1, . . . , os0−1 and threads ι0, ι1, . . . , ιt0−1 (in the case of an ι appearing in mul-
tiple τ ’s, we simply ignore the repetitions). The sets os (0 ≤ s < s0) and ιt
(0 ≤ t < t0) are represented by their codes denoted by ρs and βt. Let a node ε (on
the first level of the exit tree) be a pair of codes (ρ, β), where ρ or β (but not both)
is the code of the empty set. As in the case of an S-disjunction for a single ψ, given
an amenable set A, either A is a superset of some os or A is a superset of some ιt.
Thus A must exit from some ε = (ρ, β). The first level of the exit tree E may be
visualizes as the diagram below,

root

ε0 ε1 · · · ε
s0−1 εs0 εs0+1

· · · εs0+t0−1

Figure 4. First level of an exit tree

where εs = (ρs, βs), ρs is the code of os for s < s0 and the code of the empty set ∅
for s ≥ s0, and β

s is the code of ∅ for s < s0 and the code of ιs−s0 when s ≥ s0. The
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enumeration of future S-disjunction will have their own versions “over” each exit.
In other words, future S-disjunctions will use (ρ, β) as preconditions. Therefore over
certain preconditions, we may enumerate further S-disjunctions, and over others,
we may enumerate no more. In general, we obtain a stack of Seetapun disjunctions
which generates the exit tree. A typical node ε in an exit tree is of the form

(〈ρ1 ∗ ρ2 ∗ · · · ∗ ρh〉, 〈β1 ∗ β2 ∗ · · · ∗ βh〉),

where (ρ1, β1) is an exit taken from the first S-disjunction δ1, followed by (ρ2, β2)
which is an exit taken from the next S-disjunction δ2 which uses (ρ1, β1) as precon-
dition, and so on. Also for each i, one of ρi, βi, but not both, may code the empty
set ∅.

· · ·
(ρ1, β1)

· · ·

· · · · · ·
(ρ2, β2)

· · ·

τ

Figure 5. An example of an exit tree

For an exit ε of the above form, after discarding those that code ∅, we may
assume that each ρs or βt is the code of a blob os or a thread ιt respectively. We let
the sets specified by ε be o1 ∪ o2 ∪ · · · ∪ oh and ι1 ∪ ι2 ∪ · · · ∪ ιh, and denote them by
ρ and β respectively, here we have abused the notations for the sake of simplicity.

We now return to the description of the enumeration of the exit tree E.
At stage s+ 1, suppose that the exit tree E[s] is given. Following the canonical

order of exits on the tree E[s], check each maximal branch ε (with specified sets
ρ and β) on E[s] to see if there exists an S-disjunction δ for (Br(ε), Bb(ε)) with
preconditions (ρ, β), whose code is less than s+1. If no such δ is found, do nothing.
Otherwise, without loss of generality, we may assume that only one S-disjunction is
enumerated, say over ε. Concatenate with ε all of (the codes of) the exits of δ, and
also concatenate with ε pairs of the form (ρ, ∅) and (∅, β) where ρ and β are exits
in δ. Let the resulting tree be E[s+ 1]. This ends the description of enumerating
E.

The enumeration of E is clearly monotone. Since the height of the tree E is no
more than 2|B| (each formula can be forced at most twice, once by red and the
other by blue), BME 1 implies that the enumeration process will stop at some stage
s∗. In other words, after stage s∗, no new S-disjunctions for B on any ε of E[s∗]
will be enumerated.
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Given an amenable set A, by Lemma 4.6 there is an exit ε∗ = (ρ∗, β∗) that A
may take from this maximal stack of S-disjunctions. Then the formulas forced by ε∗

are exactly those that may be forced in a Σ0
1-way using ε∗ through the enumeration

of E.

For the remaining formulas in B not yet forced by ε∗, we now show that their
negations can be forced in a similar way as in §4.2.

First continue to enumerate the sequence of blobs over ε∗, i.e., those M0-finite
sets o with min o > max ε∗ such that M0 |= ψe(ρ

∗ ∗ o) for some e ∈ Br(ε
∗). Form

the Seetapun tree S associated with this blob sequence ~o. Then either by skipping
the Seetapun tree S over ε∗ (if it is M0-finite) or by thinning through the U -tree
Ub for Bb(ε

∗),

Ub = {τ ∈ S : (∀s < |τ |)(∀ι ⊆ τ)(∀d ∈ Bb(ε
∗))¬ϕd(s, β

∗ ∗ ι)},

we force the remaining formulas in a Π0
1-way. This leads us to the formal definition

of a notion of forcing which we next introduce.

4.5. Forcing Formalized.

Definition 4.7. The partial order P = 〈p,≤〉 of forcing conditions p satisfies:

(1) p = (ε, U) where ε = (ρ, β) is a pair of M0-finite increasing strings of
the same length and U is an M0-infinite recursively bounded recursive
increasing tree such that the maximum number appearing in either ρ or β
is less than the minimum number appearing in U .

(2) We say that q = (εq, Uq) is stronger than p = (εp, Up) (written p ≥ q) if
and only if

(i) If εp = (ρp, βp) and εq = (ρq, βq), then ρp � ρq and βp � βq;
(ii) There is a recursive extension-preserving map F from Uq to the set

of M0-finite subtrees of Up such that for all σq ∈ Uq, for all η which
is a maximal branch of F (σq), either η has no extensions in Up or
range(σq) ⊆ range(η).

