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Abstract. We show that the structure of the enumeration degrees De has a
finite automorphism base consisting of finitely many total elements below the

first jump of its least element. As a consequence we obtain that the rigidity

of the structure of the enumeration degrees is implied by the rigidity of the
local structures of the Σ0

2 enumeration degrees, the ∆0
2 Turing degrees and the

computably enumerable Turing degrees.

1. Introduction

We continue our investigations of the notion of relative definability between
sets of natural numbers, presented as a degree structure. There is a spectrum of
notions giving a more precise meaning to the term “relative definability”. At the
two endpoints, the many-one degrees and the hyperarithmetical degrees, we have
complete descriptions of the degree structures and these descriptions are completely
different.

The partial ordering of the many-one degrees Dm was characterized algebraically
by Ershov [4] and Paliutin [11]. It is the unique partial order P with the following
properties: it has cardinality the continuum, it is a distributive upper-semi-lattice
with least element, it has the countable predecessor property and given any other
distributive upper-semi-lattice L with least element, with cardinality less than the
continuum, and with the countable predecessor property and given an isomorphism
π between an ideal I in L and an ideal π(I) in P , there is an extension π∗ of π
to an isomorphism between L and π∗(L), such that π∗(L) is an ideal in P . That
is to say that Dm is a universal object in a natural way. Along the same line, the
automorphism group of Dm has cardinality 22ω and every element of Dm other than
its least one, 0m, has a nontrivial orbit. Consequently, 0m is the only element of
Dm which can be defined by its order-theoretic properties.

The partial ordering of the hyperarithmetical degrees Dh was characterized
model theoretically by Slaman and Woodin [19]. It is biinterpretable with the
structure of second-order arithmetic. There is a way within the ordering Dh to
represent the standard model of arithmetic 〈N,+, ∗, <, 0, 1〉 and each set of natural
numbers X so that the relation “~p represents the set X ⊂ N and x is the hyper-
arithmetical degree of X” can be defined in Dh as a property of ~p and x. It follows
that there is no nontrivial automorphism of Dh, it is rigid. Further, a relation
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on Dh is order-theoretically definable within Dh if and only if it corresponds to a
degree-invariant relation on sets which is definable in second-order arithmetic.

We would like to know where in the spectrum of relative definability rigidity
breaks down. However, for the structures that form the middle of this spectrum
we have only a partial understanding. Simpson [15] proved that the first order
theory of the Turing degrees is computably isomorphic to the theory of second-
order arithmetic. Slaman and Woodin conjectured that the relationship between
the structure of the Turing degrees and second-order arithmetic is much stronger.
Their biinterpretability conjecture is that DT can be characterized in the same way
as the hyperarithmetical degrees. Slaman and Woodin [19] established that the
structure of the Turing degrees has a finite automorphism base and as a consequence
obtained that the biinterpretability conjecture is true modulo the use of finitely
many parameters. They showed that the automorphism group of the Turing degrees
is countable and that every member has an arithmetically definable presentation.
Furthermore, they proved that every relation in DT , induced by a degree invariant
relation that is definable in second-order arithmetic, is first order definable with
parameters in DT . Finally they showed that biinterpretability and rigidity are
equivalent for DT .

We will focus on an extension of the Turing degrees, the structure of the enumer-
ation degrees, De. This structure arises from the relation enumeration reducibility,
introduced by Friedberg and Rogers [5] in 1959. Enumeration reducibility is close
to Turing reducibility in the spectrum of relative definability. Instead of an effective
transformation of computations, it is based on effective transformation of enumer-
ations. Turing reducibility can be expressed in these terms as well: a set A can be
computed from a set B if and only if every enumeration of B⊕B can be effectively
transformed into an enumeration of A⊕ A, and so the Turing degrees have a nat-
ural isomorphic copy in De, the total enumeration degrees. Selman [13] showed a
reverse connection: every enumeration degree is completely determined by the set
of total enumeration degrees above it. Thus the total enumeration degrees are an
automorphism base for the enumeration degrees.

The first order theory of this extended structure was characterized by Slaman
and Woodin [18] also as computably isomorphic to second-order arithmetic. In
contrast to the Turing degrees, where we do not have many examples of natural
first order definitions of classes of degrees, in the enumeration degrees we have
quite a few. Kalimullin [8] showed that the jump operation is first order defin-
able by a simple formula in the language of partial orders. Papers of Ganchev
and Soskova [6] and [7] extended Kalimullin’s method to obtain other definabil-
ity results. This line of investigation culminated in the paper by Cai, Ganchev,
Lempp, Miller and Soskova [1] which established the first order definability of the
total enumeration degrees. The total enumeration degrees are thus a definable
automorphism base for the Turing degrees. This allows us to transfer all results
from Slaman and Woodin’s automorphism analysis of DT to De: the enumeration
degrees have a finite automorphism base, their automorphism group is countable
and every member has an arithmetically definable presentation, relations on De,
induced by degree invariant relations that are definable in second-order arithmetic,
are definable with parameters in De, and the rigidity of De is equivalent to its



THE ENUMERATION DEGREES: LOCAL AND GLOBAL STRUCTURAL INTERACTIONS 3

biinterpretability with second-order arithmetic. Some of these conclusions were ob-
tained earlier by Soskova [20], but the definability of the total degrees provides a
more systematic treatment.

We now know that the automorphism problems for the two structures are con-
nected: a nontrivial automorphism of the enumeration degrees induces a nontrivial
automorphism of the Turing degrees. Thus the biinterpretability conjecture for the
Turing degrees implies biinterpretability of the enumeration degrees and second-
order arithmetic.

In this article we study the complexity of automorphism bases for the enumer-
ation degrees. We combine methods developed in our earlier paper [16] with pre-
viously known results to obtain a finite automorphism base of total enumeration
degrees below 0′e. In [16] we investigated the automorphism group of the local sub-
structure of the Turing degrees DT (≤ 0′T ), consisting of the ∆0

2 Turing degrees. We
established that the local structure of the Turing degrees relates in the same way
to first order arithmetic as the Turing degrees and the enumeration degrees relate
to second-order arithmetic: it is biinterpretable with first order arithmetic modulo
the use of finitely many parameters and that full biinterpretability is equivalent to
rigidity for the structure DT (≤ 0′T ). The first order definability of 0e

′ and the total
enumeration degrees below 0′e now allows us to tie the automorphism problem for
the ∆0

2 Turing degrees, or equivalently their biinterpretability with first-order arith-
metic, to the automorphism problem for the enumeration degrees, or equivalently
their biinterpretability with second-order arithmetic: a nontrivial automorphism of
De yields a nontrivial automorphism of DT (≤ 0′T ). Finally, we connect the rigidity
of the enumeration degrees to the rigidity of an even finer structure: the computably
enumerable Turing degrees.

2. Preliminaries

We start with an overview of the main notions and results that are used in this
article. We also give a brief outline of the proof of the main result.

2.1. The enumeration degrees. In this subsection we will introduce enumeration
reducibility, its associated degree structure together with certain properties that will
be used in this article. For more results about the structure of the enumeration
degrees we refer to Cooper [3].

Definition 1 (Friedberg and Rogers [5]). A set A is enumeration reducible to a
set B (denoted by A ≤e B) if there is a c.e. set Φ, such that

A = Φ(B) = {n : ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)},

where Du denotes the finite set with code (canonical index) u under the standard
coding of finite sets.

A set A is enumeration equivalent to a set B (denoted by A ≡e B) if A ≤e B
and B ≤e A. The equivalence class of A under the relation ≡e is the enumeration
degree de(A) of A. The enumeration degrees are ordered by de(A) ≤ de(B) if and
only if A ≤e B. The least element in this ordering is 0e = de(∅), the set of all c.e.
sets. We define a least upper bound operation by setting de(A)∨de(B) = de(A⊕B).
The enumeration jump of a set A was defined by Cooper [2], as KA ⊕KA, where
KA = {〈e, x〉| x ∈ Φe(A)}. The enumeration jump of the degree of a A is de(A)′ =
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de(KA ⊕KA). Thus the structure of the enumeration degrees 〈De,≤,∨,′ ,0e〉 is a
an upper semi-lattice with least element and jump operation.

We can already state the first of many definability results that will be applied
in this article.

Theorem 1 (Kalimullin [8]). The enumeration jump operator is first order defin-
able in De.

It is not difficult to see that a set A is Turing equivalent to a set B if and only
if A⊕A is enumeration equivalent to B ⊕B. Thus, the map ι, defined by

ι(dT (A)) = de(A⊕A),

is an embedding of DT in De, which preserves the order, the least element and
the least upper bound. McEvoy [9] showed that it also preserves the jump oper-
ation. The image of the Turing degrees under this embedding is the set of total
enumeration degrees.

Definition 2. An automorphism base for a structure A with domain A is a set
B ⊆ A, such that for very pair of automorphism π1 and π2 of A if π1 and π2 agree
on all elements in B then π1 = π2.

The total enumeration degrees are an important substructure of the enumeration
degrees. The following result shows that they are an automorphism base for De
Theorem 2 (Selman[13]). Let a and b be enumeration degrees. Then a ≤ b if and
only if {x ≥ b | x is total} ⊆ {x ≥ a | x is total}.

Many properties of the Turing degrees can be transferred to the enumeration
degrees via the following result.

Theorem 3 (Cai, Ganchev, Lempp, Miller and Soskova[1]). The set of total enu-
meration degrees is first order definable in De.

It follows, in particular, that any automorphism base of the Turing degrees is
an automorphism base of the enumeration degrees. Slaman and Woodin [19] show
that the set of Turing degrees below 0(5) is an automorphism base for DT . Thus
we have the following theorem:

Theorem 4. The set of total enumeration degrees below 0
(5)
e is an automorphism

base for the structure of the enumeration degrees.

A further definability result that we will use in this article concerns the relation
“c.e. in” on Turing degrees.

Definition 3. Let a and b be Turing degrees. We say that a is c.e. in b if there
are sets A ∈ a and B ∈ b, such that A is c.e. in B.

Theorem 5 (Cai, Ganchev, Lempp, Miller and Soskova [1]). The image of the
relation “c.e. in” under the standard embedding of DT in De is first-order definable
in the structure of the enumeration degrees.

2.2. The coding method. The structure De(≤ 0′e), also called the local structure
of the enumeration degrees, consists of the enumeration degrees of Σ0

2 sets. The
proof of Theorem 3 extends an earlier result of Ganchev and Soskova [7]: the total
enumeration degrees are definable in De(≤ 0′e). In [16] we studied the properties
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of the local structure of the Turing degrees DT (≤ 0′T ), which we can view as a
definable substructure of De(≤ 0′e). We described a method for representing the
standard model of first-order arithmetic as a partial order and discussed various
ways to define such a structure in DT (≤ 0′T ) with finitely many parameters. In
particular we introduced the notion of indexing, which we now transfer to the
setting of the enumeration degrees.

Definition 4. We say that ~p define an indexing of a sequence {Zi}i<ω, if they
define a model of arithmetic M and a function ϕ : NM → De, such that ϕ(iM) =
de(Zi).

Slaman and Woodin [17] showed that in DT (≤ 0′T ) there is an indexing of the c.e.
sets which is definable from parameters. Note that the image of the Turing degree
dT (We) under the standard embedding is the enumeration degree ι(dT (We)) =
de(W e). In other words, the c.e. Turing degrees are mapped to the Π0

1 enumeration
degrees. Transferring Slaman and Woodin’s result to the enumeration degrees we
have the following:

Theorem 6 (Slaman and Woodin [17]). There are finitely many total parameters
in De(≤ 0′e) that define an indexing of the sequence {W e}e<ω.

An indexing of the sequence {W e}e<ω will be called a basic indexing. Parameters
that define a basic indexing will be called basic indexing parameters.

The main result in [16] shows the existence of finitely many parameters in
DT (≤ 0′T ) that define an indexing of the ∆0

2 sets, i.e. an indexing of the sequence
{Xe}e<ω, where

• If {e}∅′ is a total {0, 1}-valued function thenXe is the set with characteristic

function {e}∅′ .
• Xe = ∅ otherwise.

Again, we can transfer this result to show that there is indexing definable from
finitely many parameters of the sequence {Xe ⊕Xe}e<ω. We will say that this is
an indexing of the total ∆0

2 sets. In the next section we improve this result to show
that every set of basic indexing parameters defines an indexing of the total ∆0

2 sets.
Our next goal will be to extend the indexing power of any set of basic indexing

parameters outside the local structure. Let us denote by IT (0′e) the union of all
intervals [x,x′], where x is a total enumeration degree below 0′e. The definability
of the image of the relation “c.e. in”, stated as Theorem 5, will be one of the main
tools used in Section 4, where we show that any set of basic indexing parameters
can be used to identify the total enumeration degrees in the set IT (0′e). We first
extend the indexing power to cover all enumeration degrees that are images of a
Turing degree y that is c.e. in and above some Turing degree x ≤T 0′. We show
that every set of basic indexing parameters defines a 0′e-basic indexing : an indexing

of the sequence {Ye ⊕ Ye}e<ω, where e = 〈e0, e1〉 and Ye = Xe1 ⊕W
Xe1
e0 .

Then relativizing the results from Section 3, we show that every set of basic
indexing parameters defines an indexing of the total IT (0′e) sets: an indexing of
the sequence {Ze ⊕ Ze}e<ω, where e = 〈e0, e1〉 and:

• If {e0}Xe1 is a total {0, 1}-valued function then Ze = Xe1 ⊕ {e0}Xe1 .
• Ze = ∅ otherwise.

Finally, in Section 5 we extend the power of any set of basic indexing parameters
to cover all total enumeration degrees in the interval [0e,0

′′
e ]: we show that they
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define an indexing of the total ∆0
3 sets. We can iterate the results from Section 4 and

Section 5 in relativized form to cover the total enumeration degrees in the interval

[0e,0
(n)
e ] for any natural number n. In particular, when n = 5 we see that any set

of basic indexing parameters determines the total enumeration degrees below 0
(5)
e .

By Theorem 4 this is an automorphism base for the enumeration degrees.

