REPRESENTATION THEORY WEEK 9

1. JORDAN-HÖLDER THEOREM AND INDECOMPOSABLE MODULES

Let M be a module satisfying ascending and descending chain conditions (ACC and DCC). In other words every increasing sequence submodules $M_1 \subset M_2 \subset \ldots$ and any decreasing sequence $M_1 \supset M_2 \supset \ldots$ are finite. Then it is easy to see that there exists a finite sequence

$$M = M_0 \supset M_1 \supset \cdots \supset M_k = 0$$

such that M_i/M_{i+1} is a simple module. Such a sequence is called a Jordan-Hölder series. We say that two Jordan Hölder series

$$M = M_0 \supset M_1 \supset \cdots \supset M_k = 0, \ M = N_0 \supset N_1 \supset \cdots \supset N_l = 0$$

are equivalent if k = l and for some permutation $M_i/M_{i+1} \cong N_{s(i)}/N_{s(i)+1}$.

Theorem 1.1. Any two Jordan-Hölder series are equivalent.

Proof. We will prove that if the statement is true for any submodule of M then it is true for M. (If M is simple, the statement is trivial.) If $M_1 = N_1$, then the statement is obvious. Otherwise, $M_1 + N_1 = M$, hence $M/M_1 \cong N_1/(M_1 \cap N_1)$ and $M/N_1 \cong M_1/(M_1 \cap N_1)$. Consider the series

$$M = M_0 \supset M_1 \supset M_1 \cap N_1 \supset K_1 \supset \cdots \supset K_s = 0, \ M = N_0 \supset N_1 \supset N_1 \cap M_1 \supset K_1 \supset \cdots \supset K_s = 0.$$

They are obviously equivalent, and by induction assumption the first series is equivalent to $M = M_0 \supset M_1 \supset \cdots \supset M_k = 0$, and the second one is equivalent to $M = N_0 \supset N_1 \supset \cdots \supset N_l = \{0\}$. Hence they are equivalent.

Thus, we can define a length l(M) of a module M satisfying ACC and DCC, and if M is a proper submodule of N, then l(M) < l(N).

A module M is *indecomposable* if $M = M_1 \oplus M_2$ implies $M_1 = 0$ or $M_2 = 0$.

Lemma 1.2. Let M and N be indecomposable, $\alpha \in \text{Hom}_R(M, N)$, $\beta \in \text{Hom}_R(N, M)$ be such that $\beta \circ \alpha$ is an isomorphism. Then α and β are isomorphisms.

Proof. We claim that $N = \operatorname{Im} \alpha \oplus \operatorname{Ker} \beta$. Indeed, $\operatorname{Im} \alpha \cap \operatorname{Ker} \beta = 0$ and for any $x \in N$ one can write x = y + z, where $y = \alpha \circ (\beta \circ \alpha)^{-1} \circ \beta (x)$, z = x - y. Then since N is indecomposable, $\operatorname{Im} \alpha = N$, $\operatorname{Ker} \beta = 0$ and $N \cong M$.

Date: November 7, 2005.

Lemma 1.3. Let M be indecomposable module of finite length and $\varphi \in \operatorname{End}_R(M)$, then either φ is an isomorphism or φ is nilpotent.

Proof. There is n > 0 such that $\operatorname{Ker} \varphi^n = \operatorname{Ker} \varphi^{n+1}$, $\operatorname{Im} \varphi^n = \operatorname{Im} \varphi^{n+1}$. In this case $\operatorname{Ker} \varphi^n \cap \operatorname{Im} \varphi^n = 0$ and hence $M \cong \operatorname{Ker} \varphi^n \oplus \operatorname{Im} \varphi^n$. Either $\operatorname{Ker} \varphi^n = 0$, $\operatorname{Im} \varphi^n = M$ or $\operatorname{Ker} \varphi^n = M$. Hence the lemma.

Lemma 1.4. Let M be as in Lemma 1.3 and $\varphi, \varphi_1, \varphi_2 \in \text{End}_R(M), \varphi = \varphi_1 + \varphi_2$. If φ is an isomorphism then at least one of φ_1, φ_2 is also an isomorphism.

Proof. Without loss of generality we may assume that $\varphi = id$. But in this case φ_1 and φ_2 commute. If both φ_1 and φ_2 are nilpotent, then $\varphi_1 + \varphi_2$ is nilpotent, but this is impossible as $\varphi_1 + \varphi_2 = id$.