Similarly, we could work in M0[X ] and relativize Definition 4.7 to X .
Given a Σ0

1-formula ψ with a free set variable Ǧ of the form ∃sϕ(s, Ǧ), we say
that p red forces ψ (written p r ψ) if

M0 |= ∃s ≤ max(ρp)ϕ(s, ρp).

Define blue forcing similarly, except that ρp is replaced by βp and r by b. Also
we say that p red forces ¬ψ (written p r ¬ψ) if p does not red force ψ and for all
τ ∈ Up, for all o ⊆ τ ,

(∗) M0 |= ∀s ≤ max(τ)¬ϕ(s, ρp ∗ o).

Define p b ¬ψ similarly, replacing ρp by βp and “p does not red force ψ” by “p
does not blue force ψ”. [For consistency of notations with S-disjunctions, we use ι
in place of o in (*) above for p b ¬ψ.]

Let the ∆0
2-set A be fixed and let Bn = {ψe(Ǧ) : e ≤ g(n)}. The generic set

G will be obtained from an ω-sequence of conditions 〈pn : n ∈ ω〉 which we now
construct. The sequence will have the property that pn+1 ≤ pn, pn = 〈εn, Un〉,
εn = (ρn, βn) with ρn ⊆ A and βn ⊆ A. Furthermore, for each n, either (a) for
each ψe ∈ Bn, pn red forces ψe or its negation, or (b) for each ψe ∈ Bn, pn blue
forces ψe or its negation. The construction is carried out in ω-many steps and
recursively in ∅′ modulo some parameters.
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4.6. Construction of a Generic Set. We enumerate Σ0
1-formulas in blocks

Bn = {ψe : e < g(n)} where n ∈ ω. Let B−1 = ∅. The enumeration of the
sets Bn relies on ∅′ which is able to compute the sequence 〈g(n) : n ∈ ω〉.

Let the initial recursively bounded recursive increasing tree U−1 be the tree
version of the identity function, i.e., for any σ ∈ U−1, σ(i) = i for all i < |σ|. In
particular, the (only) branch of U−1 has range M0. Also let ε−1 be the pair of
(codes of) empty strings and let the condition p−1 be 〈ε−1, U−1〉.

At stage n + 1 (n ≥ −1), suppose that we have defined conditions pi = 〈εi, Ui〉
such that εi = (ρi, βi) with ρi ⊆ A and βi ⊆ A, p−1 ≥ p0 ≥ · · · ≥ pi ≥ · · · ≥ pn and
either for each ψe ∈ Bi, pi r ψe or pi r ¬ψe; or for each ψe ∈ Bi, pi b ψe or
pi b ¬ψe. Also, assume we have defined the sequence 〈z(0), z(1), . . . , z(n)〉 where
z(i) = 0 (for thinning) or > 0 (for skipping). We now consider the block Bn+1.

First apply the enumeration procedure E described in §4.4 along each M0-finite
branch of the tree Un. Thus, instead of forming blobs by taking arbitrary numbers,
we require the numbers to be drawn from (the range of) a node σ ∈ Un. The
procedure E will guarantee that E(σ) will be an M0-finite tree. If λ were an M0-
infinite path of Un, then E(λ) would be a tree which may or may not be M0-finite.
In this sense, what we did in §4.4 was to enumerate E(M0).

Now we are poised to apply BME 1. By construction, E specifies a monotone
enumeration procedure. Since the height of any exit tree is uniformly bounded by
2|Bn+1| = 2g(n+ 1), there are only M0-finitely many expansionary levels on Un.

For σ ∈ Un, let #σ be the number of S-disjunctions enumerated using σ as a
pool of numbers, which is also equal to the number of interior nodes in E(σ). For
each a ∈M0, let Ta be the subtree of Un every node of which computes at most a
many S-disjunctions. More precisely:

Ta = {σ ∈ Un : #σ ≤ a}.

Then Ta is a recursive subtree of Un. Since there are only M0-finitely many expan-
sionary levels, it cannot be the case that for all a ∈ M0, Ta is M0-finite. In other
words, for some a ∈M0, Ta is M0-infinite.

Consider the set {a′ : Ta′ is M0-finite}, which is Σ0
1. By assumption, it is

bounded. Let a0 be the largest such a′ which can be found using ∅′. In the case
when the set is empty, let a0 = −1. Then a0 + 1 is the least number a such that
Ta is M0-infinite.

Claim. There is a σ0 ∈ Ta0+1 such that #σ0 = a0 + 1 and σ0 has M0-infinitely
many extensions in Ta0+1.
Proof of Claim. Assume otherwise. Since Ta0

is M0-finite, there is an s where
every σ of length s had computed at least (a0 + 1)-many S-disjunctions along
σ. If every σ ∈ Ta0+1 has only M0-finitely many extensions with (a0 + 1)-many
S-disjunctions, let s(σ) be the least bound for σ on the number of such exten-
sions. Then σ 7→ s(σ) is recursive. By BΣ0

1 there is a uniform bound on the set
{s(σ) : σ ∈ Ta0+1}. But this implies that Ta0+1 is M0-finite as well, a contradiction,
proving this Claim.