3. Step 1: An indexing of the total ∆0
2 sets

The goal of this section is to prove the following theorem:

Theorem 7. Every set of basic indexing parameters ~p ∈ De(≤ 0′e) defines an
indexing of the total ∆0

2 sets.

This result is significantly stronger than that from [16], where we showed merely
the existence of a finite set of parameters ~p ∈ DT (≤ 0′T ), defining an indexing of
the ∆0

2 sets. We will outline the main steps that comprised the proof of the result
in [16] and explain how they can be implemented and improved in the context of
the enumeration degrees. Using ideas that go back to works of Jockusch and Posner
we first showed that every every ∆0

2 Turing degree can be determined using four
low ∆0

2 Turing degrees. Here a degree (Turing or enumeration) is low if its jump
is equal to the jump of the least degree. In the enumeration degrees we have an
even simpler way of determining the total ∆0

2 enumeration degrees from the low
enumeration degrees.

Theorem 8 (Ganchev, Soskova [7]). The set of low enumeration degrees is first
order definable in De(≤ 0′e). Every total enumeration degree y ≤ 0′e is the least
upper bound of two low enumeration degrees.

Next we showed that every low Turing degree has a unique position with respect
to the c.e. Turing degrees and an additional set of ∆0

2 Turing degrees Z. The set Z
was constructed in a way that allowed us to argue that there are parameters that
index the c.e. sets and a sequence representing Z. Working in the richer world of
the enumeration degrees, we show that the image of the c.e. Turing degrees under
the standard embedding, the set of Π0

1 enumeration degrees, is sufficient to uniquely
determine the position of every low enumeration degree and hence of every total
enumeration degree below 0′e. We prove this in the following two theorems. Recall
that a set is d.c.e. if it is the difference of two c.e. sets. The co-d.c.e. sets are
the complements of d.c.e. sets and the co-d.c.e. enumeration degrees are those that
contain co-d.c.e. sets. The first theorem shows that we can use the low co-d.c.e.
enumeration degrees in place of Z. Note that the class of co-d.c.e. enumeration
degrees is the first class in the difference hierarchy that contains non-total elements.
This is where we step outside the realm of the Turing degrees.

Theorem 9. Let x,y be ∆0
2 enumeration degrees, such that x′ = 0′e and y � x.

There are ∆0
2 enumeration degrees gi, Π0

1 enumeration degrees ai and low co-d.c.e.
enumeration degrees ci,bi for i = 1, 2, such that:

(1) gi is the least element below ai which joins bi above ci;
(2) x ≤ g1 ∨ g2;
(3) y � g1 ∨ g2.

The second theorem determines the position of every low co-d.c.e. enumeration
degree among all ∆0

2 enumeration degrees using the Π0
1 enumeration degrees.
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Theorem 10. Suppose x is a co-d.c.e. enumeration degree, x′ = 0′e and y is a ∆0
2

enumeration degree, such that y � x. There are ∆0
2 enumeration degrees gi and

Π0
1 enumeration degrees ai, ci,bi for i = 1, 2, such that:

(1) gi is the least element below ai which joins bi above ci;
(2) x ≤ g1 ∨ g2;
(3) y � g1 ∨ g2.

The proofs of these two theorems are lengthy and technical. We will leave them
for Section 7 and Section 8 respectively.

Before we proceed with the proof of the main result for this section we observe
the following consequence of Theorem 8, Theorem 9 and Theorem 10. We say that
a function f fixes an element a if f(a) = a.

Corollary 1. If π : De(≤ 0′e) → De(≤ 0′e) is an automorphism which fixes all Π0
1

enumeration degrees, then π fixes:

(1) all low co-d.c.e. enumeration degrees;
(2) all low ∆0

2 enumeration degrees;
(3) all total ∆0

2 enumeration degrees.

Proof. Let π be an automorphism of De(≤ 0′e), which fixes all Π0
1 enumeration

degrees. Consider first a low co-d.c.e. enumeration degree x and let y = π(x).
From the definability of the low enumeration degrees it follows that y is low, and
hence ∆0

2. By Theorem 10 it must be that y ≤ x. Now consider z = π−1(x). This
too must be a low enumeration degree. Noting that π−1 is also an automorphism
which fixes all Π0

1 enumeration degrees we have in this case as well by Theorem 10
that z ≤ x. So we have that z ≤ x and hence π(z) ≤ π(x), i.e. x ≤ y. But we
already know y ≤ x, thus x = π(x).

The other two statements follow in a similar way from Theorem 9 and Theorem
8 respectively, using the fact that the low and the total enumeration degrees are
definable subclasses of the ∆0

2 enumeration degrees. �

Proof of Theorem 7. Let ~p be basic indexing parameters,M be the standard model
of arithmetic defined by ~p and ϕ be the basic indexing defined by ~p. Let {Ue}e<ω
be an enumeration of all low co-d.c.e. sets, defined in the following way: let e =
〈e1, e2〉 then Ue = We1 \We2 if We1 \We2 is of low enumeration degree and Ue = ∅
otherwise. Using parameters ~p we first define an indexing θ of {Ue}e<ω.

Let e be an enumeration degree. The property e ∈ NM is definable from ~p, so
we may assume that e = eM, for some natural number e. Recall that we have an
effective way to translate an arithmetic statement about e, say ψ(e), into a degree

theoretic statement ψ̂(e, ~p) so that:

N |= ψ(e) if and only if De(≤ 0′e) |= ψ̂(e, ~p).

We will say that ψ(e) is true inM to mean that ψ(e, ~p) is true in De(≤ 0′e). Using
Theorem 10 and the definability of the low enumeration degrees we define θ(e) as
the largest low enumeration degree in the set of all x with the following property:
for every ai, bi, ci and gi where i = 1, 2 for which there are elements eMai , eMbi
and eMci , such that ϕ(eMai ) = ai, ϕ(eMbi ) = bi and ϕ(eMci ) = ci, and gi is the least
element below ai which joins bi above ci for i = 1, 2 and in M the statement:

“de(Ue) is bounded by the join of the least enumeration degree
below de(Wea1

) which joins de(Web1
) above de(Wec1

); and the least
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enumeration degree below de(Wea2
) which joins de(Web2

) above

de(Wec2
).”

is true, then x ≤ g1 ∨ g2.
Next we use Theorem 9 to define an indexing ψ of the sequence Ve, where

Ve = We(K∅⊕K∅), if this is a low set, and Ve = ∅ otherwise. Assume that e = eM.
Then ψ(e) is the largest enumeration degree out of all low enumeration degrees x
with the following property: for every ai, bi, ci and gi where i = 1, 2 for which there
are elements eMai , eMbi and eMci , such that ϕ(eMai ) = ai, θ(e

M
bi

) = bi and θ(eMci ) = ci,
and gi is the least element below ai which joins bi above ci for i = 1, 2 and in M
the statement:

“de(Ve) is bounded by the join of: the least e-degree below de(Wea1
)

which joins de(Ueb1 ) above de(Uec1 ); and the least e-degree below

de(Wea2
) which joins de(Ueb2 ) above de(Uec2 ).”

is true then x ≤ g1 ∨ g2.
Finally, we define an indexing δ of the sequence {Xe ⊕Xe}e<ω, i.e. an indexing

of the total ∆0
2 sets. Recall, that Xe is the set with characteristic function {e}∅′ , if

this is a total {0, 1}-valued function and ∅ otherwise. Let e = eM for some natural
number e. We let δ(e) = ψ(iM) ∨ ψ(jM), where iM and jM are enumeration
degrees satisfying the following arithmetic statement in M:

“ The pair (i, j) is lexicographically the least pair of indices, such
that Vi ⊕ Vj ≡e Xe ⊕Xe”.

That such a pair exists follows from Theorem 8. �

4. Step 2: An indexing of the total IT (0′e) sets

Recall that IT (0′e) consists of all intervals [x,x′], where x ≤ 0′e is a total enu-
meration degree. The main goal of this section is to prove the following theorem:

Theorem 11. Let ~p be basic indexing parameters. Then ~p define:

(1) a 0′e-basic indexing.
(2) an indexing of the total IT (0′e) sets.

The second statement of this theorem will follow easily from the first statement
using Theorem 8, Theorem 9 and Theorem 10 relativized above any total enumer-
ation degree. The challenge is to prove the first statement. We need to show that
we can determine the image of the Turing degrees (under the standard embedding
ι) of sets that are c.e. in and above some ∆0

2 set. Fix a total b ≤ 0′e and let a be
the image of a Turing degree that is c.e. in and above ι−1(b). If a ≥e 0e then we
can use Shoenfield’s jump inversion theorem, the definability of the enumeration
jump and the indexing of the total ∆0

2 sets to determine a.

Theorem 12 (Shoenfield [14]). If a is c.e. in and above 0′ then a = x′ for some
total x ≤ 0′

So let us assume that a is not above 0′e. We can reduce our task further by using
a relativized form of Sack’s splitting theorem with cone avoidance:

Theorem 13 (Sacks [12]). Let x and y be nonzero c.e. Turing degrees, such that
y is nonzero. There are low c.e. Turing degrees a and b, such that x = a ∨ b and
a � y and b � y.
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What is left is to determine a, assuming it is low relative to b and not above
0′e. The definability of the jump operation and the image of the relation “c.e. in”
will let us pick out the images of all degrees y which are low relative to b, not
above 0′ and c.e. in b. The following theorem relativized to b shows that a can be
distinguished among all images of such y using only elements below 0′e.

Theorem 14. If A and W are c.e. sets and Y is a low c.e. set then one of the
following is true:

(1) W ≤T Y ;
(2) A ≤T Y ;
(3) There are sets U and V computable from W , such that A joins U above V ,

whereas Y does not join U above V .

Proof. Let A and W be c.e. sets and let Y be a low c.e. set. Suppose that W �T Y
and A �T Y . We will build ∆0

2 approximations {U [s]}s<ω and {V [s]}s<ω to sets
U and V . We will only enumerate n in U or V if a number less than n enters W
at the same stage. This ensures that U and V are computable from W .

To ensure that A⊕U ≥T V we use a movable marker strategy. To every natural
number x we will attach a marker γ(x), initially γ(x) = x + 1. The value of the
marker can be raised during the construction if we observe a change in A � γ(x)
or we make a change in U � γ(x). Similarly, we will only change the value of V (x)
provided that we can raise the value of γ(x). The construction will ensure that
every marker reaches a finite limit value. Then V (x) = V [s](x), where s is the least
stage in the construction at which A[s] and U [s] are correct up to γ(x)[s].

Let {Θe}e<ω be a listing of all Turing functionals. For every e we have to also
satisfy the requirement:

Re : ΘY⊕U
e 6= V.

The strategy for Re is to search for an opportunity to diagonalize ΘY⊕U
e against

V . If at stage s we find a number x, such that ΘY⊕U
e (x) is defined at stage s and

the computation has use θe(x) < γ(x), then we will call x an opportunity for e at
stage s. The opportunity is realized once a number y < x enters W . We can then
change U(γ(x)), while preserving U � θe(x), and set V (x) 6= ΘY⊕U

e .
If Y [s] � θe(x) = Y � θe(x) then we say that x is a correct opportunity. In this

case the diagonalization will remain true at all further stages. If Y is incorrect
infinitely often, we risk making γ(x) unbounded. We use the fact that Y is low
and hence we have ∆0

2 approximations to sets computable from Y ′, to avoid this.
We approximate whether or not x is a correct opportunity as follows. Using the
recursion theorem we can assume we know an index of this construction and so we
can find a ∆0

2 approximation to the set

Qe(w) = {x | ∃t > w(θe(x)[t] < γ(x)[t] & (Y � θe(x))[t] � Y )}.
Here w is meant to be the first stage since Re started working with x, recorded

as we(x) in the construction. Once α starts working with x at stage we(x) at every
further stage it checks if x ∈ Qe(we(x)). While this is true, the strategy tries to
turn x into an opportunity by using every possibility to raise the value of γ(x)
above θe(x). Changes in A give us such possibilities.

If x /∈ Qe(we(x)), but ΘY,U
e (x) ↓ then there is an inconsistency. We can speed up

the approximations to Θe, Y and Qe, until we either observe that the computation
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was incorrect or x enters Qe(we(x)). If x /∈ Qe(we(x)) permanently then the
strategy will give up on x as a diagonalization witness.

This process will be repeated in turn for all x > e until a permanent diagonal-
ization is achieved. If there are infinitely many Y -correct opportunities, none of
which are allowed to be realized by W then we will argue that W ≤T Y . If there
are only finitely many Y -correct opportunities for e and ΘY⊕U

e is total then we will
show that A ≤T Y .

Before we proceed to describe a formal construction, we need to consider how
all of the strategies work together. This complicates matters as now U can change
due to actions by other strategies. On the other hand if ΘY,U

e is not total, there
is a risk that infinite activity of one strategy interferes with the work of lower
priority requirements. To solve the first problem an Re-strategy will set up a
restraint R(e+ 1), and require that lower priority strategies do not modify U or V
on numbers less than R(e+ 1). To solve the second problem, we use that Y is low
once again to approximate the set

Te(w) = {x | ∃s > w(ΘY,U
e (x)[s] ↓ & Y [s] � θe(x) = Y � θe(x))}.

The Re strategy will act only for numbers x ∈ Te(we(x)). We will assume that
Turing functionals are defined so that if y < x and ΘZ(x)[s] ↓ then ΘZ(y)[s] ↓ and
θ(y) < θ(x). Thus, if ΘY,U

e (x) ↑ for some number x then eventually Re will stop
acting.

Construction
At stage 0, U0 = V0 = ∅, γ(x)[0] = x + 1 for all x, the restraint R(e)[0] = 0

for every e, the stage we(x) at which a number x starts being examined by Re is
initially undefined. At stage s > 0 we examine the requirementsR0 . . .Rs−1 in turn
until one of them terminates the stage. Unless otherwise specified all parameters
inherit their values from the previous stage. If a requirement Re is cancelled at
stage s then d we(x) is set to s+ 1 for all x.

Requirement Re: Examine each x, such that R(e) < x < s, in turn until an
instruction forces us stop.

