REPRESENTATION THEORY
WEEK 9

1. JORDAN-HOLDER THEOREM AND INDECOMPOSABLE MODULES

Let M be a module satisfying ascending and descending chain conditions (ACC
and DCC). In other words every increasing sequence submodules M; C M, C ... and
any decreasing sequence M; D My D ... are finite. Then it is easy to see that there
exists a finite sequence

M=MyDM D---DM,=0

such that M;/M;,; is a simple module. Such a sequence is called a Jordan-Hélder
series. We say that two Jordan Holder series

M:MODMlD"'DMk:07M2N03N1D"'DNZZO
are equivalent if £ = [ and for some permutation s M;/M;;1 = Ny /Negiy41-
Theorem 1.1. Any two Jordan-Hdélder series are equivalent.

Proof. We will prove that if the statement is true for any submodule of M then it
is true for M. (If M is simple, the statement is trivial.) If M; = Nj, then the
statement is obvious. Otherwise, My + Ny = M, hence M/M; = Ny/ (M; N N;7) and
M/Ny; =2 M,/ (M; N Ny). Consider the series

M:MQDMlDMlﬂNlDKlD"'DKSZO,M:NQDNlDNlﬂMlDKlD"
They are obviously equivalent, and by induction assumption the first series is equiv-

alent to M = My D M; D --- D My = 0, and the second one is equivalent to
M = Ny D Ny D --- D N; ={0}. Hence they are equivalent. O

Thus, we can define a length [ (M) of a module M satisfying ACC and DCC, and
if M is a proper submodule of N, then [ (M) <[ (N).
A module M is indecomposable if M = M; & M, implies M; = 0 or My = 0.

Lemma 1.2. Let M and N be indecomposable, « € Hompg (M, N), 8 € Hompg (N, M)
be such that o « is an isomorphism. Then « and (3 are isomorphisms.

Proof. We claim that N = Ima@ Ker . Indeed, ImanNKer f = 0 and for any x € N
one can write # =y + z, where y = a o (3o a) ' o 3 (x), 2 =  — y. Then since N is
indecomposable, Ima = N, Ker 3 =0 and N = M. 0J
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Lemma 1.3. Let M be indecomposable module of finite length and ¢ € Endg (M),
then either ¢ is an isomorphism or  is nilpotent.

Proof. There is n > 0 such that Ker¢" = Ker "™, Im¢" = Im ", In this case
Ker " NIm ¢™ = 0 and hence M = Ker ¢" & Im ¢". Either Ker " =0, Im " = M
or Ker " = M. Hence the lemma. UJ

Lemma 1.4. Let M be as in Lemma 1.3 and ¢, 1, po € Endg (M), ¢ = @1 + @o. If
@ is an isomorphism then at least one of @1, @9 is also an isomorphism.

Proof. Without loss of generality we may assume that ¢ = id. But in this case ¢
and o commute. If both ¢y and @9 are nilpotent, then ¢ + @5 is nilpotent, but this
is impossible as ¢ 4+ w9 = id. OJ

Corollary 1.5. Let M be as in Lemma 1.3. Let ¢ = @1 + -+ + ¢ € Endg (M). If
@ is an isomorphism then p; is an isomorphism at least for one 1.

It is obvious that if M satisfies ACC and DCC then M has a decomposition
M:Ml@"'@Mk,
where all M; are indecomposable.

Theorem 1.6. (Krull-Schmidt) Let M be a module of finite length and
M=M® - - OM, =N, D---DN,

for some indecomposable M; and N;. Then k = | and there exists a permutation s
such that M; = Ng;).

Proof. Let p; : My — N; be the restriction to M; of the natural projection M — N;,
and ¢; : N; — M, be the restriction to N; of the natural projection M — M;. Then
obviously ¢1p1 + - -+ + ¢;p = id, and by Corollary 1.5 there exists ¢ such that ¢;p; is

an isomorphism. Lemma 1.2 implies that M; = N;. Now one can easily finish the
proof by induction on k. O

2. SOME FACTS FROM HOMOLOGICAL ALGEBRA

The complex is the graded abelian group C. = ®;>0C;. We will assume later that
all C; are R-modules for some ring R. A differential is an R-morphism of degree —1
such that d? = 0. Usually we realize C. by the picture

i—>01i>00—> 0.

