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SUMMARY

We address the problem of time to depth conversion of time migrated
seismic images and show that the Dix velocities estimated from time
migration velocities are the true seismic velocities divided by the ge-
ometrical spreading of image rays. We pose an inverse problem: to
find seismic velocities from Dix velocities and suggest two algorithms
for solving this problem. One algorithm is based on the ray tracing
approach, and the second is based on the level set approach. We test
these algorithms on synthetic data examples and apply them to a real
data example from the North Sea. We demonstrate that it is important
to take into account the fact that, in laterally heterogeneous media,
the Dix velocities are not equal to the seismic velocities and that the
difference between the two can be significant.

INTRODUCTION

Time-domain seismic imaging is a robust and efficient process rou-
tinely applied to seismic data (Yilmaz, 2001). Rapid scanning and de-
termination of seismic velocities during time migration can be accom-
plished, for example, by velocity continuation (Fomel, 2003). Time
migration is considered adequate for seismic imaging in areas with
mild lateral velocity variations. However, even mild variations can
cause structural distortions of time-migrated images and render them
inadequate for accurate interpretation of subsurface structures.

To remove structural errors inherent in time migration, it is necessary
to convert time-migrated images into the depth domain either by mi-
grating the original data with a prestack depth migration algorithm,
by depth migrating post-stack data after time demigration (Kim et al.,
1997), or by direct mapping from time to depth. Each of these options
requires converting the time migration velocity to a velocity model in
depth. In the case of a laterally homogeneous medium, the conversion
from time to depth is provided by the classic Dix method (Dix, 1955).
However, the Dix conversion is not sufficient in the general case.

The theoretical connection between time migration velocities and true
depth velocity models is provided by the concept ofimage rays, intro-
duced by Hubral (1977). Image rays are seismic rays arriving normal
to the surface of the earth. Hubral’s theory explains how to model
time migration velocities given the depth velocity model. However, it
does not provide a convenient form for developing an accurate inver-
sion algorithm. Moreover, tracing image rays is a numerically incon-
venient procedure for achieving uniform coverage of the subsurface.
This may explain why simplified image-ray tracing algorithms (Larner
et al., 1981; Hatton et al., 1981) did not find widespread application in
practice.

In this paper, we develop a new method for time-to-depth conversion
of time-migrated images. Our method is based on the image ray theory
but establishes a new ray-theoretic connection between time-migration
velocities and interval seismic velocities. One can regard this connec-
tion as a natural extension of the classical Dix formula (Dix, 1955) to
laterally inhomogeneous media. We invert the forward modeling of
time migration velocities to produce two outputs: a time-migrated im-
age mapped directly onto a uniform depth-domain grid and the interval
seismic velocity model defined on the same grid. One can utilize the
interval velocity further for depth imaging and for refined model build-
ing in the depth domain. We illustrate an application of our method on
synthetic and field data examples.

FUNDAMENTALS OF TIME MIGRATION

Seismic reflection imaging can be understood in geometrical (ray-
theoretical) terms with the help of the so-calledKirchhoff prestack
depth migrationoperator. IfI(x) is the seismic image of the subsurface
x = {x,y,z}, andD(t,s, r) is the reflection seismic data collected at the
source positions, receiver positionr and timet, then the Kirchhoff
imaging operator is

I(x) =
∫∫

∂

∂ t
D [T(x,s)+T(x, r),s, r ] A(x,s, r)dsdr , (1)

whereA(x,s, r) is the amplitude weight, andT(x,y) is the traveltime
between the subsurface pointx and pointy at the surface of the obser-
vations. The Kirchhoff migration operator can be derived from asymp-
totic inversion of the Born scattering approximation (Miller et al.,
1987; Bleistein et al., 2001), from inversion of the Kirchhoff-Helmholtz
integral (Tygel et al., 2001), or from geometrical considerations (Tygel
et al., 1996). It order to implement operator (1), it is necessary to de-
fine the background velocity model for computing the traveltime and
amplitude functions. The connection between traveltime and velocity
is given by the eikonal equation, which, in the case of isotropic wave
propagation, takes the form

|∇xT|= 1/v(x) , (2)

where∇x denotes the gradient with respect tox, andv(x) is the depth
velocity model.

