
SOLUTIONS OF SOME HOMEWORK PROBLEMS

MATH 114

Problem set 1

4. Let D4 denote the group of symmetries of a square. Find the order of D4 and
list all normal subgroups in D4.

Solution. D4 has 8 elements:

1, r, r2, r3, d1, d2, b1, b2,

where r is the rotation on 90◦, d1, d2 are flips about diagonals, b1, b2 are flips about
the lines joining the centers of opposite sides of a square. Let N be a normal subgroup
of D4. Note that

d1 = rd2r
−1, b1 = rb2r

−1, d1d2 = b1b2 = r2.

Hence if d1 ∈ N , then d2 ∈ N , similarly for b1, b2. Note that d1b1 = r. Thus, if N
contains a flip and N 6= G, then N either contains d1, d2 or contains b1, b2. Let N
contain d1 and d2, then N = {1, d1, d2, r

2}. In the same way if N contains b1 and b2,
then N = {1, b1, b2, r

2}. Finally, if N does not contain flips, then N = {1, r, r2, r3}
or N = {1, r2}. Thus, D4 have one 2-element normal subgroup and three 4-element
subgroups. Then, as always, there are normal subgroups {1} and D4.

6. Show that the n-cycle (1. . . n) and the transposition (12) generate the per-
mutation group Sn, i.e. every element of Sn can be written as a product of these
elements.

Solution. Let s = (12), u = (1 . . . n). It is easy to check that

usu−1 = (23) , u2su−2 = (34) , . . . , un−2su2−n = (n − 1, n) .

Thus, any subgroup of Sn which contains u and s must contain all adjacent trans-
positions. But the adjacent transpositions generate Sn. Hence s and u generate
Sn.

7. Find a cyclic subgroup of maximal order in S8.
Solution. The order of s ∈ Sn equals the least common multiple of the lengths

of the cycles of s. For n = 8, the possible cycle lengths are less than 9. By simple
check we see that a product of disjoint 3-cycle and 5-cycle has the maximal order 15.
Hence Z15 is a maximal cyclic group in S8.

Problem set 2

1. An automorphism of a group G is an isomorphism from G to itself. Denote by
AutG the set of all automorphisms of G.

(a) Prove that AutG is a group with respect to the operation of composition.
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(b) Let G be a finite cyclic group. Describe AutG.
(c) Give an example of an abelian G such that AutG is not abelian.
Solution. The part (a) is a straightforward check. For (b) let G = Zn. If

φ ∈ AutG, then φ is determined by φ (1), as

φ (k) = φ (1 + · · · + 1) = φ (1) + · · · + φ (1) = kφ (1) .

It is easy to check now that φ is injective if and only if φ (1) and n are relatively
prime. Let

Z×

n = {s | 0 < s < n, (s, n) = 1} ,

with operation of multiplication mod n. The map Aut Zn → Z×

n given by φ 7→ φ (1)
is an isomorphism.

To do (c) let G = Z2×Z2. Then AutG is isomorphic to S3 because any permutation
of (1,0), (0,1) and (1,1) defines an automorphism of G.

2. Use the same notations as in Problem 1. Let πg be the map of G to itself defined
by πg (x) = gxg−1, here g ∈ G.

(a) Show that πg ∈ AutG.
(b) Let Inn G = {πg | g ∈ G}. Show that Inn G is a normal subgroup in AutG.
Solution.

(a)πg (xy) = gxyg−1 = gxg−1gyg−1 = πg (x)πg (y) .

(b) First check that Inn G is a subgroup

πg ◦ πh (x) = g
(

hxh−1
)

g−1 = (gh)x (gh)−1 = πgh (x) .

To check that Inn G is normal let φ ∈ AutG, then

φ ◦ πg ◦ φ−1 (x) = φ
(

gφ−1 (x) g−1
)

= φ (g)φ
(

φ−1 (x)
)

φ
(

g−1
)

= φ (g)xφ
(

g−1
)

.

Thus, φ ◦ πg ◦ φ−1 = πφ(g).
4. One makes necklaces from black and white beads. Let p be a prime number.

Two necklaces are the same if one can be obtained from another by a rotation or a
flip over. How many different necklaces of p beads one can make?

