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WEEK 4

VERA SERGANOVA

1. Induced modules

Let B ⊂ A be rings and M be a B-module. Then one can construct induced

module IndA
B M = A ⊗B M as the quotient of a free abelian group with generators

from A×M by relations

(a1 + a2)×m− a1×m− a2 ×m, a× (m1 +m2)− a×m1− a×m2, ab×m− a× bm,

and A acts on A⊗BM by left multiplication. Note that j : M → A⊗BM defined by

j (m) = 1 ⊗m

is a homomorphism of B-modules.

Lemma 1.1. Let N be an A-module, then for ϕ ∈ HomB (M,N) there exists a
unique ψ ∈ HomA (A⊗B M,N) such that ψ ◦ j = ϕ.

Proof. Clearly, ψ must satisfy the relation

ψ (a⊗m) = aψ (1 ⊗m) = aϕ (m) .

It is trivial to check that ψ is well defined. �

Exercise. Prove that for anyB-moduleM there exists a uniqueA-module satisfying
the conditions of Lemma 1.1.

Corollary 1.2. (Frobenius reciprocity.) For any B-module M and A-module N
there is an isomorphism of abelian groups

HomB (M,N) ∼= HomA (A⊗B M,N) .

Example. Let k ⊂ F be a field extension. Then induction IndF
k is an exact

functor from the category of vector spaces over k to the category of vector spaces
over F , in the sense that the short exact sequence

0 → V1 → V2 → V3 → 0

becomes an exact sequence

0 → F ⊗k V1⊗ → F ⊗k V2 → F ⊗k V3 → 0.
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In general, the latter property is not true. It is not difficult to see that induction is
right exact, i.e. an exact sequence of B-modules

M → N → 0

induces an exact sequence of A-modules

A⊗B M → A⊗B N → 0.

But an exact sequence

0 → M → N

is not necessarily exact after induction.
Later we discuss general properties of induction but now we are going to study

induction for the case of groups.

2. Induced representations for groups.

Let H be a subgroup of G and ρ : H → GL (V ) be a representation. Then the
induced representation IndG

H ρ is by definition a k (G)-module

k (G) ⊗k(H) V.

Lemma 2.1. The dimension of IndG
H ρ equals the product of dimρ and the index

[G : H] of H. More precisely, let S is a set of representatives of left cosets, i.e.

G =
∐

s∈S

sH,

then

(2.1) k (G) ⊗k(H) V = ⊕s∈Ss⊗ V.

For any t ∈ G, s ∈ S there exist unique s′ ∈ S, h ∈ H such that ts = s′h and the
action of t is given by

(2.2) t (s⊗ v) = s′ ⊗ ρhv.

Proof. Straightforward check. �

Lemma 2.2. Let χ = χρ and IndG
H χ denote the character of IndG

H ρ. Then

(2.3) IndG
H χ (t) =

∑

s∈S,s−1ts∈H

χ
(

s−1ts
)

=
1

|H|

∑

s∈G,s−1ts∈H

χ
(

s−1ts
)

.

Proof. (2.1) and (2.2) imply

IndG
H χ (t) =

∑

s∈S,s′=s

χ (h) .

Since s = s′ implies h = s−1ts ∈ H, we obtain the formula for the induced character.
Note also that χ (s−1ts) does not depend on a choice of s in a left coset. �



REPRESENTATION THEORY. WEEK 4 3

Corollary 2.3. Let H be a normal subgroup in G. Then IndG
H χ (t) = 0 for any

t /∈ H.

Theorem 2.4. For any ρ : G→ GL (V ), σ : H → GL (W ), we have the identity

(2.4)
(

IndG
H χσ, χρ

)

G
= (χσ,ResH χρ)H .

Here a subindex indicates the group where we take inner product.

Proof. It follows from Frobenius reciprocity, since

dimHomG

(

IndG
H W,V

)

= dimHomH (W,V ) .

�

Note that (2.4) can be proved directly from (2.3). Define two maps

ResH : C (G) → C (H) , IndG
H : C (H) → C (G) ,

the former is the restriction on a subgroup, the latter is defined by (2.3). Then for
any f ∈ C (G) , g ∈ C (H)

(2.5)
(

IndG
H g, f

)

G
= (g,ResH f)H .

Example 1. Let ρ be a trivial representation of H. Then IndG
H ρ is the permutation

representation of G obtained from the natural left action of G on G/H (the set of
left cosets).

Example 2. Let G = S3, H = A3, ρ be a non-trivial one dimensional representa-
tion of H (one of two possible). Then

IndG
H χρ (1) = 2, IndG

H χρ (12) = 0, IndG
H χρ (123) = −1.

Thus, by induction we obtain an irreducible two-dimensional representation of G.
Now consider another subgroup K of G = S3 generated by the transposition (12),

and let σ be the (unique) non-trivial one-dimensional representation of K. Then

IndG
K χσ (1) = 3, IndG

K χσ (12) = −1, IndG
H χρ (123) = 0.

3. Double cosets and restriction to a subgroup

If K and H are subgroups of G one can define the equivalence relation on G : s ∼ t
iff s ∈ KtH. The equivalence classes are called double cosets. We can choose a set of
representative T ⊂ G such that

G =
∐

s∈T

K tH .