Note that ∅′ is able to compute this σ0. Once σ0 is fixed, we may select an
M0-infinite recursively bounded recursive increasing tree Ûn ⊆ Ta0+1 such that

every node in Ûn enumerates the same (a0 + 1)-many S-disjunctions over εn. The
collection of these S-disjunctions will be maximal if at any future stages in the
construction, the numbers involved in any computation of blobs or S-disjunctions
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always form a subset of some nodes in Ûn. Let En+1 be the exit tree corresponding
to this maximal collection of S-disjunctions and let εn+1 = (ρn+1, βn+1) be the exit
in En+1 taken by A. In particular, ρn+1 ⊆ A and βn+1 ⊆ A. This completes the

construction for the “Σ0
1-part” of forcing for the block Bn+1. [Note: εn+1 and Ûn

together handle the “Σ0
1-part” of the block Bn+1.]

We now take up the matter of forcing the negation of ψe for Bn+1,r(εn+1) and
Bn+1,b(εn+1), i.e. formulas not yet “positively forced”. This is resolved by a similar
yet more delicate “Ta analysis” than the one given above.

First, given a σ ∈ Ûn, define a sequence of σ-blobs to be blobs o ⊆ σ. For each σ
in Ûn, let the (n+1)-blobs enumerated by σ be the sequence of σ-blobs ~o such that
for each o ∈ ~o, M0 |= ψe(ρn+1 ∗ o) for some e ∈ Bn+1,r(εn+1). This enumeration

can be carried out uniformly for any node σ in the recursive tree Ûn in a coherent
way, i.e., if σ � σ′, then the sequence of (n+1)-blobs enumerated by σ′ end-extends
the one by σ. Let #σ denote the number of (n+ 1)-blobs enumerated by σ under
such an enumeration.

Let Ta = {σ ∈ Ûn : #σ ≤ a}. We consider two cases. The case that we are in
will be recorded by the (n+ 1)-st bit z(n+ 1).

Case 1 (Skipping for (n + 1)-blobs). There is an a ∈ M0 for which Ta is M0-
infinite. Fix the least such a. Set z(n + 1) = the least l such that g(l) ≥ a and
l > max{z(i) : i ≤ n}.

Applying a similar argument as in the case of S-disjunctions, we use ∅′ to find
the number a0 and a node σ0 ∈ Ûn such that #σ0 = a0 + 1 and the tree

Ũn = {σ ∈ Ûn : σ0 � σ and #σ = a0 + 1}

is M0-infinite. Since every node σ ∈ Ũn is of the form σ0 ∗ τ for some τ , we may
“discard the initial segment σ0” thus form the new tree Un+1 = {τ : σ0 ∗ τ ∈ Ũn}.

It is clear that Un+1 is a recursively bounded recursive increasing tree since Ûn is.
Let pn+1 = 〈εn+1, Un+1〉. By taking the recursive function F : τ 7→ {σ0 ∗ τ}, we see
that pn+1 extends pn as forcing conditions. Moreover pn+1 red forces ¬ψe for all
e ∈ Bn+1,r(εn+1) in the sense that for any τ ∈ Un+1 no o ⊂ τ satisfies ψe(ρn+1 ∗ o),
and red forces ψe for all other ψe ∈ Bn+1(εn+1) through ρn+1. Notice that this

form of skipping also involves some thinning of the tree Ûn.
Case 2 (Thinning for (n + 1)-blobs). For all a ∈ M0, Ta is M0-finite. We set

z(n+ 1) = 0 to record this fact.

In this case, along any M0-infinite path λ on Ûn there will be M0-infinitely
many (n + 1)-blobs enumerated, and any such λ would offer sufficient number of
λ-blobs for building an M0-infinite Seetapun tree, thereby a new U -tree. However
this would only be a recursive in λ tree, and λ need not be a recursive path. To
overcome this difficulty, we make use of the M0-finiteness of the Ta’s to enumerate
a recursively bounded recursive increasing tree S which will play the role of a
Seetapun tree (indeed S is almost a Seetapun tree). We also define in parallel a
recursive extension preserving function F from S to the set of M0-finite subtrees
of Ûn satisfying Clause (ii) of Definition 4.7.

The recursive enumeration of S and F is as follows.
Stage −1. Let S[−1] be ∅ (the root) and F [−1](∅) be the M0-finite subtree of

Û which only contains its root.
Stage v + 1. Suppose that we have enumerated S[v] and F [v] satisfying the

following conditions:
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(1) For every maximal branch τ in S[v], F (τ) is a subtree of Tv. Moreover, for

any maximal branch σ ∈ F (τ), if σ is not a dead end in Ûn, then the range
of τ is a subset of the range of σ.

(2) Any maximal branch σ in Tv by definition enumerates v many σ-blobs,

say ~o, provided it is not a dead end of Ûn. Then for any M0-finite choice
function f for ~o, there is some maximal branch τ ∈ S[v] such that the range
of τ equals the range of f . [Note that a Seetapun tree is essentially a tree
built from collecting all M0-finite choice functions at every stage.]

First enumerate all maximal branches in Tv+1: say σ1, σ2, · · · , σk. By discarding

the dead ends in Ûn if necessary, assume none of them is terminal. For each τ ∈ S[v],
for each σ ∈ F (τ), if none of σi extends σ, then go to the next τ ; otherwise, for each
σi extending σ, σi necessarily enumerates exactly one more (n+1)-blob than σ, say
o. For each number x ∈ o, concatenate it with τ (if it has not been concatenated
by a σj where j < i) and enumerate σi into F (τ ∗ x). Once this is done for each τ ,
σi ∈ F (τ) and x ∈ σi, let the resulting tree be S[v + 1] and for any σ ∈ Tv+1 if it
is not enumerated into F (τ) for some τ , then it will never be so enumerated after
stage v + 1.