Time migration avoids the need for an interval velocity model by mak-
ing approximations. It approximates the traveltime function in equa-
tion (1) as

T(x,s)+T(x, r)≈ T̂(t0,x0,s, r) (3)

wheret0 andx0 are effective parameters of the subsurface pointx, and
T̂ is an approximation, which usually takes the hyperbolic form

T̂(t0,x0,s, r) =

√
t2
0 +

|x0−s|2

v2
m(t0,x0)

+

√
t2
0 +

|x0− r |2

v2
m(t0,x0)

, (4)

although more complex nonhyperbolic forms are possible. Thus, the
Kirchhoff prestack time migrationoperator defines a seismic image in
the parameter space{t0,x0}, as follows:

Î(t0,x0) =
∫∫

∂

∂ t
D

[
T̂(t0,x0,s, r),s, r

]
Â(t0,x0,s, r)dsdr . (5)

The goal of this paper is to construct a mapping from time migration
coordinates{t0,x0} to the true reflection coordinatesx and from time-
migration velocityvm(t0,x0) to the true interval velocityv(x).

Approximation (4) can be understood as the truncated Taylor series for
the squared traveltime around the surface pointx0, where the ray con-
necting pointsx andx0 arrives normal to the surface. This is theimage
ray introduced by Hubral (1977). In the case of a constant velocity, the
hyperbolic approximation is exact, the image ray is vertical, and time
migration velocity coincides with the true velocity. In this case, time
to depth mapping reduces to multiplying image timet0 by velocityvm.
In the case of seismic velocity varying with depth only, the time mi-
gration velocity corresponds to the root mean square velocity, and one
can recover the true velocity by simple differentiation (Dix, 1955).

In the next section, we establish a theoretical connection between time
migration velocities and true velocities in the case of lateral velocity
variations and non-vertical image rays.
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FORWARD MODELING OF TIME MIGRATION VELOCITIES

For simplicity, from now on we will deal with a 2-D earth model. The
results are fully extensible to 3-D.

Consider a small tube of rays. Pick some ray among them and create
an orthogonal coordinate system{t,q} attached to it. We will call this
raycentral. One can show (Popov and Pšeňcik, 1978;Červeńy, 2001)
that the equations of motions in the Hamiltonian form for the rays in
the tube are

dq
dt

= v2
0 p ,

dp
dt

=−vnn

v0
q. (6)

Herev0 is the velocity on the central ray, andvnn is the second deriva-
tive of the velocity in the directions perpendicular to the central ray.
Let α be some parameter of the ray tube. Introduce the following no-
tations:

Q≡ ∂q
∂α

, P≡ ∂ p
∂α

.

The quantitiesQ andP satisfy the equations in variations for equations
(6):

dQ
dt

= v2
0 P ,

dP
dt

=−vnn

v0
Q. (7)

The quantityQ has a nice geometrical meaning. Its absolute value is
the derivative of the length of the orthogonal cross section of the small
tube of rays with respect toα. This derivative is called thegeometrical
spreading.

There are two important cases:

• Let the ray tube start at the surface perpendicular to it. Then
pick α = x0, wherex0 is the coordinate of the starting point.
This is the ray tube of image rays. We will call this ray tube
thetelescopic family.

• Let the ray tube come out of a source point{xs,zs}. Then
pick α as the initial angles of the ray. We will call this ray
tube thesource point family.

Now consider an image ray arriving to the surface at a pointx0 and
image rays around it. Suppose that we trace the central ray backward
for time t0, compute the quantitiesQ andP along it for the telescopic
family of rays and reach a subsurface point{x,z}. We establish the
following connection between the migration velocityvm(t0,x0) and the
velocity at the subsurface point{x,z} reached by the image ray:

v(x,z)
|Q(x,z)|

=

√
∂ (t0 v2

m(t0,x0))
∂ t0

= vDix(t0,x0) (8)

Herev(x,z) andQ(x,z) are the velocity and geometrical spreading of
the telescopic family, respectively, at the point reached by a ray starting
at the surface pointx0 perpendicular to the surface and having traveled
for time t0. Derivation of equation (8) is sketched in the appendix.
When the image rays remain vertical and do not spread,Q = 1, and
the classic Dix method applies. In a more general case, the situation is
different.

In the case of a laterally inhomogeneous medium, the Dix velocity is
the true velocity divided by the geometrical spreading of image rays.

This connection can be expressed in the form of partial differential
equations. Consider the mapping between Cartesian coordinatesx,z

and image ray coordinates(x0, t0). Functionsx0(x,z) andt0(x,z) sat-
isfy the following system of equations:

|∇x0|2 =
(

∂x0

∂x

)2

+
(

∂x0

∂z

)2

=
1

Q2(x,z)
, (9)

∇x0 ·∇t0 =
∂x0

∂x
∂ t0
∂x

+
∂x0

∂z
∂ t0
∂z

= 0, (10)

|∇t0|2 =
(

∂ t0
∂x

)2

+
(

∂ t0
∂z

)2

=
1

v2(x,z)
(11)

with boundary conditionsx0(x,0) = x, t0(x,0) = 0. The task of time
to depth conversion of time migrated images requires estimating all
quantities in system (9)-(11) given the values of

v2
Dix(x0, t0) =

v2 (x(x0, t0),z(x0, t0))
Q2 (x(x0, t0),z(x0, t0))

for all surface pointsx0 and timest0.

