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Abstract. We study combinatorial principles weaker than Ram-
sey’s theorem for pairs over the system RCA0 (Recursive Compre-
hension Axiom) with Σ0
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1. Introduction

Our point of departure is the system RCA0 which we take as our
base theory throughout this paper. RCA0 consists of the usual first-
order axioms for arithmetic operations and Σ0

1-induction relative to
parameters, together with the second-order recursive comprehension
scheme ∃X[(∀x(x ∈ X ↔ ϕ(x))], for each ∆0

1-formula ϕ (also with
parameters). FixM = 〈M,X,+,×, 0, 1〉 to be a model of RCA0, where
X is the collection of subsets of M inM. Ramsey’s Theorem for pairs
(RT2

2) states that any partition in M of the two-element sets {x, y} of
M into two colors has an infinite monochromatic subset, i.e. an infinite
A ∈ X all of whose two-element subsets have the same color. This set A
is said to be homogeneous for the coloring. It is known that RT2

2 is not
provable in RCA0. The strength of RT2

2 in the context of subsystems of
second order arithmetic has been a subject of major interest in reverse
mathematics over the past several decades.

We thank Wei Wang for many useful discussions on the subject matter of this
paper and Richard Shore for comments and suggestions for improvements on prelim-
inary of our manuscript. Chong’s research was partially supported by NUS research
grant WBS 146-000-054-123. Slaman’s research was partially supported by NSF
award DMS-1001551 and by the John Templeton Foundation. Yang’s research was
partially supported by NUS research grant WBS 146-000-114-112.
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Closely related to RT2
2, and intuitively a more controlled coloring

scheme, is stable Ramsey’s Theorem for pairs (SRT2
2): If for any x ∈M ,

all but finitely many {x, y}’s have the same color, then there is an infi-
nite homogeneous set inM. SRT2

2 is also known to be unprovable from
RCA0. The proof-theoretic strength of these two combinatorial princi-
ples has been investigated by various authors. Cholak, Jockusch and
Slaman [1] showed that SRT2

2, hence RT2
2 as first established by Hirst

[7], implies the Σ0
2-bounding principle BΣ0

2 (an induction scheme whose
strength is known to lie strictly between Σ0

1 and Σ0
2-induction [8]), and

that RT2
2 is Π1

1-conservative over RCA0 together with the Σ0
2-induction

IΣ0
2, i.e. any Π1

1-statement that is provable in RT2
2 + RCA0 + IΣ0

2 is al-
ready provable in the system RCA0 + IΣ0

2. It follows immediately that
any subsystem of RT2

2 + RCA0 + IΣ0
2 (such as replacing RT2

2 by SRT2
2)

is Π1
1-conservative over RCA0 + IΣ0

2.
There are several outstanding open problems relating to RT2

2 and
SRT2

2, which provided the motivation for the problems studied in this
paper. We list three of these: (1) Whether over RCA0, RT2

2 is strictly
stronger than SRT2

2; (2) whether RT2
2 or even SRT2

2 proves IΣ0
2, given

that they already imply BΣ0
2, and (3) whether RT2

2, or even SRT2
2, is

Π1
1-conservative over RCA0 +BΣ0

2.
While these questions remain unsolved, similar or related questions

for principles weaker than RT2
2 or SRT2

2 have been studied with some
degree of success. First of all, Cholak, Jockusch and Slaman [1] in-
troduced the principle COH and showed the equivalence of RT2

2 with
COH+SRT2

2 over the system RCA0. COH states that every array coded
inM has a set in the model cohesive for the array (see §3 for the defi-
nition). Since COH is provable from RT2

2, COH+IΣ0
2 is Π1

1-conservative
over IΣ0

2. Secondly, Hirschfeldt and Shore [5] introduced two principles
which they demonstrated to be strictly weaker than RT2

2: The Chain
and Antichain principle (CAC), which states that every infinite partially
ordered set coded in M has an infinite chain or antichain in M, and
the Ascending or Descending Sequence principle (ADS), which asserts
that every infinite linearly ordered set in M has an infinite ascending
or descending sequence inM. It is known classically that CAC implies
ADS. In [5] the authors also introduced the stable versions of these
two principles, denoted respectively as SCAC and SADS, and showed
them to be strictly weaker than CAC/ADS. It follows that all of these
systems weaker than RT2

2 and/or SRT2
2 are Π1

1-conservative over IΣ0
2

under the base theory RCA0. On the other hand, a recent result of
Chong, Lempp and Yang [2] implies that SADS, hence CAC, ADS and
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SCAC, proves BΣ0
2 over RCA0 strengthening earlier results in [7] and

[1] for RT2
2 and SRT2

2.
The aim of our work is to study the strength of COH,CAC and ADS,

as well as their stable versions, under (the strongest, as it turns out)
first-order induction assumption provable by these principles. Accord-
ing to Slaman [10], BΣ0

n is equivalent to ∆0
n-induction I∆0

n for all
n ≥ 1 (for n = 1, the proof requires the totality of the exponentia-
tion function). Since I∆0

2 lies strictly between Σ0
1 and Σ0

2-induction in
proof-theoretic strength (see §2 below), one gets a sense of the logical
link between a second order statement, such as CAC or ADS, and first
order induction. In view of what was noted in the previous paragraph,
we are in fact considering the combinatorial principles in the context of
models of RCA0 +BΣ0

2 where IΣ0
2 fails. Here an interesting and techni-

cally challenging picture, requiring an analysis quite different from the
situation where IΣ0

2 is available, presents itself (see a discussion of the
issues involved in [5]).

In general, the absence of Σ0
2-induction in a model entails the ex-

istence of a cut in the model that is Σ0
2-definable, and with it the

fundamental task of ensuring, arising from a ∅′-recursive construction,
a uniform bound for ∅′-recursive functions defined over (bounded) ini-
tial segments of the model. Of course there is no guarantee that this
task is achievable every time. In this paper we consider a few construc-
tions that do. The main theme, as the reader will observe, concerns
the existence of extensions of a model M of RCA0 + BΣ0

2 to one that
satisfies, additionally, an instance of the combinatorial principle being
considered, by adjoining an appropriate subset of M . There are two
conditions to meet: The subset has to be a solution to the instance
of the principle (for example, one that is cohesive for a given array)
and has to preserve RCA0 +BΣ0

2 in the resulting extension. These two
conditions are often conflicting requirements. The construction of a
cohesive set, again to use this as an example, in the classical setting is
known to be at best low2 (see [11] and [1]) and does not adapt auto-
matically to a model without IΣ0

2. To demand the resulting cohesive
set to preserve BΣ0

2 introduces additional twist to the construction.
Our solution is to apply a two-step construction. Firstly through