By construction, it is easy to see that for all v, S[v + 1] properly end-extends
S[v], F is a recursive extension preserving map, and condition (1) holds. We use
induction on v to verify that S[v + 1] satisfies Condition (2). Let σi be a maximal
branch in Tv+1 as specified in the enumeration above. Since Tv is an initial segment
of Tv+1, σi must end extend some σ in Tv. Thus the σi-blob sequence ~o(σi) end-
extends that of σ-blobs ~o(σ), and every choice function for ~o(σi) end-extends some
choice function f for ~o(σ). By induction hypothesis (2) on v, there is a maximal
branch τ− ∈ Sv such that the range of τ− equals the range of f . By the construc-
tion, when we consider the node τ− and σ, we will make τ− ∗ x ∈ S[v+1] for all x
in the unique extra blob enumerated by σi. Hence (2) holds for v+ 1. Thus S and
F satisfy Condition (2).

Define the subtree Un+1 of S by

Un+1 = {σ ∈ S : (∀t < max(σ))(∀ι ⊆ σ)(∀e ∈ Bn+1,b(εn+1)) ¬ϕe(t, βn+1 ∗ ι)}.

Clearly Un+1 is a recursively bounded recursive increasing tree because S is. We
show that Un+1 is M0-infinite: Suppose that Un+1 is M0-finite. Then on the tree
S, there is a level h such that every node σ of length h has a thread ι such that
for some e ∈ Bn+1,b(ε) M0 |= ψe(βn+1 ∗ ι). Choose v large enough such that
F (Un+1) ⊂ Tv. Let σ ∈ Tv be a maximal branch, and consider the sequence of
σ-blobs ~o. By Condition (2), the range of any choice function of ~o also contains a
thread, which means that σ ∈ Tv enumerates an S-disjunction for the sets Bn+1,r(ε)
and Bn+1,b(ε) with the preconditions (ρn+1, βn+1). But this is a contradiction since

Ûn does not enumerate any S-disjunctions. Moreover, since Un+1 is a subtree of
S, F ↾ Un+1 also works for Un+1, and therefore Un, Un+1, and F ↾ Un+1 satisfy
Definition 4.7, condition 2 (ii). Let pn+1 be the forcing condition 〈εn+1, Un+1〉.
Then pn ≥ pn+1 and pn+1 blue forces ¬ψe for every ψe ∈ Bn+1,b(εn+1) and blue
forces every other ψe ∈ Bn+1 through βn+1.

This completes the construction at stage n+1. We summarize the discussion as
a lemma for future reference.

Lemma 4.8. At the end of stage n+1, we have one of the following two possibilities:
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(a) If skipping occurs, then for all ψe(Ǧ) ∈ Bn+1, either pn+1 r ψe(Ǧ) or
pn+1 r ¬ψe(Ǧ). Furthermore, for any amenable set G, if ρn+1 � G and
every M0-finite initial segment of G\ρn+1 is a subset of (the range of) some
node in Un+1, then forcing by pn+1 is equal to truth for G in the following
sense: If pn+1 r ψe(Ǧ) then M0 |= ψe(G); and if pn+1 r ¬ψe(Ǧ) then
M0 |= ¬ψe(G).

(b) If thinning occurs, then the corresponding statement holds upon replacing r
by b and ρ by β.

Observe that save for the reference to the sequence 〈z(n) : n ∈ ω〉, the en-
tire construction may be carried out using ∅′ as oracle. Now, since the sequence
〈z(n) : n ∈ ω〉 is definable, it is coded on ω by an M0-finite set ẑ. Using ẑ as param-
eter, ∅′ is able to retrace the steps in the construction and compute the sequence
of conditions 〈pn : n ∈ ω〉.

4.7. Verification. We now extract from the “generic sequence” 〈pn〉 a homogenous
set G that is a low set contained in either A or A. There are two cases to consider:
Case 1. The set {n : z(n) = 0} is unbounded in ω.

Let G =
⋃

n∈ω βn. Then G ⊆ A and recursive in ∅′. Fix a Σ0
1-formula ψe(Ǧ). Let

n ∈ ω be large enough such that g(n+1) > e and z(n+1) = 0. By Lemma 4.8 (b),
either ψe(Ǧ) or its negation is blue forced by pn+1 at the end of stage n+1. Further-
more, the construction guarantees that G end-extends βn+1, and for all m > n+1,
βm is a subset of some node τ of Um−1, thus a subset of Fm−n−1 ◦ · · · ◦ Fm−1(τ),
where each Fi is the extension-preserving function of pi+1 ≤ pi. Thus by Lemma
4.8 (b) again, M0 |= ψe(G) or M0 |= ¬ψe(G) was determined by the time pn+1

is selected, which may be computed by ∅′ with the help of ẑ. In other words, the
Σ0

1-theory of G can be computed from ∅′, thus G is low.
To see that G is M0-infinite, we argue that the range of βn is not empty for

z(n) = 0, assuming that there are “new trivial formulas” such as ∃x(a < x∧x ∈ Ǧ)
in every block that do not belong to any smaller block, where a is some appropriate
parameter. If the range of βn is empty, then Bn,b(εn−1) = Bn throughout the
construction with no need for update. Since n-blobs are M0-infinite (as z(n) = 0),
there must be a moment when the blue side forces the trivial formulas to form an
S-disjunction over εn−1, which would then add at least one point to the range of
βn.
Case 2. The set {n : z(n) = 0} is bounded in ω.

