TENSOR PRODUCT EXERCISES MATH 252

1. A tensor product $V \otimes W$ of two vector spaces V and W is a vector space equipped with bilinear map $f: V \times W \rightarrow V \otimes W$ such that for any linear map $\beta: V \times W \rightarrow U$ there exists a linear map $\phi: V \otimes W \rightarrow U$ such that $\beta=\phi \circ f$. The image $f(v, w)$ is denoted by $v \otimes w$.
(a) Prove existence and uniqueness (up to isomorphism)of tensor product.
(b) Show that $\operatorname{dim} V \otimes W=\operatorname{dim} V \operatorname{dim} W$.
2. Consider the natural map

$$
\varphi: V^{*} \otimes W \rightarrow \operatorname{Hom}_{k}(V, W)
$$

given by

$$
\varphi(\alpha \otimes w)(v)=\langle\alpha, v\rangle w
$$

for any $\alpha \in V^{*}, v \in V$ and $w \in W$. Show that φ is injective. Show that if V is finite-dimensional then φ is an isomorphism. Describe the image of φ for arbitrary V.
3. Construct a canonical (independent on a choice of basis) isomorphism

$$
(V \otimes W) \otimes U \simeq V \otimes(W \otimes U)
$$

4. Let X be a linear operator in V and Y be a linear operator in W. Define $X \otimes Y: V \otimes W \rightarrow V \otimes W$ by

$$
X \otimes Y(v \otimes w)=X v \otimes Y w
$$

Show that

$$
\operatorname{tr}(X \otimes Y)=\operatorname{tr}(X) \operatorname{tr}(Y)
$$

5. Let $V^{\otimes n}$ denote the tensor product of n copies of V and let $T(V)=\oplus_{n=0}^{\infty} V^{\otimes n}$. Define the associative multiplication on $T(V)$ via tensor product. $T(V)$ is called tensor algebra. If $\left\{v_{i}\right\}$ is a basis of V, then $T(V)$ is a free associative algebra with generators $\left\{v_{i}\right\}$.
6. (Symmetric algebra.) Let $S(V)$ be the quotient of $T(V)$ by the ideal I generated by $v \otimes w-w \otimes v$ for all $v, w \in V$.
(a) Show that $S(V)=\oplus_{n=0}^{\infty} S^{n}(V)$, where $S^{n}(V)=V^{\otimes n} /\left(I \cap V^{\otimes n}\right)$, is a graded commutative algebra isomorphic to the polynomial algebra in d variables where $d=$ $\operatorname{dim} V$. Find $\operatorname{dim} S^{n}(V)$ as a function of d.
(b) Assume that the ground field has characteristic 0 . Show that the symmetrization map Sym : $V^{\otimes n} \rightarrow V^{\otimes n}$ defined by

[^0]$$
\operatorname{Sym}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\frac{1}{n!} \sum_{s \in S_{n}} v_{s(1)} \otimes \cdots \otimes v_{s(n)}
$$
is a projector and the image of Sym is isomorphic to $S^{n}(V)$. Moreover, $\operatorname{Ker}(\operatorname{Sym})=$ $I \cap V^{\otimes n}$.
7. (Exterior algebra.) Assume that the characteristic of the ground field is not equal to 2 . Let $\Lambda(V)$ be the quotient of $T(V)$ by the ideal J generated by $v \otimes w+w \otimes v$ for all $v, w \in V$.
(a) Show that $\Lambda(V)=\oplus_{n=0}^{d} \Lambda^{n}(V)$, where $\Lambda^{n}(V)=V^{\otimes n} /\left(J \cap V^{\otimes n}\right)$, is a graded algebra. Find $\operatorname{dim} \Lambda^{n}(V)$ as a function of d.
(b) Assume that the ground field has characteristic 0. Show that the map Alt : $V^{\otimes n} \rightarrow V^{\otimes n}$ defined by
$$
\operatorname{Alt}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\frac{1}{n!} \sum_{s \in S_{n}} \operatorname{sgn}(s) v_{s(1)} \otimes \cdots \otimes v_{s(n)}
$$
is a projector and the image of Alt is isomorphic to $\Lambda^{n}(V)$. Moreover, $\operatorname{Ker}($ Alt $)=$ $J \cap V^{\otimes n}$.
8. A linear operator $X \in \operatorname{End}_{k}(V)$ induces linear operators in $V^{\otimes n}, S^{n}(V)$ and $\Lambda^{n}(V)$. Let
$$
\operatorname{det}(X-t \mathrm{id})=a_{0}+a_{1} t+\cdots+(-1)^{d} t^{d}
$$
be the characteristic polynomial of X. Show that $(-1)^{d-k} a_{k}$ equals the trace of the corresponding linear operator in $\Lambda^{k}(V)$.

[^0]: Date: January 27, 2011.