“internal forcing” (i.e. within the model) we define a ∅′-recursive tree
in which every unbounded path is generalized low and has the cohe-
sive property. Then working from “the outside”, an external forcing
operation is performed on the tree to obtain a path that preserves BΣ0

2.
For ADS and CAC, we begin with their stable versions SADS and

SCAC, where we build extensions of models of RCA0 + BΣ0
2 to satisfy
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in addition an instance of each of these principles, by adjoining appro-
priate subsets of M . It turns out that via “internal forcing” there are
solutions that are low in the model (relative to parameters), thus pre-
serving BΣ0

2. Coupled with the construction of cohesive sets discussed
above, one gets solutions to instances of ADS and CAC. The approach
answers questions (2) and (3) raised earlier, for ADS and CAC. It was
shown in [5] that over RCA0, CAC is strictly stronger than SCAC and
ADS is strictly stronger than SADS. Our extension theorems imply
that ADS and CAC, hence their stable versions, do not prove IΣ0

2 over
RCA0. Furthermore, each of these principles is Π1

1-conservative over
RCA0 +BΣ0

2.
The organization of this paper is as follows: In §2 we summarize

the basic notions and mathematical facts that will be used for the
rest of the paper. In §3 we show that COH is Π1

1-conservative over
RCA0 + BΣ0

2 (Corollary 3.1). In §4 we show that ADS, and hence
SADS, are similarly Π1

1-conservative over RCA0 +BΣ0
2 (Corollaries 4.2

and 4.3). Extending the results of §§3 and 4, we show in §5 that the
same conclusions hold for CAC and SCAC (Corollaries 5.1 and 5.2).
The paper concludes with a general question regarding combinatorial
principles and the preservation of BΣ0

2.

2. Preliminaries

We recall the basic notions and results that will be referred to in this
paper.

A model M = 〈M,X,+,×, 0, 1〉 is a structure in the language of
second order arithmetic. Let P− denote the standard Peano axioms
without mathematical induction. Let IΣ0

n denote the induction scheme
for Σ0

n formulas (with number and set variables), where n ≥ 0. All
models M considered in this paper satisfy P− + IΣ0

1. A bounded set
in M is M-finite if it is coded in M, i.e., has a Gödel number in
M. Otherwise it is called M-infinite. An unbounded set in M is
necessarily M-infinite, although the converse is not always true. It is
known (Kirby and Paris [8]) that IΣ0

n is equivalent to the assertion
that every Σ0

n-definable set has a least element (although the result
was only proved for models of first order theories, it extends to second
order theories with a similar argument). We will use this fact implicitly
throughout the paper.

LetBΣ0
n denote the scheme which states (over the base theoryBΣn−1)

that every Σ0
n-definable (possibly with set or number parameters) func-

tion maps an M-finite set onto an M-finite set. In [8] it was shown
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that for all n ≥ 0,

· · · → IΣ0
n+1 → BΣ0

n+1 → IΣ0
n → BΣ0

n → · · · ,
and hence these induction schema generate a hierarchy of theories of
increasing strength.

IfM is a model of BΣ0
n or IΣ0

n, thenM may be viewed as a model
of computation with restricted inductive power. For n ≥ 1, there is a
well-developed theory of computation. In particular, one may define
notions of computability and Turing reducibility in M. Thus, a set or
a function is recursively (computably) enumerable if and only if it is Σ1

definable (with no set parameters) overM. It is recursive (computable)
if both the set and its complement are recursively enumerable. If X
and Y are subsets of M , then X ≤T Y (“X is recursive in Y ”) if there
is an e such that for any x ∈ M , there exist M-finite sets P ⊂ Y and
N ⊂ Y satisfying

x ∈ X ↔ 〈x, 1, P,N〉 ∈ Φe

and
x ∈ X ↔ 〈x, 0, P,N〉 ∈ Φe,

where Φe is the eth r.e. set of quadruples. The following fact will be
used implicitly throughout the paper.

Proposition 2.1. If M |= IΣ0
n, then every bounded Σ0

n(M) set is
M-finite.

A cut I ⊂ M is a set that is closed downwards as well as under the
successor function. I is a Σ0

n-cut if it is Σ0
n-definable over M. It is

known that M |= IΣ0
n if and only if there is no proper (i.e. nonempty

and bounded) Σ0
n-cut. We consider only proper Σ0

n-cuts in this paper.
If M |= BΣ0

n but not IΣ0
n, we call it a BΣ0

n-model. In this case,
there is a Σ0

n-function mapping a Σ0
n-cut cofinally into M .

The second order theory RCA0 consists of the axiom system P−+IΣ0
1

(relative to parameters), and the recursive comprehension axiom which
states that for any model M = 〈M,X,+,×, 0, 1〉 of the theory, every
set ∆0

1-definable over M (possibly with number and set parameters)
is in X (see Simpson [9] for an introduction of the subject of reverse
mathematics in general and RCA0 in particular). Every model of RCA0

is closed under Turing reducibility (meaning that if M |= RCA0 and
A ⊂M is in X, then every set recursive in A is also in X). If X ⊂M ,
then X ∈M is intended to mean X ∈ X.

Given a modelM of RCA0, and A ⊂M , letM[A] denote the struc-
ture generated from A over M by closing under functions recursive in
A, with parameters from M.
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The following captures the essence of coding in BΣ0
n-models of RCA0.

See [3] for details concerning models of P− +BΣn. The generalization
to second order theories such as RCA0 is straightforward.

Definition 2.1. Let A be a subset of M , where M |= RCA0. A set

X ⊆ A is coded on A if there is anM-finite set X̂ such that X̂∩A = X.

Definition 2.2. Let A be a subset of M. We say that a set X is ∆0
n

on A if both A ∩X and A ∩X are Σ0
n(M).

Lemma 2.1 (Chong and Mourad [3]). Let M be a model of RCA0 +
BΣ0

n (n ≥ 2) and let A ⊂M . Then every bounded set that is ∆0
n on A

is coded on A.

We next turn our attention to trees. By definition a tree T is a collec-
tion of M-finite functions from an initial segment of M into M closed
under pairwise intersection. T is downward closed if every substring of
a member of T is a member of T . If T is downward closed, then it is
recursively bounded if there is a recursive function f such that for all
x ∈M , there are at most f(x) many elements in T of length x.

Definition 2.3. Let M = 〈M,X,+,×, 0, 1〉 and M ⊆M∗ be models
of RCA0. Then M∗ is an M-extension of M if M = M∗, i.e. only
subsets of M are added to M∗.

In the study of conservation results, it is convenient to have the no-
tion of a topped model, which was first introduced by Cholak, Jockusch
and Slaman in [1].

Definition 2.4. We say that a model M is topped if there is a Y ∈ X
of greatest Turing degree in M. In this case, we say that M is topped
by Y .