Corollary 1.5. Let M be as in Lemma 1.3. Let $\varphi = \varphi_1 + \cdots + \varphi_k \in \text{End}_R(M)$. If φ is an isomorphism then φ_i is an isomorphism at least for one *i*.

It is obvious that if M satisfies ACC and DCC then M has a decomposition

$$M = M_1 \oplus \cdots \oplus M_k,$$

where all M_i are indecomposable.

Theorem 1.6. (Krull-Schmidt) Let M be a module of finite length and

$$M = M_1 \oplus \cdots \oplus M_k = N_1 \oplus \cdots \oplus N_l$$

for some indecomposable M_i and N_j . Then k = l and there exists a permutation s such that $M_i \cong N_{s(j)}$.

Proof. Let $p_i: M_1 \to N_i$ be the restriction to M_1 of the natural projection $M \to N_i$, and $q_j: N_j \to M_1$ be the restriction to N_j of the natural projection $M \to M_1$. Then obviously $q_1p_1 + \cdots + q_lp_l = \text{id}$, and by Corollary 1.5 there exists *i* such that q_ip_i is an isomorphism. Lemma 1.2 implies that $M_1 \cong N_i$. Now one can easily finish the proof by induction on *k*.

2. Some facts from homological algebra

The complex is the graded abelian group $C = \bigoplus_{i \ge 0} C_i$. We will assume later that all C_i are *R*-modules for some ring *R*. A differential is an *R*-morphism of degree -1 such that $d^2 = 0$. Usually we realize *C*, by the picture

 $\xrightarrow{d} \cdots \to C_1 \xrightarrow{d} C_0 \to 0.$

We also consider d of degree 1, in this case the superindex C^{\cdot} and

$$0 \to C^0 \xrightarrow{d} C^1 \xrightarrow{d} \dots$$

All the proofs are similar for these two cases.

Homology group is $H_i(C) = (\operatorname{Ker} d \cap C_i) / dC_{i+1}$.

Given two complexes (C, d) and (C', d'). A morphism $f : C \to C'$ preserving grading and satisfying $f \circ d = d' \circ f$ is called a *morphism of complexes*. A morphism of complexes induces the morphism $f_* : H_{\cdot}(C) \to H_{\cdot}(C')$.

Theorem 2.1. (Long exact sequence). Let

$$0 \to C_{\cdot} \xrightarrow{g} C'_{\cdot} \xrightarrow{f} C''_{\cdot} \to 0$$

be a short exact sequence, then the long exacts sequence

$$\xrightarrow{\delta} H_i(C) \xrightarrow{g_*} H_i(C') \xrightarrow{f_*} H_i(C'') \xrightarrow{\delta} H_{i-1}(C) \xrightarrow{g_*} \dots$$

where $\delta = g^{-1} \circ d' \circ f^{-1}$, is exact.

Let $f, g : C_{\cdot} \to C'_{\cdot}$ be two morphisms of complexes. We say that f and g are homotopically equivalent if there exists $h : C_{\cdot} \to C'_{\cdot}(+1)$ (the morphism of degree 1) such that $f - g = h \circ d + d' \circ h$.

Lemma 2.2. If f and g are homotopically equivalent then $f_* = g_*$.

Proof. Let $\phi = f - g$, $x \in C_i$ and dx = 0. Then

$$\phi(x) = h(dx) + d'(hx) = d'(hx) \in \operatorname{Im} d'.$$

Hence $f_* - g_* = 0$.

We say that complexes C and C' are homotopically equivalent if there exist $f : C \to C'$ and $g : C' \to C$ such that $f \circ g$ is homotopically equivalent to $\mathrm{id}_{C'}$ and $g \circ f$ is homotopically equivalent to id_C . Lemma 2.2 implies that homotopically equivalent complexes have isomorphic homology. The following Lemma is straightforward.

Lemma 2.3. If C. and C' are homotopically equivalent then the complexes $\operatorname{Hom}_R(C, B)$ and $\operatorname{Hom}_R(C')$ are also homotopically equivalent.

Note that the differential in $\operatorname{Hom}_{R}(C, B)$ has degree 1.

3. Projective modules

An *R*-module *P* is *projective* if for any surjective morphism $\phi : M \to N$ and any $\psi : P \to N$ there exists $f : P \to M$ such that $\psi = \phi \circ f$.

Example. A free module is projective. Indeed, let $\{e_i\}_{i \in I}$ be the set of free generators of a free module F, i.e. $F = \bigoplus_{i \in I} Re_i$. Define $f : F \to M$ by $f(e_i) = \phi^{-1}(\psi(e_i))$.