Solution. The group acting on the necklaces is Dp. We have to find the number
of orbits. Possible subgroups of Dp are groups generated by one flip or the cyclic
subgroup of rotations, as follows from the fact that |Dp| = 2p and the Lagrange
theorem.

If all rotations preserve a necklace, then its beads are all of the same color. In this
case the stabilizer is the whole Dp, and we have exactly two such orbits.

Let a stabilizer of a necklace is a flip. Then the necklace is symmetric. We can
choose color of p+1

2
beads, the other can be obtained by the symmetry. Thus, we

have exactly 2
p+1

2 − 2 orbits. (We subtract 2 because necklaces with all beads of the
same color are already counted). Each orbit has p necklaces in it. All other necklaces
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do not have any symmetry. To count their number we must subtract the number of
necklaces which we already counted from 2p. That gives

2p − p
(

2
p+1

2 − 2
)

− 2.

Every orbit with a trivial stabilizer has 2p elements. The number of such orbits is

2p − p
(

2
p+1

2 − 2
)

− 2

2p
=

2p−1 − 1

p
− 2

p−1

2 + 1.

The total number of orbits is

2p−1 − 1

p
− 2

p−1

2 + 1 + 2
p+1

2 =
2p−1 − 1

p
+ 2

p−1

2 + 1.

5. Assume that N is a normal subgroup of a group G. Prove that if N and G/N are
solvable, then G is solvable.

Solution. Let K = G/N . Consider the series

N ⊃ N1 ⊃ · · · ⊃ {1} , K ⊃ K1 ⊃ · · · ⊃ {1} ,

such that Ki/Ki+1 and Nj/Nj+1 are abelian. Let p : G → K denote the natural
projection. Then for the series

G ⊃ p−1 (K1) ⊃ · · · ⊃ N ⊃ N1 ⊃ · · · ⊃ {1}

p−1 (Ki) /p−1 (Ki+1) ∼= Ki/Ki+1

by the second isomorphism theorem. Thus, G is solvable.
6. For any permutation s denote by F (s) the number of fixed points of s (k is a

fixed point if s (k) = k). Let N be a normal subgroup of An. Choose a non-identical
permutation s ∈ N with maximal possible F (s).

(a) Prove that any disjoint cycle of s has length not greater than 3. (Hint: if
s ∈ N , then gsg−1 ∈ N for any even permutation g).

(b) Prove that the number of disjoint cycles in s is not greater than 2.
(c) Assume that n ≥ 5. Prove that s is a 3-cycle.
(d) Use (c) to show that An is simple for n ≥ 5, i.e. An does not have proper

non-trivial normal subgroups. ( Hint: An is generated by 3-cycles, as it was proven
in class).

Solution. Let s = c1 . . . ck and c1 be one of the longest cycles. Assume that the
length of c1 is greater than 3. Let

c1 = (x1, x2, . . . , xl) , u = (x1, x2, x3) .

Then

sus−1u−1 = (x1, x4, x2) ∈ N.

But F (sus−1u−1) = 3 < F (s). Contradiction. That proves (a).
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Assume now that k ≥ 3. Since all cycles of s have the length 2 or 3. One can find
two cycles of the same length. Say

c1 = (a, b, c) , c2 = (d, e, f) .

Let u = (b, c) (e, f). Then

s−1usu−1 = c1c2 ∈ N.

Again F (s−1usu−1) < F (s). Contradiction. If we assume that

c1 = (a, b) , c2 = (c, d) ,

put u = (a, b, c). Then

s−1usu−1 = (a, c) (b, d) ∈ N.

We obtain F (s−1usu−1) < F (s). Contradiction. Hence (b) is proven.
Now let n ≥ 5. Assume that s is not a 3-cycle. Then

s = c1c2,

where c1 and c2 are either both transpositions or both 3-cycles. First, assume that
c1 and c2 are both transpositions. In this case

c1 = (a, b) , c2 = (c, d) .

Since n ≥ 5, there is e 6= a, b, c, d. Let u = (a, b, e). Then

s−1usu−1 = (b, e, a) ,

again F (s−1usu−1) = 3 < 4 = F (s). Finally, let

c1 = (a, b, c) (d, e, f) .

