SOLUTIONS FOR REVIEW EXERCISES MATH 114

1. Let G be a transitive subgroup of S_{n}.
(a) Prove that if n is prime, then G contains an n-cycle.
(b) Show that (a) is not true if n is not prime.

Solution. The number of elements in an orbit divides the order of G. Since G is transitive, n divides $|G|$. If n is prime, then by Sylow theorems G contains an element of order n, which is an n cycle. If n is not prime, the statement is false. For example, let $n=4, G$ be the Klein subgroup of S_{4}.
2. Let F be a field such that the multiplicative group F^{*} is cyclic. Prove that F is finite.

Solution. Let u be a generator of F^{*}. Assume first that char $F \neq 2$. Then $-1=u^{n}$ for some n, hence $u^{2 n}=1$, and therefore $F^{*} \cong \mathbb{Z}_{2 n}$ is finite. Let now char $F=2$. Then $1+u=u^{n}$ for some n. Hence $F=\mathbb{Z}_{2}(u)$ is a finite extension of \mathbb{Z}_{2} and therefore F is finite.
3. Let G be a transitive subgroup of S_{6} which contains a 5 -cycle. Prove that G is not solvable.

Solution. Observe first that $|G|$ divides 6 !. Hence a cyclic 5 -subgroup is a Sylow subgroup of G. Assume that G is solvable. We have a chain

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{k}=\{1\}
$$

such that G_{i+1} is normal in G_{i} and G_{i} / G_{i+1} is cyclic of prime order. Among such chains of subgroups choose one such that $\mathbb{Z}_{5} \cong G_{i} / G_{i+1}$ appears for maximal i. We claim that then $\mathbb{Z}_{5}=G_{k-1}$. Indeed, $G_{i+1} / G_{i+2} \cong \mathbb{Z}_{p}$ for some $p<5$. Hence $G_{i} / G_{i+2} \cong \mathbb{Z}_{5} \times \mathbb{Z}_{p}$ and one can find G_{i+1}^{\prime} normal in G_{i} such that $G_{i+1}^{\prime} / G_{i+2} \cong \mathbb{Z}_{5}$, $G_{i} / G_{i+1}^{\prime} \cong \mathbb{Z}_{p}$. Hence we moved \mathbb{Z}_{5} to the right.

Now we claim that $\mathbb{Z}_{5}=G_{k-1}$ is normal in G. To prove proceed by induction. Assume that $G_{k-1}=\mathbb{Z}_{5}$ is normal in G_{i}, then it is the unique Sylow subgroup in G_{i}. Hence for any $g \in G_{i-1}, g G_{k-1} g^{-1}=G_{k-1}$, and therefore G_{k-1} is normal in G_{i-1}.

Finally, let \mathbb{Z}_{5} be generated by a cycle $s=(12345)$. G is transitive, therefore there is a permutation $t \in G$ such that $t(1)=6$. Then clearly $t s t^{-1} \neq s^{n}$. Hence \mathbb{Z}_{5} is not normal. Contradiction.
4. Let F be a field and char $F \neq 2, \alpha, \beta \in F$. Prove that $F(\sqrt{\alpha})=F(\sqrt{\beta})$ if and only of $\alpha \beta$ is a square in F.

[^0]Solution. Assume that $F(\sqrt{\alpha})=F(\sqrt{\beta})=E$. The Galois group of E over F is \mathbb{Z}_{2}. Let $s \neq 1$ be the element of the Galois group. Then

