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Abstract. We address the question, “Which number theoretic statements can
be proven by computational means and applications of Ramsey’s Theorem for

Pairs?” We show that, over the base theory RCA0, Ramsey’s Theorem for
Pairs does not imply Σ0

2-induction.

1. Introduction

Ramsey’s Theorem is the assertion that for any natural number k and any func-
tion F on the size-k of subsets of the natural numbers into a finite range, there is
an infinite set H such that F is constant on the size-k subsets of H. We say that
such an H is F -homogenous. If we think of F as a coloring of size-k sets, then
H is monochromatic. Ramsey’s Theorem is the initial point for a rich and widely
applicable theory, in both finite and infinite combinatorics.

In addition to its mathematical importance, Ramsey’s Theorem has an important
metamathematical position. Proofs of it and of its extensions are naturally found
by invoking large-scale infrastructure. For example, if we start with a nonprincipal
ultrafilter on the natural numbers, the proof of Ramsey’s Theorem follows in an
intuitive way. Conversely, any proof of Ramsey’s Theorem necessarily involves
systems of complicated sets. In [7], Jockusch showed that there is a computable
partition F3 of triples such that any infinite F3-homogeneous set computes the
Halting Problem. Jockusch also showed that there is a computable partition F2

of pairs which has no infinite homogeneous set which is computable relative to
the Halting Problem. Thus, there is a considerable amount of information in every
infinite F3-homogeneous set and there is no simply-defined infinite F2-homogeneous
set. Jockusch’s Theorem is also the initial point of an rich metamathematical
investigation, which is what we pursue here.

We are particularly interested in calibrating the strength of Ramsey’s Theorem
with respect to its arithmetical consequences. In other words, we are interested
in the question, “Which number theoretic statements can be proven by compu-
tational means and applications of Ramsey’s Theorem for Pairs?” This question
is part of the broader study of familiar infinitary methods, such as compactness,
category, measure, and infinitary combinatorics, with respect to their applicability
to questions about the finite. In most cases, even when an infinitary principle adds
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strength, the set of its arithmetic consequences is equal to the set of consequences
of one of the well-known finitary principles, typically a principle of induction. In-
finitary combinatorics, and Ramsey’s Theorem in particular, provides a dramatic
exception to this rule, as we will describe.

We work within the formalism of subsystems of second order arithmetic. These
systems consist of arithmetic axioms, which are assertions concerning the natu-
ral numbers such as addition is commutative or instances of definable induction,
and set comprehension axioms, which are assertions concerning the subsets of the
natural numbers such as Ramsey’s Theorem. Our base theory, RCA0 consists
of the usual first-order axioms for arithmetic operations and Σ0

1-induction rela-
tive to parameters, together with the second-order recursive comprehension scheme
∃X[(∀x(x ∈ X ↔ φ(x))], for each ∆0

1-formula φ (also with parameters). One
should think of RCA0 as axiomatizing the assertion that the subset of the natural
numbers are closed under relative computation.

Let RT 2
2 denote Ramsey’s Theorem for k = 2 and partitions F with range

{0, 1}, that is for colorings of pairs by two colors. By Jockusch’s theorem, RT 2
2 is

not provable in RCA0. Closely related to RT 2
2, and intuitively a more controlled

coloring scheme, is stable Ramsey’s Theorem for Pairs (SRT 2
2): If for any x ∈M , all

but finitely many {x, y}’s have the same color, then there is an infinite homogeneous
set in M. SRT 2

2 is also known to be unprovable from RCA0.
The proof-theoretic strength of these two combinatorial principles has been in-

vestigated by various authors. Cholak, Jockusch and Slaman [1] showed that SRT 2
2,

hence RT 2
2 as first established by Hirst [6], implies the Σ0

2-bounding principle BΣ0
2.

By Slaman [9], BΣ0
2 is equivalent to ∆0

2-induction, so the arithmetic strength of
RT 2

2 is at least as strong as that induction principle. Cholak et. al. also showed that
RT 2

2 is Π
1
1-conservative over RCA0 together with the Σ0

2-induction IΣ0
2. That is, any

Π1
1-statement that is provable in RT 2

2+RCA0+ IΣ
0
2 is already provable in the sys-

tem RCA0+IΣ
0
2. It follows immediately that any subsystem of RT 2

2+RCA0+IΣ
0
2

(such as replacing RT 2
2 by SRT 2

2) is Π1
1-conservative over RCA0 + IΣ0

2. [1] also
showed that RT 2

2 is equivalent to SRT 2
2+COH , where COH is the statement that

for every sequence of sets (Ri), there is an infinite set G such that for each i, one
of Ri ∩G or Ri ∩G is finite.

Moreover, Chong, Slaman and Yang had demonstrated how to handle the two
weaker principles separately. [4] showed that (among other things) one could pre-
serve BΣ2 while adding new sets to satisfy COH ; [5] showed that by looking at a
particular model, one could preserve BΣ2 while adding new sets to satisfy SRT 2

2.
Thus, RCA0 + SRT 2

2 does not imply IΣ2.
In this paper, we show how to combine the two constructions and conclude that

RCA0 + RT 2
2 does not imply IΣ2. Though we fully expect that there is a natural

axiomatization of the arithmetic consequences of RT 2
2, possibly as a collection of

finite combinatorial principles, the situation as it stands now is quite mysterious.
About the proof, there is a significant amount of tension between adding sets

to satisfy instances of SRT 2
2 and adding sets to satisfy instances of COH . When

we act to satisfy SRT 2
2, we rely on an additional arithmetic property, BME , of

the underlying model and on the existence of nonstandard numbers which code
nonstandardly finite subsets of definable sets. When we act to satisfy COH , we
show that BME is preserved. However, we do introduce set parameters relative to
which there are definable sets with no such codes.
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In the following, we show that there is a two-step way to finesse the above
problem. We only need codes for subsets of definable sets which appear in our action
to satisfy SRT 2

2. By employing the priority method in their construction, these sets
admit an approximation that satisfies the hypothesis of the Chong-Mourad Coding
Lemma. From this, we know that there is an auxiliary code that describes the
dynamics of the SRT 2

2 construction relative to the sets we have already added. We
can then conclude that we have the code needed in the SRT 2

2 argument by virtue
of having it for a set defined from the auxiliary code. We run the coding argument
twice, each time using a different coding mechanism, to show that the set for which
we wish to have a code is indeed coded.

The rest of this paper is to carefully carry out all details of the above plan. To
make it self-contained, we repeat certain segments of the constructions which are
done in [4] and [5].

2. Preliminaries

For basic facts about recursion theory on nonstandard models, see [5] whose
notations are followed here. We recall the notions and results that will be referred
to in this paper. Let P− denote the Peano axioms without mathematical induction.
Let IΣ0

n denote the Σ0
n-induction scheme, and BΣ0

n the Σ0
n-bounding scheme. A

model M of second-order arithmetic is a structure of the form ⟨M, S,+,×, 0, 1⟩
where S is a collection of subsets of M . The following fact will be used implicitly
throughout the paper.