Play the same game with u = (b, c, e). Get

sus−1u−1 = (a, f, c, b, e) .

Obtain contradiction again.
If N contains one 3-cycle, then N must contain all 3-cycles, because all 3-cycles

are conjugate in An for n ≥ 5. Therefore N = An. Done.
Problem set 3

2. If p is prime and p divides |G|, then G has an element of order p.
Solution. By Sylow theorem G has a subgroup P of order pn. Let g ∈ P . Then

the order of g is pk, and the order of gpk−1

is p.
3. Let p and q be prime and q 6≡ 1 mod p. If |G| = pnq, then G is solvable.
Solution. By the second Sylow theorem there is only one Sylow p-subgroup.

Denote it by P . Then P is normal since gPg−1 = P for any g ∈ G. As we proved in
class P is solvable, the quotient G/P is solvable. Hence G is solvable by Problem 5
homework 2.

4. Suppose that |G| < 60 and |G| = 2m3n. Check that G is solvable. Hint: prove
by induction on |G|. First, show that the number of Sylow 2-subgroups is 3 or the
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number of Sylow 3-subgroups is 4. Then construct a homomorphism f : G → S3 or
S4. By induction the kernel and the image of f are solvable. Hence G is solvable.

Solution. First, assume that m ≤ 3. The number of Sylow 3-subgroups is 1 or
4 by the second Sylow theorem. If it is 1, proceed as in Problem 3. If it is 4, then
G acts on the 4-element set of Sylow 3-subgroups by conjugation. Thus, we have a
non-trivial homomorphism f : G → S4. Im f is solvable as a subgroup of a solvable
group, Ker f is solvable by induction assumption. Hence G is solvable.

Now let m ≥ 4. Recall that |G| < 60. The case n = 0 is known. Therefore
m = 4, n = 1, |G| = 48. The number of Sylow 2-subgroups is 1 or 3. If it is 1 we
can proceed as in Problem 3. If it is 3, then G acts on the 3-element set of Sylow
2-subgroups, there is a non-trivial homomorphism f : G → S3 and we can finish the
argument as in the previous paragraph.

5. Show that any group of order less than 60 is solvable. Hint: use the previous
problems to eliminate most of numbers below 60.

Solution. Let p be the maximal prime factor of |G|. First, assume that p > 7.
Then |G| = pk, with k < p. Then the number of Sylow p-subgroups of G is 1, and
we can go to the quotient and proceed by induction on |G|.

Let p = 7. As above we have to check only the case when the number of 7-
subgroups is more than 1. Due to the second Sylow Theorem that is is possible only
for |G| = 56. However, in this case the number of 7-subgroups should be 8. That
gives 48 elements of order 7. Thus, we can have only one 8-subgroup, since only 8
elements remains after excluding of all elements of order 7. Hence there is a normal
8-subgroup, and G is solvable.

Let p = 5. As above we have to check the cases when there is a possibility for more
than one Sylow 5-subgroups. That leaves the case |G| = 30. Assume that there is six
Sylow 5-subgroups, that gives 24 elements of order 5. The remaining set of elements
can not contain four or more 3-subgroups. Thus, there is a normal 3-subgroup and
again we can prove that G is solvable by induction argument.

The case p = 3 is done in Problem 4.
6. Let H be a p-subgroup of G, in other words |H| is a power of a prime p. Prove

that there is a Sylow p-subgroup P containing H. Hint: consider the action of H
on the set of all Sylow p-subgroups. Check that there is a 1-element H-orbit {P}.
Prove that H is a subgroup of P .

Solution. Let Ω be the set of all Sylow p-subgroups. Any H-orbit has pk elements
for some k. In particular, if an orbit has more than 1 element, then p divides the
order of the orbit. Since |Ω| ≡ 1 mod p, there is at least one orbit {P} of order
1. Then H ⊂ N (P ). Then HP is a subgroup of G and by the third isomorphism
theorem

HP/P ∼= H/ (H ∩ P ) .

