
SOLUTIONS FOR REVIEW EXERCISES

MATH 114

1. Let G be a transitive subgroup of Sn.
(a) Prove that if n is prime, then G contains an n-cycle.
(b) Show that (a) is not true if n is not prime.
Solution. The number of elements in an orbit divides the order of G. Since G

is transitive, n divides |G|. If n is prime, then by Sylow theorems G contains an
element of order n, which is an n cycle. If n is not prime, the statement is false. For
example, let n = 4, G be the Klein subgroup of S4.

2. Let F be a field such that the multiplicative group F ∗ is cyclic. Prove that F
is finite.

Solution. Let u be a generator of F ∗. Assume first that charF 6= 2. Then
−1 = un for some n, hence u2n = 1, and therefore F ∗ ∼= Z2n is finite. Let now
charF = 2. Then 1 + u = un for some n. Hence F = Z2 (u) is a finite extension of
Z2 and therefore F is finite.

3. Let G be a transitive subgroup of S6 which contains a 5-cycle. Prove that G is
not solvable.

Solution. Observe first that |G| divides 6!. Hence a cyclic 5-subgroup is a Sylow
subgroup of G. Assume that G is solvable. We have a chain

G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = {1}

such that Gi+1 is normal in Gi and Gi/Gi+1 is cyclic of prime order. Among such
chains of subgroups choose one such that Z5

∼= Gi/Gi+1 appears for maximal i.
We claim that then Z5 = Gk−1. Indeed, Gi+1/Gi+2

∼= Zp for some p < 5. Hence
Gi/Gi+2

∼= Z5 × Zp and one can find G′
i+1

normal in Gi such that G′
i+1

/Gi+2
∼= Z5,

Gi/G
′
i+1

∼= Zp. Hence we moved Z5 to the right.
Now we claim that Z5 = Gk−1 is normal in G. To prove proceed by induction.

Assume that Gk−1 = Z5 is normal in Gi, then it is the unique Sylow subgroup in Gi.
Hence for any g ∈ Gi−1, gGk−1g

−1 = Gk−1, and therefore Gk−1 is normal in Gi−1.
Finally, let Z5 be generated by a cycle s = (12345). G is transitive, therefore there

is a permutation t ∈ G such that t (1) = 6. Then clearly tst−1 6= sn. Hence Z5 is not
normal. Contradiction.

4. Let F be a field and charF 6= 2, α, β ∈ F . Prove that F (
√

α) = F
(√

β
)

if and
only of αβ is a square in F .
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Solution. Assume that F (
√

α) = F
(√

β
)

= E. The Galois group of E over F is
Z2. Let s 6= 1 be the element of the Galois group. Then

s
(√

α
)

= −
√

α, s
(

√

β
)

= −
√

β.

Write
√

β = a + b
√

α

for some a, b ∈ F . Then

s
(

√

β
)

= a − b
√

α = −
√

β = −a − b
√

α

implies
√

β = b
√

α. Then
√

α
√

β = bα and we obtain αβ = b2α2 is a square.
Conversely, if αβ = c2, then

√
β = c√

α
. Therefore F (

√
α) = F

(√
β
)

.

5. Find the minimal polynomial for

1 + 3
√

2 + 3
√

4

over Q.
Solution. Let u = 3

√
2. Solve the equation

a + b
(

1 + u + u2
)

+ c
(

1 + u + u2
)2

+
(

1 + u + u2
)3

= 0

for a, b, c, d, using the relation u3 = 2.
(

1 + u + u2
)2

= 1+u2 +u4 +2u+2u2 +2u3 = 1+u2 +2u+2u+2u2 +4 = 5+4u+3u2 ,
(

1 + u + u2
)3

=
(

5 + 4u + 3u2
) (

1 + u + u2
)

= 5+4u+3u2+5u+4u2+3u3+5u2+4u3+3u4 =

5 + 9u + 12u2 + 7u3 + 3u4 = 19 + 15u + 12u2.

