PROBLEM SET # 6 MATH 252

Due October 19.

In this assignment G is a compact group and all representations are over \mathbb{C} .

1. Let *H* be a closed subgroup of *G* and $\rho : H \to U(V)$ is a unitary representation of *H*. We define the induced representation $\tilde{\rho} = \operatorname{Ind}_{H}^{G} \rho$ as follows. Let \tilde{V} be the space of functions $f : G \to V$ satisfying

- $f(hg) = \rho_h f(g)$ for all $g \in G$ and $h \in H$;
- $\int_G (f(g)|f(g)) dg$ is finite.

Furthemore, for all $f \in \tilde{V}, g, x \in G$ set

$$\tilde{\rho}_g f(x) = f(xg).$$

(a) Define the hermitian product on \tilde{V} such that $\tilde{\rho}$ is a unitary representation of G.

(b) Prove Frobenius reciprocity. If $\sigma:G\to U(W)$ is a unitary representation of G. Then

$$\operatorname{Hom}_G(\tilde{V}, W) \simeq \operatorname{Hom}_H(V, W)$$

2. Consider the representation of $G \times G$ in $L^2(G)$ given by

$$T_{(g_1,g_2)}f(x) = f(g_1^{-1}xg_2).$$

- (a) Check that T is a unitary representation.
- (b) Show that $L^2(G)$ contains a dense $G \times G$ -invariant subspace isomorphic to

$$\bigoplus_{\rho \in \hat{G}} \rho^* \boxtimes \rho.$$

3. Let $G = SU_n$ and T be the subgroup of diagonal matrices in G.

(a) Check that T is an n-1 dimensional torus and identify T with the set

$$\{(z_1,\ldots,z_n)\in\mathbb{C}^n\,|\,|z_1|=\cdots=|z_n|=1,\,z_1\ldots z_n=1\}$$

(b) Let $\mathcal{C}_c(G)$ denote the space of continuous class function on G, $\mathcal{F}_c(T)$ be the space of continuous functions on T and $r : \mathcal{C}_c(G) \to \mathcal{F}_c(T)$ be the restriction map. Check that r is injective and the image coincides with the subspace of symmetric functions on T, i.e. functions f satisfying

$$f(z_1,\ldots,z_n)=f(z_{s(1)},\ldots,z_{s(n)})$$

for any permutation of s.

Date: October 9, 2015.

(c) Let $\mathcal{R}(G)$ be the set of all linear combinations of irreducible characters of G. Check that $\mathcal{R}(G)$ is a subring of $\mathcal{C}_c(G)$.

(d) Let $\mathbb{C}^{S_n}[z_1, \ldots, z_n]$ denote the ring of symmetric polynomials. Prove that the restriction of r to $\mathcal{R}(G)$ establishes an isomorphism

$$\mathcal{R}(G) \simeq \mathbb{C}^{S_n}[z_1, \dots, z_n]/(z_1 \dots z_n - 1).$$

Hint: check that elementary symmetric polynomials are characters of some representations.