Then |HP | = |P ||H/ (H ∩ P ) |. Therefore |HP | is a power of p. But P is a maximal
p-subgroup of G. Hence HP = P , H ∩ P = H, the latter implies H ⊂ P .
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Problem set 4

1. Let F be a field, and F [i] denote the set of all expressions a + bi, with a, b ∈ F .
Define addition and multiplication in F [i] by

(a + bi) + (c + di) = (a + c) + (b + d) i,

(a + bi) (c + di) = ac− bd + (ad + bc) i.

Determine if F [i] is a field for F = Q, R, Z3, Z5.
Solution. All axioms of a field are obvious except the existence of a multiplicative

inverse. We are going to use the formula

(a + bi) =
a − bi

a2 + b2
.

If a2 + b2 = 0 implies a = b = 0, then F [i] is a filed. For F = Q or R the statement
is obvious as a2 + b2 > 0 whenever a or b is not zero. If F = Z3

a2 + b2 = 0

implies a = b = 0 as one can check directly by substituting a = 1, 2, b = 1, 2. But in
Z5 there is a solution a = 1, b = 2. Indeed, in this case

(1 + 2i) (1 − 2i) = 0,

therefore Z5 [i] is not a field.
2. Assume that charF = p. Prove that (a + b)p = ap + bp. Hint: use binomial

formula.
Solution.

(a + b)p = ap + (p
1) ap−1b + (p

2) ap−2b2 + · · · +
(

p
p−1

)

abp−1 + bp.

But

(p
k) ≡ 0 mod p,

if k = 1, . . . , p − 1. Therefore (a + b)p = ap + bp.
3. Prove the little Fermat’s theorem

ap ≡ a mod p

for any prime p and integer a. Hint: use the previous problem.
Solution. Start from a = 1 and use (a + 1)p = ap + 1 = a + 1.
4. Let V be a vector space of dimension n and A : V → V be a linear map such

that AN = 0 for some integer N > 0. Prove that An = 0. Hint: check that ImAk is
a proper subspace in Im Ak−1.

Solution. Note that ImAk ⊂ ImAk−1 for all k. If Im Ak 6= ImAk−1, then
dim ImAk ≤ dim ImAk−1 − 1. Therefore, one can find k ≤ n + 1 such that ImAk =
Im Ak−1.

Choose the minimal k such that Im Ak = ImAk−1. Then

A : ImAk−1 → ImAk−1
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is surjective and therefore A is non-degenerate when restricted to the subspace
Im Ak−1. But then

Al
(

ImAk−1
)

= ImAk−1

for any l > 0. Take l = N − k + 1. Then

Al
(

ImAk−1
)

= ImAk−1 = ImAN = 0,

hence Ak−1 = 0.
5. Find a formula for a general term of the Fibonacci sequence
1,1,2,3,5,8,13,. . .
Hint: write the Fibonacci sequence as a linear combination of

1, α, α2, α3, . . . and 1, β, β2, β3, . . . ,

where

α =
1 +

√
5

2
, β =

1 −
√

5

2
.

Solution. Let

f = 1, 1, 2, 3, 5, 8, 13, . . . , u = 1, α, α2, α3, . . . , v = 1, β, β2, β3, . . . ,

and f = xu + yv. Then

x + y = 1 and xα + yβ = 1.

Solve these two equations

x =
1 − β

α − β
, y =

α − 1

α − β
.

Use α + β = 1, α − β =
√

5. So

x =
α√
5
, y =

−β√
5
.

Therefore

fn =
αn − βn

√
5

.

6. Let F = Zp.

(a) Prove that the number of one dimensional subspaces in F n equals pn
−1

p−1
;

(b) (Extra credit) Find the number of 2-dimensional subspaces in F n.
Solution. A one-dimensional subspace is determined by a non-zero vector in F n.

Two non-zero vectors define the same subspace if and only if they are proportional.
There are pn −1 non-zero vectors, each vector is proportional to p−1 vectors. Hence
the formula.

Now we proceed similarly for two-dimensional subspaces. A pair of linearly inde-
pendent vectors v, w defines a two dimensional subspace, as the subspace generated
by v and w. The number of linearly independent pairs is (pn − 1) (pn − p). To find
the number of two-dimensional subspaces we have to divide the number of linearly
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independent pairs on the number of bases in a two-dimensional subspace (F 2). Hence
the answer is

(pn − 1) (pn − p)

(p2 − 1) (p2 − p)
.


