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1. Jordan-Hölder theorem and indecomposable modules

Let M be a module satisfying ascending and descending chain conditions (ACC
and DCC). In other words every increasing sequence submodules M1 ⊂M2 ⊂ . . . and
any decreasing sequence M1 ⊃ M2 ⊃ . . . are finite. Then it is easy to see that there
exists a finite sequence

M = M0 ⊃M1 ⊃ · · · ⊃Mk = 0

such that Mi/Mi+1 is a simple module. Such a sequence is called a Jordan-Hölder
series. We say that two Jordan Hölder series

M = M0 ⊃ M1 ⊃ · · · ⊃ Mk = 0, M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = 0

are equivalent if k = l and for some permutation s Mi/Mi+1
∼= Ns(i)/Ns(i)+1.

Theorem 1.1. Any two Jordan-Hölder series are equivalent.

Proof. We will prove that if the statement is true for any submodule of M then it
is true for M . (If M is simple, the statement is trivial.) If M1 = N1, then the
statement is obvious. Otherwise, M1 +N1 = M , hence M/M1

∼= N1/ (M1 ∩N1) and
M/N1

∼= M1/ (M1 ∩ N1). Consider the series

M = M0 ⊃ M1 ⊃ M1∩N1 ⊃ K1 ⊃ · · · ⊃ Ks = 0, M = N0 ⊃ N1 ⊃ N1∩M1 ⊃ K1 ⊃ · · · ⊃ Ks = 0.

They are obviously equivalent, and by induction assumption the first series is equiv-
alent to M = M0 ⊃ M1 ⊃ · · · ⊃ Mk = 0, and the second one is equivalent to
M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = {0}. Hence they are equivalent. �

Thus, we can define a length l (M) of a module M satisfying ACC and DCC, and
if M is a proper submodule of N , then l (M) < l (N).

A module M is indecomposable if M = M1 ⊕M2 implies M1 = 0 or M2 = 0.

Lemma 1.2. LetM andN be indecomposable, α ∈ HomR (M,N), β ∈ HomR (N,M)
be such that β ◦ α is an isomorphism. Then α and β are isomorphisms.

Proof. We claim that N = Imα⊕Kerβ. Indeed, Imα∩Kerβ = 0 and for any x ∈ N
one can write x = y + z, where y = α ◦ (β ◦ α)−1 ◦ β (x), z = x− y. Then since N is
indecomposable, Imα = N , Kerβ = 0 and N ∼= M . �

Date: November 7, 2005.

1



2 REPRESENTATION THEORY WEEK 9

Lemma 1.3. Let M be indecomposable module of finite length and ϕ ∈ EndR (M),
then either ϕ is an isomorphism or ϕ is nilpotent.

Proof. There is n > 0 such that Kerϕn = Kerϕn+1, Imϕn = Imϕn+1. In this case
Kerϕn ∩ Imϕn = 0 and hence M ∼= Kerϕn ⊕ Imϕn. Either Kerϕn = 0, Imϕn = M
or Kerϕn = M . Hence the lemma. �

Lemma 1.4. Let M be as in Lemma 1.3 and ϕ, ϕ1, ϕ2 ∈ EndR (M), ϕ = ϕ1 + ϕ2. If
ϕ is an isomorphism then at least one of ϕ1, ϕ2 is also an isomorphism.

Proof. Without loss of generality we may assume that ϕ = id. But in this case ϕ1

and ϕ2 commute. If both ϕ1 and ϕ2 are nilpotent, then ϕ1 +ϕ2 is nilpotent, but this
is impossible as ϕ1 + ϕ2 = id. �

Corollary 1.5. Let M be as in Lemma 1.3. Let ϕ = ϕ1 + · · · + ϕk ∈ EndR (M). If
ϕ is an isomorphism then ϕi is an isomorphism at least for one i.

It is obvious that if M satisfies ACC and DCC then M has a decomposition

M = M1 ⊕ · · · ⊕Mk,

where all Mi are indecomposable.

Theorem 1.6. (Krull-Schmidt) Let M be a module of finite length and

M = M1 ⊕ · · · ⊕Mk = N1 ⊕ · · · ⊕Nl

for some indecomposable Mi and Nj . Then k = l and there exists a permutation s
such that Mi

∼= Ns(j).

Proof. Let pi : M1 → Ni be the restriction to M1 of the natural projection M → Ni,
and qj : Nj → M1 be the restriction to Nj of the natural projection M →M1. Then
obviously q1p1 + · · · + qlpl = id, and by Corollary 1.5 there exists i such that qipi is
an isomorphism. Lemma 1.2 implies that M1

∼= Ni. Now one can easily finish the
proof by induction on k. �

2. Some facts from homological algebra

The complex is the graded abelian group C· = ⊕i≥0Ci. We will assume later that
all Ci are R-modules for some ring R. A differential is an R-morphism of degree −1
such that d2 = 0. Usually we realize C· by the picture

d
−→ · · · → C1

d
−→ C0 → 0.