Proposition 2.1. If M |= IΣ0
n, then every bounded Σ0

n(M) set is M-finite.

If M |= BΣ0
n but not IΣ0

n, we call it a BΣ0
n-model. In this case, there is a

Σ0
n-function mapping a Σ0

n-definable cut (i.e. a Σ0
n-cut) cofinally into M .

Given a model M of RCA0, and G ⊂M , let M[G] denote the structure generated
by G over M by closing under functions recursive in G, with parameters from M.
By expanding the language of arithmetic to include set constants X, we may also
consider M[X] where X is a predicate denoting a subset of M .

The following lemma captures the essence of coding in BΣ0
n-models of RCA0

(see [3] for a discussion in the case of first-order theories). The generalization of
the coding property to second order systems such as RCA0 is straightforward.

Definition 2.2. Let A be a subset of M , where M |= RCA0. A set X ⊆ A is coded

on A if there is an M-finite set X̂ such that X̂ ∩A = X.

Definition 2.3. Let A be a subset of M . We say that a set X is ∆0
n on A if both

A ∩X and A ∩X are Σ0
n(M).

Lemma 2.4 ([3]). Let M be a model of RCA0 + BΣ0
n (n ≥ 2) and let A ⊂ M .

Then every bounded set that is ∆0
n on A is coded on A.

Lemma 2.4 may be viewed as the effective analog of the coding power of a
saturated model of Peano arithmetic, and is applicable to any BΣ0

n model. It will
be used in §4 to reduce the complexity of the generic set G to be constructed in
Theorem 4.1.

2.1. The ground model M0. The ground model M0 that we will be working with
in this paper is a “Σ0

1-reflection model” which was introduced in [5]. This model is
a refinement of one that was constructed in [8].
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Proposition 2.5. There is a countable BΣ0
2-model M0 = ⟨M0,+,×, 0, 1⟩ with a

Σ0
2-function g such that:

(1) M0 is the union of a sequence of Σ1-elementary end-extensions of models
of PA:

I0 ≺Σ1,e I1 ≺Σ1,e I2 ≺Σ1,e · · · ≺Σ1,e M0

(2) For each i ∈ ω, g(i) ∈ Ii, and for i > 0, g(i) ̸∈ Ii−1, and hence M0 ̸|= IΣ0
2.

(3) Every M0-arithmetical subset of ω is coded on ω.

We turn M0 into a model of RCA0 by letting the second-order elements of M0

to consist of all the recursive subsets of M0.

Definition 2.6. Given modelsM = ⟨M,S,+,×, 0, 1⟩ andM∗ = ⟨M∗, S∗,+,×, 0, 1⟩
of RCA0, we say that M∗ is anM -extension of M ifM =M∗ and S ⊆ S∗, i.e. only
subsets of M are added to M to form M∗.

For the rest of this paper, we fix M0 and g to be the model and function defined
in Proposition 2.5 (with the recursive sets as second-order elements of M0). The
model M that we will construct in Theorem 4.1 to satisfy Corollary 4.2 will be an
M0-extension of M0.

2.2. Combinatorial principles. We recall the combinatorial principles that are
central to the discussion.

Let R ∈ M be M-infinite and let Rs = {t|(s, t) ∈ R}. We say that a set G is
R-cohesive if for all s, either G ∩Rs is M-finite or G ∩Rs is M-finite.

Definition 2.7. (Principle of Cohesiveness (COH )) For every R ∈ M, there is an
M-infinite G ∈ M that is R-cohesive.

If A ⊆M , then [A]2 denotes the set of (unordered) pairs of numbers in A.

Definition 2.8. (Principle of Ramsey’s Theorem for Pairs (RT 2
2)) Let f : [M ]2 → 2

be a function in M. Then there is an A ⊆ M in M such that f is a constant on
[A]2.

We often refer to such an f as a 2-coloring. A 2-coloring f : [M ]2 → 2 is stable
if limsf(x, s) exists for each x ∈M . The Principle of Stable Ramsey’s Theorem for
Pairs (SRT 2

2) is RT
2
2 restricted to stable 2-colorings.

The principles COH and SRT 2
2 originated in [1], where the next and final prin-

ciple was also introduced:

Definition 2.9. The principle D2
2 states: Given any ∆0

2-set A, either A or its
complement contains an infinite subset.

The following two propositions decompose Ramsey’s Theorem for Pairs into two
components which constitute the basic building blocks for the proof of our main
result (Theorem 4.1).

Proposition 2.10 ([1]). Over the base theory RCA0, RT2
2 is equivalent to

COH+ SRT 2
2 .

Proposition 2.11 ([2]). Over the base theory RCA0, SRT
2
2 is equivalent to D2

2.
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2.3. Seetapun disjunction and exit tree. The construction of a BΣ0
2 model

for RT 2
2 begins with the decomposition given in Proposition 2.10. Sections 3 and

4 handle COH and SRT 2
2 respectively. The strategy for meeting the latter is to

build successively sets G that solve instances of D2
2 (applying Proposition 2.11)

and are low relative respectively to predicates X that satisfy BΣ0
2. Lowness is

achieved by forcing the Σ0
1-theory of G. Thus managing how Σ0

1(G)-formulas are
satisfied is central to the construction. The notions of a Seetapun disjunction
and correspondingly an exit tree were introduced in [5] for this purpose. Not
surprisingly, they continue to play a crucial role in this paper.

Let o⃗ = {os} be a (finite or infinite in the sense of M0) sequence of pairwise
disjoint M0-finite sets such that for each s, max os < min os+1. We will only be
concerned with X-recursive sequences o⃗.

The Seetapun tree S associated with o⃗ is the union of the M0-finite trees Ss

consisting of all the choice functions on {os′}s′≤s, i.e. M0-finite functions h with
domain [0, s] such that for all s′ ≤ s, h(s′) ∈ os′ . We call os′ a blob and any subset
of the range of a choice function h a thread.

Let X be a predicate and BX an M0[X]-finite block, synonymous for set, of
(indices of) Σ0

1(X)-formulas (which is also written as BX,r and BX,b for reason
that will be clear from the definition below),

Definition 2.12. Let ε = (ρ, β) be a pair of disjoint M0-finite sets. A Seetapun
disjunction (or S-disjunction for short) δ for (BX,r, BX,b) with precondition (ρ, β)
is a pair (o⃗, S) such that S = Ss for some s, o⃗ = {os′}s′≤s and

(i) For each s′ < s, M0 |= ψe(X, ρ ∗ os′) for some e ∈ BX,r.
(ii) For each maximal branch τ of S, there exists an M0-finite subset ι ⊆ τ

such that M0 |= ψd(X,β ∗ ι) for some d ∈ BX,b.