Then from some n0 onwards, the act of skipping for blobs always occurs. Let
G =

⋃
n∈ω ρn. Then G ⊆ A and is again recursive in ∅′. G is low by a similar

argument by quoting Lemma 4.8 (a). It remains to show that G is M0-infinite. We
show that the range of ρn for n > n0 is not empty under the same assumption on
trivial formulas. For any n > n0, if the range of ρn is empty, then Bn,r(εn−1) = Bn

throughout the construction with no need for update. However, there must be
blobs enumerated for the sake of trivial formulas, which means that the Seetapun
tree over εn−1 is M0-infinite. This implies that there is no skipping at step n of
the construction, which is a contradiction.

5. Comparing SRT 2
2 and RT 2

2

5.1. Preserving Bounding for Iterated Monotone Enumerations.

Theorem 5.1. Assume that X is a predicate on M0 with the following properties.



22 C. T. CHONG, THEODORE A. SLAMAN, AND YUE YANG

(H-i) M0[X ] satisfies BΣ2 and BME.
(H-ii) Every predicate on ω defined in M0[X ] is coded on ω.

Suppose that A is ∆0
2(X). There is an M0[X ]-infinite G with the following proper-

ties.

(i) G ⊆ A or G ⊆ A.
(ii) G has unboundedly many elements in M0.

(iii) In M0[X ], G is low relative to X. Consequently, M0[X,G] satisfies BΣ0
2.

(iv) M0[X,G] satisfies BME.

Proof. Intuitively we want to apply a relativization to X of the construction in
Theorem 4.1. However, preserving BME in the generic extension as specified in
(iv) is essential to allowing iterations of the construction. The construction here
parallels closely that in §4. We focus the discussion on preserving BME inM0[X,G].

Define a notion of forcing P as in Definition 4.7, but relative to X so that the U
in a condition p = 〈ε, U〉 is now an X-recursively bounded increasing X-recursive
tree. Construct an X ′-definable sequence of forcing conditions {pn : n < ω} such
that pn = 〈εn, Un〉 and pn ≥ pn+1. Suppose pn is defined satisfying

(1) εn = (ρn, βn) and ρn ⊆ A, βn ⊆ A;
(2) There is a c ∈ {r, b} such that all Σ0

1(X)-formulas ψ with parameters below
g(n), either pn c ψ or pn c ¬ψ;

(3) For k ≤ n, let BME k,n denote BME k relative to the predicate (X, Ǧ) re-
stricted to the g(n)-bounded, k-iterated monotone enumerations with pa-
rameters below g(n). Then BME k,n holds in the following strong sense:
For any instance (Vi, Ei)1≤i≤k of BME k,n, for any M0-finite subset Y of a
string in Un such that minY > max{ρn, βn}, no E1-expansionary level in
V1 relative to (X, ρn ∗ Y ) (or (X, βn ∗ Y ), depending on whether Un was
obtained through skipping or thinning) is enumerated unless it was already
enumerated relative to (X, ρn) (respectively, (X, βn)).

The condition pn+1 has to satisfy the three requirements (1)–(3) with n replaced
by n + 1. We achieve these in two steps. The first is to enumerate an exit tree
E for Un, following the construction in Theorem 4.1, for Σ0

1(X)-formulas with free
set variable Ǧ and parameters below g(n + 1). Apply BME 1 relative to X to
conclude that there is a greatest ℓ where ℓ is an E-expansionary level in Un. Select
an exit (ρ′n+1, β

′
n+1) from the tree, with ρn � ρ′n+1 ⊆ A, βn � β′

n+1 ⊆ A, and
an X-recursively bounded increasing X-recursive tree U ′

n such that p = (ε′, U ′
n)

is a forcing condition stronger than pn = (εn, Un), where ε
′ = (ρ′n+1, β

′
n+1). The

tree U ′
n is obtained through skipping or thinning of Un, and there is a c ∈ {r, b}

such that for any Σ0
1(X)-formula with parameters below g(n + 1), either p c ψ

or p c ¬ψ. The second step in the construction is to define pn+1 so that it is
stronger than p and satisfies (3) (with n replaced by n+1). This ensures that pn+1

also satisfies (1) and (2). For this, we work within U ′
n and address the problem

of establishing every instance of the M0-finite collection BME k,n+1 relative to the
predicate (X,G) for k ≤ n+ 1.

Let C = {(Ve,i, Ee,i)1≤i≤k(e) : e ≤ e0} be the collection of all g(n+1)-bounded, k-
iterated monotone enumerations relative to (X,G) with parameters below g(n+1)
and k ≤ n + 1. The idea is to associate C with a g(n + 1)-bounded, n + 2-
iterated monotone enumeration relative to X and apply BMEn+2 to conclude that
requirement (3) is satisfied. We first make the following claim.
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Claim. . There exists a g(n + 1)-bounded, n + 1-iterated monotone enumeration

(V̂i, Êi)1≤i≤n+1 such that

• For each e ≤ e0, i, σ and τ , 0 ∗ e ∗ σ ∈ V̂i(τ) if and only if σ ∈ Ve,i(τ), and

τ ∈ Êi(0 ∗ e ∗ σ) if τ ∈ Ee,i(σ).