We also consider d of degree 1, in this case the superindex C · and

0 → C0 d
−→ C1 d

−→ . . .

All the proofs are similar for these two cases.
Homology group is Hi (C) = (Ker d ∩ Ci) /dCi+1.
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Given two complexes (C·, d) and (C ′
· , d

′). A morphism f : C· → C ′
· preserving

grading and satisfying f ◦ d = d′ ◦ f is called a morphism of complexes. A morphism
of complexes induces the morphism f∗ : H· (C) → H· (C

′).

Theorem 2.1. (Long exact sequence). Let

0 → C·

g
−→ C ′

·

f
−→ C ′′

· → 0

be a short exact sequence, then the long exacts sequence

δ
−→ Hi (C)

g∗
−→ Hi (C

′)
f∗
−→ Hi (C

′′)
δ
−→ Hi−1 (C)

g∗
−→ . . .

where δ = g−1 ◦ d′ ◦ f−1, is exact.

Let f, g : C· → C ′
· be two morphisms of complexes. We say that f and g are

homotopically equivalent if there exists h : C· → C ′
· (+1) (the morphism of degree 1)

such that f − g = h ◦ d + d′ ◦ h.

Lemma 2.2. If f and g are homotopically equivalent then f∗ = g∗.

Proof. Let φ = f − g, x ∈ Ci and dx = 0. Then

φ (x) = h (dx) + d′ (hx) = d′ (hx) ∈ Imd′.

Hence f∗ − g∗ = 0. �

We say that complexes C· and C ′
· are homotopically equivalent if there exist f :

C· → C ′
· and g : C ′

· → C· such that f ◦ g is homotopically equivalent to idC′ and g ◦ f
is homotopically equivalent to idC . Lemma 2.2 implies that homotopically equivalent
complexes have isomorphic homology. The following Lemma is straightforward.

Lemma 2.3. If C· and C ′
· are homotopically equivalent then the complexes HomR (C·, B)

and HomR (C ′
·) are also homotopically equivalent.

Note that the differential in HomR (C·, B) has degree 1.

3. Projective modules

An R-module P is projective if for any surjective morphism φ : M → N and any
ψ : P → N there exists f : P → M such that ψ = φ ◦ f .

Example. A free module is projective. Indeed, let {ei}i∈Ibe the set of free
generators of a free module F , i.e. F = ⊕i∈IRei. Define f : F → M by f (ei) =
φ−1 (ψ (ei)).

Lemma 3.1. The following conditions on a module P are equivalent

(1) P is projective;
(2) There exists a free module F such that F ∼= P ⊕ P ′;
(3) Any exact sequence 0 → N →M → P → 0 splits.
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Proof. (1) ⇒ (3) Consider the exact sequence

0 → N
ϕ
−→M

ψ
−→ P → 0,

then since ψ is surjective, there exists f : P →M such that ψ ◦ f = idP .
(3) ⇒ (2) Every module is a quotient of a free module. Therefore we just have to

apply (3) to the exact sequence

0 → N → F → P → 0

for a free module F .
(2) ⇒ (1) Let φ : M → N be surjective and ψ : P → N . Choose a free module F

so that F = P⊕P ′. Then extend ψ to F → N in the obvious way and let f : F →M
be such that φ◦f = ψ. Then the last identity is true for the restriction of f to P . �

A projective resolution of M is a complex P· of projective modules such that
Hi (P·) = 0 for i > 0 and H0 (P·) ∼= M . A projective resolution always exists since one
can easily construct a resolution by free modules. Below we prove the “uniqueness”
statement.

Lemma 3.2. Let P· and P ′
· be two projective resolutions of the same module M .

Then there exists a morphism f : P· → P ′
· of complexes such that f∗ : H0 (P·) →

H0 (P ′
· ) induces the identity idM . Any two such morphisms f and g are homotopically

equivalent.

Proof. Construct f inductively. Let p : P0 → M and p′ : P ′
0 → M be the natural

projections, define f : P0 → P ′
0 so that p′ ◦ f = p. Then

f (Ker p) ⊂ Ker p′, Ker p = d (P1) , Ker p′ = d′ (P ′
1) ,

hence f ◦ d (P1) ⊂ d′ (P ′
1), and one can construct f : P1 → P ′

1 such that f ◦ d = d′ ◦ f .
Proceed in the same manner to construct f : Pi → Pi.