Lemma 3.1. The following conditions on a module P are equivalent

- (1) P is projective;
- (2) There exists a free module F such that $F \cong P \oplus P'$;
- (3) Any exact sequence $0 \to N \to M \to P \to 0$ splits.

Proof. $(1) \Rightarrow (3)$ Consider the exact sequence

$$0 \to N \xrightarrow{\varphi} M \xrightarrow{\psi} P \to 0,$$

then since ψ is surjective, there exists $f: P \to M$ such that $\psi \circ f = \mathrm{id}_P$.

 $(3) \Rightarrow (2)$ Every module is a quotient of a free module. Therefore we just have to apply (3) to the exact sequence

$$0 \to N \to F \to P \to 0$$

for a free module F.

 $(2) \Rightarrow (1)$ Let $\phi: M \to N$ be surjective and $\psi: P \to N$. Choose a free module F so that $F = P \oplus P'$. Then extend ψ to $F \to N$ in the obvious way and let $f: F \to M$ be such that $\phi \circ f = \psi$. Then the last identity is true for the restriction of f to P. \Box

A projective resolution of M is a complex P of projective modules such that $H_i(P) = 0$ for i > 0 and $H_0(P) \cong M$. A projective resolution always exists since one can easily construct a resolution by free modules. Below we prove the "uniqueness" statement.

Lemma 3.2. Let P and P'_{\cdot} be two projective resolutions of the same module M. Then there exists a morphism $f : P \to P'_{\cdot}$ of complexes such that $f_* : H_0(P) \to H_0(P'_{\cdot})$ induces the identity id_M . Any two such morphisms f and g are homotopically equivalent.

Proof. Construct f inductively. Let $p: P_0 \to M$ and $p': P'_0 \to M$ be the natural projections, define $f: P_0 \to P'_0$ so that $p' \circ f = p$. Then

$$f(\operatorname{Ker} p) \subset \operatorname{Ker} p', \operatorname{Ker} p = d(P_1), \operatorname{Ker} p' = d'(P_1'),$$

hence $f \circ d(P_1) \subset d'(P'_1)$, and one can construct $f : P_1 \to P'_1$ such that $f \circ d = d' \circ f$. Proceed in the same manner to construct $f : P_i \to P_i$.

To check the second statement, let $\varphi = f - g$. Then $p' \circ \varphi = 0$. Hence

$$\varphi(P_0) \subset \operatorname{Ker} p' = d'(P_1').$$

Therefore one can find $h: P_0 \to P'_1$ such that $d' \circ h = \varphi$. Furthermore,

$$d' \circ h \circ d = \varphi \circ d = d' \circ \varphi,$$

hence

$$(\varphi - h \circ d)(P_1) \subset P'_1 \cap \operatorname{Ker} d' = d'(P'_2)$$

Thus one can construct $h: P_1 \to P'_2$ such that $d' \circ h = \varphi - h \circ d$. Then proceed inductively to define $h: P_i \to P'_{i+1}$.

Corollary 3.3. Every two projective resolutions of M are homotopically equivalent.

Let M and N be two modules and P be a projective resolution of M. Consider the complex

$$0 \to \operatorname{Hom}_{R}(P_{0}, N) \to \operatorname{Hom}_{R}(P_{1}, N) \to \ldots,$$

where the differential is defined naturally. The cohomology of this complex is denoted by $\operatorname{Ext}_{R}^{\cdot}(M, N)$. Lemma 2.3 implies that $\operatorname{Ext}_{R}^{\cdot}(M, N)$ does not depend on a choice of projective resolution for M. Check that $\operatorname{Ext}_{R}^{0}(M, N) = \operatorname{Hom}_{R}(M, N)$.

Example 1. Let $R = \mathbb{C}[x]$ be the polynomial ring. Any simple *R*-module is one-dimensional and isomorphic to $\mathbb{C}[x]/(x-\lambda)$. Denote such module by \mathbb{C}_{λ} . A projective resolution of \mathbb{C}_{λ} is

$$0 \to \mathbb{C}\left[x\right] \xrightarrow{d} \mathbb{C}\left[x\right] \to 0,$$

where $d(1) = x - \lambda$. Let us calculate $\operatorname{Ext}^{\cdot}(\mathbb{C}_{\lambda}, \mathbb{C}_{\mu})$. Note that $\operatorname{Hom}_{\mathbb{C}[x]}(\mathbb{C}_{\mu}) = \mathbb{C}$, hence we have the complex

$$0 \to \mathbb{C} \xrightarrow{d^*} \mathbb{C} \to 0$$

where $d^* = \lambda - \mu$. Hence Ext^{*} $(\mathbb{C}_{\lambda}, \mathbb{C}_{\mu}) = 0$ if $\lambda \neq \mu$ and Ext⁰ $(\mathbb{C}_{\lambda}, \mathbb{C}_{\lambda}) = \text{Ext}^1 (\mathbb{C}_{\lambda}, \mathbb{C}_{\lambda}) = \mathbb{C}$.