First we ensure that the approximation to Y and to the sets Te and Qe agree
about x. We will say that they agree if

• ΘY,U
e (x)[s] ↑ and x /∈ Te(we(x))[s] or

• ΘY,U
e (x)[s] ↓, x ∈ Te(we(x))[s] and x ∈ Qe(we(x))[s].

• ΘY,U
e (x)[s] ↓, x ∈ Te(we(x))[s], x /∈ Qe(we(x))[s] and θe(x)[s] ≥ γ(x)[s].

If none of the cases above hold then we speed up the approximations to Y , Θe,
Te(we) and Qe(we) until they do. We pick the first case which applies to x.

(1) If x /∈ Te(we(x))[s] then we cancel all we(y) for y > x and move on to the
next requirement.

(2) If R(e + 1) ≤ θe(x)[s] or R(e + 1) < R(e) then we redefine R(e + 1) as
max(R(e), θe(x)[s] + 1). We cancel all lower priority requirements and all
we(y) for y > x and end this stage.

(3) If θe(x)[s] ≥ γ(x) and A(z)[s − 1] 6= A(z)[s] for some z < γ(x) then we
redefine γ(y) for all y ≥ x to be numbers larger than any seen in the
construction so far. We cancel all lower priority requirements and all we(y)
for y > x and end this stage.

(4) If x /∈ Qe(we(x))[s] then we move on to x+ 1.
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(5) If V (x)[s] 6= ΘY,U
e (x)[s] then we cancel all we(y) for y > x and move on to

the next requirement.
(6) If θe(x)[s] < γ(x) and W (z)[s − 1] 6= W (z)[s] for some z < x then we set

V (x)[s] = 1−ΘY,U
e (x)[s]. Set U(γ(x))[s] = 1 and let reset γ(y) for all y ≥ x

to be fresh numbers. Finally we set R(e+ 1) = γ(x) + 1. Cancel all lower
priority requirements and all we(y) for y > x and end this stage.

(7) If none of the above cases applies to x then move on to x+ 1.

If all x are scanned without ending the stage then move on to the next requirement.
End of Construction

We will show by induction on e that Re is satisfied. We will furthermore show
that there is a stage se+1, such that at every t > se+1 the Re strategy does not
initialize lower priority strategies or change the value of any parameter. Assume
inductively that this is true for i < e. We can find a stage se, such that at all stages
t > se, Re is examined, not initialized, the value of R(e) is fixed and the γ-markers
for x ≤ R(e) do not change.

Fix x > R(e) and assume that after stage sx ≥ se, the strategy Re does not
change any parameters when examining y < x. Then after stage sx the value
of we(x) does not change and x is examined by Re at every stage t > sx. If
x /∈ Te(we(x)) then ΘY,U

e is undefined at x. Let se+1 be the stage at which the
approximation to Te(we(x)) stabilizes on x. Then at every stage t > se+1 the
strategy Re moves on to the next requirement under Case (1) for x, without further
actions.

If x ∈ Te(we(x)) then as x is examined at every stage t after the last time we(x)
was changed, let s1 > we(x) be the least stage, such that ΘY,U

e (x)[s1] is defined
and Y -correct. Then after stage s1 Case(1) will not apply for x anymore. We
pass through Case 2 at stage s1 if R(e + 1)[s1] ≤ θe(x)[s1]. Hence the Y -correct
computation is preserved at all stages t > s1 and Case (1) or (2) will never again
apply for x. As θe(x) does not change after stage s1 it follows that there can be at
most one stage t > s1, such that Case (3) applies to x. If there is such a stage then
we move the value of γ(x) above θe(x) permanently.

Let s2 ≥ s1 be the least stage such the approximation Qe(we(x)) stabilizes on
x at stage s2 and Cases (1) (2) and (3) do not apply for x. If x /∈ Qe(we(x))
then at every stage t > s2 Case (4) applies for x, the strategy does not change any
parameters when examining x and x+ 1 is always accessible. We say that x is not
an opportunity.

Suppose that x ∈ Qe(we(x)). Then there is a stage t ≥ we(x), such that
θe(x)[t] < γ(x)[t] and Y [t] � θe(x) � Y . As s1 is the least stage at which the com-
putation ΘY,U is Y -correct and we preserved it at all further stages, it follows that
θe(x) < γ(x)[t] at all t > s2. If there is a stage s3 ≥ s2 such V (x)[s3] 6= ΘY,U

e (x)[s3]
then this inequality is preserved at all further stages thus Re is permanently. In
particular if at any stage t ≥ s2 Case (6) applies then at stage t + 1 Case 5 will
apply for x. At every stage t > s3 Re moves on to the next requirement under Case
(5) for x. It does not change R(e+ 1) or change any Γ-marker.

The only other option for x is that at every stage t > s2 Case(7) applies for x.
In this case as well the Γ-markers for all y ≤ x do not change after stage s2 and x
does not cancel the values of we(y) for y > x. We will say that x is an unrealized
opportunity.
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It follows from the analysis above that for every x the value of γ(x) reaches a
limit and so V ≤T A⊕ U .

If ΘU,Y
e is not total then eventually Re will reach a number x, such that x /∈

Te(we(x)) and so Re will always move onto Re+1 under Case (1)when examining
x, without further actions. Suppose that ΘU,Y

e is total. We claim that there is a
largest x, examined by Re at all but finitely many stages, such that x is a realized
correct opportunity and ΘU,Y

e (x) 6= V (x). In this case as well Re will always move
onto Re+1 under Case (5) without further action, thus completing the induction
step.

Assume towards a contradiction that every x > R(e) is either not an opportunity
or an unrealized opportunity. Suppose that there is a number x0, such that every x >
x0 is not an opportunity. We show that A ≤T Y , contradicting our assumptions.
Fix a number x > x0. To compute A(x) we find a stage s in the contraction, such
that ΘU,Y

e (x)[s] ↓ and the computation is Y -correct. Then A(x) = A(x)[s]. Indeed
if A(x) changes after stage s then we will move the marker γ(x) above θ(x) and x
will become an opportunity.

If there are infinitely many unrealized opportunities then we show that W ≤T Y ,
contradicting our assumptions: to compute W (z), search for an element x > z and
a stage s such that ΘY,U

e (x)[s] ↓ and is Y -correct and θe(x) < γ(x). As there
are infinitely many unrealized opportunities we will eventually find such a pair of
elements s and x. Then W (z) = W (z)[s], otherwise x would become realized. �

Proof of Theorem 11. Let ~p be basic indexing parameters and let M and δ be the
definable from ~p model of arithmetic and indexing of the total ∆0

2 sets. We will use

~p to define a 0′e-basic indexing ϕ0′
e , i.e. an indexing of the sequence {Ye ⊕ Ye}e<ω,

where Ye = Xe1⊕W
Xe1
e0 and Xe1 is the e1-th ∆0

2 set, whenever e = 〈e0, e1〉. So fix e

and let e be a natural number, such that eM = e. We determine ϕ0′
e(e) according

to the following cases:

Case 1: If in M we have that ∅′ ≤T Ye, then we use Theorem 12 to find iM, such
that in M the following statement is true:

“X ′i is Turing equivalent to Ye.”

We then set ϕ0′
e(e) = δ(iM)′ using that the enumeration jump is definable by

Theorem 1 and that the standard embedding ι preserves the jump operation.

Case 2: If in M we have that Y ′e ≡T X ′e1 and ∅′ �T Ye then by Theorem 14
relativized to Xe1 we have that if Y is c.e. in and above Xe1 and does not compute
∅′ or Ye then there are ∆0

2 sets U and V , such that Ye joins U above V , whereas
Y does not join U above V . Using that the image of the relation “c.e. in” is
definable by Theorem 5 we can determine ϕ∅

′
(e) as the least element in the set of

all x ≥ δ(eM1 ) that satisfy the following statement: x′ = δ(eM1 )′, 0′e � x, ι−1(x) is
c.e. in ι−1(δ(eM1 )) and δ(jM) ≤ x ∨ δ(iM) for every i and j, such that in M the
following statement is true

“Ye joins Xi above Xj .”

Case 3: If none of the case above are true then we use Theorem 13 to find i and j,
such that in M:

“Yi and Yj are c.e. in and above Xe1 , they are low over Xe1 , they
do not compute ∅′ and Ye ≡T Yi ⊕ Yj .”
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We use Case 2 to define ϕ0′
e(iM) and ϕ0′

e(iM) and set ϕ0′
e(e) = ϕ0′

e(iM) ∨
ϕ0′

e(jM).

Now that we have defined ϕ0′
e we use it together with Theorem 8, Theorem 9 and

Theorem 10 relativized above any total enumeration degree to define an indexing
ξ0

′
e of the total sets in IT (0′e), i.e. of the sequence {Ze⊕Ze}e<ω, where e = 〈e0, e1〉

and Ze = {e0}Xe1 if this is a total {0, 1} valued function and Ze = ∅ otherwise.
The proof follows the definition of δ from Theorem 7. �

5. Step 3: An indexing of the total ∆0
3 sets

The final step in our proof gives a method to obtain an indexing of the total ∆0
3

set form an indexing of the total sets in IT (0′e). Let x be a Turing degree below 0′′.
If x ≥ 0′ we can use Theorem 11 to determine the image of x under the standard
embedding. So suppose that x � 0′. We will use genericity to determine x in three
steps. Consult [19] for basic properties of generic sets.

Proposition 1. Let n be a natural number and x be a Turing degree. If x ≤ 0(n+1)

then x = (y1∨y2)∧(y3∨y4), where for each i = 1, 2, 3, 4 we have that y′i ≤ 0(n+1).

Proof. If x = 0(n+1) then we use Sacks’ splitting theorem (Theorem 13) relativized
to 0(n) to split x into two low relative to 0(n) degrees y1 and y2. Then x =
(y1 ∨ y2) ∧ (y1 ∨ y2). So suppose x < 0(n+1) and let i + 1 be the least number,
such that x � 0(i+1).

Fix X ∈ x. Recall that a set Y is 1-generic relative to X if Y meets or avoids
every Σ0

1(X) set of finite binary strings. Every incomputable c.e. set computes a
1-generic set. Hence relativizing X ⊕ ∅(i+1) computes a 1-generic relative to X set
Y . We split Y into odd and evens numbers Y = U ⊕ V . The sets U and V are
mutually 1-generic relative to X, hence U ⊕ X and V ⊕ X form a minimal pair
relative to X. We further transform U ⊕X and V ⊕X using the functional C.

The functional C maps a pair of sets X and G to a set C(X,G) as follows. Let
G = Geven ⊕Godd:

C(X,G)(n) =

{
Geven(n−m) if Godd(n) = 0 and |Godd � n| = m

X(m) if Godd(n) = 1 and n is the m-th element of Godd.

Note that G ⊕X ≡T Godd ⊕ C(X,G). Let y1 = dT (Uodd), y2 = dT (C(X,U)),
y3 = dT (Vodd) and y4 = dT (C(X,V )). Then x = (y1 ∨ y2) ∧ (y3 ∨ y4).

In [16] we showed that if G is 1-generic relative to X then so is C(X,G). If G is
1-generic then G′ ≤T G⊕∅′. Hence for every i = 1, 2, 3, 4 we have that y′i ≤ 0(n+1).
�

We have reduced our task to finding a way to determine only the total degrees
x with x′ ≤ 0′′e . We will reduce it further to determining only the images of the
2-generic degrees. Recall, that a set is (n + 1)-generic, if it is generic relative to
∅(n) and a degree is (n+ 1)-generic, if it contains an (n+ 1)-generic set.

Proposition 2. If x′ ≤ 0(n+1) then there are (n+ 1)-generic degrees gi ≤ 0(n+1),
i = 1, 2, 3, 4, such that x = (g1 ∨ g2) ∧ (g3 ∨ g4).

Proof. Fix X ∈ x. As in the proof of Proposition 1 if G is 1-generic relative to X,
then we can split it into even and odd bits L ⊕ R, and then use the functional C
to define g1 = dT (Lodd), g2 = dT (C(X,L)), g3 = dT (Rodd) and g4 = dT (C(X,R)).
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We would like to ensure that all of the elements in this definition of x are also
(n + 1)-generic. It will be sufficient to ensure that G, C(X,L) and C(X,R) are
(n+ 1)-generic.

We extend the definition of C so that it can have a finite binary string of even
length as a second parameter. Given a finite binary string τ , we can break it
up into two finite binary strings τeven and τodd, so that τeven(n) = τ(2n) and
τodd(n) = τ(2n+ 1). We will write τ = τeven ⊕ τodd.

C(Y, τ)(n) =


τeven(n−m) if τodd(n) = 0 and |{x < n | τodd(x) = 1}| = m;

Y (m) if τodd(n) = 1 and n is the m-th element of τodd;

↑ if τodd(n) ↑.

For every Z let De(Z) denote the dense set De(Z) = {σ | σ ∈WZ
e } ∪ {σ | ∀τ �

σ(τ /∈ WZ
e )}. Note that for every e, De(Z) is computable from Z ′. We need to

ensure that G meets De(X) and that G, C(X,L) and C(X,R) meet De(∅(n)) for
every e. As X ′ ≤T ∅(n+1) it follows that these sets are computable from ∅(n+1). We
build G as

⋃
s σ[s] by the finite extension method using oracle ∅(n+1). Let σ0 = ∅.

Suppose we have constructed σ[s].

(1) If s = 〈0, e〉 then σ[s+ 1] is the least extension of σ[s] in De(X).
(2) If s = 〈1, e〉 then σ[s+ 1] is the least extension of σ[s] in De(∅(n)).
(3) If s = 〈2, e〉 then let σ[s] = σL ⊕ σR. We can assume that |σL| is even.

Let ρ = C(X,σL). We would like to extend σ[s] so that ρ has an extension
in De(∅(n)). Find a finite binary string τ , such that ρ̂ τ in De(∅(n)). Let
k = |τ |. We can represent ρ̂ τ as C(X,σL τ̂

∗) where τ∗ is of length 2k and
is defined as τ(0)̂ 0̂ τ(1) . . . 0̂̂ τ(k)̂ 0, i.e. the even bits correspond to τ and
the odd bits are all 0. We set σ[s+1] to be the least string which extends σ[s]
and such that there is a string σR[s+1] with σL[s]̂ τ∗⊕σR[s+1] = σ[s+1].