INVERSION METHODS

In view of equation (8), we can state the following inverse problem.
Suppose there is an image ray arriving at each surface pointx0, xmin≤
x0 ≤ xmax. For any 0≤ t0 ≤ tmax trace the image ray backward for time
t0 together with the telescopic family of rays. Let the image ray reach
a point(x,z). Denote byv(x0, t0) the velocity at the point{x,z} , and
by Q(x0, t0) the quantityQ for the corresponding telescopic family at
the point(x,z). We are givenvDix(x0, t0) = v(x0, t0)/|Q(x0, t0)|, xmin≤
x0 ≤ xmax, 0≤ t0 ≤ tmax. We need to findv(x,z), the velocity inside
the domain covered with the image rays arriving to the surface in the
interval[xmin,xmax].

We introduce two methods for solving the inverse problem above. One
is based on image ray tracing, and the second on the level set methods
and fast marching methods (Osher and Sethian, 1988; Sethian, 1996,
1999). We are also working on a fast marching type method for solving
the problem in the Eulerian formulation (9)-(11).

The ray tracing approach consists of three steps. First we compute
the image rays solving the ray tracing system together with equations
(7) for Q and P. Second, we recomputeQ(x0, t0) and the velocity
v(x0, t0) using the image rays found, as this significantly reduces the
error. Third, we compute the velocityv(x,z) from the velocityv(x0, t0)
solving system (10)-(11) with a fast marching type algorithm.

The level set type algorithm is the following. We propagate the wave
front coinciding with the flat surface att = 0 downward the earth. We
embed the wave front into a 2-D functionφ(x,z) so that the front is its
zero level set. Furthermore, we embed the quantitiesQ andP defined
on the front into 2-D functionsq(x,z) and p(x,z) so that at each mo-
ment of timeQ andP coincide withq and p on the zero level set of
φ(x,z). The functionsφ(x,z), q(x,z) andp(x,z) satisfy the following
system of partial differential equations:

φt0 +v(x,z)|∇φ |= 0 , qt0 = v2(x,z) p ,

pt0 =
vxxg2

x −2vxzgx gz+vzzg2
z

v(x,z)
q , (12)

wheregx = φx
∇φ

, gz = φz
∇φ

.

We initializeq(x,z) = 1, p(x,z) = 0,φ(x,z) = zwhich is correct fort =
0 and solve system (12) by iterating the following steps. First we find
the velocityv(x,z) for the currentq(x,z). Then we extract the front,
find the velocity on the front and build the extension velocity. Finally
we updateφ , q and p making a time step in system (12) using the
extension velocity. Note that the extension velocity is built in such a
way thatφ remains the signed distance from the front (Sethian, 1999).
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SYNTHETIC DATA EXAMPLE

Figure 1(a) shows a synthetic velocity model with a Gaussian velocity
anomaly. The corresponding Dix velocity mapped from time to depth
is shown in Figure 1(b). There is a significant difference between both
the value and the shape of the velocity anomaly recovered by the Dix
method and the true anomaly. The difference is explained by taking
into account geometrical spreading of image rays. Figure 1(c) shows
the velocity recovered by our method and the corresponding family of
image rays.

(a)

(b)

(c)

Figure 1: Synthetic test on interval velocity estimation. (a) Exact ve-
locity model. (b) Dix velocity converted to depth. (c) Estimated veloc-
ity model and the corresponding image rays. The image ray spreading
causes significant differences between Dix velocities and true veloci-
ties.

FIELD DATA EXAMPLE

Figure 2, taken from (Fomel, 2003), shows a prestack time migrated
image from the North Sea and the corresponding time migration ve-
locity obtained by velocity continuation. The most prominent feature
in the image is a salt body which causes significant lateral variations
of velocity. Figure 3 shows the top portion of the interval velocity
model recovered by our method and the corresponding image rays.
We stopped image ray tracing at the point when the algorithm error
started to increase. A good strategy for a complicated velocity model
like this one is imaging with redatuming (Bevc, 1997) and iterations
between time and depth migration. Figure 4 compares two images: a
prestack time migration image converted to depth with our algorithm
and a post-stack depth migration image using the estimated velocity
model. A good structural agreement between the two images is an in-
direct evidence of the algorithm success. An ultimate validation can

come from prestack depth migration velocity analysis, which is signif-
icantly more expensive.