The objective is to select ρ ⊆ A and β ⊆ A for a given A that is ∆0
2(X). We use

the letters ρ and β to suggest the colors red and blue respectively. Given ε = (ρ, β),
define BX,r(ε) and BX,b(ε) to be respectively the set of formulas in BX not positively
forced by ρ and β. In other words, BX,r(ε) = BX,r \ {e : M0[X] |= ψe(X, ρ)} and
BX,b(ε) = BX \ {d : M0[X] |= ψd(X,β)}. The proof of the next lemma is in [5].
Recall that a set A ⊆M0 is amenable if A ↾ s is M0-finite for each s.

Lemma 2.13. Let X be a predicate and ε = (ρ, β) be a pair of disjoint M0-finite
sets. Let δ = (o⃗, S) be an S-disjunction for (BX,r(ε), BX,b(ε)) with precondition

(ρ, β). Let A be amenable such that ρ ⊆ A and β ⊆ A. Then one of the following
applies:

(i) There is an o ∈ o⃗ such that ρ ∗ o ⊆ A and ψe(X, ρ ∗ o) holds for some
e ∈ BX,r(ε);

(ii) There is a τ ∈ S and a thread ι ⊆ τ such that β ∗ ι ⊆ A and ψd(X,β ∗ ι)
holds for some d ∈ BX,b(ε).

Suppose that BX is anM0-finite set of Σ
0
1(X)-formulas. Lemma 2.13 leads to the

notion of an exit tree. An exit tree is designed to manage in an effective manner
all possible outcomes in the enumeration of S-disjunctions for BX . Lemma 2.13
guarantees that for an amenable A, the “exits” in the tree are well-behaved, and
BME (see the next subsection) implies that each exit tree is M0-finite. Given A,
(ρ, β) and S-disjunction δ that satisfy the hypothesis of Lemma 2.13, define an exit
taken by A from δ to be a o or ι that satisfies the conclusion of the Lemma. An
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arbitrary o or ι in δ is simply called an exit. Beginning with ρ = β = ∅, one can
enumerate an S-disjunction. Each pair of exits (ρ, β) may be used as a precondition
to enumerate another S-disjunction. If ρ and β are exits taken by A, then applying
Lemma 2.13 again produces a pair of exits taken by A which can be used as a
precondition for another application of Lemma 2.13. The exit tree is obtained by
assembling all the pairs of exits (not necessarily taken by A) generated during the
process. Since the notion of an exit tree E was the source for the introduction of
BME on which our main theorem relies, we recall formally its enumeration:

At stage 0, let E[0] be the (code of the) empty set (as root of the tree), and
search for an S-disjunction δ for (BX,r, BX,b) with the pair of preconditions (∅, ∅).

At stage s + 1, suppose that E[s] is given. For each maximal branch ε = (ρ, β)
on E[s] whose code is less than s+1, see whether there exists an S-disjunction δ for
(BX,r(ε), BX,b(ε)) with (ρ, β) as a pair of preconditions. If no such δ is found, do
nothing. Otherwise select the first S-disjunction enumerated over ε. Concatenate
with ε each pair (ρ′, β′) of (the codes of) exits in δ, and also concatenate with ε
pairs of the form (ρ′, ∅) and (∅, β′) where ρ′ and β′ are exits in δ. Let the resulting
tree be E[s+ 1].

Observe that the enumeration of E is monotone in the sense that strings enu-
merated at stage s+ 1 sit on top of strings enumerated at stage s, a property that
is prominent in the definition of BME .

2.4. The Principle of Bounded Monotone Enumeration (BME). The Prin-
ciple BME was introduced in [5]. Since it plays a crucial role in this paper, we
restate its definition here. Recall that a tree T is a collection of M-finite functions
(also called strings) from an initial segment of M into M closed under pairwise
intersection. We often do not distinguish between a string σ and its range. T is
downward closed if every initial segment of a member of T is a member of T . T is
recursively bounded if there is a recursive function f such that for all x ∈M , there
are at most f(x) many elements in T of length x.

Definition 2.14. Let E be a procedure to recursively enumerate a finite branching
enumerable tree. We say that E is a monotone enumeration if and only if the
following conditions apply to its stage-by-stage behavior.

(1) The empty sequence is enumerated by E during stage 0.
(2) Only M-finitely many sequences are enumerated by E during any stage.
(3) Suppose T [s] is the tree enumerated by E at the end of stage s. Then any

sequence enumerated by E during stage s + 1 must extend some terminal
node of T [s].

The informal idea is that the tree enumerated by E always grows from leaves.
Once a leaf becomes an interior node, no new sequence will be enumerated directly
extending it, although indirect extensions through the new leaves extending it are
allowed.

For an element τ enumerated by E, let k be the number of stages in the enumer-
ation by E during which τ or an initial segment of τ is enumerated. Let (τi : i < k)
be the stage-by-stage sequence of the maximal initial segments of τ associated with
those stages. We say that τ has order k. The enumeration of E is said to be
bounded by b if for each τ enumerated by E, it has order less than or equal to b.
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Proposition 3.6 of [5] says that in general, given b in a BΣ0
2-model M, there

is no guarantee that a stage s exists bounding the stages where all sequences of
order less than b are enumerated by E (or equivalently, the resulting tree T with
height less than b reaches its limit by stage s). The principle BME ensures that
such a stage always exists, even when one performs simultaneously an iteration of
M-finitely many monotone enumeration operators.

The monotone enumeration operator E may be relativized to a string σ. E(σ) is
the M-finite tree enumerated with σ as an oracle. We follow the usual convention
that if m is the maximum of the length of σ and its greatest element, then the
evaluation of E relative to σ takes less than m steps and σ is queried only at
arguments for which it is defined. The enumeration operator can also be relativized
to a predicate X, resulting in an r.e. in X tree. E may also be relativized to the
paths of a tree V , in which case the outcome will be a “forest”—that is, a collection
of trees since incompatible paths on V may produce different trees.

In fact, the “tree” V mentioned above should be viewed as a procedure to com-
pute a recursively bounded recursive tree. Similarly we may define V relative to a
string τ , a predicate X, or even a tree T recursively enumerated by E. We will use
σ and τ to denote respectively strings in the relativization of E and V . By abuse of
notation, we will also use E or V to refer to the recursive or recursively enumerable
trees defined by them. In particular, E is also referred to as an exit tree.

Definition 2.15. Suppose that V is the index for a recursively bounded recursive
tree and suppose that E is a monotone enumeration procedure. For σ in the tree
computed by V , say that σ is E-expansionary if in the enumeration of E(σ) some
new element is enumerated at stage |σ|. We say that a level ℓ in the tree computed
by V is E-expansionary if there is an n such that ℓ is the least level in the tree
computed by V at which every σ in that tree with |σ| = ℓ has at least n many
E-expansionary initial segments.

We will first define a scaled down version of BME which is denoted BME 1.
BME 1 is BME for “one-dimension” and is invoked when iteration is not involved
in the process.

We say that M satisfies BME 1 if and only if the following holds: For each b ∈M ,
indices for a recursively bounded recursive tree V and a monotone enumeration pro-
cedure E, if E is bounded by b then there are only boundedly many E-expansionary
levels in V . In other words, there is a level l∗ such that for any σ ∈ V of length
greater than l∗, E(σ) does not enumerate any new sequence τ of order less than or
equal to b.