To check the second statement, let ϕ = f − g. Then p′ ◦ ϕ = 0. Hence

ϕ (P0) ⊂ Ker p′ = d′ (P ′
1) .

Therefore one can find h : P0 → P ′
1 such that d′ ◦ h = ϕ. Furthermore,

d′ ◦ h ◦ d = ϕ ◦ d = d′ ◦ ϕ,

hence

(ϕ− h ◦ d) (P1) ⊂ P ′
1 ∩ Ker d′ = d′ (P ′

2) .

Thus one can construct h : P1 → P ′
2 such that d′ ◦ h = ϕ − h ◦ d. Then proceed

inductively to define h : Pi → P ′
i+1. �

Corollary 3.3. Every two projective resolutions of M are homotopically equivalent.
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Let M and N be two modules and P· be a projective resolution of M . Consider
the complex

0 → HomR (P0, N) → HomR (P1, N) → . . . ,

where the differential is defined naturally. The cohomology of this complex is denoted
by Ext·R (M,N). Lemma 2.3 implies that Ext·R (M,N) does not depend on a choice
of projective resolution for M . Check that Ext0

R (M,N) = HomR (M,N).
Example 1. Let R = C [x] be the polynomial ring. Any simple R-module is

one-dimensional and isomorphic to C [x] / (x− λ). Denote such module by Cλ. A
projective resolution of Cλ is

0 → C [x]
d
−→ C [x] → 0,

where d (1) = x − λ. Let us calculate Ext· (Cλ,Cµ). Note that HomC[x] (Cµ) = C,
hence we have the complex

0 → C
d∗

−→ C → 0

where d∗ = λ−µ. Hence Ext· (Cλ,Cµ) = 0 if λ 6= µ and Ext0 (Cλ,Cλ) = Ext1 (Cλ,Cλ) =
C.

Example 2. Let R = C [x] / (x2). Then R has one up to isomorphism simple
module, denote it by C0. A projective resolution for C0 is

. . .
d
−→ R

d
−→ R → 0,

where d (1) = x and Exti (C0,C0) = C for all i ≥ 0.

4. Representations of artinian rings

An artinian ring is a unital ring satisfying the descending chain condition for
left ideals. We will see that an artinian ring is a finite length module over itself.
Therefore R is automatically noetherian. A typical example of an artinian ring is a
finite-dimensional algebra over a field.

Theorem 4.1. Let R be an artinian ring, I ⊂ R be a left ideal. If I is not nilpotent,
then I contains an idempotent.

Proof. Let J be a minimal left ideal, such that J ⊂ I and J is not nilpotent. Then
J2 = J . Let L be a minimal left ideal such that L ⊂ J and JL 6= 0. Then there
is x ∈ L such that Jx 6= 0. But then Jx = L by minimality of L. Thus, for some
r ∈ R, rx = x, hence r2x = rx and (r2 − r)x = 0. Let N = {y ∈ J | yx = 0}. Then
N is a proper left ideal in J and therefore N is nilpotent. Thus, we obtain

r2 ≡ r mod N.

Let n = r2 − r, then

(r + n− 2rn)2 ≡ r2 + 2rn − 4r2n mod N2,

r2 + 2rn − 4r2n ≡ r + n − 2rn mod N2.
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Hence r1 = r+ n− 2rn is an idempotent modulo N2. Repeating this process several
times we obtain an idempotent. �

Corollary 4.2. If an artinian ring does not have nilpotent ideals, then it is semisim-
ple.

Proof. The sum S of all minimal left ideals is semisimple. By DCC S is a finite direct
sum of minimal left ideals. Then S contains an idempotent e, which is the sum of
idempotents in each direct summand. Then R = S ⊕R(1 − e), however that implies
R = S. �

Important notion for a ring is the radical. For an R-module M let

AnnM = {x ∈ R | xM = 0} .

Then the radical radR is the intersection of AnnM for all simple R-modules M .

Theorem 4.3. If R is artinian then radR is a maximal nilpotent ideal.

Proof. First, let us show that radR is nilpotent. Assume the contrary. Then radR
contains an idempotent e. But then e does not act trivially on a simple quotient of
Re. Contradiction.

Now let us show that any nilpotent ideal N lies in radR. Let M be a simple
module, then NM 6= M as N is nilpotent. But NM is a submodule of M . Therefore
NM = 0. Hence N ⊂ AnnM for any simple M . �

Corollary 4.4. An artinian ring R is semisimple iff radR = 0.

Corollary 4.5. If R is artinian, then R/ radR is semisimple.

