$\begin{array}{c} \text{HOMEWORK ASSIGNMENT 6} \\ \text{MATH 250} \end{array}$

October 24.

- 1. Let R be a semisimple ring, $L \subset R$ be a left ideal. Prove that L = Re for some $e \in R$ such that $e^2 = e$.
- **2**. Let P be a cyclic projective module over arbitrary ring R. Prove that P = Re for some $e \in R$ such that $e^2 = e$.
- 3. Give an example of an infinite family $\{M_i\}_{i\in I}$ of simple modules such that $\prod_{i\in I} M_i$ is not semisimple.
- 4. Using description of finitely generated modules over principal rings, obtain a normal form of a linear operator in a finite-dimensional vector space over \mathbb{R} . Hint: irreducible (prime) elements in $\mathbb{R}[X]$ have degree 1 or 2.
- **5**. (Lang, 3.23) Let $\{M_i\}$ be a directed family of modules over a ring R. For any module N show that

$$\lim_{\leftarrow} \operatorname{Hom}_{R}(N, M_{i}) = \operatorname{Hom}_{R}(N, \lim_{\leftarrow} M_{i}).$$

6. (Lang, 3.24) Any module is a direct limit of finitely generated submodules.

Date: October 17, 2014.