The general principle BME deals with iterated applications of monotone oper-
ators. In [5], the operator Ei carries out an enumeration of Seetapun disjunctions
and “blobs”, while the recursively bounded recursive tree Vi supplies the strings
relative to which the next monotone operator Ei+1 performs its enumeration. The
sequence ⟨Vi, Ei⟩1≤i≤k is introduced to enable one to construct a sequence of generic
sets solving instances of SRT 2

2 while satisfying the lowness property under any fi-
nite join. An outcome of the iteration process is that every infinite path on a V
generates a tree and every tree generates a forest (of E’s).

Definition 2.16. A k-iterated monotone enumeration is a sequence ⟨Vi, Ei⟩1≤i≤k

with the following properties.

(1) Each Vi is an index for a relativized recursive recursively-bounded tree.
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(2) Each Ei is an index for a monotone enumeration procedure.
(3) For each 1 ≤ j ≤ k, if σ ∈ Vj is Ej-expansionary, then for every new element

τ enumerated in Ej(σ), Vj+1(τ) is a proper Ej+1-expansionary extension
of Vj+1(τ0), where τ0 is the longest initial segment of τ that had previously
been enumerated in Ej(σ), that is by a stage less than the length of σ.

Definition 2.17. A k-path of the k-iterated monotone enumeration ⟨Vi, Ei⟩1≤i≤k

is a sequence (σi, τi)1≤i≤k such that σ1 ∈ V1 and τ1 is a maximal sequence in
E1(σ1), and for each j with 1 < j ≤ k, σj is a maximal sequence in Vj(τj−1) and
τj is a maximal sequence in Ej(σj).

Definition 2.18. (1) A k-iterated monotone enumeration is b-bounded if and
only if for every sequence enumerated in Ek(σk) by some k-path of the k-
iterated enumeration, its stage-by-stage enumeration has length less than
or equal to b.

(2) We say that M satisfies bounding for iterated monotone enumerations
(BME ) if and only if for every k ∈ ω, every b in M and every b-bounded
k-iterated monotone enumeration, there are only boundedly many E1-
expansionary levels in V1.

(3) If we restrict our attention to k-iterated monotone enumerations, we say
that M satisfies BMEk.

Proposition 2.19. M0 satisfies BME.

Given predicates X,G and j < ω, the Claim in Theorem 5.1 of [5] (where n is
replaced by j here for the construction to be carried out in §4) asserts the existence
of a j+1-enumeration procedure that amalgamates the collection C of all g(j+1)-
bounded, k-iterated monotone enumerations (where k ≤ j + 1) relative to (X,G)
whose indices are below g(j + 1). Suppose

C = {⟨Ve,i, Ee,i⟩1≤i≤k(e) : e ≤ e0}
for some e0.

Proposition 2.20. There exists a g(j + 1)-bounded, j + 1-iterated monotone enu-

meration ⟨V̂i, Êi⟩1≤i≤j+1 such that

• for each e ≤ e0, i, σ and τ , 0 ∗ e ∗ σ ∈ V̂i(τ) if and only if σ ∈ Ve,i(τ), and

τ ∈ Êi(0 ∗ e ∗ σ) if τ ∈ Ee,i(σ).

Proposition 2.20 allows one to handle, at each stage of constructing a generic
set G, to handle only one sequence of monotone enumeration operators which is an
amalgamation of an M-finite block of such operators.

2.5. Forcing. The notion of forcing we require for the proof of Theorem 4.1 was
introduced in [5]:

Definition 2.21. Let X be a predicate. The partial order P = ⟨p,≤⟩ of forcing
conditions p satisfies:

(1) p = (ε, U) where ε = (ρ, β) is a pair of disjoint M0-finite strings of the
same length and U is (an index of an) X-recursively bounded recursive
increasing tree such that the maximum number appearing in either ρ or
β is less than the minimum number appearing in U (note that U may
enumerate an M0-finite tree).
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(2) We say that q = (εq, Uq) is stronger than p = (εp, Up) (written p ≥ q) if
and only if the following conditions hold.

(i) Let εp = (ρp, βp) and εq = (ρq, βq). Then ρp ⪯ ρq and βp ⪯ βq;
(ii) (∀σ ∈ Uq)(∃τ ∈ Up)(range(σ) ⊆ range(τ)).

Given a Σ0
1(X)-formula ψ with a free set variable Ǧ of the form ∃sφ(s,X, Ǧ),

we say that p red forces ψ (written p ⊩r ψ) if

M0[X] |= ∃s ≤ max(ρp)φ(s,X, ρp).

Define blue forcing similarly, except that ρp is replaced by βp and ⊩r by ⊩b. Also
we say that p red forces ¬ψ (written p ⊩r ¬ψ) if for all τ ∈ Up, for all o ⊆ τ ,

(∗) M0[X] |= ∀s ≤ max(τ)¬φ(s,X, ρp ∗ o).
Define p ⊩b ¬ψ similarly, replacing ρp by βp. [For consistency of notation with that
for an S-disjunction, we use ι in place of o in (∗) above for p ⊩b ¬ψ.]

3. Preserving BME + COH +BΣ0
2

Fix the ground model M0 (Proposition 2.5). Throughout this section, we work
in the Cantor space so that a string σ is an element of 2<M0 . Let X be a predicate
on M0 such that M0[X] satisfies RCA0 +BΣ0

2 and BME . In M0, ω is a Σ0
2-cut on

which a cofinal Σ0
2-function g : ω → M0 is defined. The aim of this section is to

present the construction of a G that solves an instance of COH so that M0[X,G]
preserves RCA0 + BME +BΣ0

2.
The construction is based on the idea implemented in [4] with the new ingredient

of preserving BME . Thus steps which are mere repetitions of the earlier construc-
tion will be omitted. Note that we do not need to build a topped model as this was
carried out in [4] to establish Π1

1-conservation of COH over RCA + BΣ0
2. We will

prove the following theorem.

Theorem 3.1. For any R in M0[X], there is a G ⊂M0 which is R-cohesive such
that the M0-extension M0[X,G] is a BΣ0

2-model of RCA0 + BME.

The proof consists of two parts. In the first part, we build within M0[X]
an X ′-recursive X ′-recursively bounded tree T such that from each M0-infinite
path p on T one computes a set Gp which is generalized X-low in the sense that
(Gp ⊕X)′ ≡T Gp ⊕X ′. Furthermore, Gp is R-cohesive, and M0[X,Gp] preserves
BME .

Lemma 3.2 (Internal Forcing). There is an X ′-recursive X ′-recursively bounded
tree T such that each M0[X]-infinite path p on T yields a set Gp which is R-cohesive,
generalized X-low and M0[X,Gp] satisfies BME.

In the second part, we select a path p through T such that Gp preserves BΣ0
2.

This path p is constructed from the outside using the countability of M0[X].

