## PROBLEM SET \# 13

MATH 114

Due May 4.

1. Prove that the Galois group of $f(x)=x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$ over $\mathbb{Q}$ is cyclic of order 5 . Hint: let $\omega$ be 11-th root of 1 . Prove that $f(x)$ is the minimal polynomial for $\omega+\omega^{-1}$.
2. Let $p$ be an odd prime, $\omega$ be a primitive p -th root of 1 .
(a) Prove that $\mathbb{Q}(\omega)$ contains exactly one quadratic extension of $\mathbb{Q}$;
(b) If $p=4 k+1$, then this quadratic extension is isomorphic to $\mathbb{Q}(\sqrt{p})$;
(c)If $p=4 k+3$, then this quadratic extension is isomorphic to $\mathbb{Q}(\sqrt{-p})$.
3. Find the Galois group of $x^{4}+2 x^{3}+x+3$ over $\mathbb{Q}$ using reduction modulo 2 and 3.
4. Give an example of a polynomial of degree 6 whose Galois group over $\mathbb{Q}$ is $S_{6}$.
[^0]
[^0]:    Date: April 27, 2006.