3. cohesiveness

The principle of cohesiveness (COH) was introduced in [1], where the
equivalence of RT2

2 with COH+SRT2
2 over the system RCA0 was shown.

Definition 3.1. Let R ∈M beM-infinite and let Rs = {t|(s, t) ∈ R}.
We say that a set G is R-cohesive if for all s, either G∩Rs isM-finite
or G∩Rs isM-finite. The cohesive principle COH states that for every
R ∈M, there is an M-infinite G ∈M that is R-cohesive.
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The aim of this section is to show that RCA0 + COH + BΣ0
2 is Π1

1-
conservative over RCA0 +BΣ0

2. We show that any topped modelM of
RCA0 +BΣ0

2 has an M-extension satisfying RCA0 + COH +BΣ0
2. The

proof splits into two parts, depending on whetherM satisfies IΣ0
2. The

first part is relatively straightforward, and is implied by the following
stronger result (see [1]):

Theorem 3.1. Let M be a topped model of RCA0 + IΣ0
2. Then there

is an M-extension of M that is a model of RCA0 + RT2
2 + IΣ0

2.

Thus for our purpose, we need concern ourselves only with pre-
serving BΣ0

2 in the absence of Σ0
2-induction. From now on, we fix

M = 〈M,X,+,×, 0, 1〉 to be a countable BΣ0
2-model of RCA0 with a

Σ0
2-cut I and topped by Y . Let g : I → M be a Σ0

2-definable function
with parameters (which we may assume to be the top set Y ), so that
g is strictly increasing and cofinal in M .

Theorem 3.2. Every countable topped BΣ0
2-model M has a countable

M-extension satisfying RCA0 + COH +BΣ0
2.

Theorem 3.2 is a consequence of the following

Theorem 3.3. LetM be countable BΣ0
2-model topped by Y . For any R

inM, there is a G ⊂M which is R-cohesive such that the M-extension
M[G] is a BΣ0

2-model of RCA0 topped by G⊕ Y .

The construction consists of two parts. In the first part, we build
within M a Y ′-recursive tree T such that from every M-infinite path
on T one obtains a set which is generalized Y -low in a strong sense,
i.e., (G⊕Y )′ ≡T G⊕Y ′, and R-cohesive. In the second part, we use T
to select a path G through T that preserves BΣ0

2. This G is constructed
from the outside using the countability of M.

Lemma 3.1 (Internal Forcing). There is a Y ′-recursive tree T such
that each M-infinite path p on T yields a set Gp which is R-cohesive
and generalized Y -low in a strong sense.

Without loss of generality, we may assume Y = ∅ in the proof of
Lemma 3.1 (the assumption on Y being a top element will be used
only in the second part). In other words, we build a ∅′-recursive tree
T such that each M-infinite path p on T yields a set Gp which is R-
cohesive and generalized low, i.e. G′p ≡T Gp ⊕ ∅′. The proof may be
easily modified to incorporate a top set Y as parameter in the general
situation (see also the remark after requirement Qe below).
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The outline of the proof is as follows. For each e ∈ M, we have
the cohesive requirement Pe and generalized lowness requirement Qe

as follows.

• Pe: G ∩Re is M-finite or G ∩Re is M-finite.
• Qe: (Deciding the jump) There is a string σ such that either

Φσ
e,|σ|(e) ↓ or for all τ ⊃ σ such that τ is available based on prior

decisions concerning other Pd’s, Φτ
e(e) ↑. We will refer to it as

“e ∈ G′ is decided by σ”.

(Remark: In the general situation when we have the parameter Y , Qe

takes the form: There is a string σ and a number n, such that either
Φσ⊕Y �n
e,|σ| (e) ↓ or for all τ ⊃ σ, which are available in the above sense, for

all m > n, Φτ⊕Y �m
e (e) ↑. Note that this may still be decided by Y ′.)

For eachM-finite set B of indices, we first describe how to handle the
two blocks of requirements {Pe : e ∈ B} and {Qe : e ∈ B}. We then
use the method of blocking, in constructing the tree T , to alternate
between the steps of satisfying cohesiveness and deciding the jump.

We first handle cohesiveness. Fix R.

Claim 1. For each M-finite set B, there is a recursive tree TB such
that for every path p ∈ [TB], there is a set Xp associated with p with
the following property:

(*) For every e ∈ B, either Xp∩Re isM-finite or Xp∩Re isM-finite
(informally, Xp is cohesive “for e ∈ B”).

Furthermore, there is a path p such that Xp is M-infinite.

Proof of Claim 1. Recall that given e, the e-state of x, for a number
x ∈M , is defined to be theM-finite binary string ρ (in fact, ρ(R, e, x))
of length e+ 1 such that for each s ≤ e, ρ(s) = 1 if and only if x ∈ Rs.

Without loss of generality, we may assume that B = {e : e ≤ b} for
some b. For each possible b-state η ∈ 2b+1, let Sη be the set {x ∈ M :
ρ(x) = η}. We first argue that for some η, Sη is M-infinite. Suppose
for the sake of a contradiction that for every b-state η, the set Sη is
M-finite. Then

∀η < 2b+1 ∃lη ∀x > lη (x 6∈ Sη).

By BΣ0
2, there is a uniform upper bound l∗ for all such lη. Then any

x∗ > l∗ would satisfy ρ(x∗) 6= η for all η ∈ 2b+1, which is a contradiction.
Clearly, if Sη is M-infinite, then it is cohesive for e ∈ B because

every element in Sη has the same b-state η. However, even ∅′ is unable
to decide which Sη isM-infinite. For the uniformity which is required
in our later construction, we have to allow all possible approximations
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for Sη. Thus one forms the recursive tree TB as follows: For each b-
state η, let Tη be the set of binary strings σ which corresponds to an
M-finite subset of Sη, i.e.,

Tη = {σ ∈ 2<M : ∀x < |σ| (σ(x) = 1⇒ ρ(x) = η)}.
Clearly for each η, Tη is a recursive binary tree, in fact it is uniformly
recursive in η. When Sη is M-finite, all unbounded paths on Tη are
eventually all zeros, hence isolated. When Sη is M-infinite, Tη is iso-
morphic to 2M. Form the recursive disjoint union TB of Tη, for η ∈ 2b+1,
with the empty string λ as its root. Then each path p on TB is also a
path on Tη for some η. Define Xp = {x : ∃σ ⊂ p : σ(x) = 1}. It is easy
to see that TB satisfies (*). This proves Claim 1.

Next we handle a block of generalized lowness requirements.

Claim 2. There is a ∅′-recursive function h : M×M → 2<M with
the following property: for each (canonical index of an) M-finite set
B ⊂M and (an index of) a recursive tree S, σ = h(B, S) is a string on
S which either decides “e ∈ G′” for all e ∈ B; or q = {σˆ0n : n ∈ M}
is an isolated path on S.