$$
s(\sqrt{\alpha})=-\sqrt{\alpha}, s(\sqrt{\beta})=-\sqrt{\beta}
$$

Write

$$
\sqrt{\beta}=a+b \sqrt{\alpha}
$$

for some $a, b \in F$. Then

$$
s(\sqrt{\beta})=a-b \sqrt{\alpha}=-\sqrt{\beta}=-a-b \sqrt{\alpha}
$$

implies $\sqrt{\beta}=b \sqrt{\alpha}$. Then $\sqrt{\alpha} \sqrt{\beta}=b \alpha$ and we obtain $\alpha \beta=b^{2} \alpha^{2}$ is a square. Conversely, if $\alpha \beta=c^{2}$, then $\sqrt{\beta}=\frac{c}{\sqrt{\alpha}}$. Therefore $F(\sqrt{\alpha})=F(\sqrt{\beta})$.
5. Find the minimal polynomial for

$$
1+{ }^{3} \sqrt{2}+{ }^{3} \sqrt{4}
$$

over \mathbb{Q}.
Solution. Let $u=\sqrt[3]{2}$. Solve the equation

$$
a+b\left(1+u+u^{2}\right)+c\left(1+u+u^{2}\right)^{2}+\left(1+u+u^{2}\right)^{3}=0
$$

for a, b, c, d, using the relation $u^{3}=2$.

$$
\begin{gathered}
\left(1+u+u^{2}\right)^{2}=1+u^{2}+u^{4}+2 u+2 u^{2}+2 u^{3}=1+u^{2}+2 u+2 u+2 u^{2}+4=5+4 u+3 u^{2} \\
\left(1+u+u^{2}\right)^{3}=\left(5+4 u+3 u^{2}\right)\left(1+u+u^{2}\right)=5+4 u+3 u^{2}+5 u+4 u^{2}+3 u^{3}+5 u^{2}+4 u^{3}+3 u^{4}= \\
5+9 u+12 u^{2}+7 u^{3}+3 u^{4}=19+15 u+12 u^{2} .
\end{gathered}
$$

The solution $a=-1, b=c=-3$.
The minimal polynomial is $x^{3}-3 x^{2}-3 x-1$.
6. Prove that any algebraically closed field is infinite.

Solution. Let F be a finite field and have q elements. Choose n relatively prime to $q-1$ and q. Then $x^{n}=1$ implies $x=1$ by Lagrange's theorem. Therefore $x^{n}-1$ does not split in F, and F is not algebraically closed.
7. Is $x^{3}+x+1$ irreducible over \mathbb{F}_{256} ?

Solution. The polynomial is irreducible over \mathbb{F}_{2} because it does not have roots in \mathbb{F}_{2}. The degree $\left(\mathbb{F}_{256} / \mathbb{F}_{2}\right)=8$, therefore \mathbb{F}_{256} does not contain a field of degree 3 . Thus, \mathbb{F}_{256} does not contain a root of the polynomial. Hence $x^{3}+x+1$ is irreducible over \mathbb{F}_{256}.
8. Which of the following extensions are normal

$$
\begin{aligned}
& \mathbb{Q} \subset \mathbb{Q}(\sqrt{1-\sqrt{2}}), \\
& \mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \sqrt{3}), \\
& \mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3}) ?
\end{aligned}
$$

Solution. The minimal polynomial of $\sqrt{1-\sqrt{2}}$ is $x^{4}-2 x^{2}-1$, the Galois group of this polynomial is D_{4}. Hence the splitting field has degree 8. But $(\mathbb{Q}(\sqrt{1-\sqrt{2}}) / \mathbb{Q})=$ 4. Hence $\mathbb{Q}(\sqrt{1-\sqrt{2}})$ is not normal.

The extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is not normal because it contains a real root of $x^{3}-2$, but does not contain two complex roots since $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a subfiled of \mathbb{R}.

The extension $\mathbb{Q} \subset \mathbb{Q}\left({ }^{3} \sqrt{2}, \sqrt{-3}\right)$ is normal, because it is a splitting field of $x^{3}-2$.
9. Determine if

$$
\mathbb{Q}(\sqrt{1-\sqrt{2}})=\mathbb{Q}(\sqrt{-1}, \sqrt{2}) .
$$

Solution. No. The first field is not a normal extension of \mathbb{Q}, the second one is normal.
10. Let $\mathbb{Q} \subset F$ be a finite normal extension such that for any two subfields E and K of F either $K \subset E$ or $E \subset K$. Then the Galois group of F over \mathbb{Q} is cyclic of order p^{n} for some prime number p.