Example 2. Let $R = \mathbb{C}[x]/(x^2)$. Then R has one up to isomorphism simple module, denote it by \mathbb{C}_0 . A projective resolution for \mathbb{C}_0 is

 $\dots \xrightarrow{d} R \xrightarrow{d} R \to 0,$

where d(1) = x and $\operatorname{Ext}^{i}(\mathbb{C}_{0}, \mathbb{C}_{0}) = \mathbb{C}$ for all $i \geq 0$.

4. Representations of artinian rings

An *artinian* ring is a unital ring satisfying the descending chain condition for left ideals. We will see that an artinian ring is a finite length module over itself. Therefore R is automatically noetherian. A typical example of an artinian ring is a finite-dimensional algebra over a field.

Theorem 4.1. Let R be an artinian ring, $I \subset R$ be a left ideal. If I is not nilpotent, then I contains an idempotent.

Proof. Let J be a minimal left ideal, such that $J \subset I$ and J is not nilpotent. Then $J^2 = J$. Let L be a minimal left ideal such that $L \subset J$ and $JL \neq 0$. Then there is $x \in L$ such that $Jx \neq 0$. But then Jx = L by minimality of L. Thus, for some $r \in R$, rx = x, hence $r^2x = rx$ and $(r^2 - r)x = 0$. Let $N = \{y \in J \mid yx = 0\}$. Then N is a proper left ideal in J and therefore N is nilpotent. Thus, we obtain

$$r^2 \equiv r \mod N.$$

Let $n = r^2 - r$, then

$$(r+n-2rn)^2 \equiv r^2 + 2rn - 4r^2n \mod N^2,$$

 $r^2 + 2rn - 4r^2n \equiv r + n - 2rn \mod N^2.$

WEEK 9

Hence $r_1 = r + n - 2rn$ is an idempotent modulo N^2 . Repeating this process several times we obtain an idempotent.

Corollary 4.2. If an artinian ring does not have nilpotent ideals, then it is semisimple.

Proof. The sum S of all minimal left ideals is semisimple. By DCC S is a finite direct sum of minimal left ideals. Then S contains an idempotent e, which is the sum of idempotents in each direct summand. Then $R = S \oplus R(1 - e)$, however that implies R = S.

Important notion for a ring is the *radical*. For an R-module M let

$$\operatorname{Ann} M = \{ x \in R \mid xM = 0 \} \,.$$

Then the radical rad R is the intersection of Ann M for all simple R-modules M.

Theorem 4.3. If R is artinian then rad R is a maximal nilpotent ideal.

Proof. First, let us show that rad R is nilpotent. Assume the contrary. Then rad R contains an idempotent e. But then e does not act trivially on a simple quotient of Re. Contradiction.

Now let us show that any nilpotent ideal N lies in rad R. Let M be a simple module, then $NM \neq M$ as N is nilpotent. But NM is a submodule of M. Therefore NM = 0. Hence $N \subset \text{Ann } M$ for any simple M.

Corollary 4.4. An artinian ring R is semisimple iff rad R = 0.

Corollary 4.5. If R is artinian, then $R/\operatorname{rad} R$ is semisimple.

Corollary 4.6. If R is artinian and M is an R-module, then for the filtration

 $M \supset (\operatorname{rad} R) M \supset (\operatorname{rad} R)^2 M \supset \cdots \supset (\operatorname{rad} R)^k M = 0$

all quotients are semisimple. In particular, M always has a simple quotient.

Theorem 4.7. If R is artinian, then it has finite length as a left module over itself.

Proof. Consider the filtration $R = R_0 \supset R_1 \supset \cdots \supset R_s = 0$ where $R_i = (\operatorname{rad} R)^i$. Then each quotient R_i/R_{i+1} is semisimple of finite length. The statement follows. \Box

Let R be an artinian ring. By Krull-Schmidt theorem R (as a left module over itself) has a decomposition into direct sum of indecomposable submodules $R = L_1 \oplus \cdots \oplus L_n$. Since $\operatorname{End}_R(R) = R^{\operatorname{op}}$, the projector on each component L_i is given by multiplication on the right by some idempotent e_i . Thus, $R = Re_1 \oplus \cdots \oplus Re_n$, where e_i are idempotents and $e_i e_j = 0$ if $i \neq j$. This decomposition is unique up to multiplication on some unit on the right. Since Re_i is indecomposable, e_i can not be written as a sum of two orthogonal idempotents, such idempotents are called *primitive*. Each module Re_i is projective.