Proof of Claim 2. Without loss of generality, we may assume B =
{e : e ≤ b}. The proof is essentially the construction of a low set under
IΣ0

1.
Fix a recursive tree S. We do a finite injury argument. The gen-

eralized lowness requirement Qe says: There is a σ such that either
Φσ
e,|σ|(e) ↓ or for all τ ⊇ σ, if τ ∈ S then Φτ

e(e) ↑. We also want the last

digit of σ to be 1 (so that any infinite path corresponds to an infinite
set).

We search for a sequence of strings σ0 ⊆ σ1 ⊆ · · · ⊆ σb, together with
a nested sequence of trees U e = {τ ∈ S : σe ⊆ τ ∨ τ ⊆ σe} such that σe

is the witness string for Qe and the last digit of σe is 1. Initially we set
U0

0 = U1
0 = · · · = U b

0 = S and σ0
0 = σ1

0 = · · · = σb0 = the root of S. We
use another finite three-branching tree V = {−1, 0, 1}b of height b + 1
to help us organize the construction. The intended interpretations of
outcomes are as follows: −1 indicates no string ending with 1 is found,
0 indicates the Π1-outcome “for all τ on Ue extending σ, Φτ

e(e) ↑”
and 1 indicates a string σ ending with 1 such that Φσ

e,|σ|(e) ↓ is found.
The strings ν on V can be viewed as a record of the injuries to the
requirements.

Initially ν0 = (−1)b. At stage s, we say that a requirement Qe

requires attention if either (1) νs(e) = −1 and there is a (least under a
canonical order) string τ ∈ U e

s whose last digit is 1; or (2) νs(e) = 0 and
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there is a (least) string σ ∈ U e
s such that |σ| ≤ s and Φσ

e,|σ|(e) ↓ and the
last digit of σ is 1. If no requirement requires attention at stage s, then
go to stage s+1. Otherwise, pick the least such e such that Qe requires
attention. If (1) is true, we set U e

s+1 = {τ ′ ∈ U e
s : τ ′ is compatible

with τ}, σes+1 = τ , update the string νs+1 = (νs � e)ˆ0ˆ(−1)b−e−1,
and for each i > e, define U i

s+1 = U e
s+1, σ

i
s+1 = σes+1. In the case

that (2) is true, set U e
s+1 = {τ ′ ∈ U e

s : τ ′ is compatible with σ},
σes+1 = σ, for each i > e, U i

s+1 = U e
s+1, σ

i
s+1 = σes+1 and update the

string νs+1 = (νs � e)ˆ1ˆ(−1)b−e−1. This ends the construction.
By IΣ1, {η : (∃s) η = νs} is an M-finite subset of V . Let η∗ be the

largest string with respect to the lexicographic order in that set and s∗

be the stage at which η∗ = νs∗ . The construction implies that no more
injury occurs after s∗. Then σbs∗ is the required string, which may be
computed using ∅′ as an oracle. This ends the proof of Claim 2.

As a final step, we use the blocking technique to mix the cohesiveness
and generalized lowness requirements together to obtain the tree T in
Lemma 3.1, as follows.

We use ∅′ to enumerate two sequence {bj}j∈J and {cj}j∈J for some
cut J . The sequence {bj} is used to dynamically determine the blocks;
and cj is used to determine the initial segments of T (i.e., we use ∅′ to
decide whether a string σ of length ≤ cj belongs to T � cj).

The sequences {bj}, and {cj} are defined inductively. Let b0 = g(0)
and B0 = {x : 0 ≤ x < b0}. By Claim 1, there is a recursive tree T0,
which is the disjoint union of Tη, η ∈ 2b0+1, such that any path on Tη
is cohesive for e ∈ B0. For each η ∈ 2b0+1, apply the recursive in ∅′
function h to B0 and Tη, to get a string ση ∈ Tη which either decides
“e ∈ G′” for all e ∈ B0 or realizes ση corresponds to an isolated path
on Tη. Let c0 = max{|ση| : η < 2b0+1}. We determine T � c0 by
trimming Tη one by one as follows: For each η < 2b0+1, if h(B0, Tη)
decides “e ∈ G′”, then keep strings with length less than or equal to c0
which are compatible with h(B0, Tη) in T � c0; if h(B0, Tη) corresponds
to an isolated path then terminate T at h(B0, Tη). In general, suppose
bj, cj and T � cj are defined. Let bj+1 be the least g(i) > max{cj, bj}.
Let Bj+1 = {x : bj ≤ x < bj+1}. Consider each string σ ∈ T � cj of
height cj that is not terminal, with σ ∈ Tη for some bj-state η, and
apply Claim 1 to Tη to obtain a subtree which is cohesive for Bj+1.
The resulting tree will be a disjoint union of trees Tµ, where µ is a
bj+1-state extending η. Then applying the function h in Claim 2 to
Bj+1 and each Tµ, we get strings σµ ∈ Tµ which either decides “e ∈ G′”
for all e ∈ Bj+1 or realizes σµ corresponds to an isolated path on Tµ.
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Let cj+1 = max{|σµ| : µ < 2bj+1+1}. We obtain T � cj+1 by trimming
Tµ one by one as in the case j = 0.

Let J = {j : bj is defined}. Then J is a Σ2-cut and {bj}j∈J is
unbounded in M. Arguing along J , we see that for every j, there
is a perfect tree Uj with stem σj such that Uj satisfies all cohesive
requirements in Bj in the sense of Claim 1; and σj decides “e ∈ G′”
for all e ∈ Bj. Since σj ⊆ σj+1 for all j ∈ J , there is at least one M-
infinite path on T . Every M-infinite path necessarily corresponds to
anM-infinite set, since we have chopped off all isolated paths. Clearly,
everyM-infinite path on T eventually has the same e-state, and so the
cohesiveness requirements are satisfied. Let p be anM-infinite path on
T and Gp be the corresponding M-infinite set. Say Gp = {x0 < x1 <
. . . }. We check that G′p ≤T Gp⊕∅′ as follows. Fix e, say bj < e ≤ bj+1.
First use ∅′ to find b0, then find the b0-state of x0, say η0. Form Tη0 and
use ∅′ to find the string σ0 on Tη0 which decides e ∈ G′ for all e < b0.
Suppose bj′ , j

′ ≤ j, is defined. Use ∅′ to recover the construction and
find bj′+1. Find an element xj′+1 ∈ Gp such that xj′+1 > bj′+1 and use it
to obtain the bj′+1-state of xj′+1. Then the value of G′(e) is determined
by ∅′. This procedure eventually reached j′ = j, which ends the proof
of Lemma 3.1.

Lemma 3.2 (External Forcing). There is an unbounded path G on T
such that M[G] |= BΣ0

2.