(4) If s = 〈3, e〉 then let σ[s] = σL ⊕ σR[s]. Similarly to the previous case, we
find a finite binary string τ , such that C(X,σR[s])̂ τ is in De(∅(n)). Let
k = |τ |. Set σR[s+ 1] = σR τ̂(0)̂ 0̂ τ(1) . . . 0̂̂ τ(k)̂ 0 and let σ[s+ 1] be the
least string which extends σ[s] and such that there is a string σL[s+1] with
σL[s+ 1]⊕ σR[s+ 1] = σ[s+ 1].

�
Finally we show that 2-generic degrees can be determined from degrees with

images under ι in the set IT (0′e). Recall that a ∆0
2 set is high if its Turing jump

computes 0′′ and a Turing degree is high if it contains high set.

Theorem 15. There are high Turing degrees h1 < 0′ and h2 < 0′, such that if x
is 2-generic then (h1 ∨ x) ∧ (h2 ∨ x) ≡T x.

Proof. Intuitively H1 and H2 will be constructed by combining Shoenfield’s Jump
Inversion Theorem with the attempt to make for every pair of Turing-operators
Φ,Ψ the following set dense:

{τ | ∃x(Φτ⊕H1(x) 6= Ψτ⊕H2(x)}).

Note that for a particular pair of Turing functionals (Φ,Ψ) this set is Σ0
1(∅′). Let

G be a 2-generic, such that ΦG⊕H1 and ΨG⊕H2 are total. If our attempt succeeds
then ΦG⊕H1 6= ΨG⊕H2 . It will follow from the construction that if our attempt fails
and ΦG⊕H1 = ΨG⊕H2 = X then X ≤T G.
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Using ∅′ as oracle, we build sequences µs and λs so that H1 =
⋃
s µs and H2 =⋃

s λs. Let {Cs}s<ω be a computable in ∅′ c.e. approximation of ∅′′. For every s let
cs be the least element in C[s]\C[s−1]. Stages s, such that Cs � cs+1 = C � cs+1
will be called true stages. There are infinitely many true stages.

To every stage s we associate the set of possible extensions of a string σ at stage
s to be

Ps(σ) = {τ � σ | ∀c, x(c < cs & 〈c, x〉 ≥ |σ| ⇒ τ(〈c, x〉) = Cs(c))}.

Note that for every s and every σ the set Ps(σ) is computable, although not
uniformly computable. If at every stage s we respect that µs+1 ∈ Ps(µs) and
λs+1 ∈ Ps(λs) then both sets H1 and H2 will be high, by the limit lemma:
C(c) = lim xHi(〈c, x〉). To see this in detail, fix c and let s be larger than c
and the first stage s0, such that Cs0 � c + 1 = C � c + 1. Then for every x, such
that 〈c, x〉 ≥ |µs|, we will have that H1(〈c, x〉) = C(c). Similarly for every x, such
that 〈c, x〉 ≥ |λs|, we will have that H2(〈c, x〉) = C(c). We also note that if s is a
true stage then for every t > s we have that µt ∈ Ps(µs) and similarly λt ∈ Ps(λs).

Now let 〈Φe,Ψe, σe〉 be a computable listing of all triples of Turing operators Φe
and Ψe and finite binary string σe, called requirements. Initially all requirements
are unsatisfied. Set µ0 = λ0 = ∅. At stage s+ 1 we have constructed µs and λs.

For every unsatisfied requirement with index e < s in turn we ask the question
“Does there exists a string τ � σe and strings µ ∈ Ps(µs), λ ∈ Ps(λs) and a natural
number x, such that:

Φτ⊕µe (x) ↓6= Ψτ⊕λ
e (x) ↓?

This question is computable in ∅′. Let e be the index of the least unsatisfied
requirement for which the answer is “yes”. Find such µ and λ of length larger than
the length of µs and λs respectively and set µs+1 = µ and λs+1 = λ. Declare the
requirement with index e satisfied. If the answer for all requirements is “no” then
we extend µs to µs+1 ∈ Ps(µs) of length larger than |µs| and λs to λs+1 ∈ Ps(λs)
of length larger than |λs|.

Now let Ψ and Φ be, such that the set S = {τ | ∃x(Φτ⊕H1(x) 6= Ψτ⊕H2(x))}
is not dense. Let σ be a finite binary string with no extension in S. Let e be the
index of 〈Φ,Ψ, σ〉. Let s+ 1 > e be a stage, such that all requirements with indices
less that e that ever get satisfied are satisfied and such that s + 1 is a true stage.
At stage s+ 1 the answer to the question for the requirement e is “no”. We claim
that for any set G � σ, if ΦG⊕H1 and ΨG⊕H2 are total and equal to X then X
is computable from G. Indeed, to compute X(x), find the least µ ∈ Ps(µs) and
λ ∈ Ps(λs), such that ΦG⊕µ(x) ↓= ΨG⊕λ(x) ↓. Such a pair exists, because s+ 1 is
a good stage and hence H1 and H2 are infinite paths in the sets Ps(µs) and Ps(λs)
respectively, and because ΦG⊕H1 = ΨG⊕H2 . If X(x) 6= ΦG⊕λ(x), there would be
a natural number n, such that ΦG⊕H1�n(x) ↓6= ΦG⊕λ(x). But then H1 � n and µs
would have a common extension µ∗ in Ps(µs) and so the answer of the question
would be “yes”. So, X(x) = ΦG⊕λ(x). �

Definition 5. An indexing of the total ∆0
n+1 sets will be any indexing of the se-

quence {Xe ⊕Xe}e<ω, where Xe = {e}∅(n)

if this is a total {0, 1}-valued functions
and Xe = ∅ otherwise.

Theorem 16. Every set of basic indexing parameters defines an indexing of the
total ∆0

3 sets.
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Proof. Let ~p be basic indexing parameters with a model of true arithmetic M. By
Theorem 11 let ψ0′

e be a definable from ~p indexing of the IT (0′e) total sets. We

use ~p to define an indexing δ0
′
e of the sequence {Xe ⊕Xe}e<ω, where Xe = {e}∅′′

if this is a total {0, 1}-valued functions and Xe = ∅ otherwise.
Let e be an enumeration degree and e be a natural number, such that e = eM.

We determine δ0
′
e(e) according to the following cases:

Case 1: In M the statement “Xe belongs to a 2-generic degree.” is true. We
use Theorem 15 to find high sets H1 and H2, such that dT (Xe) is the greatest
lower bound of the degrees dT (Xe ⊕H1) and dT (Xe ⊕H2). Next we note that the
set Xe ⊕ H1 is computable from ∅′′ and hence its degree belongs to the interval
[dT (H1), dT (H1)′]. Thus, in M we can search for the least natural number i, such
that H1 ⊕Xe ≡T Zi, where {Zi ⊕ Zi}i<ω is the sequence of all total IT (0′e) sets

indexed by ψ0′
e . Similarly inM we can search for the least natural number j, such

that H2 ⊕Xe ≡T Zj . We define δ0
′
e(e) = ψ0e(iM) ∧ ψ0e(jM).

Case 2: InM the statement “X ′e ≤T ∅′′” is true. Then we use Proposition 2 to find
inM the ∆3 indices i1, i2, i3 and i4 of 2-generic sets G1, G2, G3 and G4, such that
dT (Xe) = (dTG1∨dT (G2))∧(dTG3∨dT (G4)). We use Case 1 to determine δ0

′
e(iMj )

for j = 1, 2, 3, 4 and set δ0
′
e(e) = (δ0

′
e(iM1 ) ∨ δ0′

e(iM2 )) ∧ (δ0
′
e(iM3 ) ∨ δ0′

e(iM4 )).

Case 3: Otherwise, we use Proposition 1 to find in M the ∆3 indices i1, i2, i3
and i4 of sets Y1, Y2, Y3 and Y4 whose jumps are computable in ∅′′ and such that
dT (Xe) = (dTY1 ∨ dT (Y2))∧ (dTY3 ∨ dT (Y4)). We use Case 2 to determine δ0

′
e(iMj )

for j = 1, 2, 3, 4 and set δ0
′
e(e) = (δ0

′
e(iM1 ) ∨ δ0′

e(iM2 )) ∧ (δ0
′
e(iM3 ) ∨ δ0′

e(iM4 )). �

6. Applications

Let ~p be basic indexing parameters. In Section 3 we showed that ~p define an
indexing δ of the total ∆0

2 sets. In Section 4 we extended this to show that ~p

defines firs a 0′e-basic indexing ϕ0′
e and then an indexing ψ0′

e of the total IT (0′e)
sets. Finally in Section 5 we extended this result one step further to show that ~p
define an indexing δ0

′
e of the total ∆0

3 sets. We can continue in this fashion: from ~p

and δ0
′
e we can define a 0′′e-basic indexing ϕ0′′

e and then an indexing ψ0′′
e of all total

sets in IT (0′′e). Then we use the methods of Section 5 with Theorem 15 relativized

to 0′ to define an indexing δ0
′′
e of the total ∆0

4 sets. Iterating further we obtain our
main result.

Theorem 17. Let ~p be basic indexing parameters. For every natural number n, ~p
define an indexing of the total ∆0

n sets.

Combining this result with Theorem 4 we obtain the following result:

Theorem 18. Every set of parameters ~p that define a basic indexing is an auto-
morphism base of De.

Proof. Let ~p be parameters that define a basic indexing and let π : De → De be
an automorphism of the enumeration degrees which fixes all element of ~p. Let M
be the standard model of arithmetic associated with ~p. For every natural number
n, nM is definable from ~p, hence π(nM) = nM. By Theorem 17 using ~p we

can define an indexing δ0
(4)
e of the sequence {Xe ⊕ Xe}e<ω, where Xe = {e}∅(5)

if this is a total {0, 1}-valued function and Xe = ∅ otherwise. So if x ≤ 0
(5)
e is
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a total enumeration degree then there is an e, such that x = δ0
(4)
e (eM) and so

π(x) = π(δ0
(4)
e (eM)) = δ0

(4)
e (π(eM)) = δ0

(4)
e (eM) = x. In other words π fixes all

total degrees below 0
(5)
e , which by Theorem 4 is an automorphism base for De. It

follows that π is the identity. �
Finally we give a connection between local structures and the global structure

of the enumeration degrees.

Theorem 19. The rigidity of the global structure of the enumeration degrees is
implied by any of the following:

(1) The rigidity of De(≤ 0′e);
(2) The rigidity of DT (≤ 0′T );
(3) The rigidity of the computably enumerable Turing degrees.

Proof. Every automorphism ofDe induces an automorphism ofDe(≤ 0′e), DT (≤ 0′T )
and the computably enumerable degrees, because the enumeration jump, the total
enumeration degrees below 0′e and the image of the computably enumerable degrees
under the standard embedding of DT into De are each first order definable in De by
Theorem 1, Theorem 3 and Theorem 5 respectively. If we assume that any of these
structures is rigid then any automorphism of De would fix all total enumeration
degrees below 0′e. This is obvious for De(≤ 0′e) and DT (≤ 0′T ) and follows from
Corollary 1 for the computably enumerable Turing degrees. From Theorem 6 it
follows that there are total enumeration degrees in De(≤ 0′e) that define a basic
indexing. By the previous theorem they are an automorphism base for De. Thus
it would follow that the only possible automorphism of De is the identity. �

Our investigations naturally lead to the following open questions:

Question 1. Does rigidity for any one of the local structures imply rigidity for
either of the other local structures? In particular, is every enumeration degree in
De(≤ 0′e) definable in De(≤ 0′e) from total degrees?

Question 2. Does rigidity for any of the local structures or De imply rigidity for
the structure of the Turing degrees?

7. Determining the low enumeration degrees from the low co-d.c.e.
and the co-c.e. degrees

This section is devoted to the proof of Theorem 9. We wish to prove that for
every pair of ∆0

2 enumeration degrees x,y, such that x′ = 0′e and y � x there are ∆0
2

enumeration degrees gi, Π0
1 enumeration degrees ai and low co-d.c.e. enumeration

degrees ci,bi for i = 1, 2, such that:

(1) gi is the least element below ai which joins bi above ci;
(2) x ≤ g1 ∨ g2;
(3) y � g1 ∨ g2.

In the previous sections we used the notation Φ(A) to denote the image of a
set A under the enumeration operator Φ, as it was useful to have different ways
of representing the relations “c.e. in” and “≤e”. From now one we will adopt the
notation ΦA for Φ(A), the result of applying the enumeration operator Φ to A.

We will use a characterization of the low sets due to Cooper and McEvoy [10].

Proposition 3. A set X is low if an only if there is a ∆0
2 approximation {X[s]}s<ω

to X with the following property: for every enumeration operator W , approximated
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by its standard c.e. approximation {W [s]}s<ω, and every natural number x if x ∈
W [s]X[s] at infinitely many stages s then x ∈WX .

Let X be a low ∆0
2 set with a low ∆0

2 approximation {X[s]}s<ω. Fix Y �e X to
be a ∆0

2 set with a ∆0
2 approximation {Y [s]}s<ω. We will construct approximations

to sets Ai, Bi, Ci and Gi for i = 1, 2 to witness the statement of the theorem for X
and Y . To ensure that Ai is Π0

1, the approximation {Ai[s]}s<ω will have Ai[0] = N
and for all s, Ai[s] ⊇ Ai[s+ 1]. To ensure that any E ∈ {C1, C2, B1, B2} is co-d.c.e,
its approximation will have the property E[0] = N and for every natural number n
there will be at most one stage s, such that n ∈ E[s] \ E[s + 1]. In other words if
the number n leaves the approximation to E then it can return to it, but once it
returns, it can never leave again. Finally, the sets Gi, i = 1, 2 will be ∆0

2 as their
approximations will satisfy: Gi[0] = N and for every n, lim sGi[s](n) exists.

Our construction must be designed so that the following requirements are met.

(1) Λi: Gi = ΛAii , ensuring that Gi is reducible to Ai.