The solution a = −1, b = c = −3.
The minimal polynomial is x3 − 3x2 − 3x − 1.
6. Prove that any algebraically closed field is infinite.
Solution. Let F be a finite field and have q elements. Choose n relatively prime

to q − 1 and q. Then xn = 1 implies x = 1 by Lagrange’s theorem. Therefore xn − 1
does not split in F , and F is not algebraically closed.

7. Is x3 + x + 1 irreducible over F256?
Solution. The polynomial is irreducible over F2 because it does not have roots

in F2. The degree (F256/F2) = 8, therefore F256 does not contain a field of degree 3.
Thus, F256 does not contain a root of the polynomial. Hence x3 + x +1 is irreducible
over F256.

8. Which of the following extensions are normal

Q ⊂ Q

(√

1 −
√

2

)

,

Q ⊂ Q

(

3
√

2,
√

3
)

,

Q ⊂ Q

(

3
√

2,
√
−3

)

?



SOLUTIONS FOR REVIEW EXERCISES MATH 114 3

Solution. The minimal polynomial of
√

1 −
√

2 is x4 − 2x2 − 1, the Galois group of

this polynomial is D4. Hence the splitting field has degree 8. But
(

Q

(

√

1 −
√

2
)

/Q

)

=

4. Hence Q

(

√

1 −
√

2
)

is not normal.

The extension Q ⊂ Q
(

3
√

2,
√

3
)

is not normal because it contains a real root of

x3 − 2, but does not contain two complex roots since Q
(

3
√

2,
√

3
)

is a subfiled of R.

The extension Q ⊂ Q
(

3
√

2,
√
−3

)

is normal, because it is a splitting field of x3−2.
9. Determine if

Q

(√

1 −
√

2

)

= Q

(√
−1,

√
2
)

.

Solution. No. The first field is not a normal extension of Q, the second one is
normal.

10. Let Q ⊂ F be a finite normal extension such that for any two subfields E and
K of F either K ⊂ E or E ⊂ K. Then the Galois group of F over Q is cyclic of
order pn for some prime number p.

Solution. Let G denote the Galois group. Then for any two subgroups H and
H ′ either H ⊂ H ′ or H ′ ⊂ H. First, we prove that G is cyclic. Indeed, consider an
element g ∈ G of maximal order. For any h ∈ G < h >⊂< g >, hence G is generated
by g. Now let us prove that |G| = pn. Assume the contrary, then |G| has two distinct
prime divisors p and q. Then G has Sylow p-subgroup and Sylow q-subgroup which
have trivial intersection. Contradiction.

11. Let F ⊂ B ⊂ E be a chain of extensions such that F ⊂ B is normal and
B ⊂ E is normal. Is it always true that F ⊂ E is normal?

Solution. False. Counterexample

Q ⊂ Q

(√
2
)

⊂ Q

(√

1 −
√

2

)

.

12. Find the Galois group of (x2 − 3) (x2 + 1) (x3 − 6) over Q.
Solution. The splitting field of x3 − 6 contains

√
−3. Therefore the splitting

field of (x2 − 3) (x3 − 6) contains the roots of x2 + 1. Let E be the splitting field of
(x2 − 3) (x2 + 1) (x3 − 6). Then E = FB, where B is a splitting field of x3 −6 whose
Galois group is S3, and F is a splitting field of x2 − 3, whose Galois group is Z2.
Let us prove that F ∩ B = Q. If not, then F ⊂ B. Since S3 has only one subgroup
of index 2, then F = Q

(√
−3

)

, but B is real. Contradiction. By Corollary of the
natural irrationalities theorem

AutQ E = AutQ B ×AutQ F = S3 × Z2.