We also consider d of degree 1, in this case the superindex C" and
0—-c*Lcr L

All the proofs are similar for these two cases.
Homology group is H; (C') = (Kerd N C;) /dCiyq.
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Given two complexes (C.,d) and (C’,;d’). A morphism f : C. — C' preserving
grading and satisfying fod = d' o f is called a morphism of complexes. A morphism
of complexes induces the morphism f.: H. (C) — H. (C").

Theorem 2.1. (Long exact sequence). Let
o-cLoto o
be a short exact sequence, then the long exacts sequence
S H(C) S H (O L B (0L H (0) S
where § = g~ ' od o f~1, is exact.

Let f,g : C. — C’ be two morphisms of complexes. We say that f and ¢ are
homotopically equivalent if there exists h : C. — C' (+1) (the morphism of degree 1)
such that f —g=hod+d oh.

Lemma 2.2. If f and g are homotopically equivalent then f, = g..
Proof. Let ¢ = f — g, v € C; and dz = 0. Then
¢ (x) = h(dz) +d (hx) =d (hz) € Imd'.
Hence f, — g, = 0. O
We say that complexes C. and C’ are homotopically equivalent if there exist f :
C. — C’and g : C' — C. such that f o g is homotopically equivalent to id¢er and go f

is homotopically equivalent to id¢. Lemma 2.2 implies that homotopically equivalent
complexes have isomorphic homology. The following Lemma is straightforward.

Lemma 2.3. IfC. and C’ are homotopically equivalent then the complexes Homp (C., B)
and Homp, (C') are also homotopically equivalent.

Note that the differential in Hompg (C., B) has degree 1.

3. PROJECTIVE MODULES

An R-module P is projective if for any surjective morphism ¢ : M — N and any
1 : P — N there exists f : P — M such that ¢) = ¢o f.

Example. A free module is projective. Indeed, let {e;}, ,be the set of free
generators of a free module F', i.e. F' = @®;crRe;. Define f 1 F — M by f(e;) =

¢~ (¢ (e)).
Lemma 3.1. The following conditions on a module P are equivalent

(1) P is projective;
(2) There exists a free module F' such that F' =~ P & P’;
(3) Any exact sequence 0 — N — M — P — 0 splits.
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Proof. (1) = (3) Consider the exact sequence

0-N&ML P o

then since 1 is surjective, there exists f : P — M such that ¢ o f = idp.
(3) = (2) Every module is a quotient of a free module. Therefore we just have to
apply (3) to the exact sequence

0O—-N—-F—=P—0

for a free module F'.

(2) = (1) Let ¢ : M — N be surjective and ¢ : P — N. Choose a free module F'
so that ' = P& P’. Then extend ¢ to F' — N in the obvious way and let f : F' — M
be such that ¢o f = 1). Then the last identity is true for the restriction of f to P. [

A projective resolution of M is a complex P. of projective modules such that
H; (P)=0fori>0and Hy (P) = M. A projective resolution always exists since one
can easily construct a resolution by free modules. Below we prove the “uniqueness”
statement.

Lemma 3.2. Let P. and P’ be two projective resolutions of the same module M.
Then there exists a morphism f : P — P’ of complexes such that f. : Hy(P) —
Hy (P') induces the identity idy;. Any two such morphisms f and g are homotopically
equivalent.

Proof. Construct f inductively. Let p : By — M and p' : P; — M be the natural
projections, define f : Py — BjJ so that p’ o f = p. Then

f (Kerp) C Kerp', Kerp=4d(P,), Kerp' =d (P}),

hence fod(P,) C d (P]), and one can construct f : P, — Pj such that fod =d o f.
Proceed in the same manner to construct f: P, — P;.
To check the second statement, let ¢ = f — ¢g. Then p’ o o = 0. Hence

¢ (P) C Kerp/ =d (P)).
Therefore one can find h : By — P| such that d' o h = . Furthermore,
dohod=ypod=d oy,

hence
(p—hod)(P) Cc P NnKerd =d (P;).