Proof of Claim. We “amalgamate” the enumeration of elements in C into a
(V̂i, Êi)1≤i≤n+1 as follows: V̂1 has 0 as root and has e0-many branches at level 1. A

copy of Ve,1 “sits on top of the e branch” beginning at level 2. Thus 0 ∗ e ∗ σ ∈ V̂1

if and only if σ ∈ Ve,1. For 1 < i ≤ n + 1, V̂i will again have root 0 and e0-many

branches at level 1. For each e ≤ e0, if i > k(e) then V̂i has no extension above the

string 0 ∗ e. Otherwise, a copy of Ve,i sits on top of the string, so that 0 ∗ e ∗ σ ∈ V̂i
if and only if σ ∈ Ve,i.

Define Êi as given in the statement of the Claim. The enumeration of Êi from
V̂i, and that of V̂i+1 from Êi is carried out “componentwise” by following the

algorithm for (Ve,i, Ee,i)1≤i≤k(e) for each component e. Then (V̂i, Êi)1≤i≤n+1 is a
g(n+ 1)-bounded, n+ 1-iterated monotone enumeration, proving the Claim.

Let ψ(ℓ,X, Ǧ) be the Σ0
1(X)-formula saying that there is a stage s and a

(Ve,i, Ee,i) ∈ C such that (Ve,i, Ee,i) has ℓ-many Ee,1-expansionary levels in Ve,1
relative to (X, Ǧ). Since the enumeration of an Ee,1-expansionary level in Ve,1
using blobs ρ′ ∗ o for the set variable Ǧ is a Σ0

1(X)-process, we may subject the
formula ψ(ℓ,X, Ǧ) to an “S-disjunction analysis”. Begin by setting ℓ = 1 and enu-
merate along each string σ in U ′

n an S-disjunction δ1(σ) and accompanying exit
tree E1(σ)[s] using ε

′ as precondition. Thus every exit ρ or β in E1(σ)[s] gener-
ates an Ee,1-expansionary level in Ve,1 for some e ≤ e0, relative to (X, ρ′n+1 ∗ ρ) or
(X, β′

n+1 ∗ β) respectively.
In general, suppose σ ∈ U ′

n and at the end of s steps of computation there
are ℓ, but not ℓ + 1-many, E1(σ)-expansionary levels in U ′

n along σ arising from
the enumeration of S-disjunctions δ1(σ), . . . , δℓ(σ), as in §4. If s < |σ|, compute
|σ|-steps to search for the next S-disjunction δℓ+1(σ) for ψ along σ using exits in

E1(σ)[|σ|]. Taking (V̂i, Êi)1≤i≤n+1 as in the Claim, this implies that

〈(U ′
n, E1), (V̂i, Êi)1≤i≤n+1〉

is a g(n + 1)-bounded, n + 2-iterated monotone enumeration relative to X . By
BMEn+2 relative to X , there is a maximum ℓ, denoted ℓ∗, of E1-expansionary
levels in U ′

n. For each σ ∈ U ′
n, let #σ be the largest number ℓ such that δℓ(σ) is

defined in |σ|-steps of computation. Let

Tℓ = {σ ∈ U ′
n : #σ ≤ ℓ}.

Then Tℓ∗ is unbounded. By an argument similar to that for the Claim in §4.6, there
is a σ∗ ∈ Tℓ∗ such that the subtree of Tℓ∗ extending σ∗ is unbounded and there are
ℓ∗-many S-disjunctions enumerated along σ∗ and no new S-disjunctions along any
string in Tℓ∗+1 extending σ∗. Let εn+1 be the pair (ρn+1, βn+1) of maximal exits
in E1(σ

∗) with ρn+1 ⊆ A and βn+1 ⊆ A.
Let U∗ be the part of Tℓ∗ above σ∗, so that all the numbers appearing in U∗

are greater than maxσ∗. On U∗ enumerate an increasing sequence of blobs o such
that min o > max ρn+1 and ψ(ℓ∗ + 1, X, ρn+1 ∗ o) holds. We conduct a further Ta
analysis. For τ ∈ U∗, let #τ be the number of such blobs enumerated along τ after



24 C. T. CHONG, THEODORE A. SLAMAN, AND YUE YANG

|τ | steps of computation. Let

Ta = {τ ∈ U∗ : #τ ≤ a}.

There are two cases to consider.
Case 1. (Skipping). There is an a such that Ta is unbounded.

Then as in the proof of the Claim in §4.6, there is a τ∗ in U∗ such that it has
unboundedly many extensions in U∗ and no blobs are enumerated along any such
extension that are not already enumerated along τ∗. Call this subtree U∗

τ∗.
We do skipping over τ∗ and define Un+1 to be the part of U∗

τ∗ above τ∗,
meaning the least number appearing in Un+1 is greater than max τ∗. Then
pn+1 = (εn+1, Un+1) satisfies (1) and (2). We show that (3) holds when n is re-
placed by n+1. Let Y be M0-finite and a subset of a string in Un+1. Each instance
of BME k,n+1 is (Ve,i, Ee,i)1≤i≤k(e) for some e ≤ e0. The choice of the condition
pn+1 ensures that any Ee,1-expansionary level in Ve,1 relative to (X, ρn+1 ∗ Y ) is
enumerated relative to (X, ρn+1). Thus (3) is satisfied.
Case 2. (Thinning). Ta is M0-finite for each a.