Lemma 3.3 (External Forcing). There is an unbounded path p on T such that
M0[X,Gp] |= BΣ0

2.

Since the proof of Lemma 3.3 is essential the same as that of Lemma 3.2 in [4],
we will omit it and devote the rest of this section to the proof of Lemma 3.2. To
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simplify notations, we only prove the case when X = ∅. The general case follows
upon replacing ∅′ by X ′ and M0 by M0[X]. At the few places where extra care is
required, we will make appropriate comments on the changes to be made.

To build the tree T , for each e ∈ M0, we have the cohesive requirement Pe,
generalized lowness requirement Qe and the e-th instance BME to satisfy. For each
path p on T and for each G = Gp, we have

• Pe: G ∩Re is M0-finite or G ∩Re is M0-finite.
• Qe: (Deciding the jump) There is an initial segment σ of p such that either
Φσ

e,|σ|(e) ↓ or for all τ ≻ σ, if τ ∈ T then Φτ
e (e) ↑. When such a σ is found,

we say that “e ∈ G′ is decided by σ”.

Remark. When X ̸= ∅, Qe takes the form: There is a string σ and a number

n such that either Φσ⊕X↾n
e,|σ| (e) ↓ or for all τ ≻ σ on T , for all m > n, Φτ⊕X↾m

e (e) ↑.
Note that this is decided by X ′.

We organize the set of requirements Pe and Qe into blocks Dn, n ∈ ω. As the
Σ0

2-cut is ω, one may define Dn = {e : e ≤ g(n)}. By Proposition 2.20, BME
may be decomposed into ω many instances of the principle which can be preserved
individually in ω steps in the course of the construction.

For any recursive subset Z of M0, we can naturally associate with it a binary
recursive tree TZ so that σ ∈ TZ if and only if {i : σ(i) = 1} ⊆ Z. Note that
when Z is M0-infinite, then TZ is recursively isomorphic to the perfect full binary
tree 2<M0 . When Z is M0-finite, TZ has an initial segment isomorphic to the
M0-finite perfect tree 2|Z| followed by 2|Z| many isolated paths consisting of only
extensions by 0. Note that the TZ above has ∅ as its root. As we will see below,
it is convenient to have a notion “TZ on top of a string σ” or “TZ with root σ”,
which is a tree consisting of the strings τ such that τ(n) = σ(n) if n ≤ |σ| and
{i > |σ| : τ(i) = 1} ⊆ Z. For a tree T and a node σ ∈ T , we use the notation T [σ]
to denote the subtree {τ ∈ T : τ is comparable with σ}.

For x ∈ M0, let the e-state of x be the M0-finite binary string ν (in fact,
ν(R, e, x)) of length e+ 1 such that for each s ≤ e, ν(s) = 1 if and only if x ∈ Rs.
We make the following claims:

Claim 1. For each TZ and e-state ν, there is a recursive subtree TZν such that
Zν ⊆ Z and every element in Zν has e-state ν.
Proof of Claim 1. Let Zν = {x ∈ Z : ν(R, e, x) = ν} and TZν to be the tree
associated with Zν . Note that Zν may be M0-finite or even empty.

For Qe, we have the same Claim 2 as in [4], whose proof we will not repeat.

Claim 2. There is a ∅′-recursive function h :M0 ×M0 → 2<M0 with the following
property: for each (canonical index of an) M0-finite set D ⊂M0 and (an index of)
a recursive tree S of the form TZ for some recursive set Z, σ = h(B,S) is a string
on S which either decides “e ∈ G′” for all e ∈ D, or q = {σ ∗ 0s : s ∈ M0} is an
isolated path on S.

Claim 3. For each recursive set Z and b-bounded k-iterated instance ⟨Vi, Ei⟩1≤i≤k

of BMEk, there is a string σ∗ ∈ TZ such that for any path p on TZ extending σ∗,
M0[Gp] satisfies the instance of BME . Furthermore such a σ∗ may be computed
using ∅′.
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Proof of Claim 3. Given a recursive tree TZ , let V0 be TZ . Define a monotone
enumeration procedure E0 as follows. E0 is described in terms of E0(σ) with anM0-
finite string σ as the oracle. When applied to an infinite path λ, E0(λ) is naturally
the union of E0(σ) for σ ≺ λ. Moreover, when applied to a tree V (in particular
V0 here), E0(V ) is a “forest”, i.e., a union of trees where incomparable nodes on V
may produce different M0-finite trees. Given σ, the enumeration procedure E0(σ)
can be viewed as selecting initial segments ηm ≺ σ one by one, so that V1(ηm)
has exactly m many E1-expansionary levels. More precisely, enumerate η0 = ∅ as
the root. Suppose that we have enumerated ηm ≺ σ. Search for an η such that
ηm ≺ η ≺ σ and there is an M0-finite subtree Wm+1 of V1(η) whose leaves are
either a dead end on V1(ηm) or has exactly m + 1 many E1-expansionary levels.
It no such η exists, then E0(σ) stops at ηm. If such an η exists, let ηm+1 be the
shortest such η.

By definition, E0 is monotone. To satisfy the given instance ⟨Vi, Ei⟩1≤i≤k of
BMEk, we apply BMEk+1 over the ground model and conclude that the E0-
expansionary levels on V0 are bounded. Thus for some σ∗ ∈ TZ and some number
m∗, any p extending σ∗ on TZ will have exactly m∗ many E1-expansionary stages.
Furthermore ∅′ is able to compute such a σ∗ and m∗, by enumerating g(n) and
checking each node on TZ of length g(n) to see if there is an E1-expansionary stage
(the latter is a Σ0

1-process). This completes the proof of Claim 3.

We now return to the proof of Lemma 3.2. We use ∅′ as oracle to construct
a sequence ⟨Tn⟩n∈ω of ∅′-recursively bounded recursive trees. Each recursive tree
Tn can be decomposed into two parts: The first part is an M0-finite tree, whose
dead ends are listed as σ1, . . . , σs; the rest of Tn are the parts extending each σj ,
if σj is not a dead end of Tn then it is extended by a tree TZj associated with a
set Zj ⊆ M0. We refer to a tree like Tn as an amalgamation tree. Informally, an
amalgamation tree is a “union” of M0-finitely many subtrees each of which has a
string σj as root and, if σj is not a dead end, is a tree of the form TZ on top of σj ,
for some set Z.

In defining Tn+1 from Tn, we do not redefine the strings σj . Instead, we use ∅′
to turn each of the perfect trees TZj extending σj into a new amalgamation tree
(as was done in the proofs of the three claims above). Therefore the M0-finite tree
described above as the first part of Tn+1 is an end-extension of that of Tn. The
union of those M0-finite trees is the tree T desired in Lemma 3.2.

Step 0. Begin with the full binary tree T0 in M0.
Step n + 1. Suppose that Tn is an amalgamation tree consisting of σj and TZj

for 1 ≤ j ≤ s. We work on each σj to modify TZj by applying the claims.
First we handle a block of cohesive requirements Pe for e ∈ Dn. For each g(n)-

state ν, add an extension of σj with label ν (so that different ν’s have different
extensions), apply Claim 1 to obtain TZν , and “place it on top of” the node labelled
ν. Note that by the same argument as in [4], BΣ2 implies that at least one of the
Zν ’s must be M0-infinite.

