FINAL EXAM

MATH 252

Please submit by email not later than December 15. Problems marked by * are harder. Do just one of them.

1. Let p be a prime number, \mathbb{F}_{p} denote the field with p elements and G be the subgroup of $G L_{3}\left(\mathbb{F}_{p}\right)$ consisting of matrices of the form

$$
\left\{\left.\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \quad \right\rvert\, \quad a, b, c \in \mathbb{F}_{p}\right\}
$$

Classify irreducible representations of G over \mathbb{C} and compute the character table.
2. Let A be a unital ring which has one up to isomorphism simple module.
(a) Prove that A has a unique proper maximal two-sided ideal \mathfrak{m}.
(b) Assume that A is artinian. Show that A / \mathfrak{m} is isomorphic to the matrix algebra over some division ring.
$\left(c^{*}\right)$ Is (b) true without assumption that A is artinian? ${ }^{1}$
3. Let G be a compact group and V be some finite-dimensional representation of G.
(a) Let χ_{n} denote the character of $S^{n}(V)$. Show that for any $g \in G$

$$
\frac{1}{\operatorname{det}(\operatorname{Id}-t g)}=\sum_{n=0}^{\infty} \chi_{n}(g) t^{n}
$$

(b) Let u_{n} denote the number of G-invariant homogeneous polynomials of degree n on V and $d g$ denotes the Haar measure on G. Prove that

$$
\int_{G} \frac{d g}{\operatorname{det}(\operatorname{Id}-t g)}=\sum_{n=0}^{\infty} u_{n} t^{n}
$$

4. Let V and W be finite-dimensional vector spaces over \mathbb{C}. If λ is a partition we denote $S_{\lambda}(V)$ (resp. $S_{\lambda}(W)$) the corresponding irreducible representation of $G L(V)$ (resp. of $G L(W)$).
(a) Show that $S_{\lambda}(V) \boxtimes S_{\mu}(W)$ is an irreducible representation of $G L(V) \times G L(W)$.
(b) Prove the identities

$$
S^{n}(V \boxtimes W)=\bigoplus_{|\lambda|=n, r(\lambda) \leq \min (\operatorname{dim} V, \operatorname{dim} W)} S_{\lambda}(V) \boxtimes S_{\lambda}(W)
$$

[^0]$$
\Lambda^{n}(V \boxtimes W)=\bigoplus_{|\lambda|=n, r(\lambda) \leq \operatorname{dim} V, r\left(\lambda^{\perp}\right) \leq \operatorname{dim} W} S_{\lambda}(V) \boxtimes S_{\lambda^{\perp}}(W),
$$
where $|\lambda|$ is the number of boxes in the Young diagram $\lambda, r(\lambda)$ is the number of rows and λ^{\perp} denotes the conjugate partition.

Hint: Consider the action of $S_{n} \times S_{n}$ on $V^{\otimes n} \otimes W^{\otimes n}$ and use the Schur-Weyl duality to find the invariants of the diagonal subgroup $S_{n} \subset S_{n} \times S_{n}$.

5*. For two Young diagrams λ and μ we say $\mu \subset \lambda$ if μ is included in λ or equivalently if $\mu_{i} \leq \lambda_{i}$ for all i. By λ^{\prime} we denote the diagram obtained from λ by removing the first row.
(a) Let V be an n-dimensional vector space over $\mathbb{C}, W \subset V$ be a subspace of codimension one. Fix a decomposition $V=W \oplus \mathbb{C}$ and consider the corresponding embedding of the groups $G L(W) \subset G L(V)$. Prove that

$$
\operatorname{Res}_{G L(W)} S_{\lambda}(V)=\bigoplus_{\lambda^{\prime} \subset \mu \subset \lambda, r(\mu) \leq n-1} S_{\mu}(W)
$$

Hint: Consider the homomorphism between the rings of characters of $G L(V)$ and $G L(W)$ induced by the restriction functor and use the Jacobi-Trudi identity.
(b) Use the chain of subgroups $G L_{1}(\mathbb{C}) \subset G L_{2}(\mathbb{C}) \subset \cdots \subset G L_{n}(\mathbb{C})=G L(V)$ and part (a) to construct a basis in the representation $S_{\lambda}(V)$ enumerated by all semi-standard tableaux of shape λ with entries $1, \ldots, n$. (This basis is called the Gelfand-Tsetlin basis).

6*. (Zelevinsky) Let $G_{n}:=G L_{n}\left(\mathbb{F}_{q}\right)$. Let \mathcal{H}_{n} denote the \mathbb{Z}-span of complex irreducible characters of $G_{n}, \mathcal{H}_{0}:=\mathbb{Z}$ and

$$
\mathcal{H}:=\bigoplus_{n=0}^{\infty} \mathcal{H}_{n}
$$

We define the scalar product on \mathcal{H} by setting

$$
(\chi, \psi)=\delta_{m, n}(\chi, \psi)_{G_{n}} \quad \text { for all } \quad \chi \in \mathcal{H}_{m}, \psi \in \mathcal{H}_{n}
$$

(a) For every $r, s \in \mathbb{N}$ such $n=r+s$ denote by $P_{r, s}$ the subgroup of matrices of the form $\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ such that $A \in G_{r}, C \in G_{s}$ and B is the arbitrary $r \times s$ matrix. Show that $U_{r, s}$ consisting of matrices such that $A=\mathrm{Id}_{r}$ and $C=\mathrm{Id}_{s}$ is a normal subgroup of $P_{r, s}$ and the quotient $P_{r, s} / U_{r, s}$ is isomorphic to $G_{r} \times G_{s}$.
(b) Describe the double cosets $P_{r, s} \backslash G_{n} / P_{r^{\prime}, s^{\prime}}$.
(c) For any representation ρ of $G_{r} \times G_{s}$ denote by $\tilde{\rho}$ the representation of $P_{r, s}$ obtained by pull back of ρ under the natural projection $P_{r, s} \rightarrow G_{r} \times G_{s}$. Let

$$
I_{r, s}(\rho):=\operatorname{Ind}_{P_{r, s}}^{G_{n}} \tilde{\rho} .
$$

For any representation τ of G_{n} and $r+s=n$ set

$$
R_{r, s}(\tau):=\operatorname{Res}_{G_{r} \times G_{s}} \operatorname{Hom}_{U_{r, s}}(\operatorname{triv}, \tau)
$$

By abuse of notation denote by $I_{r, s}$ and $R_{r, s}$ the corresponding \mathbb{Z}-linear maps

$$
\mathcal{H}_{r} \otimes \mathcal{H}_{s} \rightarrow \mathcal{H}_{n}, \quad \mathcal{H}_{n} \rightarrow \mathcal{H}_{r} \otimes \mathcal{H}_{s}
$$

Next define

$$
\mu: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}, \mu^{*}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}
$$

by

$$
\mu(\chi, \psi):=I_{r, s}(\chi \otimes \psi) \quad \text { for all } \quad \chi \in \mathcal{H}_{r}, \psi \in \mathcal{H}_{s}
$$

and

$$
\mu^{*}(\varphi):=\sum_{r+s=n} R_{r, s}(\varphi) \quad \text { for all } \quad \varphi \in \mathcal{H}_{n}
$$

Check that \mathcal{H} is a PSH algebra. (The most difficult part is to check that μ^{*} is a homomorphism of algebras.)
7. Classify indecomposable representations of the quiver

8. List typos and mistakes you noticed in the lecture notes.

[^0]: Date: December 8, 2015.
 ${ }^{1}$ I do not know the answer, so skip this problem unless you have an idea how to approach it.