Solution. Let G denote the Galois group. Then for any two subgroups H and H^{\prime} either $H \subset H^{\prime}$ or $H^{\prime} \subset H$. First, we prove that G is cyclic. Indeed, consider an element $g \in G$ of maximal order. For any $h \in G<h>C<g>$, hence G is generated by g. Now let us prove that $|G|=p^{n}$. Assume the contrary, then $|G|$ has two distinct prime divisors p and q. Then G has Sylow p-subgroup and Sylow q-subgroup which have trivial intersection. Contradiction.
11. Let $F \subset B \subset E$ be a chain of extensions such that $F \subset B$ is normal and $B \subset E$ is normal. Is it always true that $F \subset E$ is normal?

Solution. False. Counterexample

$$
\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{1-\sqrt{2}}) .
$$

12. Find the Galois group of $\left(x^{2}-3\right)\left(x^{2}+1\right)\left(x^{3}-6\right)$ over \mathbb{Q}.

Solution. The splitting field of $x^{3}-6$ contains $\sqrt{-3}$. Therefore the splitting field of $\left(x^{2}-3\right)\left(x^{3}-6\right)$ contains the roots of $x^{2}+1$. Let E be the splitting field of $\left(x^{2}-3\right)\left(x^{2}+1\right)\left(x^{3}-6\right)$. Then $E=F B$, where B is a splitting field of $x^{3}-6$ whose Galois group is S_{3}, and F is a splitting field of $x^{2}-3$, whose Galois group is \mathbb{Z}_{2}. Let us prove that $F \cap B=\mathbb{Q}$. If not, then $F \subset B$. Since S_{3} has only one subgroup of index 2 , then $F=\mathbb{Q}(\sqrt{-3})$, but B is real. Contradiction. By Corollary of the natural irrationalities theorem

$$
\operatorname{Aut}_{\mathbb{Q}} E=\operatorname{Aut}_{\mathbb{Q}} B \times \operatorname{Aut}_{\mathbb{Q}} F=S_{3} \times \mathbb{Z}_{2}
$$

13. Find the Galois group of $x^{4}+3 x+5$ over \mathbb{Q}.

Solution. The polynomial is irreducible over \mathbb{Z}_{2}. Hence the Galois group contains a 4 -cycle. The resolvent cubic is $x^{3}-20 x+9$, which is irreducible over \mathbb{Q}. So the Galois group is S_{4} or A_{4} and contains a 4 -cycle. Hence the Galois group is S_{4}.
14. Let p be a prime number. Prove that ${ }^{n} \sqrt{2}$ is constructible if and only if $n=2^{k}$ for some k.

Solution. The minimal polynomial is $x^{n}-p$ (irreducible by Eisenstein criterion). If n is not a power of 2 , a root is not constructible, since the order of the Galois group is not a power of 2 . If n is a power of 2 , then ${ }^{n} \sqrt{p}$ is constructible, because it can be obtained by taking square root several times.
15. Prove that any subfield of $\mathbb{Q}\left({ }^{n} \sqrt{2}\right)$ coincides with $\mathbb{Q}(\sqrt{2})$ for some divisor d of n.