Next consider a block of generalized low requirements Qe for e ∈ Dn. On each
TZν

, search for a string η that decides e ∈ G′ for all e ∈ Dn. Some care has to be
exercised to preempt the possibility that η consists only of 0’s, for otherwise the set
G eventually obtained would be an M-finite set and hence not cohesive. However,
this can be taken care of quite easily by including a “1” in η. If Zν is not M-finite,
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one can always find a branching node τ on TZν . This is then followed by “cutting
off” the left half of the tree above τ and moving the construction to nodes in TZν

extending τ ∗ 1. If Zν is M-finite, then there is no need to consider the tree. More
precisely, the procedure searches for the first branching point τ (if any) on TZν ,
stops extending any node extending τ ∗ 0 and applies Claim 2 to the tree TZν [τ ∗ 1]
consisting of strings in TZν extending τ ∗ 1 to obtain η = h(Dn, TZν [τ ∗ 1]). The
tree TZν [η] consists of nodes extending η will be further trimmed to satisfy BME .

Finally let ⟨V̂i, Êi⟩1≤i≤n+1 be the instance of BME that is the g(n+1)-bounded,
n + 1-iterated monotone enumeration in Proposition 2.20. For each TZν [η] con-
structed above, apply Claim 3 to obtain the σ∗, which we now denote as σ∗

ν , for

⟨V̂i, Êi⟩1≤i≤n+1. Constructions from step n+2 onwards will only apply to the tree
TZν [σ

∗
ν ] consisting of nodes extending σ∗

ν .
This concludes Step n + 1 of the construction. Note that the resulting tree is

still an amalgamation tree.
We verify that T has the desired properties. First by construction there is at least

one M0-infinite path on T . Every M0-infinite path p on T necessarily corresponds
to an M0-infinite set Gp. Clearly, every M0-infinite path on T eventually has the
same e-state, and so the cohesiveness requirements are satisfied. Let p be an M0-
infinite path on T and Gp be the corresponding M0-infinite set. Gp is generalized
low as argued in [4]. Moreover M0[Gp] satisfies BME by the proof of Claim 3,
completing the proof of Lemma 3.2.

4. Σ0
2-induction

Theorem 4.1. Let M0[X] |= RCA0 + BME+ BΣ0
2. Let A be ∆0

2(X). Then there
is an M0[X]-infinite G ⊆M0 such that

(1) G ⊆ A or G ⊆ A;
(2) G′ ≤T X ′ and hence M0[X,G] |= RCA0 +BΣ0

2;
(3) M0[X,G] |= BME.

The proof of Theorem 4.1 parallels those of Theorems 4.1 and 5.1 in [5], with a
major difference deserving elaboration. We begin by retracing the steps taken to
produce a model M of RCA0 + SRT 2

2 + BΣ0
2 in Theorem 4.1 of [5]. The key idea

was to arrange for the second order elements of M to consist only of low sets. The
construction of G was in fact ∅′′-recursive, but the arithmetical saturation of the
ground model M0 allowed one to argue that the set G constructed was ∅′-recursive.
This approach fails in the current setting. Since RT 2

2 is equivalent to COH +SRT 2
2

over RCA0 (Proposition 2.10), the obvious strategy would be to build a BΣ0
2-model

M of RCA0 + RT 2
2 by successively satisfying instances of COH (as in Section 3)

and D2
2 (which is equivalent to SRT 2

2 over RCA0 by Proposition 2.11). However,
since the construction in Section 3 of an R-cohesive set X is highly noneffective, one
cannot expect arithmetical saturation relative to X to automatically hold, i.e. it is
not necessarily true that any subset of ω that is arithmetical relative to X is coded
on ω. Thus constructing a set over M0[X] that solves an instance of D2

2 following
the steps in Theorem 4.1 of [5] only produces a G that is recursive in X ′′. There
need not be a code available for reducing the complexity of G by one Turing jump
relative to X, a step required to show that BΣ0

2 is preserved relative to (X,G). Of
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course there is the additional issue of preserving BME at each stage to enable a
successful iteration of the construction to generate a countable sequence of generic
sets that will form the desired model.

We now describe in some detail how the desired reduction from X ′′ to X ′

should be achieved. We will view the X ′′-recursive construction as approximated
by an X ′-recursive construction. We satisfy an instance of D2

2 over M0[X] (a
model of RCA0 + BΣ0

2) by an X ′-recursive construction, and implement an X ′-
recursive construction involving finite injury and forcing so that for j ≤ n, the
approximation G[g(n)] ↾ g(j) of G ↾ g(j) at stage n is defined. In the end,
G ↾ g(j) = limn→ωG[g(n)] ↾ g(j). The outcome of the entire construction is
compressed into a set that is ∆0

2(X) on ω × ω × 2. Lemma 2.4 ensures that this
set is coded on ω × ω × 2. This code replaces any reference to X and allows us to
invoke arithmetical saturation of M0 on the coded set, yielding another code that
is needed to argue that G ≤T X ′.

Let A be ∆0
2(X). The construction is carried out in ω many stages. We define an

X ′-recursive sequence of (indices of) forcing conditions {pj,n}j≤n<ω, where condi-
tions are defined as in Definition 2.21, such that pj,n = ⟨εj,n, Ui,n⟩, εj,n = (ρj,n, βj,n)

with ρj,n ⊆ A and βj,n ⊆ A, and pj+1,n ≤ pj,n for each n and j. Here pj,n is the
X ′-recursive approximation of the forcing condition pj at stage n. For each j,
pj,n ̸= pj,n+1 for only finitely many n. In particular, pj = limn→ωpj,n is defined
with Uj M0-infinite. The generic set G will be an M0[X]-infinite sequence that is
the union of either {ρj}j<ω or {βj}j<ω.

Proof of Theorem 4.1. We begin by setting p−1,n = ⟨(∅, ∅), Id⟩, where Id is the
set whose sth element is the number s. We regard Id as a tree whose elements are
strings σ ∈M<M0

0 so that σ(s) = s. Let j−1 = î−1 = 0.

