SOLUTIONS FOR REVIEW EXERCISES MATH 114

1. Let G be a transitive subgroup of S_n .

(a) Prove that if n is prime, then G contains an n-cycle.

(b) Show that (a) is not true if n is not prime.

Solution. The number of elements in an orbit divides the order of G. Since G is transitive, n divides |G|. If n is prime, then by Sylow theorems G contains an element of order n, which is an n cycle. If n is not prime, the statement is false. For example, let n = 4, G be the Klein subgroup of S_4 .

2. Let F be a field such that the multiplicative group F^* is cyclic. Prove that F is finite.

Solution. Let u be a generator of F^* . Assume first that char $F \neq 2$. Then $-1 = u^n$ for some n, hence $u^{2n} = 1$, and therefore $F^* \cong \mathbb{Z}_{2n}$ is finite. Let now char F = 2. Then $1 + u = u^n$ for some n. Hence $F = \mathbb{Z}_2(u)$ is a finite extension of \mathbb{Z}_2 and therefore F is finite.

3. Let G be a transitive subgroup of S_6 which contains a 5-cycle. Prove that G is not solvable.

Solution. Observe first that |G| divides 6!. Hence a cyclic 5-subgroup is a Sylow subgroup of G. Assume that G is solvable. We have a chain

$$G = G_0 \supset G_1 \supset \cdots \supset G_k = \{1\}$$

such that G_{i+1} is normal in G_i and G_i/G_{i+1} is cyclic of prime order. Among such chains of subgroups choose one such that $\mathbb{Z}_5 \cong G_i/G_{i+1}$ appears for maximal *i*. We claim that then $\mathbb{Z}_5 = G_{k-1}$. Indeed, $G_{i+1}/G_{i+2} \cong \mathbb{Z}_p$ for some p < 5. Hence $G_i/G_{i+2} \cong \mathbb{Z}_5 \times \mathbb{Z}_p$ and one can find G'_{i+1} normal in G_i such that $G'_{i+1}/G_{i+2} \cong \mathbb{Z}_5$, $G_i/G'_{i+1} \cong \mathbb{Z}_p$. Hence we moved \mathbb{Z}_5 to the right.

Now we claim that $\mathbb{Z}_5 = G_{k-1}$ is normal in G. To prove proceed by induction. Assume that $G_{k-1} = \mathbb{Z}_5$ is normal in G_i , then it is the unique Sylow subgroup in G_i . Hence for any $g \in G_{i-1}$, $gG_{k-1}g^{-1} = G_{k-1}$, and therefore G_{k-1} is normal in G_{i-1} .

Finally, let \mathbb{Z}_5 be generated by a cycle s = (12345). *G* is transitive, therefore there is a permutation $t \in G$ such that t(1) = 6. Then clearly $tst^{-1} \neq s^n$. Hence \mathbb{Z}_5 is not normal. Contradiction.

4. Let *F* be a field and char $F \neq 2$, $\alpha, \beta \in F$. Prove that $F(\sqrt{\alpha}) = F(\sqrt{\beta})$ if and only of $\alpha\beta$ is a square in *F*.

Date: May 13, 2006.

Solution. Assume that $F(\sqrt{\alpha}) = F(\sqrt{\beta}) = E$. The Galois group of E over F is \mathbb{Z}_2 . Let $s \neq 1$ be the element of the Galois group. Then

$$s\left(\sqrt{\alpha}\right) = -\sqrt{\alpha}, \ s\left(\sqrt{\beta}\right) = -\sqrt{\beta}.$$

Write

$$\sqrt{\beta} = a + b\sqrt{\alpha}$$

for some $a, b \in F$. Then

$$s\left(\sqrt{\beta}\right) = a - b\sqrt{\alpha} = -\sqrt{\beta} = -a - b\sqrt{\alpha}$$

implies $\sqrt{\beta} = b\sqrt{\alpha}$. Then $\sqrt{\alpha}\sqrt{\beta} = b\alpha$ and we obtain $\alpha\beta = b^2\alpha^2$ is a square. Conversely, if $\alpha\beta = c^2$, then $\sqrt{\beta} = \frac{c}{\sqrt{\alpha}}$. Therefore $F(\sqrt{\alpha}) = F(\sqrt{\beta})$.

5. Find the minimal polynomial for

$$1 + \sqrt[3]{2} + \sqrt[3]{4}$$

over \mathbb{Q} .

Solution. Let $u = \sqrt[3]{2}$. Solve the equation

$$a + b(1 + u + u^{2}) + c(1 + u + u^{2})^{2} + (1 + u + u^{2})^{3} = 0$$

for a, b, c, d, using the relation $u^3 = 2$.

$$(1+u+u^2)^2 = 1+u^2+u^4+2u+2u^2+2u^3 = 1+u^2+2u+2u+2u^2+4 = 5+4u+3u^2, (1+u+u^2)^3 = (5+4u+3u^2)(1+u+u^2) = 5+4u+3u^2+5u+4u^2+3u^3+5u^2+4u^3+3u^4 = 5+9u+12u^2+7u^3+3u^4 = 19+15u+12u^2.$$

The solution a = -1, b = c = -3.