Solution. Since $x^{n}-2$ is irreducible over \mathbb{Q}, the degree of $\mathbb{Q}\left(n^{n}\right)$ over \mathbb{Q} is n. Let F be a subfield of $\mathbb{Q}\left({ }^{n} \sqrt{2}\right)$. Consider the minimal polynomial $f(x)$ for ${ }^{n} \sqrt{2}$ over F. Let k denote the degree of $f(x)$. Since $k=\left(\mathbb{Q}\left({ }^{n} \sqrt{2}\right) / F\right)$, k divides n, and $(F / \mathbb{Q})=d=\frac{n}{k}$. All roots of $f(x)$ are roots of $x^{n}-2$, which are ${ }^{n} \sqrt{2} \omega^{s}$, where ω is a primitive n-th root of 1 . Let a_{0} be the free coefficient of $f(x)$. Then a_{0} equals plus/minus the product of roots of $f(x), a_{0}= \pm(\sqrt[n]{2})^{k} \omega^{s}$. Since $a_{0} \in F \subset \mathbb{R}$, $\omega^{s}= \pm 1$. Thus, $\pm a_{0}=(\sqrt[n]{2})^{k}={ }^{d} \sqrt{2} \in F$. But $\mathbb{Q}(\sqrt{2} \sqrt{2})$ has degree d over \mathbb{Q}, because $x^{d}-2$ is irreducible over \mathbb{Q}. Therefore $F=\mathbb{Q}\left({ }^{d} \sqrt{2}\right)$.
16. Prove that there exists a polynomial of degree 7 whose Galois group over \mathbb{Q} is \mathbb{Z}_{7}.

Solution. For example, consider the splitting field E for $x^{29}-1$. The Galois group of E over \mathbb{Q} is \mathbb{Z}_{28}, which contains a subgroup \mathbb{Z}_{4}. Let $F=E^{\mathbb{Z}_{4}}$. Then the Galois group of F over \mathbb{Q} is \mathbb{Z}_{7}. Pick up an element α in $F, \alpha \notin \mathbb{Q}$. The minimal polynomial of α has the Galois group \mathbb{Z}_{7}.
17. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of odd prime degree p solvable in radicals. Prove that the number of real roots of $f(x)$ equals p or 1.

Solution. Let G be the Galois group of $f(x)$. Then G is a subgroup of $F r_{p}$. Let σ be the complex conjugation. After suitable enumeration of roots by elements of \mathbb{Z}_{p} we have $\sigma(t)=a t+b$, for some $a \in \mathbb{Z}_{p}^{*}, b \in \mathbb{Z}_{p}$. The number of real roots is the number of t fixed by σ. But the number of solutions for the equation $a t+b=t$ is 0,1 or p. Since any polynomial of odd degree has at least one real root, the number of real roots is either 1 or p.
18. Let $f(x) \in \mathbb{F}_{2}[x]$ be an irreducible polynomial. Prove that $f(x)$ divides $x^{256}-x$ if and only if the degree of $f(x)$ is $1,2,4$ or 8 .

Solution. Let $f(x)$ divide $x^{256}-x$. The elements of \mathbb{F}_{256} are the roots of $x^{256}-x$, therefore $f(x)$ splits in \mathbb{F}_{256}. Conversely, if $f(x)$ splits in \mathbb{F}_{256} then $f(x)$ divides $x^{256}-x$. The irreducible polynomial splits in \mathbb{F}_{256} if and only if its degree divides the degree of \mathbb{F}_{256}, which is 8 .
19. Suppose that the Galois group over \mathbb{Q} of a polynomial $f(x) \in \mathbb{Q}[x]$ has odd order. Prove that all roots of $f(x)$ are real.

Solution. Complex conjugation is an element of order 2 unless all roots are real.
20. Find the Galois group of $x^{6}-8$ over \mathbb{Q}.

Solution. The polynomial factors

$$
x^{6}-8=\left(x^{2}-2\right)\left(x^{4}+2 x^{2}+4\right) .
$$

The Galois group of $x^{4}+2 x^{2}+4$ is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Let α and $\beta=\frac{2}{\alpha}$ be two roots of $x^{4}+2 x^{2}+4$, then

$$
(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta=-2+4=2 .
$$

Hence $\sqrt{2}$ is in the splitting field of $x^{4}+2 x+4$, Thus, the Galois group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

[^0]: Date: May 13, 2006.