Stage n + 1: Assume jn and în ≥ n are defined. The values jn and în are
computed by X ′ and g(̂in) is a stage where Uj,n is not seen to be M0[X]-finite

for j ≤ jn. Perform g(̂in + 1) steps of computation to search for the least j ≤ n,
denoted j∗, such that Uj,n is M0[X]-finite. Let j∗ = n + 1 otherwise. Assume by
induction hypothesis that uniformly in X ′, pj,n is defined for all j < j∗, and that
if 0 ≤ j < j∗, then:

(1) εj,n = (ρj,n, βj,n) and ρj,n ⊆ A, βj,n ⊆ A;
(2) There is a c ∈ {r, b} such that for all Σ0

1(X)-formulas ψ with parameters
below g(j), either pj,n ⊩c ψ or pj,n ⊩c ¬ψ;

(3) For k ≤ j, let BMEk,j denote BMEk relative to the predicate X restricted
to the g(j)-bounded, k-iterated monotone enumerations, with indices below
g(j). Then BMEk,j has been ensured with the following additional conclu-
sion: For any instance ⟨Vi, Ei⟩1≤i≤k of BMEk,j , for any M0-finite subset Y
of a string in Uj,n, no E1-expansionary level in V1 relative to (X, ρj,n ∗ Y )
(or relative to (X,βj,n ∗Y ), depending on whether Uj,n was obtained previ-
ously through skipping or thinning, see below) is enumerated unless it was
already enumerated relative to (X, ρj,n) (respectively, (X,βj,n)).

By Proposition 2.20, we may assume that (3) was achieved by working with the

amalgamated monotone enumeration ⟨V̂j , Êi⟩1≤i≤j .
LetBX,j = BX,r,j = BX,b,j be the collection of Σ0

1(X)-formulas with free variable

Ǧ and parameters less than g(j). Let ψ(ℓ,X, Ǧ) be the Σ0
1(X)-formula statting that

there exists an s where ℓ-many Ê1-expansionary levels are enumerated at stage s.
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Let

B̂X,j = BX,j ∪ {ψ(ℓ,X, Ǧ) : ℓ ≥ 1}.
Define B̂X,r,j and B̂X,b,j similarly. Let V̂0 = Uj∗−1,n and let Ê0 be (an index of

the) exit tree (see §2.3) over the pair of preconditions (ρj∗−1,n, βj∗−1,n) for formulas

in B̂X,j∗ (hence also formulas that enumerate Ê1-expansionary levels) along any

σ ∈ V̂0. If Uj∗−1,n is M0-infinite, then Lemma 2.13 and BME in M0[X] yields

a maximal pair (ρ, β) of exits in Ê0 such that ρ ⊂ A, β ⊂ A, ρj∗−1 ≺≺ ρ and

βj∗−1 ≺ β. However, the tree enumerated as Uj∗−1,n may be M0-finite, so that Ê0’s
enumeration may terminate prematurely before a “genuinely” maximal pair (ρ, β)
is enumerated to satisfy (2). We resolve this difficulty by a series of approximations
to arrive at the “correct U”.

Enumerate, recursively in X, Ê0[σ] for each σ ∈ Uj∗−1,n. This is achieved by

enumerating S-disjunctions along σ for formulas in B̂X,j∗ . Note that X ′ is able to
decide if there is a new S-disjunction to be enumerated, and hence if there will be
a new Ê0-expansionary level to be enumerated on Uj∗−1,n. Then there is a step

s∗ ≥ g(̂in + 1) where one of the following holds:

(a) Every string in Uj∗−1,n has length bounded by s∗ and hence Uj∗−1,n is
M0[X]-finite;

(b) There is a string in Uj∗−1,n of length greater than s∗ and by BMEk,j∗ in

M0[X], no new Ê0-expansionary level is enumerated on Uj∗−1,n after s∗.

We may require that in the computation above, s∗ is in the range of g. Now if
(a) holds, return to the beginning of the construction at stage n + 1 and reset j∗

to be the least j ≤ n for which Uj,n is M0[X]-finite after s∗ steps of computation
and repeat the above to arrive at a new s∗ in the range of g where either (a) or (b)
holds, using X ′ as oracle. If (a) holds at (the new) step s∗, the process is repeated
one more time. This cycle of resetting j∗ and s∗ must, however, end after i rounds,
for some i < ω, since each time j∗ is reset, it assumes a smaller standard natural
number, and U0,n is M0[X]-infinite. Let in+1 be the least such i and în+1 be chosen

such that g(̂in+1) is the step s∗ where in+1 is computed by X ′. At step g(̂in+1),
(b) holds.

Let jn+1 be the j∗ at step g(̂in+1). We will define Ujn+1,n+1 through a series
of “Ta analysis” as follows. For each σ ∈ Ujn+1−1,n, let #δσ be the number of

S-disjunctions δ enumerated in |σ| steps along σ for formulas in B̂X,jn+1 . Let

T δ
a,jn+1

= {σ ∈ Ujn+1−1,n : #δσ ≤ a}.

Condition (b) guarantees that there is a largest a, denoted aδ,jn+1 and computable
by X ′, for which the supremum of {|σ| : #δσ ≤ a} is bounded in Ujn+1−1,n. Let
σδ,jn+1 be the (canonically least) string σ such that #δσ = aδ,jn+1 and for every
τ ∈ Ujn+1−1,n, there is a σ ∈ Ujn+1−1,n extending σδ,jn+1

satisfying |σ| = |τ |
and #δσ = aδ,jn+1 . The objective here is to select σδ,jn+1 so that the subtree of

T δ
aδ,jn+1+1,jn+1

extending σδ,jn+1 is unbounded in the event that T δ
aδ,jn+1

+1,jn+1
is

unbounded. Let

Ûjn+1 = {σ ∈ Ujn+1−1,n : σδ,jn+1 ≺ σ ∧#δσ = aδ,jn+1}.
For j < jn+1, let pj,n+1 = pj,n. Let εjn+1,n+1 = (ρjn+1,n+1, βjn+1,n+1) be a

maximal string in Ê0 so that ρjn+1,n+1 ⊆ A and βjn+1,n+1 ⊆ A.
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For each σ ∈ Ûjn+1 , compute |σ| steps for an increasing sequence {os} of blobs

such that min os+1 > max os, min os > max ρjn+1,n+1 and ψ(X, ρjn+1,n+1
⌢os) holds

for some ψ ∈ B̂X,jn+1(εjn+1,n+1). Let #oσ be the number of blobs so enumerated
and T o

a,jn+1
= {σ : #oσ ≤ a}. There are two cases to consider.

Case 1 (Skipping). At step în+1, there is a largest a, denoted ao,jn+1 , for

which the supremum of {|σ| : #oσ ≤ a} is bounded in Ûjn+1 . Let Ujn+1,n+1 be
(the canonical index of) the X-recursively enumerated increasing recursive tree

consisting of strings τ ≻ σo,jn+1 from Ûjn+1 satisfying #oτ = a. Ujn+1,n+1 may be

viewed as the subtree of Ûjn+1 restricted to the strings τ extending σo,jn+1 with
#oτ = ao,jn+1 . Let pjn+1,n+1 = ⟨εjn+1,n+1, Ujn+1,n+1⟩.

Case 2 (Thinning). At step în+1, there is no largest a where the supremum of

{|σ| : #oσ ≤ a} is bounded in Ûjn+1 .

We do thinning of Ûjn+1 by following the construction in §4.6 of [5] (conditions
(1) and (2) before Lemma 4.8). This is carried out by using the blobs o enumer-

ated uniformly along strings σ in Ûjn+1 to determine an index of an X-recursively
bounded increasing X-recursive tree S enumerated as follows.