The minimal polynomial is $x^3 - 3x^2 - 3x - 1$.

6. Prove that any algebraically closed field is infinite.

Solution. Let F be a finite field and have q elements. Choose n relatively prime to q-1 and q. Then $x^n = 1$ implies x = 1 by Lagrange's theorem. Therefore $x^n - 1$ does not split in F, and F is not algebraically closed.

7. Is $x^3 + x + 1$ irreducible over \mathbb{F}_{256} ?

Solution. The polynomial is irreducible over \mathbb{F}_2 because it does not have roots in \mathbb{F}_2 . The degree $(\mathbb{F}_{256}/\mathbb{F}_2) = 8$, therefore \mathbb{F}_{256} does not contain a field of degree 3. Thus, \mathbb{F}_{256} does not contain a root of the polynomial. Hence $x^3 + x + 1$ is irreducible over \mathbb{F}_{256} .

8. Which of the following extensions are normal

$$\mathbb{Q} \subset \mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right),$$
$$\mathbb{Q} \subset \mathbb{Q}\left({}^{3}\sqrt{2},\sqrt{3}\right),$$
$$\mathbb{Q} \subset \mathbb{Q}\left({}^{3}\sqrt{2},\sqrt{-3}\right)?$$

Solution. The minimal polynomial of $\sqrt{1-\sqrt{2}}$ is $x^4 - 2x^2 - 1$, the Galois group of this polynomial is D_4 . Hence the splitting field has degree 8. But $\left(\mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right)/\mathbb{Q}\right) = \frac{1}{\sqrt{2}}$

4. Hence $\mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right)$ is not normal.

The extension $\mathbb{Q} \subset \mathbb{Q}\left(\sqrt[3]{2},\sqrt{3}\right)$ is not normal because it contains a real root of $x^3 - 2$, but does not contain two complex roots since $\mathbb{Q}\left(\sqrt[3]{2},\sqrt{3}\right)$ is a subfiled of \mathbb{R} . The extension $\mathbb{Q} \subset \mathbb{Q}\left(\sqrt[3]{2},\sqrt{-3}\right)$ is normal, because it is a splitting field of $x^3 - 2$.

9. Determine if

$$\mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right) = \mathbb{Q}\left(\sqrt{-1},\sqrt{2}\right).$$

Solution. No. The first field is not a normal extension of \mathbb{Q} , the second one is normal.

10. Let $\mathbb{Q} \subset F$ be a finite normal extension such that for any two subfields E and K of F either $K \subset E$ or $E \subset K$. Then the Galois group of F over \mathbb{Q} is cyclic of order p^n for some prime number p.

Solution. Let G denote the Galois group. Then for any two subgroups H and H' either $H \subset H'$ or $H' \subset H$. First, we prove that G is cyclic. Indeed, consider an element $g \in G$ of maximal order. For any $h \in G < h > \subset < g >$, hence G is generated by g. Now let us prove that $|G| = p^n$. Assume the contrary, then |G| has two distinct prime divisors p and q. Then G has Sylow p-subgroup and Sylow q-subgroup which have trivial intersection.

11. Let $F \subset B \subset E$ be a chain of extensions such that $F \subset B$ is normal and $B \subset E$ is normal. Is it always true that $F \subset E$ is normal?

Solution. False. Counterexample

$$\mathbb{Q} \subset \mathbb{Q}\left(\sqrt{2}\right) \subset \mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right).$$

12. Find the Galois group of $(x^2 - 3)(x^2 + 1)(x^3 - 6)$ over \mathbb{Q} .

Solution. The splitting field of $x^3 - 6$ contains $\sqrt{-3}$. Therefore the splitting field of $(x^2 - 3)(x^3 - 6)$ contains the roots of $x^2 + 1$. Let E be the splitting field of $(x^2 - 3)(x^2 + 1)(x^3 - 6)$. Then E = FB, where B is a splitting field of $x^3 - 6$ whose Galois group is S_3 , and F is a splitting field of $x^2 - 3$, whose Galois group is \mathbb{Z}_2 . Let us prove that $F \cap B = \mathbb{Q}$. If not, then $F \subset B$. Since S_3 has only one subgroup of index 2, then $F = \mathbb{Q}(\sqrt{-3})$, but B is real. Contradiction. By Corollary of the natural irrationalities theorem

$$\operatorname{Aut}_{\mathbb{Q}} E = \operatorname{Aut}_{\mathbb{Q}} B \times \operatorname{Aut}_{\mathbb{Q}} F = S_3 \times \mathbb{Z}_2.$$

13. Find the Galois group of $x^4 + 3x + 5$ over \mathbb{Q} .

Solution. The polynomial is irreducible over \mathbb{Z}_2 . Hence the Galois group contains a 4-cycle. The resolvent cubic is $x^3 - 20x + 9$, which is irreducible over \mathbb{Q} . So the Galois group is S_4 or A_4 and contains a 4-cycle. Hence the Galois group is S_4 .