We do thinning of U∗ by following the construction in §4.6 (conditions (1) and
(2) before Lemma 4.8) to use the blobs o in U∗ to form the (almost Seetapun)
X-recursively bounded increasing X-recursive) tree S, and then define

Un+1 = {τ ∈ S : (∀ι ⊆ τ)¬ψ(ℓ + 1, X, βn+1 ∗ ι)}.

Then (εn+1, Un+1) is the condition pn+1. Furthermore, pn+1 satisfies (1), (2).
The proof of (3) is by the same argument as in Case 1 above, except that we replace
ρn+1 ∗ Y by βn+1 ∗ Y .

Finally, note that the data on skipping (and “how far”) or thinning for Un,
n < ω, is X-definable and coded on ω by the same method used in Theorem 4.1.
Hence the entire construction may be carried out recursively in X ′.

DefineG =
⋃

n ρn or
⋃

n βn as appropriate. We wish to argue thatM0[X,G] |= BΣ0
2,

G is low relative to X and (i)–(iv) are satisfied. We verify (iv) for the case when
G =

⋃
n βn. Let (Vi, Ei)1≤i≤k be an instance of BME k,n relative to (X,G). We

claim that all the E1-expansionary levels in V1 are enumerated relative to (X, βn)
and therefore there are only M0-finitely many such levels. Now by construction,
any initial segment of the set {x ∈ G : x > max βn} is contain as a subset of some
string in Un. Since (3) is satisfied, the claim follows. A similar argument holds for
the case when G =

⋃
n ρn. Note that (i) is immediate and that (ii) and (iii) may

be verified as in the proof of Theorem 4.1. �

5.2. A Model of SRT
2
2. We are now ready to prove Theorem 2.2. Begin with

M0 as the ground model and let A1, A2, . . . , Ai, . . . be a countable list of all ∆0
2-

sets. Begin by setting G0 = ∅. For i ≥ 1, repeatedly apply Theorem 5.1 by letting
X = (G0, . . . , Gi−1) to obtain an unbounded Gi such that

(1) G1 is low;
(2) Gi ⊆ Ai or Gi ⊆ A;
(3) Gi+1 is low relative to (G1, . . . , Gi);
(4) M0[G1, . . . , Gi] |= BME .

For i = 1, (1)–(4) hold for G1 by Theorem 5.1 with X = ∅. Suppose G1, . . . , Gi

satisfy (1)–(4). Then BME k relative to (G1, . . . , Gi+1) is reducible to BME k+1 for
(G1, . . . , Gi) which is true by induction. Thus (G1, . . . , Gi+1) satisfies BME k for
all k.
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Let S be the closure under the join operation and Turing reducibility of the set
{Gi : i ∈ N}. Then M = 〈M0, S〉 is an M0-extension of M0 and is a model of
RCA0 + BΣ0

2 that satisfies SRT 2
2 + ¬IΣ0

2. Furthermore, since every member of S
is low, by Proposition 2.4, M is not a model of RT 2

2.

5.3. SRT
2
2 and WKL0. We now strengthen Theorem 2.2 and prove Theorem 2.7:

There is a model of RCA0 + BΣ0
2 + SRT 2

2 + WKL0 that is not a model of RT 2
2.

We begin with a lemma.

Lemma 5.2. For any low set X such that M0[X ] |= BME, any unbounded X-
recursive subtree W of the full binary tree has an unbounded path G that is low
relative to X such that M0[X,G] |= BME.

Proof. Let W be such a tree. We build an unbounded path G through W that
satisfies the requirements. This is carried out in ω-many steps.

Step 0: Let W0 =W and ν0 = ∅.
Step n + 1: Suppose Wn ⊆ W is unbounded, X-recursive and every string

in Wn extends the string νn defined at end of stage n. On Wn first follow the
Low Basis Theorem construction of Jockusch and Soare (1972) (see also Hájek
(1993) on constructing a path that preserves BΣ0

2) to obtain a string ν′n+1 in Wn

extending νn, such that the subtree W ′
n+1 of Wn consisting of strings extending

ν′n+1 is unbounded, and for any Σ0
1(X)-formula ψ with a free set variable Ǧ and

parameters below g(n + 1), either ψ(ν′n+1) holds or no string ν on W ′
n+1 satisfies

ψ(ν).
Now we define an unbounded X-recursive subtree Wn+1 contained in W ′

n+1 to
guarantee M0 |= BME k,n+1 for k ≤ n + 1. By the Claim in Theorem 5.1, it is
sufficient to consider the g(n + 1)-bounded, n + 1-iterated monotone enumeration

(V̂i, Êi)1≤i≤n+1. Given a string ν ∈ W ′
n+1 and t < |ν|, we say that V̂1 relative to

(X ↾ |ν|, ν) is conservative over V̂1 relative to (X ↾ t, ν ↾ t) if they enumerate the

same Ê1,s-expansionary levels after |ν| steps of computation. Let

Ŵn+1,t = {ν ∈W ′
n+1 : |ν| > t ∧ [V̂1 relative to (X ↾ |ν|, ν) is conservative

over V̂1 relative to (X ↾ t, ν ↾ t)]}.