(2) Γi: Ci = ΓBi,Gii , ensuring that Bi joins Gi above Ci.
(3) Ω: X = ΩG1,G2 , ensuring that X is enumerable from G1 ⊕G2.
(4) Next we ensure that out of all sets with the first two properties above Gi

has the least enumeration degree. Let (Θe,Φe)e<ω be a listing of all pairs
of enumeration operators. For every e we have the requirement:

Rie: If ΘΦ
Ai
e ,Bi

e = Ci then there is an enumeration operator ∆e, such that

Gi = ∆Φ
Ai
e

e .
(5) To ensure that Y is not enumerable from G1 ⊕ G2, we have the following

list of requirements. Let (Ψe)e<ω be a listing of all enumeration operators.
For every e we have the requirement:
Qe : ΨG1,G2

e 6= Y .
(6) Finally to ensure that Bi and Ci are low we use Proposition 3. Let {Υi}i<ω

be a listing of all enumeration operators. For every e = 〈i, x〉, we have the
lowness requirement

Le: If x ∈ ΥB1,B2,C1,C2

i at infinitely many stages then x ∈ ΥB1,B2,C1,C2

i .

7.1. Description of strategies. To every requirement we attach a strategy, de-
signed to work towards its satisfaction. The construction will then run in stages
and every stage will consist of activating different strategies. The choice of which
strategy is activated will depend on the actions of higher priority strategies that
are activated at the current stage and the approximations to the given sets. For
any given operator W that we approximate we will assume that if x ∈WZ [s] then
x < s and x ∈WZ�s. We start with the description of the strategies Λi, Γi and Ω,
which are called global strategies and will be activated at the beginning of every
stage. The goal of each is to construct an enumeration operator, the name of which
coincides with theirs.

The Λ-strategies. The strategy Λi uses markers to build its operator. If currently
n ∈ Gi \ ΛAii then the strategy assigns to n a new marker, λi(n), chosen fresh
(larger than twice the largest number mentioned so far), and enumerates a new
axiom 〈n,Ai � λi(n)〉 in the operator Λi. Here A � x is meant to be all numbers
that are in A and are less than or equal to x. During the construction, whenever
we extract n from Gi, we will automatically also extract the marker λi(n) from Ai,

so that we always have Gi(n) = ΛAii (n).
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The Γ-strategies. The Γi-strategy also assigns to every natural number c a marker
γ(c). However, c will also have an additional marker gi(c), controlled by the Ri-
strategies. When activated, the strategy ensures that if currently c ∈ Ci then there
is a valid axiom for c in Γi of the form 〈c,Bi � γi(c), Gi � gi(c)〉. During the
construction we will permanently extract a number c from Ci if we can be sure
that all axioms for c enumerated so far in Γi can never be valid again.

The Ω-strategy. For every element x the strategy defines an Ω-marker ω(x).
We will distinguish between the current Ω-marker ω(x) and previously defined Ω-
markers o(x). The marker ω(x) will always be chosen as a fresh number, so that
ω(x) ∈ G1 ∩ G2. Every axiom enumerated in Ω for x, say 〈x,D1, D2〉 will include
some marker o(x) in both D1 and D2. Thus extracting o(x) from either oracle
set will invalidate the axiom. The Ω-strategy makes sure that at every stage s we
have ΩG1,G2 [s] = X[s] by enumerating axioms for numbers in X[s] and extracting
numbers from G1 or G2 to invalidate axioms for numbers not in X[s].

Now we turn to the two more difficult requirements, Rie and Qe. We will handle
them using a tree of strategies. We will denoteRie strategies by α, and Qe strategies
by β. We order the requirements by priority linearly as follows:

R1
0 < · · · < R1

e < R2
e < Qe < R1

e+1 . . .

Strategies of level n in the tree of strategies are assigned the n-th requirement in
the priority ordering. The branching in the tree is determined by the outcomes of
the strategies. The lexicographical ordering of nodes in the tree induces a priority
ordering of the strategies.

The R-strategies. Suppose that α is working towards satisfying the requirement
R1
e. We will drop the subscript e in the discussion below. The strategy will have

three possible outcomes: f <L i <L w. The outcome f will signify that the strategy

was successful in diagonalizing ΘΦA1 ,B1 against C1: a number c was found, such that

c ∈ ΘΦA1 ,B1 \C1. We explain below how this outcome can be reached, however let us
first think about how such diagonalization can be preserved at further stages. The
strategy would like to prevent certain numbers from leaving the approximations

to A1 and B1 to keep c ∈ ΘΦA1 ,B1 . Restraints on B1 will be achieved through
initialization of lower priority strategies and the general rule that every time a
strategy restarts its work, it deals with fresh numbers, not used so far. Restraints
on A1 are more difficult, as changes in X might require changes in G1 and therefore
changes in A1. In order to preserve A1, the strategy will have to set things up as
follows.

The strategy α keeps a parameter s0(α), where it records the first stage at which
it is activated since the last time it was initialized. The strategy α first leaves room
for the Ω-strategy to successfully define its operator on all numbers less than s0(α).
Every time X � s0(α) changes, α is restarted. Thus α can assume in its later work
that X � s0(α) does not change and no number less than ω(s0(α)) will be forced
out of either Gi or Ai. We denote by s1(α) the least stage, such that α is not
restarted after it. At stage s1(α) the strategy selects a threshold dα as the least
number which is greater than ω(s0(α)) and in G2. The design of the Ω-strategy
will then ensure that α can from now on at any time preserve G1 (and so A1) on
elements greater than or equal to dα by extracting dα from G2. Once all of this is
set up the strategy proceeds to its actual work.
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First α looks at the largest number l such that C1 � l ⊆ ΘΦA1 ,B1 . We will call
this the length of inclusion. Note that this notion is different from the usual length
of agreement, but it plays a similar role: a bounded length of inclusion guarantees
that the two sets are different. If at the current stage this length is greater than
it was at previous stages, we say that the stage is expansionary. The strategy will
have outcome w at stages that are not expansionary. If from some stage onwards

the strategy always has outcome w, then ΘΦA1 ,B1 6= C1 as there is some number

y ∈ C1, such that y /∈ ΘΦA1 ,B1 .
At expansionary stages α starts working on its operator ∆α. It scans numbers

one by one, trying to enumerate axioms for n ∈ G1 and checking that there are no
valid axioms for numbers n /∈ G1. If all numbers are scanned then the outcome
will be i. If this is the true outcome at infinitely many stages then we will argue

that ∆ΦA1

α = G1. If on the other hand α discovers a number n ∈ ∆ΦA1

α \ G1 then
this number will be used for a successful diagonalization and α will have outcome
f . To explain the mechanism behind this, we need to go into the details of how ∆α

is constructed.
The strategy α has a list of chits Cα containing only numbers larger than s1(α).

Every natural number n ∈ G1 is assigned a chit c(n) ∈ Cα. When this chit is
assigned it is a fresh number, the strategy Γ1 has not enumerated axioms for it.
We set its second marker g1(c(n)) to n. Thus every Γ1-axiom for c(n) that will be
enumerated from now on will use G1 � n. The number c(n) will remain the chit
for n until (if ever) we see a change in G1 � n. If we see such a change, we will
pick a fresh chit for n. The chits are used to define axioms for n in ∆α. If n ∈ G1

has been assigned the chit c(n) and c(n) ∈ ΘΦ
A1
1 ,B1 via an axiom 〈c(n), DΦ, DB〉,

then the strategy enumerates the axiom 〈n,DΦ〉 in ∆α. We say that this axiom is
defined using the triple 〈c,DΦ, DB〉.

Suppose that later on n ∈ ∆
ΦA1
e

α \G1 and the valid axiom for n in ∆α is defined
via the triple 〈c(n), DΦ, DB〉. We enumerate DB back in B1, as lower priority

strategies might have extracted numbers out of B1, ensuring that c(n) ∈ ΘΦA1 ,B1 .
We then extract c(n) from C1 and achieve the desired diagonalization. To preserve
it at further stages we initialize all lower priority strategies and extract dα from
G2, as discussed above.

Finally we must check that this change in C1 will not injure the strategy Γ1.
Note that as n /∈ G1, any axiom defined for c(n) until this change occurred will be
invalid. To ensure that Γ1 is correct on c(n) we must invalidate all axioms defined
after n left the approximation to G1. We do so by extracting the corresponding
γ1(c(n)) markers. It follows that they are larger than maxDB and so will not
interfere with the restraint on B1. As long as α is not initialized or restarted this
will keep Γ1 correct. If α does get restarted, we will enumerate the number c(n)
back in C1.

The Q-strategies. Let β be a Q-strategy working on the requirement Qe. We
drop the index e in the discussion below. The strategy β will have one outcome
f , but it will cancel all lower priority strategies whenever it acts. The goal of the
strategy is to construct an operator Ξ, such that ΞX = ΨG1,G2 on all numbers up
to and including the first difference between the sets ΨG1,G2 and Y . As Y �e X,
it will follow that this strategy will eventually find a permanent finite difference
between ΨG1,G2 and Y .
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Just like the R-strategies, β first leaves space for the Ω-strategy to define its op-
erator correctly by keeping a parameter s0(β), the first activation after the previous
initialization. Whenever G1 � s0(β) or G2 � s0(β) change the strategy is restarted.
The last stage when β is restarted is recorded in s1(β). From this stage onwards it
assumes that G1 � s0(β) and G2 � s0(β) are fixed.

At further stages the strategy enumerates axioms in Ξ for all elements x, such
that x ∈ ΨG1,G2 and x ≤ l, where l is the least difference between Y and ΨG1,G2 .
It finds the least valid axiom 〈x,D1, D2〉 ∈ Ψ. Let DX be the set of all n ∈ X,
such that o(n) ∈ D1 ∪D2. Notice that as long as DX ⊆ X, we will also have that
D1 ⊕ D2 ⊆ G1 ⊕ G2 and hence x ∈ ΨG1,G2 . The strategy enumerates the axiom
〈x,DX〉 in Ξ.

The ∆0
2 nature of X allows for the following possibility. A number n ∈ DX exits

the approximation to X, which in turn forces the Ω strategy to extract a number
from D1 or D2 out of G1 or G2 respectively. If this invalidates all axioms for x in
Ψ, at the next visit of β we will have x /∈ ΨG1,G2 . If meanwhile the number n has
re-entered X, we are left with a mistake in Ξ. We can fix this by re-enumerating D1

and D2 back in G1 and G2 respectively. We implement this by attaching a list P
of promises to β. A new promise is made for every axiom enumerated in Ξ. It has
the form 〈DX , DG1 , DG2〉 and means that we promise: if DX ⊆ X then DGi ⊆ Gi
for i = 1, 2. At every stage after s1(α) the strategy ensures that it is keeping all its
promises. It does that by changing the approximation to G1⊕G2 (only on numbers
greater than s0(β)) according to the promise list and the current approximation to
the set X.

The actions of β ensure that at every stage s we have that ΞX agrees with Y on
the largest initial segment such that ΨG1,G2 agrees with Y . If this initial segment is
unbounded then for every x there would be infinitely many s, such that ΞX(x)[s] =
Y (x)[s]. By our choice of low approximation for X and ∆0

2 approximation to Y ,
it would follow that ΞX(x) = Y (x). As Y �e X, the initial segment on which Y
and ΨG1,G2 agree must be bounded by a least number, say l. So there must be
some number x ≤ l such that at infinitely many stages s we have that Y [s](x) 6=
ΨG1,G2 [s](x). Now, if x ∈ Y it follows immediately that Y (x) 6= ΨG1,G2(x). If
x /∈ Y then by construction x ∈ ΞX at infinitely many stages, and now again by
the lowness of X, x ∈ ΞX . By the way we design our promise list it will follow that
x ∈ ΨG1,G2 .

The L-strategies. Let e = 〈i, x〉. The Le-strategy will be activated at all stages

s ≥ e. It’s goal is to ensure that if x ∈ ΥB1,B2,C1,C2

i [s] at infinitely many stages

s then x ∈ ΥB1,B2,C1,C2

i . Whenever it sees a valid axiom for x in Υi, it tries to
restrain elements in B1, B2, C1 and C2 in order to keep this axiom valid at all
further stages. The R strategies are the ones that can interfere with this plan.
We know, however that an R-strategy α only extracts numbers from B1, B2, C1 or
C2 that are larger than s1(α) and it does this only once: when it implements a
diagonalization. So the Le-strategy operates as follows: if at stage s it sees that

x ∈ ΥB1,B2,C1,C2

i [s] \ ΥB1,B2,C1,C2

i [s − 1] then it restarts all R-strategies α with
current value of the parameter s0(α) > e. By restarting an R-strategy α we change
the value of its parameter s1(α), but do not change the value of s0(α), hence Le
will have finite impact on the R-strategies.
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7.2. Construction. We combine the ideas described above in a formal construc-
tion. We have global strategies : Λ0,Λ1, Γ0, Γ1 and Ω, the lowness strategies Le
for e < ω and a tree T ⊆ {f, i, w}<ω of R and Q strategies. Every strategy α in
the tree T is given higher priority than all strategies that extend it or that are to
the right of it in T .

To every strategy we attach parameters as follows:

(1) Λi has as parameter the operator that it constructs. It dynamically assigns
markers λi(n) to every number n.

(2) Γi has as parameter the operator that it constructs. It dynamically assigns
markers γi(c) to every number c.

(3) Ω also has it operator and assigns markers o(x) to all natural numbers x.
(4) An Le-strategy has a flag we, which is initially 0 and can be turned to 1.
(5) An Rie-strategy α has the following parameters: s0(α), the stage when α

started work after being initialized; s1(α) the stage after the last time α is
restarted; a threshold dα, used to ensure that Gi and Ai can be preserved;
the number lα, measuring the length of inclusion at every stage; an operator
∆α; a list of chits Cα. In addition the strategy will dynamically assign
chits c(n) to natural numbers n, define their gi-markers and record the
stage at which this happened in sc(n). When α is initialized all parameters
become undefined. When α is restarted all parameters except s0(α) become
undefined. In both cases any chit that α extracts from Ci is enumerated
back in Ci.

(6) A Qe-strategy β has the following parameters: s0(β), the β-true stage after
the last initialization; s1(β), the β-true stage after the last restart; a number
lβ , recording the first difference between Y and ΨG1,G2

e ; a list of promises
Pβ ; a functional Ξβ ; If β is initialized all parameters become undefined.
When β is restarted all parameters except s0(β) become undefined.