Proof. SinceM is countable, let {∃s ϕn(x, s, ~X,G)|n < ω} be a list of

all Σ0
1-formulas with a distinguished set variable G and ~X is a finite

set of set parameters. Since M is topped by Y , every parameter in
~X is ∆1(Y ). We may assume the above list is in fact of the form
{∃s ϕn(x, s, Y,G)|n < ω}. Let {Dn|n < ω} be a list of all M-finite
sets. We work from the outside and choose a path G on T so that
M[G] is a model of BΣ0

2.
Let U−1 be T and σ−1 = ∅. Assume that σn and Un ⊂ T are

defined so that Un is M-infinite, and all strings in Un extend σn. Let
n+ 1 = (k,m). For x ∈ Dm, let

Px = {σ ∈ Un| (∀s ≤ |σ|) ¬ϕk(x, s, Y, σ ⊕ Y ′)}.
Px is uniformly recursive in x and Y ′.

Case (i). For all x ∈ Dm, Px is bounded. Then there is a ux such
that for all σ ∈ Un of length greater than ux, σ /∈ Px, and hence
∃s ≤ |σ| ϕk(x, s, Y, σ ⊕ Y ′). By BΣ2 on M, there is a uniform upper
bound u such that for all x ∈ Dm and all σ ∈ Un of length greater than
u, ∃s ≤ |σ| ϕk(x, s, Y, σ ⊕ Y ′).



12 C. T. CHONG, THEODORE A. SLAMAN AND YUE YANG

Choose σn+1 to extend σn and of length greater than max{u, uin}
such that Un[σn+1] = {τ |τ ⊃ σn+1 & τ ∈ Un} is unbounded. Let Un+1

be Un[σn+1].
Case (ii). Px is not bounded for some x ∈ Dm. Let σn+1 = σn and

Un+1 be the set of all strings

{σ ∈ Un : (∀s ≤ |σ|) ¬ϕk(x, s, Y, σ ⊕ Y ′)}.
Notice that Un+1 is unbounded and Y ′-recursive for each n. Let G be

the set whose characteristic function is
⋃
n σn. Then G is generalized

Y -low in a strong sense, R-cohesive by Lemma 3.1 and BΣ0
1(G ⊕ Y ′)

holds by the above. Since G′ ≤T G⊕ Y ′, this implies that BΣ0
1(G

′) is
true, and hence M[G] satisfies RCA0 +BΣ0

2. Moreover it is topped by
G⊕ Y . This proves Theorem 3.3. �

Proof of Theorem 3.2.

Proof. Let h : ω → ω × ω be a bijection such that for all n, if h(n) =
(m, k) then m < n. Iterate Theorem 3.3 as follows: Let M0 =M. If
Mn is defined, let R ∈Mm be the kth set in Mm and apply Theorem
3.3 to get a G that is R-cohesive while preserving BΣ0

2. Let Mn+1 =
Mn[G]. Let M∗ =

⋃
nMn. Then M∗ |= RCA0 + COH +BΣ2. �

Corollary 3.1. RCA0 + COH + BΣ0
2 is Π1

1-conservative over RCA0 +
BΣ0

2.

Proof. Otherwise, there is a Π1
1 sentence ∀Xϕ (where ϕ is arithmetic)

provable in RCA0 +COH+BΣ0
2 but not in RCA0 +BΣ0

2. Then there is a
countable modelM of the latter in which ∃X¬ϕ is true. Furthermore,
as was done in [1], we may assume that M is topped by X. Apply
Theorem 3.2 to get a model M∗ of which M is an M -submodel and
M∗ |= RCA0 + COH. ThenM∗ |= RCA0 + COH +BΣ0

2 in which ∃X¬ϕ
holds. But this is not possible by assumption. �

4. Ascending or Descending Sequence

The principle ADS of increasing or descending sequence states that
every infinite linearly ordered set contains an infinite subsequence that
is either increasing or decreasing. Hirschfeldt and Shore [5] showed that
ADS is strictly weaker than Ramsey’s Theorem for pairs RT2

2 and that
both COH and BΣ0

2 are consequences of ADS over RCA0. In [5], a prin-
ciple strictly weaker than ADS, called stable ascending or descending
sequence (SADS), was introduced:
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Definition 4.1 (SADS). Every linear ordering ≤L such that for each
x, either {y|y ≤L x} is finite or {y|y ≥L x} is finite has an infinite
ascending or descending subsequence.

Although SADS is strictly weaker than ADS over RCA0, these two
principles have equal first order strength in the Kirby-Paris hierarchy.
In fact, it was shown in [2] that SADS implies BΣ0

2 over RCA0, and
results in this section imply that ADS, hence SADS, does not imply
IΣ0

2.
We show that SADS +BΣ0

2 is Π1
1-conservative over BΣ0

2, and derive
as a corollary that so is ADS. Since SADS implies BΣ0

2 over RCA0,
any consideration of the conservation power of SADS will have to be
carried out over models with at least this level of first order inductive
strength. The main theorem of this section states:

Theorem 4.1. Let M be a topped model of RCA0 +BΣ0
2. Then there

is an M-extension of M satisfying RCA0 + SADS +BΣ0
2.

By a linear ordering 〈M,≤L〉 in M, we mean a set ≤L⊂ M ×M in
X satisfying the following properties:

(1) For all x, y, either (x, y) ∈≤L or (y, x) ∈≤L. They both belong
to ≤L if and only if x = y;

(2) For all x, y, z, if (x, y) ∈≤L and (y, z) ∈≤L then (x, z) ∈≤L.

We write x ≤L y if (x, y) ∈≤L. ≤L is stable if 〈M,≤L〉 is a stable lin-
ear ordering. As for COH in the previous section, Theorem 4.1 follows
immediately from

Theorem 4.2. Let M be a model of RCA0 + BΣ0
2 topped by Y . If

〈M,≤L〉 is an infinite stable linear ordering inM, then there is anM-
infinite G ⊂≤L such that 〈G,≤L〉 is either an ascending or descending
sequence and M[G] |= RCA0 + BΣ0

2. Furthermore, M[G] is topped by
Y ⊕G.

As explained in §3, Theorem 3.1 takes care of the case when M
further satisfies IΣ0

2. Thus in the following we consider only models of
RCA0 +BΣ0

2 + ¬IΣ0
2 for Theorem 4.2:

Proof. It is sufficient to assume that M has only recursive sets as sec-
ond order members. At the end of the construction, M[G] will be a
model of RCA0 + BΣ0

2 topped by G, and G is either an ascending or
descending sequence that solves the given stable linear ordering ≤L.
The general case of a topped model follows by straightforward rela-
tivization, where the top set Y is used. Let I be a Σ0

2-cut in M with
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increasing cofinal function g : I → M whose graph is ∅′-recursive.
Define

X0 = {x|There are only M-finitely many y <L x}

and

X1 = {x|There are only M-finitely many y >L x}.