14. Let p be a prime number. Prove that $\sqrt{2}$ is constructible if and only if $n = 2^k$ for some k.

Solution. The minimal polynomial is $x^n - p$ (irreducible by Eisenstein criterion). If n is not a power of 2, a root is not constructible, since the order of the Galois group is not a power of 2. If n is a power of 2, then \sqrt{p} is constructible, because it can be obtained by taking square root several times.

15. Prove that any subfield of $\mathbb{Q}(n\sqrt{2})$ coincides with $\mathbb{Q}(d\sqrt{2})$ for some divisor d of n.

Solution. Since $x^n - 2$ is irreducible over \mathbb{Q} , the degree of $\mathbb{Q}\left(\frac{n\sqrt{2}}{2}\right)$ over \mathbb{Q} is n.Let F be a subfield of $\mathbb{Q}\left(\frac{n\sqrt{2}}{2}\right)$. Consider the minimal polynomial f(x) for $\frac{n\sqrt{2}}{2}$ over F. Let k denote the degree of f(x). Since $k = \left(\mathbb{Q}\left(\frac{n\sqrt{2}}{2}\right)/F\right)$, k divides n, and $(F/\mathbb{Q}) = d = \frac{n}{k}$. All roots of f(x) are roots of $x^n - 2$, which are $\frac{n\sqrt{2}\omega^s}{\sqrt{2}\omega^s}$, where ω is a primitive n-th root of 1. Let a_0 be the free coefficient of f(x). Then a_0 equals plus/minus the product of roots of f(x), $a_0 = \pm \left(\frac{n\sqrt{2}}{2}\right)^k \omega^s$. Since $a_0 \in F \subset \mathbb{R}$, $\omega^s = \pm 1$. Thus, $\pm a_0 = \left(\frac{n\sqrt{2}}{2}\right)^k = \frac{d\sqrt{2}}{2} \in F$. But $\mathbb{Q}\left(\frac{d\sqrt{2}}{2}\right)$ has degree d over \mathbb{Q} , because $x^d - 2$ is irreducible over \mathbb{Q} . Therefore $F = \mathbb{Q}\left(\frac{d\sqrt{2}}{2}\right)$.

16. Prove that there exists a polynomial of degree 7 whose Galois group over \mathbb{Q} is \mathbb{Z}_7 .

Solution. For example, consider the splitting field E for $x^{29} - 1$. The Galois group of E over \mathbb{Q} is \mathbb{Z}_{28} , which contains a subgroup \mathbb{Z}_4 . Let $F = E^{\mathbb{Z}_4}$. Then the Galois group of F over \mathbb{Q} is \mathbb{Z}_7 . Pick up an element α in $F, \alpha \notin \mathbb{Q}$. The minimal polynomial of α has the Galois group \mathbb{Z}_7 .

17. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of odd prime degree p solvable in radicals. Prove that the number of real roots of f(x) equals p or 1.

Solution. Let G be the Galois group of f(x). Then G is a subgroup of Fr_p . Let σ be the complex conjugation. After suitable enumeration of roots by elements of \mathbb{Z}_p we have $\sigma(t) = at + b$, for some $a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p$. The number of real roots is the number of t fixed by σ . But the number of solutions for the equation at + b = t is 0,1 or p. Since any polynomial of odd degree has at least one real root, the number of real roots is either 1 or p.

18. Let $f(x) \in \mathbb{F}_2[x]$ be an irreducible polynomial. Prove that f(x) divides $x^{256} - x$ if and only if the degree of f(x) is 1,2,4 or 8.

Solution. Let f(x) divide $x^{256} - x$. The elements of \mathbb{F}_{256} are the roots of $x^{256} - x$, therefore f(x) splits in \mathbb{F}_{256} . Conversely, if f(x) splits in \mathbb{F}_{256} then f(x) divides $x^{256} - x$. The irreducible polynomial splits in \mathbb{F}_{256} if and only if its degree divides the degree of \mathbb{F}_{256} , which is 8.

19. Suppose that the Galois group over \mathbb{Q} of a polynomial $f(x) \in \mathbb{Q}[x]$ has odd order. Prove that all roots of f(x) are real.

Solution. Complex conjugation is an element of order 2 unless all roots are real. **20.** Find the Galois group of $x^6 - 8$ over \mathbb{Q} . Solution. The polynomial factors

$$x^{6} - 8 = (x^{2} - 2) (x^{4} + 2x^{2} + 4).$$

The Galois group of $x^4 + 2x^2 + 4$ is $\mathbb{Z}_2 \times \mathbb{Z}_2$. Let α and $\beta = \frac{2}{\alpha}$ be two roots of $x^4 + 2x^2 + 4$, then

$$(\alpha + \beta)^{2} = \alpha^{2} + \beta^{2} + 2\alpha\beta = -2 + 4 = 2.$$

Hence $\sqrt{2}$ is in the splitting field of $x^4 + 2x + 4$, Thus, the Galois group is $\mathbb{Z}_2 \times \mathbb{Z}_2$.