Construction:
At stage 0 we initialize all strategies and set Ai = Bi = Ci = Gi = N. At stage

s ≥ 0 all parameters inherit their values from the previous stage unless they are
explicitly modified during stage s. We start stage s by visiting the global strategies
as follows:

Step I: Ω: Scan all n < s.

(1) If x ∈ X \ΩG1,G2 then let ω(x) be a fresh number and enumerate in Ω the
axiom 〈x,G1 � ω(x), G2 � ω(x)〉 (the axiom is defined with marker ω(x)).

(2) If x ∈ ΩG1,G2 \X then for every valid axiom for x in Ω defined with marker
o(x): extract o(x) from G1 and λ1(o(x)) from A1 if o(x) is even; extract
o(x) from G2 and λ2(o(x)) from A2 if o(x) is odd.

Step II: Λi: Scan all elements n < s. If n ∈ Gi \ ΛAii then let λi(n) be a fresh
number and enumerate the axiom 〈n,Ai � λi(n)〉 in Λi.

Step III: Γi: Scan all n < s. If n ∈ Ci \ ΓBi,Gii then let γi(n) be a fresh number. If
gi(s) ↑ then set gi(s) = 0. Enumerate in Γi the axiom 〈n,Bi � γi(n), Gi � gi(n)〉.
Step IV: L: For al e = 〈i, x〉 < s do the following:

(1) If we = 1 but x /∈ ΥB1,B2,C1,C2

i [s] then set we = 0.
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(2) If we = 0 and x ∈ ΥB1,B2,C1,C2

i [s] then set we to 1 and restart all R-
strategies α with e ≤ s0(α)[s].

Step V: Construction of δ: We construct a finite path δ[s] in T . The path δ[s] is
defined inductively. Set δ[s] � 0 = ∅. Suppose that we have constructed δ[s] � k. If
k = s, then set δ[s] = δ[s] � k. Otherwise, we activate the strategy δ[s] � k. We say
that s is a δ[s] � k-true stage. If the strategy ends the stage then δ[s] = δ[s] � k.
Otherwise the strategy produces an outcome o, and δ[s] � k + 1 = (δ[s] � k)̂ o. We
have three cases depending on the type of the strategy δ[s] � k:

Case Rie Suppose that δ[s] � k is an R1
e-strategy α. Let s− be the previous stage

at which α was visited and o− be the outcome that α had at stage s−. (If α has
never been visited then s− = 0 and o− = w). Pick the first case which applies:

(1) If s0(α) is not defined then set s0(α) = s. End this stage.
(2) If s1(α) is not defined then set s1(α) = s and dα = ω(s0(α)) + 1. Set

Cα = {〈α̂, n〉 | n > s1(α)} where α̂ is the code of α in some fixed computable
coding of all finite binary strings. End this stage.

(3) If s1(α) is defined, but X � s0(α) changed at a stage t, such that s1(α) <
t ≤ s then restart α. End this stage.

(4) If o− = f then let the outcome be f .

(5) Let lα be maximal number l such that C1 � l ⊆ Θ
ΦA1
α ,B1

α . If lα is bounded
by the largest number in the set {lα[t] | t < s} (the set of all previous values
of this parameter) then let the outcome be w.

(6) If there is an element n, such that n ∈ ∆
ΦA1
e

α \ G1 then pick the least
such n. Suppose the least valid axiom for n in ∆α is defined via the triple
〈c,DΦ, DB〉. Enumerate DB back in B1. Extract the chit c from C1.
Extract from B1 all Γ1-markers for c that are defined at stages t ≤ s when
n /∈ G1. Extract dα from G2 and λ2(dα) from A2. Initialize all lower
priority strategies and let the outcome be f .

(7) Scan all n ≤ s and perform the following actions for each n:

If c(n) ↑ or if G1[t] � n 6= G1[sc(n)] � n at some stage t ∈ [sc(n), s] then
let c(n) be a fresh number in Cα and set sc(n) = s and g1(c(n)) = n. If

n ∈ G1 \∆Φα
α and c(n) < lα then find the least valid axiom 〈c(n), DΦ, DB〉

in Θα and enumerate the axiom 〈n,DΦ〉 in ∆α.

Once all elements are scanned end with outcome i.

If δ[s] � k is anR2
e-strategy, the instructions are the same as above withG1, A1, B1, C1

swapped with G2, A2, B2, C2.

Case Qe Suppose that δ[s] � k is a Qe-strategy β. Pick the first case which applies:

(1) If s0(β) is not defined then set s0(β) = s. End this stage.
(2) If s1(β) is not defined then set s1(β) = s. End this stage.
(3) If G1 � s0(β) or G2 � s0(β) changed at a stage t, such that s0(β) < t ≤ s,

then restart β. End this stage.
(4) If there is a promise 〈DX , DG1

, DG2
〉 ∈ Pβ , which is not currently kept:

DX ⊆ X and DG1
⊕DG2

* G1 ⊕G2 then enumerate DG1
in G1 and DG2

in G2. End this stage.

(5) Let lβ be the least number such that ΨG1,G2

β (lβ) 6= Y (lβ). If there is a

number x ≤ lβ such that x ∈ ΨG1,G2 \ ΞX then find the least valid axiom
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〈x,D1, D2〉 ∈ Ψ. Let DX = {n ∈ X | some Ω-marker o(n) is in D1 ∪D2}.
Enumerate 〈x,DX〉 in Ξ and 〈DX , D1, D2〉 in Pβ . Repeat this for each such
number and end this stage.

(6) If none of the above cases hold, β has outcome f .

We end stage s by canceling all strategies of lower priority than δ[s] and proceed
to stage s+ 1.

End of construction

7.3. Verification. We start the verification with a technical lemma, which con-
cerns promises. This lemma will then allow us to show that the constructed sets
G1 and G2 are ∆0

2 and that the Λ-strategy succeeds.

Lemma 1. Let β be a Qe-strategy not initialized in the nonempty interval of stages
[s, t]. Suppose β makes a promise 〈DX , DG1

, DG2
〉 at stage s. If DG1

⊕DG2
*

(G1 ⊕G2)[t] then there is a stage t′ ∈ (s, t], such that DX * X[t′].

Proof. Suppose for concreteness that o ∈ DG1
\G1[t]. Note that by our convention

for approximating given operators we have that o < s. First note that o cannot
be a threshold of an R-strategy as higher priority strategies do not act at stages
in the interval [s, t], or else β would be initialized, and lower priority strategies are
initialized at stage s, hence have thresholds larger than s. Thus o is an Ω-marker
for some number n. As o /∈ G1[t] there must be a stage t′ ≤ t, such that n /∈ X[t′].
Furthermore n ∈ X[s] or else the Ω-strategy would ensure o /∈ G1[s], contradicting
DG1

⊆ G1[s]. Thus t′ > s and n ∈ DX , thus DX * X[t′]. �

Lemma 2. Gi is ∆0
2 and ΛAii = Gi.

Proof. Fix n. If n is a threshold then by Lemma 1 it follows that n can be extracted
from Gi at most once, as Qe strategies never need to enumerate thresholds back in
Gi. If n is an ω-marker n = o(x) then again by Lemma 1 any extraction of n from
Gi corresponds to an extraction of x from X. Hence once X(x) stops changing, so
will Gi(n). As X is ∆0

2, it follows that Gi is ∆0
2.

Assume inductively that ΛAii (m) = Gi(m) for m < n. First note that if n /∈ Gi
then by construction when we extract n from Gi, we also extract its λi-marker and
hence there is no valid axiom for n in Λi. Suppose that n ∈ Gi then let sn be a
stage, such that Gi[sn] � n = Gi[t] � n at all t ≥ sn. Then the axiom enumerated
for n at stage sn will never be invalidated again. �

The goal of the proof is to show that there is a true path on the tree, consisting
of strategies that are visited infinitely often and initialized finitely often. Strategies
along this path will be shown to be successful. This will be done inductively and
broken up into a couple of lemmas. The first one deals with Q-strategies.

Lemma 3. Let β be a Qe-strategy which is not initialized after stage s0 and visited
infinitely often. Then Qe is satisfied and there is a stage sβ after which β does not
end stages at which it is visited.

Proof. We may assume that strategies of higher priority than β do not change the
approximations to Gi at stages t > s0, otherwise β would be initialized. After stage
s0 the strategy β has a fixed parameter s0(β). As G1 and G2 are ∆0

2 by Lemma
2 there will be a least stage s1 ≥ s0 after which G1 � s0(β) and G2 � s0(β) do
not change. At the next β-true stage after s1 the parameter s1(β) attains its final
value. After stage s1(β) Cases (1),(2) and (3) do not apply for β.
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Suppose that the sequence {lβ [t]}t>s1(β) is unbounded. We show that ΞX = Y ,
contradicting our choice of X and Y . Fix a natural number x. And suppose that
x ∈ ΞX . Let sx > s1(β) be the β-true stage when the least valid axiom for x, say
〈x,Dx〉, is enumerated in Ξ. By construction there is an axiom 〈x,DG1

, DG2
〉 ∈ Ψ

and a promise 〈DX , DG1
, DG2

〉 ∈ P . Fix a stage s, such that DX ⊆ X[t] at all
t > s. Then by Lemma 1 at all β-true t > s DG1

⊆ G1[t] and DG2
⊆ G2[t].

Thus x ∈ ΨG1,G2 [t]. As the the sequence {lβ [t]}t>s1(β) is unbounded and Y is ∆0
2

it follows that x ∈ Y . Suppose now that x ∈ Y . Then there are infinitely many
stages s such that x ∈ Y [s] and lβ [s] > x. By construction at all such stages s,
x ∈ ΞX [s]. By our choice of low approximation for X, it follows that x ∈ ΞX .

We have shown that there is a least number lβ such that lβ [t] ≤ lβ at all β-true
stages t ≥ s1(β). It follows that there is a least number x < lβ such that Y [t](x) 6=
ΨG1,G2 [t](x) at infinitely many stages t. If x ∈ Y then x ∈ Y \ΨG1,G2 . Otherwise
x ∈ ΨG1,G2 [t] at infinitely many stages t at which x < lβ [t]. By construction it
follows that x ∈ ΞX [t] at infinitely many stages t and hence by the lowness of X,
x ∈ ΞX . There is a least valid axiom for x in Ξ for which the promise is permanently
kept. It follows that x ∈ ΨG1,G2 \ Y .

Furthermore for all numbers x < lβ that are in ΨG1,G2 at infinitely many stages
there will eventually be permanent valid axioms in the operator Ξ. So there will be
a stage se after which no new axioms are enumerated in Ξ and no new promises are
made. Then for every stage t > se Case (5) does not apply and the set of promises
does not change: Pβ [t] = Pβ [se]. Denote this final value by Pβ . Let n be larger
than the maximal element of DX in any promise 〈DX , DG1

, DG2
〉 ∈ Pβ . Let sX

be the least stage after se, such that X � n does not change after stage sX . There
are finitely many promises 〈DX , DG1 , DG2〉 ∈ Pβ with DX ⊆ X. By Lemma 1 if at
stage s ≥ sX the strategy β keeps a promise 〈DX , DG1 , DG2〉 by passing through
Case (4) then this promise is kept at all further stages. Thus after finitely many
passes through Case (4) all of these promises are kept forever and there is a stage
sβ , such that after stage sβ the strategy β always ends in Case (6). In this case too
the strategy does not end stages prematurely. �

In order to prove that the leftmost path of nodes that are visited infinitely often
is the true path, we must also show that strategies along it are initialized finitely
often. We we will need to consider also the actions of the L- and R-strategies.

Lemma 4. The strategy Le satisfies its requirement and restarts R-strategies finitely
often.

Proof. Assume inductively that the statement is true for Le′ , where e′ < e. Let
e = 〈i, x〉. There are finitely many pairs (s0(α), α), such that α is an R-strategy
with s0(α) < e at some stage in the construction. For each such pair either there is
a stage t > e at which α is cancelled or there is a stage s1(α) after which α is not
restarted as X � s0(α) reaches a limit and L-strategies do not act by the inductive
hypothesis. Note that the number of times α can change the approximation to Bi
and Ci is bounded by the number of times it is restarted. Suppose that s is a stage
after all of these finitely many strategies have stopped changing the approximation

to Bi and Ci. If at all t ≥ s we have x /∈ ΥB1,B2,C1,C2

i [t] then Le is satisfied and
does not restart R-strategies after stage s.

If at stage t ≥ s we see that x ∈ ΥB1,B2,C1,C2

i [t] then we restart all strategies
with s0(α) ≥ e and change we to 1. These strategies are activated again after stage
t and can only change the approximation to B1, B2, C1, C2 in relation to chits that
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are chosen fresh after stage t. Thus x ∈ ΥB1,B2,C1,C2

i is preserved at all further
stages and Le does not restart R-strategies after stage t. �

Lemma 5. Bi and Ci are co-d.c.e

Proof. A chit c ∈ Cα can only be extracted once from Ci by α. This is because
different strategies have disjoint lists of chits and when anR-strategy α is initialized,
Cα is restarted and becomes defined to contain only fresh numbers. Similarly, a
Γi-marker γi(c) can only be extracted once from Bi by the strategy α, such that
c ∈ Cα. �

Lemma 6. Let α be an Rie-strategy which is not initialized after stage s0 and
visited infinitely often. Then Rie is satisfied and there is a stage sα after which α
does end stages at which it is visited. If α extracts a chit c from Ci after stage s0

then c /∈ ΓBi,Gii .

Proof. Suppose for concreteness i = 1. After stage s0 the parameter s0(α) does not
change and higher priority R- and Q-strategies do not make any further changes
to any of the global parameters: Ai, Ci, Bi, and Gi. As X is ∆0

2 and by Lemma
4 L-strategies with index i < s0(α) act finitely many times, there will be a least
stage s1 ≥ s0 after which α does not get restarted. At the next α-true stage after
s1 the parameters s1(α), dα and Cα will attain their final value. The final value of
dα is ω(s0(α))[s1] + 1. As X � s0 does not change at any further stage it follows
that G1 � dα does not change at any further stage. After stage s1(α) Cases (1), (2)
and (3) do not apply for α.