Stage −1. Let S[−1] be ∅ (the root).
Stage v + 1. Suppose that S[v] is the amalgamation of the choice functions on

blobs enumerated by σ ∈ T o
v . In other words, S[v] satisfies the following conditions:

(i) If τ is a node of S[v] with length v, then there is a node σ ∈ T o
v,jn+1

such
that τ is a choice function on blobs enumerated along σ.

(ii) If σ is a node in T o
v,jn+1

which enumerates v many blobs along σ, say o⃗, and

f is a choice function on o⃗, then there is a unique maximal branch τ ∈ S[v]
such that τ = f .

To define S[v + 1], examine all the maximal branches σ in T o
v+1,jn+1

such that

#o(σ) = v + 1. Let the blob-sequence enumerated along σ be o⃗. (Note that it is
not necessary to consider other maximal branches in T o

v+1,jn+1
as these must be

dead ends in Ûjn+1 .) Now each choice function f on o⃗ necessarily extends some
choice function f ′ on the first v blobs of o⃗.. By condition (ii) for v, f ′ is τ for
some unique τ ∈ S[v]. Enumerate f into S[v + 1] extending τ , provided f has not

been enumerated into S[v+1] earlier. (different branches on Ûjn+1 may enumerate
identical blob-sequences.) This ensures that all choice functions on blob-sequences
of length v + 1 along any node on T o

v+1 are included. It follows that (i) and (ii)
remain valid for S[v + 1].

Let

Ujn+1,n+1 = {σ ∈ S :(∀t < max(σ))(∀ι ⊆ σ)(∀e ∈ BX,jn+1,b(εjn+1,n+1))

M0[X] |= ¬ψe(t,X, βn+1 ∗ ι)}

(we write ψe to be the eth Σ0
1(X)-formula with free variable Ǧ). Then Ujn+1,n+1

is an X-recursively bounded recursive increasing tree as it is generated from
S. Pursuing the same argument as that in [5] for Un+1 (before Lemma
4.8), one concludes that Ujn+1,n+1 is M0[X]-infinite if and only if S is. Let
pjn+1,n+1 = ⟨εjn+1,n+1, Ujn+1,n+1⟩.
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This completes the construction at stage n+1. Note that the entire construction
is recursive in X ′.

Claim 1. For each j, pj = limnpj.m = ⟨εj , Uj⟩ exits. Then Uj is N[X]-infinite
and pj ≥ pj+1.

Proof of Claim 1. This is proved by induction. By construction, U−1,n = Id for
all n ≥ 0 and is M[X]-infinite. Hence p−1 = ⟨(∅, ∅), Id⟩.

Assume that pj′,n = pj′,nj for all j′ ≤ j and n ≥ nj . Then Uj,n is M0[X]-infinite
for such j and n., If jn+1 > j+1 for all n ≥ nj , then Uj+1,n is M0-infinite for such
n’s and is equal to Uj+1 which was obtained at stage nj + 1 through thinning. If
jn+1 = j + 1 for some n ≥ nj , then Uj+1,n is M0[X]-finite as computed by X ′ at
stage n + 1 under Case 1. At stage n + 1, we perform skipping of Uj+1,n. Then
Uj+1,n′ = Uj+1,n+1, and hence pj+1,n′ = pj+1,n+1 for all n′ ≥ n+ 1.

Given pj , the choice of εj = (ρj , βj) ensures that ρj ⊆ A and βj ⊆ A. Further-
more, there is a c ∈ {r, b} such that pj ⊩c ψ or pj ⊩c ¬ψ for each ψ ∈ BX,j . This
yields (1) and (2) for pj . If pj′,n′ = pj′ for all n

′ ≥ nj and j′ ≤ j, then each Uj′,n

for j′ ≤ j is M[X]-infinite, and one argues as in Theorem 5.1 of [5] that (3) holds
for pj . This gives

Claim 2. For each j, pj satisfies (1), (2) and (3).

If the range of
∪

j ρj is M0[X]-infinite, let G =
∪

j ρj . Otherwise, let G be
∪

j βj .
The next claim reduces the complexity of G and is the final step in establishing our
main result.

Claim 3. G ≤T X ′.
Proof of Claim 3. Let Y = {(j, n) : jn = j}. Then Y ⊂ ω × ω is ∆0

2(X). Since

M[X] |= BΣ0
2, by Lemma 2.4 there is an M0[X]-finite (hence M0-finite) set Ŷ such

that Ŷ ∩ (ω × ω) = Y . For j ∈ ω, define h(j) = max{n : n ∈ ω ∧ j = jn}. Then

h ⊂ Ŷ ∩(ω×ω) is coded on ω×ω since it is definable from Ŷ over the arithmetically
saturated structure M0.

Let ĥ be M0-finite such that ĥ∩(ω×ω) = h. Then for each j, pj,n = pj whenever

n > ĥ(j). Assume that G =
∪

j ρj (the argument for G =
∪

j βj is the same). Then

ρj = ρj,ĥ(j)+1. Since the map j 7→ ρj,ĥ(j)+1 is ∆0
2(X), we have G ≤T X ′. In fact

G′ ≤T X ′ since the Σ0
1-theory of G is decidable by X ′.

Thus G ⊆ A or G ⊆ A and is M[X]-infinite. Furthermore, M[X,G] is a model
of RCA0 + BME and preserves BΣ0

2. This completes the proof of Theorem 4.1.
□

Corollary 4.2. RCA0 + RT2
2 ̸⊢ IΣ0

2.

Proof. We prove this by applying alternately Theorem 3.1 and Theorem 4.1. Let
M0 be as before. Since M0 is countable, we can successively define M0-extensions
Mi (1 ≤ i < ω) such that Mi = M0[G1, . . . , Gi] |= RCA0 + BME +BΣ0

2 and each
Mi resolves an instance of COH or D2

2 with parameters in some Mj where j < i.
Furthermore, each instance of COH and D2

2 with parameters in an Mj is resolved
in some Mi where i > j. Let M =

∪
i Mi. Then M |= RCA0 + RT 2

2 + ¬IΣ0
2.



THE INDUCTIVE STRENGTH OF RAMSEY’S THEOREM FOR PAIRS 17

□

5. Questions

We end this paper with three questions.
The proof of Corollary 4.2 uses a BΣ0

2 model that satisfies BME . It is unlikely
that this is true for all BΣ0

2 models.

Question 5.1. Is RCA0 + RT2
2 +BΣ0

2 Π1
1-conservative over BΣ0

2?

Question 5.2. Does RCA0 + RT2
2 +BΣ0

2 imply BME?

The work in [5] and this paper was motivated by the original question of sep-
arating SRT 2

2 from RT 2
2. That question remains open, for ω-models and more

generally models of IΣ0
2. It is made even more interesting in view of what one

knows today.

Question 5.3. Is there an ω-model of Peano arithmetic in which SRT2
2 but not

RT2
2 holds? More generally, does RCA0 + SRT2

2 + IΣ0
2 imply RT2

2?
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