Thus one can construct h : P, — P, such that ' o h = ¢ — h od. Then proceed
inductively to define h: P — P/ ,. O

Corollary 3.3. Every two projective resolutions of M are homotopically equivalent.
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Let M and N be two modules and P. be a projective resolution of M. Consider
the complex
0 — Hompg (FPo, N) — Hompg (P, N) — ...

where the differential is defined naturally. The cohomology of this complex is denoted
by Exty (M, N). Lemma 2.3 implies that Exty, (M, N) does not depend on a choice
of projective resolution for M. Check that Ext}, (M, N) = Homg (M, N).

Example 1. Let R = C|[z] be the polynomial ring. Any simple R-module is
one-dimensional and isomorphic to C[z]/(z — A). Denote such module by Cy. A
projective resolution of C, is

Y

0—Clz] L Clz] — 0,
where d (1) = x — A. Let us calculate Ext (Cy,C,). Note that Homcy, (C,) = C,
hence we have the complex
0-CLcCc—o

where d* = A—p. Hence Ext (Cy,C,) = 0if A # pand Ext’ (C,, C,) = Ext' (Cy,C)) =
C.

Example 2. Let R = Clz]/(z*). Then R has one up to isomorphism simple
module, denote it by Cy. A projective resolution for Cy is

LRLR— 0,
where d (1) = z and Ext’ (Cy, Cy) = C for all i > 0.

4. REPRESENTATIONS OF ARTINIAN RINGS

An artinian ring is a unital ring satisfying the descending chain condition for
left ideals. We will see that an artinian ring is a finite length module over itself.
Therefore R is automatically noetherian. A typical example of an artinian ring is a
finite-dimensional algebra over a field.

Theorem 4.1. Let R be an artinian ring, I C R be a left ideal. If I is not nilpotent,
then I contains an idempotent.

Proof. Let J be a minimal left ideal, such that J C I and J is not nilpotent. Then
J? = J. Let L be a minimal left ideal such that L C J and JL # 0. Then there
is x € L such that Jxr # 0. But then Jr = L by minimality of L. Thus, for some
r € R, rv =z, hence r’z = rx and (r*? —r)z = 0. Let N = {y € J | yz = 0}. Then
N is a proper left ideal in J and therefore N is nilpotent. Thus, we obtain
r?=r mod N.
Let n =r? —r, then
(r4+n—2rm)>=r?+2rn —4*n mod N?,

2+ 2rn —4r*n=r+n—2rn mod N2



6 REPRESENTATION THEORY WEEK 9

Hence 71 = r +n — 2rn is an idempotent modulo N2. Repeating this process several
times we obtain an idempotent. O

Corollary 4.2. If an artinian ring does not have nilpotent ideals, then it is semisim-
ple.

Proof. The sum S of all minimal left ideals is semisimple. By DCC §'is a finite direct
sum of minimal left ideals. Then S contains an idempotent e, which is the sum of
idempotents in each direct summand. Then R = S @ R(1 — e), however that implies
R=2S. O

Important notion for a ring is the radical. For an R-module M let
AmmM ={r e R|x2M =0}.
Then the radical rad R is the intersection of Ann M for all simple R-modules M.
Theorem 4.3. If R is artinian then rad R is a maximal nilpotent ideal.

Proof. First, let us show that rad R is nilpotent. Assume the contrary. Then rad R
contains an idempotent e. But then e does not act trivially on a simple quotient of
Re. Contradiction.

Now let us show that any nilpotent ideal N lies in rad R. Let M be a simple
module, then NM # M as N is nilpotent. But NM is a submodule of M. Therefore
NM = 0. Hence N C Ann M for any simple M. U

Corollary 4.4. An artinian ring R is semisimple iff rad R = 0.
Corollary 4.5. If R is artinian, then R/rad R is semisimple.
Corollary 4.6. If R is artinian and M is an R-module, then for the filtration
M> (radR)M > (rad R)>M > --- > (rad R)* M =0
all quotients are semisimple. In particular, M always has a simple quotient.
Theorem 4.7. If R is artinian, then it has finite length as a left module over itself.