Now Wn+1,t is not M0-finite for every t, since this would contradict the assump-

tion of BMEn+1 for (V̂i, Êi)1≤i≤n+1. Thus choose the least t, denoted tn+1, such
that Wn+1,t is unbounded. Define νn+1 � ν′n+1 to be the least string in Wn+1,tn+1

such that the subtree of W ′
n+1 all of whose strings extend νn+1 is unbounded. Let

Wn+1 be the subtree.
Let G =

⋃
n νn. Then G is a path on W . Furthermore, the map n 7→ tn is

recursive in X ′. Thus X ′ is able to compute G correctly, implying that G is low
relative to X . Finally, for each n, tn pinpoints where the bound of any g(n)-
bounded, k-iterated monotone enumeration with k ≤ n and parameters in g(n) is
located. Thus BME holds relative to (X,G). �

Proof of Theorem 2.7. Let A1,W1, A2,W2, . . . , Ai,Wi, . . . be a list in order type
ω of all the ∆0

2-sets and unbounded recursively bounded increasing recursive trees
relative to a low set. Let G0 = ∅. Define low sets Gi, 1 ≤ i < ω, such that

(1) For i ≥ 0, G2i+1 is contained in either Ai or Ai;
(2) For i ≥ 1, G2i is a path on Wi;
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(3) G1 is low and Gi+1 is low relative to (G1, . . . , Gi);
(4) For i ≥ 1, M0[G1, . . . , Gi] |= BME .

Let S be the closure of {Gi : 1 ≤ i < ω} under join and Turing reducibility.
Then 〈M0, S〉 |= RCA0 + SRT 2

2 +WKL0 +BΣ0
2, and both IΣ0

2 as well as RT 2
2 (by

Proposition 2.4) fail in the model.

6. Conclusion

We end with three questions for further investigation and some comments about
them.

Question 6.1. Is every ω-model of SRT 2
2 also a model of RT 2

2?

Rephrased, Question 6.1 asks whether there is a nonempty subset S of 2N such
that (1) S is closed under join and relative computation, (2) for every X in S and
every ∆0

2(X) predicate P , there is an infinite set G in S all or none of whose elements
satisfy P , and (3) there is an X in S and an X-recursive f coloring the pairs of
natural numbers with two colors such that there is no infinite f -homogeneous set
in S. The rephrasing of Question 6.1 makes it clear that it is a recursion theoretic
question about subsets of N.

If it had been the case that RT 2
2 were provable in RCA0 + SRT 2

2, then the
casting of Question 6.1 in the language of subsystems of second order arithmetic
would have increased our understanding of the implication from SRT 2

2 to RT 2
2.

Namely, the proof of the implication would have worked over a weak base theory.
By Theorem 2.2, there is no such formal implication, but our interest in the question
is not decreased. In fact, the opposite is true. The truth of the relationship between
the two principles lies in the recursion theoretic formulation. What we know now
from the formalized problem should inform us as to what means may be needed to
penetrate the matter fully.

Question 6.2. Are there natural axiomitizations within first order arithmetic for
the first order consequences of the second order principles SRT 2

2 and RT 2
2?

We do not have a recursion theoretic rephrasing of Question 6.2. By its nature,
recursion theory takes N as the basis on which to erect the hierarchy of definability
and does not allow for the variation of arithmetic truth. So, we are led naturally
to formal systems and decisions as to which parts of the theory of N should be
preserved as base theory and which should be counted as non-trivial consequences
of stronger principles. In the present setting, I Σ0

1 was taken as given and the rest
remained to be proven.

Let FO(SRT 2
2) and FO(RT 2

2) denote the consequences of these theories within
first order arithmetic. Working over RCA0, our current state of knowledge is as
follows.

BΣ0
2 ⊆ FO(SRT 2

2) ( I Σ0
2

BΣ0
2 ⊆ FO(RT 2

2) ⊆ I Σ0
2

It is possible that the appearance of BME in our construction ofM0 was a necessary
precondition to expanding M0 by sets to a model of SRT 2

2. It is worth explicitly
raising the simplest instance of that issue.
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Question 6.3. Does either of RCA0 + SRT 2
2 or RCA0 + RT 2

2 prove that if E has
a bounded monotone enumeration then the enumeration of E is finite?

By Proposition 3.5, an affirmative answer is consistent with the known upper
bound on FO(RT 2

2). By Proposition 3.6, an affirmative answer for either SRT 2
2

or RT 2
2 would separate the first order consequences of that theory from BΣ0

2.
When we approach questions concerning subsystems of second order arithmetic

like 6.1, we have a well-developed set of tools, including forcing and priority meth-
ods. In comparison, there are remarkably few methods in place to investigate
questions like 6.2 or 6.3. It seems strange that this area should be so little devel-
oped, since quantifying the implications from familiar and fruitful properties of the
infinite to properties of the finite is a natural application of mathematical logic,
especially of recursion theory.

References

Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of
Ramsey’s theorem for pairs. J. Symbolic Logic, 66(1):1–55, 2001.

C. T. Chong, Steffen Lempp, and Yue Yang. On the role of the collection principle
for Σ0

2-formulas in second-order reverse mathematics. Proc. Amer. Math. Soc.,
138(3):1093–1100, 2010.

Rod Downey, Denis R. Hirschfeldt, Steffen Lempp, and Reed Solomon. A ∆0
2 set

with no infinite low subset in either it or its complement. J. Symbolic Logic, 66
(3):1371–1381, 2001.
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