PROBLEM SET # 13 **MATH 114**

Due May 4.

1. Prove that the Galois group of $f(x) = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1$ over \mathbb{Q} is cyclic of order 5. Hint: let ω be 11-th root of 1. Prove that f(x) is the minimal polynomial for $\omega + \omega^{-1}$.

2. Let p be an odd prime, ω be a primitive p-th root of 1.

(a) Prove that $\mathbb{Q}(\omega)$ contains exactly one quadratic extension of \mathbb{Q} ;

(b) If p = 4k + 1, then this quadratic extension is isomorphic to $\mathbb{Q}(\sqrt{p})$;

(c) If p = 4k + 3, then this quadratic extension is isomorphic to $\mathbb{Q}(\sqrt{-p})$. **3.** Find the Galois group of $x^4 + 2x^3 + x + 3$ over \mathbb{Q} using reduction modulo 2 and 3.

4. Give an example of a polynomial of degree 6 whose Galois group over \mathbb{Q} is S_6 .