Observe that both X0 and X1 are ∆0
2 since they are clearly Σ0

2, and the
stability of 〈M,≤L〉 implies that M = X0 ∪X1, so that M is split into
a disjoint union of two ∆0

2-sets.
We make the following claim.

Claim . One of the following holds:

(1) Either there is an M-infinite recursive descending sequence in
〈M,≤L〉, or for each c, there are at least c-many elements in
X0;

(2) Either there is an M-infinite recursive ascending sequence in
〈M,≤L〉, or for each c, there are at least c-many elements in
X1.

Proof of Claim . We only prove (1) as the proof of (2) is similar.
Suppose there is a c such that for all x ∈ X0 there are less than c-many
y with y <L x. Observe that for any b ∈ X1, since {y|y >L b} is M-
finite, the set {y|y <L b} must be M-infinite. Recursively define an
M-infinite descending sequence in X1 as follows: Let x0 be any fixed
element in X1. Assume that xs is defined. Enumerate ≤L to find the
first y <L xs such that {z|z <L y} has at least c elements. Let xs+1 be
this y. Note that by the choice of c, xs+1 ∈ X1. Thus {xs|s ∈ M} is
what we wanted.

Thus assume that there is no M-infinite recursive ascending or de-
scending sequence in 〈M,≤L〉. Then for each c, there are at least
c-many elements in X0 and X1. We will show that there is an M-
infinite ascending sequence G ⊂ X0 such that M[G] |= RCA0 + BΣ0

2.
In fact, G will be a low set.
Forcing. Define a notion of forcing F as follows: A condition is an
M-finite string σ = 〈y0, y1, . . . , yk−1〉 such that for any 0 ≤ i < j < k,
yi <L yj. We use |σ| to denote the length of σ which is k and maxL(σ)
to denote the <L-maximal number yk in the range of σ. Conditions τ
extends σ (written τ ≤F σ) if σ ⊆ τ and τ � |σ| = σ. An M-finite
string σ is said to be contained in X0 if its range is a subset of X0.
Strings of arbitrary length contained in X0 exist by our assumption on
the “unbounded size” of X0, and they form anM-infinite ∆0

2-set. The
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idea is to build G to be 1-generic with respect to X0 in the following
sense:

(3) For each e, there is a σ contained in X0 such that either Φσ
e (e) ↓

or for all extensions σ′ of σ, if Φσ′
e (e) ↓, then σ′ is not contained

in X0.

Expand the language of Peano arithmetic by adding a second order
set variable G. Let {ϕe|e ∈ M} be a recursive union of all bounded
formulas. Define

(4) σ  ϕ for a bounded formula ϕ(G) if M |= ϕ(G) when G is
interpreted as σ;

(5) σ  ∃xϕ(x,G) if for some c ≤ maxL(σ), σ  ϕ(c,G);
(6) σ  ¬ϕ(G) if there is no τ ≤F σ contained in X0 such that

τ  ϕ(G).

Note that while (4) appears to contradict (6) in general, for example,
some condition σ contained in X0 may force ¬ϕ(G) in the sense of (6)
and yet some τ ≤F σ with τ not being contained in X0 may force
ϕ(G). However, in our construction we only consider conditions which
are contained in X0. In such a situation, consistency is preserved.

The generic set G will be constructed in J-many steps, where J ⊆ I
is a Σ0

2-cut to be determined dynamically in the course of the con-
struction, as the union of a ∅′-recursive sequence 〈σi〉i∈J . Let σ−1

be the empty string and ĝ(−1) be undefined. Assume that σi ⊂ X0

and ĝ(i) is defined and for all e ≤ ĝ(i), σi  ϕe or σi  ¬ϕe. Let
ĝ(i+ 1) = max {maxL(σi), g(i+ 1)}.

Construction of σi+1.
For each M-finite subset D ⊆ ĝ(i+ 1), define

SD,i+1 = {τ |τ ≤F σi & ∀e ∈ D[τ  ϕe]}.

Claim 1. For each D ⊂ ĝ(i+1), ∅′ is able to decide uniformly if SD,i+1

has an element contained in X0.

Proof of Claim 1. Fix i and σi as parameters. Also fix a recursive enu-
meration of SD,i+1, which can be chosen uniformly in D. Recursively
enumerate a sequence τs in SD,i+1 in descending order of maxL(τs) as
follows. Suppose for all t < s, τt has been defined, let τs be the first
string (with respect to the fixed enumeration of SD,i+1) τ ∈ SD,i+1

such that maxL(τ) <L min{maxL(τt) : t < s} if such τ exists; unde-
fined otherwise. Note if SD,i+1 = ∅ then 〈τs〉 is empty sequence. By
IΣ1, either for all s ∈M, τs is defined; or there is some s0 which is the
least s such that τs is undefined. We rule out the first possibility as
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follows. Suppose for all s ∈M, τs is defined. Then by the definition of
X0, maxL(τs) has to be contained in X1, which gives us an M-infinite
descending sequence in X1, contradicting our assumption. Now define
a function H by setting H(D) = s0 which is the least t such that τt
is undefined. H is recursive in ∅′. Finally to decide if SD,i+1 has an
element contained in X0, we first use H to find s0. If s0 6= 0, use ∅′
again to see if maxL(τs0−1) ∈ X0.

We can extract more information from H. Let hi+1 : 2ĝ(i+1) →
{−1} ∪ I be such that

hi+1(D) =

{
−1, either H(D) = 0 or maxL(τH(D)) ∈ X1;
maxL(τH(D)), otherwise.

Notice that hi+1 is a Σ0
2 function withM-finite domain, hence by BΣ0

2,
(the graph of) hi+1 is M-finite.

Claim 2. There is a D̂ ⊂ ĝ(i + 1) and τ̂ ≤F σi contained in X0 such

that τ̂ ∈ SD̂,i+1 and hi+1(D̂) 6= −1, and if τ ≤F τ̂ is contained in X0,

then {e|e ≤ ĝ(i+ 1) & τ  ϕe} = D̂.

Proof of Claim 2. Observe that the set

D = {D′|D′ ⊂ ĝ(i+ 1) & hi+1(D
′) 6= −1}

isM-finite. D is partially ordered under inclusion. Let D̂ be a maximal
element in D. Let τ̂ be the least τ such that maxL(τ) ≤ hi+1(D̂) with

D̂ = {e|e ≤ ĝ(i+ 1) & τ  ϕe}.
We say that (D̂, τ̂) is ĝ(i+1)-maximal for σi if it satisfies the conclu-

sion of Claim 2. Note that ∅′ is able to identify those (D̂, τ̂)’s which are

ĝ(i+ 1)-maximal for σi. Indeed the collection of pairs (D̂, τ̂) which are
ĝ(i+ 1)-maximal for σi, with maxL(τ̂) ≤ max {hi+1(D)|D ⊂ ĝ(i+ 1)},
is M-finite.