Suppose that there is a stage s at which Case (6) applies for α. There is a

number n ∈ ∆
ΦA1
e

α \ G1[s]. At stage s the threshold dα is extracted from G2 and
all lower priority strategies are initialized. It follows from the proof of Lemma 1
that dα remains out of G2[t] at all further stages t, hence G1 � s does not change
at any further stage, in particular n /∈ G1. From this we get that A1 � s and hence
ΦA1
e � s ⊆ ΦA1

e . Suppose that the valid axiom for n in ∆α was defined via the triple
〈c,DΦ, DB〉 at stage t < s. Then c was assigned to n at stage sc < t. At stage
sc the chit c was selected as a fresh number, i.e. no axiom for c enumerated in Γ1

before stage sc + 1. The marker g1(c) was set to equal n. Thus all axioms for Γ1

defined at stages at which n ∈ G1 are invalid. At stage s the strategy extracts also
all Γ1-markers defined at stages at which n /∈ G1. These markers are defined after
stage t and hence are all larger than maxDB .

At stage s all lower priority strategies are initialized so that B1[s] � s ⊆ B1 at all

further stages. Thus c ∈ Θ
ΦA1
e ,B1

e \C1 and the requirement is satisfied. Furthermore

we have shown that c /∈ ΓB1,G1

1 .
If Case (6) never applies for α after stage s1(α) then neither does Case (4).

Hence α does not end prematurely any true stage t > s1(α) and does not extract
any numbers from B1 or C1.

Suppose that there is a stage s5, such that at all α-true stages t > s5 Case (5)
applies for α. It follows that there is a number x such that at infinitely many stages

t > s5 there x ≤ lα[t] and x ∈ C1[t]\Θ
ΦA1
e ,B1

e [t]. By Lemma 5 the set C1 is co-d.c.e,

hence Θ
ΦA1
e ,B1

e 6= C1 and R1
e is satisfied.

Finally suppose that at infinitely many α-true stages Case (7) applies. Suppose

that Θ
ΦA1
e ,B1

e = C1. We will show that ∆
ΦA1
e

α = G1. Fix a natural number n. If
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n ∈ G1 then by Lemma 2 we know that G1 � n will eventually stop changing and

n will be assigned final chit c(n) ∈ C1. As Θ
ΦA1
e ,B1

e = C1 there will be a least
valid axiom for c(n) in Θe that is valid at all large enough stages. So eventually a
valid axiom for n will be enumerated in ∆α. If n /∈ G1[s] at an α-true stage s then

n /∈ ∆
ΦA1
e

α [s] or else Case (6) would apply for n. �

From Lemma 3 and Lemma 6 we get immediately the True path lemma.

Corollary 2. There is an infinite path f in the tree, such that for every n, f � n
is visited infinitely often and initialized only finitely often. We call it the true path.
All R and Q requirements are satisfied.

We complete the verification with two lemmas, showing that the strategies Γ1,
Γ2 and Ω succeed.

Lemma 7. ΓBi,Gii = Ci

Proof. Suppose that ΓBi,Gii (m) = C(m) for m < c and let sc be a stage, such that
Ci � c does not change after stage sc. If c ∈ Ci then Bi � γi(c) does not change
after stage sc. Hence once the approximation to Gi � gi(c) has also settled, there
will be an axiom for c in Γi which will never be invalidated. Suppose that c /∈ Ci.
Then c is a chit for an element n used by an Ri-strategy α in an attack at stage s

and α is not initialized after stage s. It follows from the Lemma 6 that c /∈ ΓBi,Gii .
�

Lemma 8. ΩG1,G2(n) = X(n).

Proof. At every stage s the Ω-strategy ensures that for every x < s, ΩG1,G2(x)[s] =
X(x)[s]. Thus if x /∈ X then x /∈ ΩG1,G2 . If x ∈ X then let sx > x be a stage, such
that X � x does not change at stages larger than sx. Consider the first R-strategy
along the true path with s0 = s0(α) > sx. Let s1 be the final value of the parameter
s1(α). It follows from Lemma 6 that (G1 ⊕ G2)[s1] � ω(s0) does not change after
stage s1. Hence the axiom enumerated at stage s1 for x in Ω is valid at all further
stages. �

8. Determining the low co-d.c.e. enumeration degrees from the the
co-c.e. degrees

In this section we explain how to modify the construction from the previous
section to show that Theorem 10 is true. Let X be a low co-d.c.e. set and Y be a ∆0

2

set, such that Y �e X. We wish to construct Π0
1 sets Ai, Bi, Ci, co-d.c.e. sets Gi for

i = 1, 2 to satisfy the same list of requirements, excluding the lowness requirements.

For the requirements Λi, stating that Gi = ΛAii , and Γi, stating that Ci = ΓBi,Gii ,
we use the exact same strategies as in the previous section. Similarly we treat the
list of requirements {Qe}e<ω, where Qe states that ΨG1,G2

e 6= Y , exactly the same.
We will only modify the strategies for the Ω-requirement, stating that X = ΩG1,G2

and for the list of R-requirements, where Rie states that if ΘΦ
Ai
e ,Bi

e = Ci then there

is an enumeration operator ∆e, such that Gi = ∆Φ
Ai
e

e .

8.1. Description of the modified strategies and the construction.

The Ω-strategy. In this case as well Ω will define an Ω-marker ω(n) for every
natural number n. We will distinguish between the current Ω-marker ω(x) and
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previously defined Ω-markers o(x). The marker ω(x) will always be chosen as a
fresh number, so that ω(x) ∈ G1 ∩ G2. Every axiom enumerated in Ω for x, say
〈x,D1, D2〉 will include some marker o(x) in both D1 and D2. Thus extracting
o(x) from either oracle set will invalidate the axiom. The modification is that now
Re-strategies will make the choice whether o(x) will be extracted from G1 or from
G2. For this reason o(x) will come with a flag i(o(x)) which has values 1 or 2.
Initially i(o(x)) = 1. At stage s the strategy makes sure that ΩG1,G2 [s] = X[s] by
enumerating axioms for numbers in X[s] and extracting numbers from G1 or G2 to
invalidate axioms for numbers not in X[s]. If o(x) needs to be extracted from G1

or G2 then it will be extracted from Gi(o(x)).
We replace Step I in the construction by the following:

Step I: Ω: Scan all n < s.

(1) If x ∈ X \ΩG1,G2 then let ω(x) be a fresh number and enumerate in Ω the
axiom 〈x,G1 � ω(x), G2 � ω(x)〉 (the axiom is defined with marker ω(x)).
Set i(ω(x)) = 1.

(2) If x ∈ ΩG1,G2 \X then for every valid axiom for x in Ω defined with marker
o(x): extract o(x) from Gi(o(x)) and λi(o(x))(o(x)) from Ai(o(x)).

Steps II and III remain the same and Step IV is deleted. To complete the
construction we first explain how the R-strategies must be modified.

The R-strategies. We will not be able to use the same design for the R-strategies
as in the proof of Theorem 9. The reason is that the sets Bi and Ci have to be
Π0

1. Thus once a number is extracted from either set, it must remain extracted
at all further stages. This creates a potential conflict between R-strategies of the
same kind. A lower priority Ri-strategy α′ might need to diagonalize and extract
some number b from Bi to keep Γi correct. A higher priority Ri-strategy α might
be counting on b ∈ Bi. It has used a triple 〈c,DΦ, DB〉 with b ∈ Bi to define an
axiom for a number n in ∆α. If n leaves the approximation to Gi and Db * Bi,
there is no way to correct the operator ∆α. To resolve this conflict we will design
the R-strategies so that they are more careful about preserving the work of higher
priority strategies. We introduce three modifications.

Suppose that α is working towards satisfying the requirement R1
e. It will as

in the previous proof first define its parameter s0(α) and wait until X � s0(α)
stops changing. It will be restarted every time a change is observed. Then at
stage s1(α) it will define its threshold dα. But it will not yet select its list of
chits. Before the strategy goes on to satisfying its own requirement - diagonalizing

ΘΦA1 ,B1 against C1 or constructing an operator ∆α, such that ∆ΦA1

α = G1, it first
works towards ensuring that its attempts at diagonalization will not injure higher
priority R1 strategies that are also constructing their own operators. The strategy
α must ensure that all higher priority strategies have defined their final axioms
for numbers n ≤ dα. To do this the strategy will wait until all of these strategies
have enumerated in their operators axioms for every m ≤ dα, such that m ∈ G1.
For every higher priority R1-strategy α′, such that α believes that α′ is building
an enumeration operator ∆α′ , i.e. such that α′ î � α, the strategy α will set the
flag i(n) to 2 for all numbers n > dα necessary to preserve some axiom that α′ has
defined. Note this is a finite process as G1 � dα does not change at any further stage
and once an axiom is preserved it will remain valid at all further stages, as lower
priority R2-strategies will be initialized at these stages. We denote by s2(α) the
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stage when α has completed this task. At this stage the strategy α finally selects
its list of chits Cα, containing numbers larger than s2(α).

Next α examines the largest number lα such that C1 � lα ⊆ ΘΦA1 ,B1 , to deter-
mine whether or not the stage is expansionary and has outcome w if it is not. If the
stage is expansionary α proceeds to check if ∆α is correct and to add more axioms
for it if necessary.

Here as well we use chits to define axioms in ∆α. Every natural number n ∈ G1

is assigned a chit c(n) ∈ Cα. When this chit is assigned it is a fresh number, the
strategy Γ1 has not yet defined its g1-marker. We set g1(c(n)) to n. We change
the chit for n every time G1 � n changes, so that all axioms for c(n) in Γi assume
that n ∈ G1. If there is no valid axiom for n in ∆α and there is a valid axiom
〈c(n), DΦ, DB〉 for c(n) in Θ we define a new axiom for n in ∆α. Here is where we
introduce the second modification: the axiom for n will include all currently valid
axioms for numbers m < n, such that m ∈ G1. This will ensure that if α later on
needs to attack with n then all numbers m < n that were in G1 when we defined
the axioms for n are also in G1 at the stage of the attack.

Finally if α sees a number n, such that n ∈ ∆ΦA1

α \ G1(n) and the valid axiom
for n is defined using the triple 〈c(n), DΦ, DB〉, then we extract c(n) from C1 and
extract from B1 the least markers γ(c(n)) used in an axiom which assumes n /∈ G1.
We extract dα from G2 and dump all m > n in G1. This is the third modification.

Let us reevaluate the possible conflict described above with the newly designed
strategy. It will follow from the construction that G1 is co-d.c.e. Thus a number
can be extracted only once from G1. If α′ is a lower priority strategy which attacks
with n at stage s then by the first modification it will be a attacking relative to a
chit is defined after all axioms for m < dα′ in ∆α are already defined, and hence
the change in B1 is not on a number used in any axiom for m < dα′ . By the
third modification all m > n are dumped in G1 at the stage of the attack and will
never again leave G1, so α will never have to attack relative to them. Similarly,
any number in the interval [dα′ , n] that is in G1 at the stage of the attack will
remain in G1 at all further stages due to the extraction of the threshold dα′ by α′.
Any number in the interval [dα′ , n) that is not in G1 at the stage of the attack is
already out when α′ defined the axiom of attack by the second modification, and
α′ extracts numbers defined after this stage. This leaves n and the possibility that
α′ extracts a number out of B1, that invalidates the axiom that is used by α for
n in the definition of ∆α. But as n is extracted only once from G1 it follows that
α′ preserves any number seen in any axiom while n ∈ G1. Thus the conflict is
resolved.

We modify Case Rie from Step V of the construction as follows:

Case Rie Suppose that δ[s] � k is an R1
e-strategy α. The strategy has three ad-

ditional parameters: s2(α), the stage when α can start its work; mα, the largest
number scanned during a visit and Rα, the largest number from the set A1 used in
an axiom for ∆α. Let s− be the previous stage at which α was visited and o− be
the outcome that α had at stage s−. (If α has never been or has been initialized
since stage s− then let and o− = w). Pick the first case which applies to α:

(1) If s0(α) is not defined then set s0(α) = s. End this stage.
(2) If s1(α) is not defined then set s1(α) = s and dα = ω(s0(α)) + 1. End this

stage.
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(3) If s1(α) is defined, but X � s0(α) changed at a stage t, such that s1(α) <
t ≤ s, then restart α. End this stage.

(4) If α′ î � α and mα′ ≤ dα + 1 or a new axiom for an element m < dα was
enumerated in ∆α′ since stage s− then for every n, such that dα < n and
λ1(n) ≤ Rα′ , set i(n) = 2. Make s2(α), Cα and ∆α undefined. End this
stage.

(5) If s2(α) is not defined then set s2(α) = s. Set Cα = {〈α̂, n〉 | n > s2(α)}
where α̂ is the code of α in some fixed computable coding of all finite binary
strings. End this stage.

(6) If the outcome at stage s− was f then let the outcome be f .
(7) If the current stage is not expansionary then let the outcome be w.

(8) If there is an element n, such that n ∈ ∆
ΦA1
e

α \ G1, then pick the least
such n. Suppose the least valid axiom for n in ∆α is defined via the triple
〈c,DΦ, DB〉 and this is a valid axiom in Θe. Extract the chit c from C1,
extract from B1 the least marker γ1(c) which is used in an axiom that
assumes n /∈ G1. Extract dα from G2 and λ2(dα) from A2. Enumerate all
numbers m ∈ (n, s] in G1. Initialize all lower priority strategies and let the
outcome be f .

(9) Scan all n ≤ s, such that n ∈ G1, and perform the following actions:

If c(n) ↑ or if G1 � n[t] 6= G1 � n[sc(n)] at some stage t ≥ sc(n) then let
c(n) be a fresh number in Cα and set sc(n) = s and g1(c(n)) = n. If c(n) is

greater than the length of agreement between Θ
ΦA1
e ,B1

e and C1 then stop the
scan. Otherwise if n /∈ ∆Φα

α then find the least valid axiom 〈c(n), DΦ, DB〉
in Θe. Let Dn be the union of the currently valid axioms for m < n, such
that m ∈ G1, and enumerate the axiom 〈n,Dn ∪DΦ〉 in ∆α.