Corollary 4.6. If R is artinian and M is an R-module, then for the filtration

M ⊃ (radR)M ⊃ (radR)2M ⊃ · · · ⊃ (radR)kM = 0

all quotients are semisimple. In particular, M always has a simple quotient.

Theorem 4.7. If R is artinian, then it has finite length as a left module over itself.

Proof. Consider the filtration R = R0 ⊃ R1 ⊃ · · · ⊃ Rs = 0 where Ri = (radR)i.
Then each quotientRi/Ri+1 is semisimple of finite length. The statement follows. �

Let R be an artinian ring. By Krull-Schmidt theorem R (as a left module over
itself) has a decomposition into direct sum of indecomposable submodules R = L1 ⊕
· · · ⊕ Ln. Since EndR (R) = Rop, the projector on each component Li is given by
multiplication on the right by some idempotent ei. Thus, R = Re1 ⊕ · · · ⊕ Ren,
where ei are idempotents and eiej = 0 if i 6= j. This decomposition is unique up
to multiplication on some unit on the right. Since Rei is indecomposable, ei can
not be written as a sum of two orthogonal idempotents, such idempotents are called
primitive. Each module Rei is projective.
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Lemma 4.8. Let R be artinian, N = radR and e be a primitive idempotent. Then
Ne is a unique maximal submodule of Re.

Proof. Since Re is indecomposable, every proper left ideal is nilpotent, (otherwise it
has an idempotent and therefore splits as a direct summand in Re). But then this
ideal is in N ∩Re = Ne. �

A projective module P is a projective cover of M if there exists a surjection P → M .

Theorem 4.9. Let R be artinian. Every simple R-modules S has a unique (up to an
isomorphism) indecomposable projective cover isomorphic to Re for some primitive
idempotent e ∈ R. Every indecomposable projective module has a unique (up to an
isomorphism )simple quotient.

Proof. Every simple S is a quotient of R, and therefore it is a quotient of some
indecomposable projective P = Re. Let φ : P → S be the natural projection. For
any indecomposable projective cover P1 of S with surjective morphism φ1 : P1 → S
there exist f : P → P1 and g : P1 → P such that φ = φ1◦f and φ1 = φ◦g. Therefore
φ = φ ◦ g ◦ f . Since Kerφ is the unique maximal submodule, g ◦ f (P1) = P . In
particular g is surjective. Indecomposability of P1 implies P ∼= P1. Thus, every
simple module has a unique indecomposable projective cover.

On the other hand, let P be an indecomposable projective module. Corollary 4.6
implies that P has a simple quotient S. Hence P is isomorphic to the indecomposable
projective cover of S. �

Corollary 4.10. Every indecomposable projective module over an artinian ring R is
isomorphic to Re for some primitive idempotent e ∈ R. There is a bijection between
the ismorphism classes of simple R-modules and isomorphism classes of projective
indecomposable R-modules.

Example. Let R = F3 (S3). Let r be a 3-cycle and s be a transposition. Then
r−1, r2 −1, sr− s and sr2 − s span a maximal nilpotent ideal. Hence R has two (up
to an isomorphism) simple modules L1 and L2, where L1 is a trivial representation
of S3 and L2 is a sign representation. Choose primitive idempotents e1 = −s− 1 and
e2 = s − 1, then 1 = e1 + e2. Hence R has two indecomposable projective modules
P1 = Re1 and P2 = Re2. Note that

Re1
∼= IndS3

S2
(triv) , Re2

∼= IndS3

S2
(sgn) .

Thus, P1 is just 3-dimensional permutation representation of S3, and P2 is obtained
from P1 by tensoring with sgn. It is easy to see that P1 has a trivial submodule
as well as a trivial quotient, and sgn is isomorphic to the quotient of the maximal
submodule of P1 by the trivial submodule. One can easily get a similar description
for P2 Thus, one has the the following exact sequences

0 → L2 → P2 → P1 → L1 → 0, 0 → L1 → P1 → P2 → L2 → 0,
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therefore
· · · → P1 → P2 → P2 → P1 → P1 → P2 → P2 → P1 → 0

is a projective resolution for L1, and

· · · → P2 → P1 → P1 → P2 → P2 → P1 → P1 → P2 → 0

is a projective resolution for L2. Now one can calculate Ext between simple modules

Extk (Li, Li) = 0 if k ≡ 1, 2 mod 4, Extk (Li, Li) = F3 if k ≡ 0, 3 mod 4,

and if i 6= j, then

Extk (Li, Lj) = 0 if k ≡ 0, 3 mod 4, Extk (Li, Lj) = F3 if k ≡ 1, 2 mod 4.