13. Find the Galois group of x4 + 3x + 5 over Q.
Solution. The polynomial is irreducible over Z2. Hence the Galois group contains

a 4-cycle. The resolvent cubic is x3 − 20x + 9, which is irreducible over Q. So the
Galois group is S4 or A4 and contains a 4-cycle. Hence the Galois group is S4.
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14. Let p be a prime number. Prove that n
√

2 is constructible if and only if n = 2k

for some k.
Solution. The minimal polynomial is xn − p (irreducible by Eisenstein criterion).

If n is not a power of 2, a root is not constructible, since the order of the Galois
group is not a power of 2. If n is a power of 2, then n√p is constructible, because it
can be obtained by taking square root several times.

15. Prove that any subfield of Q
(

n
√

2
)

coincides with Q
(

d
√

2
)

for some divisor d
of n.

Solution. Since xn − 2 is irreducible over Q, the degree of Q
(

n
√

2
)

over Q is

n.Let F be a subfield of Q
(

n
√

2
)

. Consider the minimal polynomial f (x) for n
√

2

over F . Let k denote the degree of f (x). Since k =
(

Q
(

n
√

2
)

/F
)

, k divides n, and

(F/Q) = d = n

k
. All roots of f (x) are roots of xn − 2, which are n

√
2ωs, where ω

is a primitive n-th root of 1. Let a0 be the free coefficient of f (x). Then a0 equals

plus/minus the product of roots of f (x), a0 = ±
(

n
√

2
)k

ωs. Since a0 ∈ F ⊂ R,

ωs = ±1. Thus, ±a0 =
(

n
√

2
)k

= d
√

2 ∈ F . But Q
(

d
√

2
)

has degree d over Q,

because xd − 2 is irreducible over Q. Therefore F = Q
(

d
√

2
)

.
16. Prove that there exists a polynomial of degree 7 whose Galois group over Q is

Z7.
Solution. For example, consider the splitting field E for x29 − 1. The Galois

group of E over Q is Z28, which contains a subgroup Z4. Let F = EZ4. Then the
Galois group of F over Q is Z7. Pick up an element α in F, α /∈ Q. The minimal
polynomial of α has the Galois group Z7.

17. Let f (x) ∈ Q [x] be an irreducible polynomial of odd prime degree p solvable
in radicals. Prove that the number of real roots of f (x) equals p or 1.

Solution. Let G be the Galois group of f (x). Then G is a subgroup of Frp. Let
σ be the complex conjugation. After suitable enumeration of roots by elements of
Zp we have σ (t) = at + b, for some a ∈ Z∗

p, b ∈ Zp. The number of real roots is the
number of t fixed by σ. But the number of solutions for the equation at + b = t is
0,1 or p. Since any polynomial of odd degree has at least one real root, the number
of real roots is either 1 or p.

18. Let f (x) ∈ F2 [x] be an irreducible polynomial. Prove that f (x) divides
x256 − x if and only if the degree of f (x) is 1,2 ,4 or 8.

Solution. Let f (x) divide x256−x. The elements of F256 are the roots of x256−x,
therefore f (x) splits in F256. Conversely, if f (x) splits in F256 then f (x) divides
x256 − x. The irreducible polynomial splits in F256 if and only if its degree divides
the degree of F256, which is 8.

19. Suppose that the Galois group over Q of a polynomial f (x) ∈ Q [x] has odd
order. Prove that all roots of f (x) are real.

Solution. Complex conjugation is an element of order 2 unless all roots are real.
20. Find the Galois group of x6 − 8 over Q.
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Solution. The polynomial factors

x6 − 8 =
(

x2 − 2
) (

x4 + 2x2 + 4
)

.

The Galois group of x4 + 2x2 + 4 is Z2 × Z2. Let α and β = 2

α
be two roots of

x4 + 2x2 + 4, then

(α + β)2 = α2 + β2 + 2αβ = −2 + 4 = 2.

Hence
√

2 is in the splitting field of x4 + 2x + 4, Thus, the Galois group is Z2 × Z2.