Let σi+1 be the least τ̂ ≤F σi for which there is a D̂ so that (D̂, τ̂)
belongs to this collection.

Claim 3. Let J = {i ∈ I|ĝ(i) is defined}. Then ĝ[J ] = {ĝ(i)|i ∈ J} is
cofinal in M .

Proof of Claim 3. The construction ensures that if ĝ(i) is defined,
then so is ĝ(i + 1). Hence J is a cut. If ĝ[J ] is bounded in M , say by
g(i∗), then the construction may be carried out within g(i∗), recursively
in ∅′. In particular, the set

E = {(i, σi, ĝ(i))|i ∈ J}
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is ∆0
2 on J × ĝ[J ] × ĝ[J ]. By Lemma 2.1, there is an M-finite set E∗

whose intersection with J × ĝ[J ]× ĝ[J ] is E. Then if (i, σi, ĝ(i)) ∈ E∗
and i /∈ J , it can be identified by ∅′. This implies that J is a ∆0

2-cut.
By I∆0

2 which is equivalent to BΣ0
2 (see [10]), J has a largest element,

which is a contradiction.
Let G =

⋃
i∈J σi. Then G is ∅′-recursive and 1-generic with respect

to X0. Clearly G  ϕe if and only if σi  ϕe where i is the least such
that e ≤ ĝ(i). This implies that G′ ≤T ∅′ and hence low, completing
the proof of Theorem 4.2. �

Corollary 4.1. RCA0 +BΣ0
2 + SADS is Π1

1-conservative over RCA0 +
BΣ0

2.

We highlight in particular a consequence of the above corollary. Since
RCA0 + SADS implies BΣ0

2 (see [2]), one obtains a sharp bound on the
first order strength of SADS:

Corollary 4.2. RCA0 + SADS does not prove IΣ0
2.

Corollary 4.3. Every countable topped model M of RCA0 + BΣ0
2 has

an M-extension that is a model of RCA0 + ADS +BΣ0
2.

Proof. It was proved in [5] that over RCA0, ADS is equivalent to COH+
SADS.1 Now starting with a countable topped modelM of RCA0+BΣ0

2,
we may expand it to an M -extension that is a model of RCA0 + ADS +
BΣ0

2. First of all, the proof of Lemma 9.5 of [1] allows the expansion
of every countable topped model of RCA0 + IΣ0

2 to a topped model
that satisfies additionally the principle COH. This model can then be
further expanded to satisfy SADS while preserving RCA0 +COH+ IΣ0

2,
hence ADS. On the other hand, if M does not satisfy IΣ0

2, then one
may apply the constructions used for Theorem 3.2 and Theorem 4.1 to
obtain an M -extension that is a model of RCA0 + COH + SADS +BΣ0

2,
hence of ADS. �

Corollary 4.4. RCA0 + ADS + BΣ0
2 is Π1

1-conservative over RCA0 +
BΣ0

2.

1The direction that COH + SADS proves ADS over RCA0 is not explicitly stated
in [5] but follows from Propositions 2.7, 2.9 and 2.10.
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5. The Chain and Antichain Principle CAC

CAC states that every infinite partially ordered set 〈M,≤L〉 has an
infinite chain or antichain. A refinement of CAC is the stable chain
antichain principle (SCAC) which asserts CAC for partial orders for
which one of the following conditions holds:

(i) For all x, either all but finitely many y’s are ≤L-above x, or all
but finitely many y’s are ≤L-incomparable with x;

(ii) For all x, either all but finitely many y’s are ≤L-below x, or all
but finitely many y’s are ≤L-incomparable with x.

In this section, we show that neither CAC nor SCAC proves IΣ0
2 over

RCA0. In fact both are Π1
1-conservative over RCA0 + BΣ0

2. The key
component of the proof is the following M -extension theorem:

Theorem 5.1. Let M be a countable topped model of RCA0 + BΣ0
2.

Then M has an M-extension that is a model of RCA0 + SCAC +BΣ0
2.

This theorem is an immediate consequence of

Theorem 5.2. Let M be a model of RCA0 + BΣ0
2 topped by Y ∈ X.

If 〈M,≤L〉 is an M-infinite stable partially ordered set in M, then
there is an M-infinite G ⊂ M that is low relative to Y such that
〈G,≤L〉 is either a chain or an antichain, and M[G] |= RCA0 + BΣ0

2.
Furthermore, M[G] is topped by Y ⊕G.

Proof. As in the previous section, it is sufficient to consider the case
when X consists only of recursive sets, as the rest follows by relativiza-
tion. In the situation we are considering, G will be a low set.

As in the previous sections, the case whenM satisfies IΣ0
2 has been

taken care of by Theorem 3.1. We present here a construction of G
when only BΣ0

2 holds in M.
Assume that for every x, either all butM-finitely many y’s are ≤L-

above x, or all but M-finitely many y’s are ≤L-incomparable with x.
The proof for the other case is similar. Let Q be the set of all x such
that all but M-finitely many y’s are ≤L-incomparable with x. Notice
that Q is upward closed.

Suppose that Q has no M-infinite recursive subset. We show that
there is an M-infinite low set G contained in M \ Q. As in previous
sections, we build a ∅′-recursive sequence of strings 〈σi〉i∈J for some
dynamically determined Σ0

2-cut J , so that G is 1-generic with respect
to a notion of forcing which we now define. As before, I denotes a
Σ0

2-cut and g is a Σ0
2-function from I cofinally into M .
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Forcing. We define a notion of forcing F in a similar way as in
§4. Expand the language of Peano arithmetic to include a set variable
G. A condition is an M-finite string σ = 〈y0, y1, . . . , yk−1〉 such that
for all 0 ≤ i < j < k, yi <L yj. Again, we use |σ| to denote k
which is the length of σ and maxL(σ) to denote yk−1 which is the <L

largest element in the range of σ. Note that the set of conditions is
recursive and M-infinite. The first assertion is obvious by the way a
condition is defined. The second assertion follows from the assumption
that there is no M-infinite recursive antichain: Suppose x0 is such
that for all x < y above x0 in the natural ordering, either y <L x
or they are ≤L-incomparable. Since by assumption all but M-finitely
many y’s are ≤L-above x or incomparable with x, we can recursively
enumerate a sequence of pairwise ≤L-incomparable elements x1 < x2 <
· · · . Now the length of this sequence has to be M , since otherwise the
sequence, being recursive, has to be M-finite and may be extended
to a longer sequence with pairwise ≤L-incomparable elements. But if
{x1 < x2 < · · · } has length M , then it contradicts our assumption on
the nonexistence of an M-infinite recursive antichain.