 $\mathbf{6}$

Proof. Since Re is indecomposable, every proper left ideal is nilpotent, (otherwise it has an idempotent and therefore splits as a direct summand in Re). But then this ideal is in $N \cap Re = Ne$.

A projective module P is a projective cover of M if there exists a surjection $P \to M$.

Theorem 4.9. Let R be artinian. Every simple R-modules S has a unique (up to an isomorphism) indecomposable projective cover isomorphic to Re for some primitive idempotent $e \in R$. Every indecomposable projective module has a unique (up to an isomorphism) simple quotient.

Proof. Every simple S is a quotient of R, and therefore it is a quotient of some indecomposable projective P = Re. Let $\phi : P \to S$ be the natural projection. For any indecomposable projective cover P_1 of S with surjective morphism $\phi_1 : P_1 \to S$ there exist $f : P \to P_1$ and $g : P_1 \to P$ such that $\phi = \phi_1 \circ f$ and $\phi_1 = \phi \circ g$. Therefore $\phi = \phi \circ g \circ f$. Since Ker ϕ is the unique maximal submodule, $g \circ f(P_1) = P$. In particular g is surjective. Indecomposable projective cover.

On the other hand, let P be an indecomposable projective module. Corollary 4.6 implies that P has a simple quotient S. Hence P is isomorphic to the indecomposable projective cover of S.

Corollary 4.10. Every indecomposable projective module over an artinian ring R is isomorphic to Re for some primitive idempotent $e \in R$. There is a bijection between the ismorphism classes of simple R-modules and isomorphism classes of projective indecomposable R-modules.

Example. Let $R = \mathbb{F}_3(S_3)$. Let r be a 3-cycle and s be a transposition. Then $r-1, r^2-1, sr-s$ and sr^2-s span a maximal nilpotent ideal. Hence R has two (up to an isomorphism) simple modules L_1 and L_2 , where L_1 is a trivial representation of S_3 and L_2 is a sign representation. Choose primitive idempotents $e_1 = -s - 1$ and $e_2 = s - 1$, then $1 = e_1 + e_2$. Hence R has two indecomposable projective modules $P_1 = Re_1$ and $P_2 = Re_2$. Note that

$$Re_1 \cong \operatorname{Ind}_{S_2}^{S_3}(\operatorname{triv}), Re_2 \cong \operatorname{Ind}_{S_2}^{S_3}(\operatorname{sgn}).$$

Thus, P_1 is just 3-dimensional permutation representation of S_3 , and P_2 is obtained from P_1 by tensoring with sgn. It is easy to see that P_1 has a trivial submodule as well as a trivial quotient, and sgn is isomorphic to the quotient of the maximal submodule of P_1 by the trivial submodule. One can easily get a similar description for P_2 Thus, one has the the following exact sequences

$$0 \to L_2 \to P_2 \to P_1 \to L_1 \to 0, \qquad 0 \to L_1 \to P_1 \to P_2 \to L_2 \to 0,$$

WEEK 9

therefore

$$\cdots \to P_1 \to P_2 \to P_2 \to P_1 \to P_1 \to P_2 \to P_2 \to P_1 \to 0$$

is a projective resolution for L_1 , and

 $\cdots \to P_2 \to P_1 \to P_1 \to P_2 \to P_2 \to P_1 \to P_1 \to P_2 \to 0$

is a projective resolution for L_2 . Now one can calculate Ext between simple modules $\operatorname{Err}^k(I, L) = 0$ if $h = 1, 2, \dots, k$. For $k = 0, 2, \dots, k$.

 $\operatorname{Ext}^{k}(L_{i}, L_{i}) = 0$ if $k \equiv 1, 2 \mod 4$, $\operatorname{Ext}^{k}(L_{i}, L_{i}) = \mathbb{F}_{3}$ if $k \equiv 0, 3 \mod 4$, and if $i \neq j$, then

 $\operatorname{Ext}^{k}(L_{i}, L_{j}) = 0 \text{ if } k \equiv 0, 3 \mod 4, \qquad \operatorname{Ext}^{k}(L_{i}, L_{j}) = \mathbb{F}_{3} \text{ if } k \equiv 1, 2 \mod 4.$