SOLUTIONS FOR QUIZ # 1 MATH 114

1. If $B \subset C \subset G$ is a chain of subgroups, then

[G:B] = [G:C] [C:B],

because every coset gC is a disjoint union of [C:B] cosets ghB. In particular,

 $[G: K \cap H] = [G: K] [K: K \cap H].$

Since $[G: K \cap H]$ is prime, either [G: K] = 1 or $[K: K \cap H] = 1$. In the former case K = G. In the latter case $K = K \cap H$, hence $K \subset H$. But

 $[G: K \cap H] = [G: K] = [G: H] [H: K].$

Again either [G:H] = 1 and H = G or [H:K] = 1 and H = K.

2. By the first isomorphism theorem Ker F has order 4. Recall also that Ker F is a normal subgroup of S_4 .

Assume that a transposition $(a, b) \in \text{Ker } F$. Then any conjugate transposition also belongs to Ker F. Therefore all transposition belong to Ker F. Transpositions generate S_4 , so Ker $F = S_4$. Contradiction.

In the same way, if one 3-cycle belongs to Ker F, then all 3-cycles belong to Ker F. All 3-cycles generate A_4 , so $A_4 \subset \text{Ker } F$. Contradiction.

Finally, assume that a 4-cycle (a, b, c, d) belongs to Ker F. Again then any 4-cycle belongs to Ker F because all 4-cycles are conjugate. The number of 4-cycles is 6, which is greater than the order of Ker F. Contradiction.

There is only one possibility left. All non-identical permutations in Ker F are of form (a, b) (c, d). Thus, Ker F is the Klein group.

Date: February 8, 2006.