Once the scan has been completed (or stopped) define mα as the largest
scanned element for which there is a valid axiom in ∆α. We set Rα to be
the largest element that is in a Φe-axiom for an element in a ∆α axiom and
end with outcome i.

If δ[s] � k is anR2
e-strategy, the instructions are the same as above withG1, A1, B1, C1

swapped with G2, A2, B2, C2.

8.2. Verification. We start with a technical lemma that deals with the modified
R-strategies and serves as an important tool for unravelling the construction.

Lemma 9. Let α be an R1
e-strategy which extracts its threshold dα from G2 at

stage s to perform a to diagonalization relative to a number n. Suppose the valid
axiom for n in ∆α is defined via the triple 〈c(n), DΦ, DB〉 at stage s′ < s. Then at
all stages t > s:

(1) There is threshold dα′ ≤ dα for a strategy α′ ≤ α, such that

dα′ ∈ (G1 ∩G2)[s− 1] and dα′ /∈ (G1 ∪G2)[t].

(2) If G1 � n[s′] ⊆ G1[t] then (B1 � γ1(c(n)))[s′] * B1[t]
(3) All numbers m in the interval [dα, s], such that m ∈ G1[s] are in G1[t].

The symmetric statement with 1 and 2 swapped is also true.

Proof. Suppose that the statement is true for all α′ of higher priority than α. The
strategy α selects its threshold dα at stage s1(α) < s as ω(s0(α)) + 1 and α is
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not initialized between stages s0(α) and s. At stage s it extracts dα from G2.
First we show that a Q-strategy β does not enumerate dα back in G2. Towards
a contradiction suppose that a Q-strategy β has a promise 〈DX , DG1 , DG2〉 with
dα ∈ DG2

. This promise must have been made before stage s by β and β must
have higher priority than α. Lower priority strategies are initialized at stage s
and when a Q-strategy is initialized it moves the value of its parameter s0(β) and
restarts every time a change in Gi � s0(β) for i = 1, 2 is observed. But in this
case, as α is not initialized between stages s0(α) and s, it follows that β made this
promise before stage s0(α), hence maxDG2

< s0(α) < dα. So if dα ∈ G2[t] for
t > s then an R2-strategy α′ must be responsible for this. Again strategies that
select their thresholds after stage s have thresholds of value greater than dα and
cannot enumerate dα in G2. This rules out lower priority strategies. It follows that
α′ is of higher priority than α and at stage t it extracts from G1 its own threshold
dα′ < dα. Thus dα′ ∈ G1[s− 1] \G1[t]. By induction the statement follows.

Now similarly suppose that n is enumerated back in G1 at some stage t ≥ s. The
same argument as the one above shows that n is not enumerated back in G1 by a
Q-strategy β, or by a lower priority R-strategy. Thus this must be done by a higher
priority R1-strategy α′ which attacked at stage t with a number m < n. Pick the
least number m, such that some R-strategy α′ of higher priority attacks at some
stage t > s with m. Then m /∈ G1[t′] at all t′ ≥ t. If m ∈ G1[s′] then this proves
the statement. If m /∈ G1[s′] then the chit c′(m) for m at α′ was selected while
m ∈ G1 hence before stage s′, and even before the chit c(n) was assigned to n at α.
At stage s′ we have that m /∈ G1[s′] hence the least marker for c′(m) that assumes
m /∈ G1 is already defined, it is in B1[s′] and it is smaller than γ1(c(n))[s′]. As α′

extracts this marker from B1 at stage t it follows that (B1 � γ1(c(n)))[s′] * B1[t].
Finally let m ∈ [dα, s] and m ∈ G1[s]. As higher priority strategies have thresh-

olds smaller than m at stage s and lower priority strategies are initialized at stage
s it follows that m cannot be extracted by an R-strategy. If m is an ω-marker
used in some axiom 〈x,D1, D2〉 in Ω then this axiom is defined in the time period
(s0(α), s] and hence must have (G1 � dα ⊕G2 � dα)[s− 1] ⊆ D1 ⊕D2. By the first
statement in this lemma it follows that this axiom is invalid at all further stages
and so the strategy Ω will never extract it from G1. �

Now we can establish that G1 and G2 are co-d.c.e. sets. As in the previous
section this lets us conclude that the Λ-strategies are successful.

Lemma 10. G1 and G2 are co-d.c.e. and ΛAii = Gi.

Proof. We show that G1 is co-d.c.e. Let n be a natural number. Then n is extracted
from G1 for two reasons: either it is a threshold for some R2-strategy or else it is an
Ω-marker for some natural number x. If n is a threshold then it is the threshold of
a unique strategy α, it is not an Ω-marker and can only be extracted from G1 once
by α. This is ensured by the way we select thresholds: relative to the Ω-marker
of the first stage after initialization of α. At this stage α initializes lower priority
strategies and reserves this stage for its own use.

If n is an ω-marker n = o(x) then it can be extracted only by the strategy Ω at
stages s, such that x /∈ X[s]. Once it is extracted, it can be enumerated back by
a Q-strategy at a further stage t ≥ s, only if there is a promise 〈DX , DG1

, DG2
〉,

such that x ∈ DX and n ∈ D1 and Dx ⊆ X[t]. But as X is co-d.c.e. it follows that
x ∈ X[t′] at all further stages t′ ≥ t and hence Ω will not extract n a second time.
It can also be enumerated back by an R1-strategy α only when α attacks with a
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number m < n at stage t > n. But then by Lemma 9 we have that n ∈ G1 at all
further stages. It follows that G1 is co-d.c.e.

A similar proof shows that G2 is co-d.c.e. The proof that ΛAii = Gi is can now
be implemented as in Lemma 2. �

We next show that the Γi strategies succeed.

Lemma 11. ΓBi,Gii = Ci

Proof. Suppose that ΓBi,Gii (m) = Ci(m) for m < c and let sn be a stage, such that
Ci � c does not change after stage sc. If c ∈ Ci then Bi � γi(c) does not change
after stage sc. Hence once the approximation to Gi � gi(c) has also settled, there
will be an axiom for c in Γi which will never be invalidated. Suppose that c /∈ Ci.
Then c is a chit for an element n used by an Ri-strategy α in an attack at stage s.
Then gi(c) = n and at stage s α extracted from Bi the least marker γi(c) used in
an axiom that assumes n /∈ Gi. The structure of the axioms in Γi ensures that this
will invalidate all later axioms for c defined until stage s. By Step (2) of Lemma 9
the axioms that assume n ∈ Gi are also invalid at all further stages. �

Lemma 12. Let α be an Rie-strategy which is not initialized after stage s0 and
visited infinitely often. Then Rie is satisfied and there is a stage sα after which α
does end stages at which it is visited.

Proof. For concreteness let i = 1. After stage s0 the parameter s0(α) does not
change and higher priority R- and Q-strategies do not make any further changes
to any of the global parameters: Ai, Ci, Bi, and Gi. As X is co-d.c.e. there will be
a least stage s1 ≥ s0 after which X � s0(α) does not change. At the next α-true
stage after s1 the parameters s1(α) and dα attain their final value. The final value
of dα is ω(s0(α))[s1] + 1. As X � s0 does not change at any further stage it follows
that G1 � dα does not change at any further stage. After stage s1(α) Cases (1), (2)
and (3) do not apply for α.

Suppose that α′ is a higher priority R1
e′ -strategy, such that α′ î ⊆ α. As α is

visited at infinitely many stages, it follows that α′ has infinitely many expansionary
stages. Fix m ≤ dα. As G1 � m does not change after stage s1(α), the α′-chit for
m, c′(m), does not change after stage s1(α). Hence once the length of inclusion
examined by α′ exceeds c′(n), the strategy α′ enumerates a valid axiom for n in
∆α′ . At the first stage when α is visited after that it sets the flag i(x) = 2 for every
number x ≥ dα, such that a change in G1(x) can cause a change in A1 � Rα′ . As
higher priority strategies do not act and lower priority strategies are initialized at
this stage, no one can change the flag back to 1. Finally as by assumption X � s0

and hence G1 � dα do not change after stage s1(α), it follows that A1 � Rα′ is
preserved at all further stages and hence the axiom for m in ∆α′ remains valid at
all further stages. It follows from this analysis that there is a stage s2, such that
at all stages t ≥ s2 all higher priority strategies α′ have mα′ > dα and do not
enumerate more axioms for elements m < dα. At the first α-true stage after stage
s2 the final values of the parameters s2(α) and Cα are defined. Cases (4) and (5)
do not apply to α at any further stage.

Suppose that Case (6) applies for α at stage a least stage s6. Then at all further
stages t ≥ s6 the strategy α ends with outcome f and does not initialize lower
priority strategies. Consider the α-true stage before s6, call it s. At stage s Case
(8) applies for α and dα was extracted from G2 and all lower priority strategies are
initialized. By Lemma 9 as higher priority strategies do not act we know that G1 � s
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and hence A1 � s do not change at further stages and hence no number can leave
the approximation to ΦA1

e � s at further stages. There is a a chit c ∈ Cα[s], such

that c ∈ Θ
ΦA1
e ,B1

e (c)[s] via the valid axiom 〈c,DΦ, DB〉. We extract c from C1 and
extract from B1 only γ1(c)-markers that assume that n /∈ G1, hence elements larger
than maxDB . Then we initialize all lower priority strategies so that DB ⊂ B1[t] at

all further stages t ≥ s. It follows that c ∈ Θ
ΦA1
e ,B1

e \ C1 and R1
e is satisfied.

If Case (6) never applies for α after stage s1(α) then neither does Cases (8).
Hence α does not end prematurely any true stage t > s2(α). Suppose that there is
a stage s7, such that at all α-true stages t > s7 Case (7) applies for α. It follows

that Θ
ΦA1
e ,B1

e 6= C1 and R1
e is satisfied.

Finally suppose that at infinitely many α-true stages Case (9) applies. Suppose

that Θ
ΦA1
e ,B1

e = C1. We will show that ∆
ΦA1
e

α = G1. Fix a natural number n. If
n /∈ G1[t] at any stage t > s2(α) then no axiom is ever enumerated in ∆α for n. If

n ∈ G1 then n will eventually be assigned final chit c(n) ∈ C1. As Θ
ΦA1
e ,B1

e = C1

there will be a least axiom for c(n) in Θe that is valid at all large enough stages.
So eventually a valid axiom for n will be enumerated in ∆α.

Suppose that n /∈ G1 but an axiom 〈n,Dn ∪DΦ〉 is enumerated in ∆α at stage
s. By Lemma 10 it follows that there is a stage sn > s, such that n ∈ G1[t] at all
t < sn and n /∈ G1[t] at all t ≥ sn. We will show that the axiom 〈n,Dn ∪DΦ〉 is
invalid. The axiom was defined via a chit c(n) and an axiom 〈c(n), DΦ, DB〉 valid
at stage s and includes in Dn all valid axioms at stage s for elements n′ < n, such
that n′ ∈ G1[s].

Let t be an α-true stage, such that n /∈ G1[t]. If B1[s] � s ⊆ B1[t] then DΦ *
ΦA1
e [t] or else Case (8) would apply to α. To complete the proof, we need to show

that B1[s] � s ⊆ B1[t]. Towards a contradiction suppose that B1[s] � s * B1. Let
α′ be the R1-strategy that changed B1 and suppose that this happened at a least
stage t0: s ≤ t0 < t. Then at stage t0 the strategy α′ acted under Case (8) and
attacked because of some m /∈ G1. The axiom for m in ∆α′ was enumerated at
stage s′, and α′ extracted a number larger than s′ defined after m left G1. It follows
that s′ < s and m /∈ G1[s]. Note that if n ≤ dα′ then as we argued above α′ will
define its list Cα′ after stage s, and can extract from B1 only γ-markers defined
after stage s, in particular no number from DB . So it follows that dα′ < n < s. By
Part (3) of Lemma 9 it follows that if n ∈ G1[t0] then n ∈ G1, hence n /∈ G1[t0]
and in particular n ≤ m. The axiom for m in ∆α′ is defined before stage s and
hence includes an axiom for n which is valid at stage t0. As α′ attacks with the
least possible element it follows that m = n. But this cannot be, as m /∈ G1[s] and
n ∈ G1[s]. �

To deal with Q strategies we can use the same approach as in the proof of
Theorem 9.

Lemma 13. Let β be a Qe-strategy which is not initialized after stage s0 and visited
infinitely often. Then Qe is satisfied and there is a stage sβ after which β does not
end stages at which it is visited.

Proof. We first establish the technical fact about how promises are treated. We
show that if β is a Qe-strategy not initialized in the interval of stages [s, t] and β
makes a promise 〈DX , DG1

, DG2
〉 at stage s, so that at stage t > s, DG1

⊕DG2
*

G1 ⊕ G2 then there is a stage t′ ∈ (s, t], such that DX * X[t′]. Suppose for
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concreteness that o ∈ DG1
\ G1[t]. It follows that o < s. First note that o cannot

be a threshold of an R-strategy as R-strategies of higher priority do not act and
R-strategies of lower priority are initialized at stage s. Thus o is an Ω-marker for
some number n /∈ X[t′] at some stage t′ ≥ s. It follows that i(o)[s] = i(o)[t] = 1
as higher priority strategies do not act in this interval of stages and lower priority
strategies are initialized at stage s. If n /∈ X[s] then by the definition of the Ω-
strategy o /∈ G1[s]. But DG1 ⊆ G1[s], hence our assumptions lead to n ∈ X[s]. By
the definition of DX it follows that n ∈ DX , thus DX * X[t].

The rest of the proof can now proceed is that of Lemma 3. �
To complete the proof we use Lemma 12 and Lemma 13 to show that the true

path exists and use it to prove that the Ω-strategy is successful:

Corollary 3. There is an infinite path f in the tree, such that for every n, f � n is
visited infinitely often and initialized only finitely often. All R and Q requirements
are satisfied.

Lemma 14. ΩG1,G2(n) = X(n).

Proof. The proof is the same as that of Lemma 8 �
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