We define the set of double cosets by K\G/H. One can identify K\G/H with K-
orbits on S = G/H in the obvious way and with G-orbits on G/K × G/H by the
formula

KtH → G (K, tH) .
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Example. Let Fq be a field of q elements and G = GL2 (Fq)
def
= GL

(

F
2
q

)

. Let B be
the subgroup of upper-triangular matrices in G. Check that |G| = (q2 − 1) (q2 − q),
|B| = (q − 1)2 q and therefore [G : B] = q + 1. Identify G/B with the set of lines P1

in F2
q and B\G/B with G-orbits on P1 × P1. Check that G has only two orbits on

P1 × P1: the diagonal and its complement. Thus, |B\G/B| = 2 and

G = B ∪ BsB,

where

s =

(

0 1
1 0

)

Theorem 3.1. Let T ⊂ G such that G =
∐

s∈T KtH. Then

ResK IndG
H ρ = ⊕s∈T IndK

K∩sHs
−1 ρs,

where

ρs
h

def
= ρs−1hs,

for any h ∈ sHs−1.

Proof. Let s ∈ T and W s = k (K) (s⊗ V ). Then by construction, W s is K-invariant
and

k (G) ⊗k(H) V = ⊕s∈TW
s.

Thus, we need to check that the representation ofK inW s is isomorphic to IndK
K∩sHs−1 ρs.

We define a homomorphism

α : IndK
K∩sHs−1 V → W s

by α (t⊗ v) = ts⊗ v for any t ∈ K, v ∈ V . It is well defined

α (th⊗ v − t⊗ ρs
hv) = ths⊗ v − ts⊗ ρs−1hsv = ts

(

s−1hs
)

⊗ v − ts⊗ ρs−1hsv = 0

and obviously surjective. Injectivity can be proved by counting dimensions. �

Example. Let us go back to our example B ⊂ SL2 (Fq). Theorem 3.1 tells us that
for any representation ρ of B

IndG
B ρ = ρ⊕ IndG

H ρ
′,

where H = B ∩ sBs−1 is a subgroup of diagonal matrices and

ρ′
(

a 0
0 b

)

= ρ

(

b 0
0 a

)

Corollary 3.2. If H is a normal subgroup of G, then

ResH IndG
H ρ = ⊕s∈G/Hρ

s.
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4. Mackey’s criterion

To find
(

IndG
H χ, IndG

H χ
)

we can use Frobenius reciprocity and Theorem 3.1.
(

IndG
H χ, IndG

H χ
)

G
=

(

ResH IndG
H χ, χ

)

H
=

∑

s∈T

(

IndH
H∩sHs−1 χs, χ

)

H
=

=
∑

s∈T

(χs,ResH∩sHs−1 χ)H∩sHs−1 = (χ, χ)H +
∑

s∈T \{1}

(χs,ResH∩sHs−1 χ)H∩sHs−1 .

We call two representation disjoint if they do not have the same irreducible com-
ponent, i.e. their characters are orthogonal.

Theorem 4.1. (Mackey’s criterion) IndG
H ρ is irreducible iff ρ is irreducible and ρs

and ρ are disjoint representations of H ∩ sHs−1 for any s ∈ T\ {1}.

Proof. Write the condition
(

IndG
H χ, IndG

H χ
)

G
= 1

and use the above formula. �

Corollary 4.2. Let H be a normal subgroup of G. Then IndG
H ρ is irreducible iff ρs

is not isomorphic to ρ for any s ∈ G/H, s /∈ H.

Remark 4.3. Note that if H is normal, then G/H acts on the set of representations
of H. In fact, this is a part of the action of the group AutH of automorphisms of
H on the set of representation of H. Indeed, if ϕ ∈ AutH and ρ : H → GL (V ) is a
representation, then ρϕ : H → GL (V ) defined by

ρϕ
t = ρϕ(t),

is a new representation of H.

5. Some examples

Let H be a subgroup of G of index 2. Then H is normal and G = H ∪ sH for
some s ∈ G\H. Suppose that ρ is an irreducible representation of H. There are two
possibilities

(1) ρs is isomorphic to ρ;
(2) ρs is not isomorphic to ρ.

Hence there are two possibilities for IndG
H ρ :

(1) IndG
H ρ = σ⊕σ′, where σ and σ′ are two non-isomorphic irreducible represen-

tations of G;
(2) IndG

H ρ is irreducible.

For instance, let G = S5, H = A5 and ρ1, . . . , ρ5 be irreducible representation of
H, where the numeration is from lecture notes week 3. Then for i = 1, 2, 3

IndG
H ρi = σi ⊕ (σi ⊗ sgn) ,
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here sgn denotes the sign representation. Furthermore, IndG
H ρ4

∼= IndG
H ρ5 is ir-

reducible. Thus S5 has two 1, 5, 4-dimensional irreducible representations and one
6-dimensional.

Now let G be a subgroup of GL2 (Fq) of matrices
(

a b
0 1

)

We want to classify irreducible representations of G over C. |G| = q2 − q, G has the
following conjugacy classes

(

1 0
0 1

)

,

(

1 1
0 1

)

,

(

a 0
0 1

)

,

in the last case a 6= 1. Note that the subgroup H of matrices
(

1 b
0 1

)

is normal, G/H ∼= F∗
q
∼= Zq−1. Therefore G has q−1 one-dimensional representations

which can be lifted from G/H. That leaves one more representation, its dimension
must be q − 1. We hope to obtain it by induction from H. Let σ be a non-trivial
irreducible representation of H (one-dimensional). Then dim IndG

H σ = q − 1 as
required. Note that for any previously constructed one-dimensional representation ρ
of G we have

(

IndG
H σ, ρ

)

G
= (σ,ResH ρ)H = 0,

as ResH ρ is trivial. Therefore IndG
H σ is irreducible. The character takes values q−1,

−1 and 0 on the corresponding conjugacy classes.

Remark 5.1. To find all one-dimensional representation of a group G, find its com-
mutator G′, which is a subgroup generated by ghg−1h−1 for all g, h ∈ G. One-
dimensional representations of G are lifted from one-dimensional representations of
G/G′.