Figure 2: Left: seismic image from North Sea obtained by prestack
time migration using velocity continuation (Fomel, 2003). Right: cor-
responding time migration velocity.

Figure 3: Estimated depth velocity model and the corresponding im-
age rays.

CONCLUSIONS

We have proved that the Dix velocity obtainable from the time migra-
tion velocity is the true velocity divided by the geometrical spreading
of image rays. We have posed the corresponding inverse problem and
suggested two algorithms for solving it. We tested these algorithms
on a synthetic data example with laterally heterogeneous velocity and
demonstrated that they produce significantly better results than simple
Dix inversion followed by time-to-depth conversion. Moreover, the
Dix velocity may qualitatively differ from the output velocity. We also
tested our algorithm on a real data example and validated our algo-
rithms by comparing prestack time migration image mapped to depth
with a post-stack depth migrated image.
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APPENDIX A

CONNECTION BETWEEN DIX VELOCITIES AND INTERVAL
VELOCITIES IN A LATERALLY HETEROGENEOUS MEDIUM

In this appendix, we sketch the proof of formula (8). The detailed
proof can be found in (Cameron, 2007) and (Cameron et al., 2006).

Let us consider the quantityK = vR along the image ray, wherev is
the velocity along the image ray, andR is the radius of curvature of the
wave front for the source point family of rays. Suppose the image ray
passes the point{x,z} at timet0 and arrives to the surface at timet1.
Using equation (4), one can show that

K(t1− t0,x0) = (t1− t0)v2
m(t1− t0,x0), (A-1)

wherevm is the migration velocity given as a function of the surface
pointx0 and the one-way travel time.

Thus, we can find the values ofK(t1− t0,x0) for all x0 andt1− t0 from
the migration velocities. Popov and Pšeňcik (1978) showed that, for a
source family of rays,

Kt = v2 +
vnn

v
K2, K(t0) = 0 (A-2)

and thatK can be decomposed into the ratio ofQ andP: K = Q/P.

Introduce the following notations:X =(Q,P)T , A(t)= (v2(t),vnn/v)T .
Let X∗ be a matrix of derivatives ofX with respect to the initial values
of Q andP, Q0 andP0 respectively. For the source point family of rays
starting at timet0 write the initial value problems forQ andP and their
derivatives with respect to the initial data in terms ofX, X∗ andA(t):

dX
dt

= A(t)X, Q(t0) = 0, P(t0) =
1

v(t0)
, (A-3)

dX∗
dt

= A(t)X∗, X∗(t0) = I , (A-4)

whereI is the identity matrix. The solution of (A-4) at timet1 is the
propagator matrixB(t0; t1) in notation ofČerveńy (2001), and the so-
lution of (A-3) is: Q(t1) = B12(t1)/v(t0), P(t1) = B22(t1)/v(t0), where
B12 andB22 are the entries of the matrixB(t0; t1). Now turn to the
quantityK = vR= Q/P. For our source point family of rays,K(t0; t1)=
Q/P= B12/B22. Let us express the derivatives ofK with respect to the
initial values ofQ andP in terms of the entries of the matrixX∗:

∂K
∂Q0

=
∂Q
∂Q0

1
P
− ∂P

∂Q0

Q
P2 ,

∂K
∂P0

=
∂Q
∂P0

1
P
− ∂P

∂P0

Q
P2 . (A-5)

The initial data forQ andP at time t0 areQ0 = Q(t0; t0) = 0, P0 =
P(t0; t0) = 1/v(t0). Now shift the initial moment of time and make it
t0−∆t0. If the initial data forQ andP at t0−∆t0 are 0 and 1/v(t0−
∆t0)) respectively, then at timet0 we have:(

Q0 +∆Q0
P0 +∆P0

)
=

(
v(t0)∆t0

1
v(t0)

)
+O((∆t0)2) . (A-6)

Extracting∆Q0 and∆P0 from here and using relations (A-5) we find
the value ofK for the wave front started at timet0−∆t0 at timet1, i.e,
at the surface:

K(t0−∆t0; t1) = K(t0; t1)+
∂K
∂Q0

∆Q0 +
∂K
∂P0

∆P0 . (A-7)

Rewriting equation (A-7) in terms of the entries of the propagator ma-
trix B(t0; t1) and taken into account thatB12 = Qv(t0), B22 = Pv(t0),
and detB= 1= (B11P−B21Q)v(t0) we find the derivative ofK at the
surface with respect to the initial moment of timet0:

− ∂K(t0; t1)
∂ t0

=
1
P2 . (A-8)

Using the reciprocity ofQ andP (Červeńy, 2001) and equation (A-1)
and returning to the notationt0 for the one-way travel time along the
image ray we get formula (8).
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