Proof. Consider the filtration R = Ry D R D --- D R, = 0 where R; = (rad R)".
Then each quotient R;/R;; is semisimple of finite length. The statement follows. [

Let R be an artinian ring. By Krull-Schmidt theorem R (as a left module over
itself) has a decomposition into direct sum of indecomposable submodules R = L; &
++- @ L,. Since Endg (R) = R°P, the projector on each component L; is given by
multiplication on the right by some idempotent e;. Thus, R = Re; ® --- ® Re,,
where e; are idempotents and e;e; = 0 if ¢ # j. This decomposition is unique up
to multiplication on some unit on the right. Since Re; is indecomposable, e; can
not be written as a sum of two orthogonal idempotents, such idempotents are called
primitive. Each module Re; is projective.
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Lemma 4.8. Let R be artinian, N = rad R and e be a primitive idempotent. Then
Ne is a unique maximal submodule of Re.

Proof. Since Re is indecomposable, every proper left ideal is nilpotent, (otherwise it
has an idempotent and therefore splits as a direct summand in Re). But then this
ideal is in N N Re = Ne. O

A projective module P is a projective cover of M if there exists a surjection P — M.

Theorem 4.9. Let R be artinian. Every simple R-modules S has a unique (up to an
isomorphism) indecomposable projective cover isomorphic to Re for some primitive
idempotent e € R. Every indecomposable projective module has a unique (up to an
isomorphism )simple quotient.

Proof. Every simple S is a quotient of R, and therefore it is a quotient of some
indecomposable projective P = Re. Let ¢ : P — S be the natural projection. For
any indecomposable projective cover P; of S with surjective morphism ¢, : P, — S
there exist f : P — P, and g : P, — P such that ¢ = ¢;0 f and ¢ = ¢og. Therefore
¢ = ¢pogo f. Since Ker¢ is the unique maximal submodule, go f(P) = P. In
particular g is surjective. Indecomposability of P, implies P = P;. Thus, every
simple module has a unique indecomposable projective cover.

On the other hand, let P be an indecomposable projective module. Corollary 4.6
implies that P has a simple quotient S. Hence P is isomorphic to the indecomposable
projective cover of S. O

Corollary 4.10. Every indecomposable projective module over an artinian ring R is
isomorphic to Re for some primitive idempotent e € R. There is a bijection between
the ismorphism classes of simple R-modules and isomorphism classes of projective
indecomposable R-modules.

Example. Let R = F3(S3). Let r be a 3-cycle and s be a transposition. Then
r—1,72—1, sr — s and sr? — s span a maximal nilpotent ideal. Hence R has two (up
to an isomorphism) simple modules L; and Ly, where L, is a trivial representation
of S3 and Ls is a sign representation. Choose primitive idempotents e; = —s — 1 and
es = s — 1, then 1 = e; + e5. Hence R has two indecomposable projective modules
P, = Re; and P, = Rey. Note that

Re; = Indgz (triv), Rey = Indgz (sgn) .

Thus, P, is just 3-dimensional permutation representation of Ss, and P, is obtained
from P, by tensoring with sgn. It is easy to see that P, has a trivial submodule
as well as a trivial quotient, and sgn is isomorphic to the quotient of the maximal
submodule of P, by the trivial submodule. One can easily get a similar description
for P, Thus, one has the the following exact sequences

0—Ly— P —P — L — 0, 0—-Li—P— P — Ly — 0,
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therefore
PP PP P —->PFP PP —0
is a projective resolution for L, and
Pk -P P —>FP—>P—->P—-P—PFP—0
is a projective resolution for Ls. Now one can calculate Ext between simple modules
Extf (L;, L;) =0if k=1,2 mod 4, Ext® (L;, L;) =F3 if k=0,3 mod 4,
and if ¢ # j, then
Ext® (L, L;) =0if k =0,3 mod 4, Ext® (L, L;) =F3if k=1,2 mod 4.