A condition τ extends another condition σ (written τ ≤F σ) if σ ⊆ τ
and τ � |σ| = σ. Define

(7) σ  ϕ(G) if ϕ is a bounded formula andM |= ϕ(G) when G is
interpreted as σ;

(8) σ  ∃xϕ(x,G) if for some c, σ  ϕ(c,G) where ϕ is bounded;
(9) σ  ¬∃xϕ if ϕ is bounded and for all τ <F σ, if τ  ∃xϕ then

maxL(τ) ∈ Q.

We remark that although (7) and (9) appear contradictory to each
other for σ such that maxL(σ) ∈ Q, our construction of G will consider
only strings σ whose range is a subset of M \ Q (this is equivalent
to requiring max(σ) ∈ M \ Q). In such a situation, (7) and (9) are
consistent.

Let {ϕe} be a recursive list of all bounded formulas (with free variable
G) and σ−1 = ∅ and let ĝ(−1) be undefined. Suppose that σi is defined
and 1-generic with respect to e ≤ ĝ(i): For all e ≤ ĝ(i), either σi 
∃xϕe(x,G) or σi  ¬∃xϕe(x,G).

Construction of σi+1:
Let ĝ(i+ 1) = max {maxL(σi), g(i+ 1)}. For D ⊂ ĝ(i+ 1), let

SD,i+1 = {τ |τ ≤F σi & ∀e ∈ D[τ  ϕe]}.

Claim 1. For eachD ⊂ ĝ(i+1), ∅′ decides if SD,i+1 contains a condition
in M \Q.
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Proof of Claim 1. We note that if SD,i+1 is M-infinite, then it
contains a τ such that maxL(τ) ∈M \Q. Otherwise, every τ ∈ SD,i+1

satisfies maxL(τ) ∈ Q. Now recursively one may enumerate a sequence
{τ0, . . . , τt, . . . } such that τt  ϕe for each e ∈ D and extends σi. Then
maxL(τt) ∈ Q and it is straightforward to trim the sequence down to a
subsequence which forms a recursive antichain in Q, contradicting our
assumption.

Thus recursively in ∅′, one is able to decide if SD,i+1 isM-finite (and
within this M-finite set whether there is a τ such that maxL(τ) ∈
M \ Q), or enumerate a τ ∈ SD,i+1 that satisfies maxL(τ) ∈ M \ Q.
This proves the Claim.

Define hi+1 : 2ĝ(i+1) → {−1} ∪ I such that hi+1(D) = −1 if SD,i+1

has no element τ such that maxL(τ) ∈ M \ Q, and otherwise equals
the least j ∈ I such that g(j) bounds the minimum of

{max
L

(τ)|max
L

(τ) ∈M \Q & τ ∈ SD,i+1}.

Then hi+1 is a function recursive in ∅′ defined on anM-finite domain.
By BΣ0

2 its graph is M-finite.
The proof of the following Claim is similar to that of Claim 2 in

Theorem 4.2.

Claim 2. There is a D̂ ⊂ ĝ(i + 1) and a τ̂ ≤F σi such that (D̂, τ̂)
is g(i + 1)-maximal for σi, i.e. τ̂ ∈ SD̂,i+1, maxL(τ̂) ∈ M \ Q, and if

D′ ) D̂ and τ  ϕe for each e ∈ D′ then maxL(τ) ∈ Q or τ 6≤F τ̂ .

Recursively in ∅′, choose the least pair (D̂, τ̂) that is ĝ(i+1)-maximal
for σi. Let σi+1 = τ̂ .

The above construction shows that J = {i|σi is defined} is closed
under the successor function and therefore forms a cut. An argument
similar to that for Claim 3, Theorem 4.2 yields the following:

Claim 3. ĝ[J ] is cofinal in M .

Let G be the set whose characteristic function is
⋃
i∈I σi. G is recur-

sive in ∅′ and for each e, M[G] |= ∃xϕe if and only if σi  ∃xϕe, and
M[G] |= ¬∃xϕe if and only if σi  ¬∃xϕe, where i ∈ J is the least such
that e ≤ ĝ(i). Thus G is low and {x|G(x) = 1} forms a chain under
≤L, completing the proof of Theorem 5.2. �

Corollary 5.1. RCA0 + SCAC +BΣ0
2 is Π1

1-conservative over RCA0 +
BΣ0

2. In particular, RCA0 + SCAC does not prove IΣ0
2.
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The final corollary follow from the above:

Corollary 5.2. RCA0+CAC+BΣ0
2 is Π1

1-conservative over RCA0+BΣ0
2.

Proof. It was shown in [5] that RCA0 ` CAC ↔ SCAC + ADS. By
Corollary 4.3 every countable topped model M of RCA0 + BΣ0

2 has
an M -extension that satisfies additionally ADS. In fact, applying the
constructions in this and previous sections, it is possible to obtain an
M -extension of M with a top element satisfying instances of COH,
SADS and SCAC. Alternating these steps in the construction yields a
countable model that satisfies RCA0 +BΣ0

2 + CAC. �

We end with the following general question: In what way are com-
binatorial principles linked to first-order theoretic complexity? More
precisely, the combinatorial principles that follow from RT2

2, including
those considered in this paper, all imply BΣ0

2 (over the base theory
RCA0). Hence, working over models M of BΣ0

2 is the most natural
setting for the study of these principles. Nonetheless, constructing M -
extensions to yield models of these principles while preserving BΣ0

2 has
not always been successful. For example, one would like to have either
a proof from RT2

2 of IΣ0
2 or an M -extension theorem for RT2

2, or even
SRT2

2, but none exists so far.
A typical combinatorial principle is a Π1

2-statement (∀X)(∃Y )P (X, Y ),
e.g. every array in M has a cohesive set in M. There is a heuristic
correspondence between a recursion theoretic conclusion that for every
X there is a Y such that X(n) ≥T Y (n) and P (X, Y ), and a model the-
oretic conclusion that one can exhibit M -extensions satisfying IΣ0

n and
(∀X)(∃Y )P (X, Y ). However, we have been unable to formulate a simi-
lar heuristic for the principle BΣ0

n. One obstruction to making a simple
correspondence comes from [6], in which it is shown that IΣ0

2 follows
from BΣ0

2 and the existence of sufficiently generic Cohen reals. Thus,
one cannot exhibit M -extentions of arbitrary models of BΣ0

2 which sat-
isfy BΣ0

2 and the statement, “For all X, there is a Y such that Y is
(sufficiently) Cohen generic relative to X”, despite the fact that Co-
hen reals are low according to most recursion theoretic criteria. So, we
are left with the following question: If lowness is the recursion theo-
retic expression of conservation over principles of Σ0

n-induction, what
is the recursion theoretic expression of conservation over principles of
Σ0
n-bounding?
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