REVIEW

MATH 114

What do you have to know for the first midterm.

Groups. Definitions of a group, a subgroup, a normal subgroups and a quotient. Lagrange's theorem: the order of a subgroup divides the order of the group. Isomorphism theorems.

Action of G on a set X is the map $G \times X \rightarrow X$ such that

$$
1 x=x \text { and }(g h) x=g(h x) .
$$

A G-orbit O of $x \in X$ is the set $\{g x\}$ for all $g \in G$. The stabilizer of $x \in X$ is the subgroup $G_{x}=\{g \in G \mid g x=x\}$. There is the identity

$$
\left|O \| G_{x}\right|=|G| .
$$

Sylow theorems. Let $|G|=p^{n} q, p$ be prime and $(p, q)=1$. A Sylow subgroup is a subgroup of order p^{n} in G. There exists at least one Sylow p-subgroup. The number of Sylow p-subgroups is 1 modulo p. All Sylow p-subgroups are conjugate.

A group G is solvable if there exist a chain of subgroups

$$
G=G_{1} \supset G_{2} \supset \cdots \supset G_{n}=\{1\}
$$

such that G_{i+1} is normal in G_{i} for all $i \leq n-1$ and G_{i} / G_{i+1} is abelian. If N is a solvable normal subgroup of G and G / N is solvable, then G is solvable. A subgroup and a quotient group of a solvable subgroup is solvable. A group of order p^{n} is solvable for any prime p and $n \geq 1$.

Fundamental theorem of abelian groups. Any finitely generated abelian group is a direct product of cyclic subgroups.

Polynomials. Irreducible polynomials, division algorithm, factorization theorem (theorem 11 in Artin). Eisenstein criterion and other ways to check if a polynomial is irreducible.

Field theory. Field extensions $F \subset E$. The degree (E / F) is the dimension of E over F. If $F \subset E \subset B$, then $(B / E)(E / F)=(B / F)$. Algebraic element, minimal polynomial, splitting fields, automorphism group Aut E and Aut ${ }_{F} E$. Theorems 7,8,9,10 and 13 in Artin.

[^0]
Review exercises.

1. Let G be a group of order 312. Prove that G is solvable.
2. Let $n \geq 5$. Prove that a proper non-trivial normal subgroup of S_{n} coincides with A_{n}.
3. Peter makes toys by coloring the faces of wooden cubes in such way that no faces have the same color. How many different toys can he make if he has 9 colors?
4. Let p be a prime number and $x^{2}+1$ is reducible over \mathbb{Z}_{p}. Prove that $p \equiv 1$ $\bmod 4$.
5. Find the degree of the splitting field of the polynomial $x^{5}-7$ over \mathbb{Q}.
6. Find the degree of the splitting field of the polynomial $x^{13}+1$ over \mathbb{Q}.
7. Let F be a field. Prove that the number of irreducible polynomials in $F[x]$ is infinite.
8. Check that the number $\alpha=\cos 20^{\circ}$ is algebraic and find the minimal polynomial of α over \mathbb{Q}.

Solutions.

1. Use $312=3 \times 13 \times 8$. The number of 13 -subgroups divides 24 and is congruent to 1 modulo 13 . Therefore there is only one 13 -subgroup. Denote it by N. Then N is cyclic, therefore solvable, G / N has 24 elements and therefore solvable by homework problem. Hence G is solvable.
2. Let N be a proper non-trivial subgroup of S_{n}. Then $N \cap A_{n}$ is a normal subgroup in A_{n}. But A_{n} is simple, hence $N \cap A_{n}=\{1\}$ or $N \cap A_{n}=A_{n}$. In the latter case $N=A_{n}$, since N is proper and the index of A_{n} in S_{n} is 2 . If $N \cap A_{n}=\{1\}$, then N can contain at most one odd permutation. Indeed, if it contains two odd permutations s and t, then s^{2}, st be even permutations in N, hence $s^{2}=s t=1$. Thus, $N=\{1, s\}$. On the other hand, one can find a permutation u such that $u s u^{-1} \neq s$. But $u s u^{-1} \in N$. Contradiction.
3. Let G be the group of rotations of a cube. We proved in class that G is isomorphic to S_{4}, in particular, $|G|=24$. Enumerate faces in some way. There are $9 \times 8 \times 7 \times 6 \times 5 \times 4$ ways to assign a color to a number. The group G acts on the set of assignments. Each orbit has 24 elements, since the stabilizer of each color assignment is trivial. Therefore the number of orbits is

$$
\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{24}=2520
$$

4. If $x^{2}+1$ is reducible, then it has a root $\alpha \in \mathbb{Z}_{p}$. Then $\alpha^{2}=-1$ and $\alpha^{4}=1$. Therefore α has order 4 in the multiplicative group \mathbb{Z}_{p}^{\times}. By Lagrange's theorem 4 divides $\left|\mathbb{Z}_{p}^{\times}\right|=p-1$.
5. The polynomial $x^{5}-7$ is irreducible by Eisenstein criterion and has one real root. Denote it by α. All other roots are $\alpha \omega, \alpha \omega^{2}, \alpha \omega^{3}$ and $\alpha \omega^{4}$, where ω is the fifth root of 1 . Therefore the splitting field is $\mathbb{Q}(\omega, \alpha)$. Note that $(\mathbb{Q}(\omega) / \mathbb{Q})=4$ because the minimal polynomial of ω over \mathbb{Q} is $x^{4}+x^{3}+x^{2}+x+1$ (irreducible as proved in homework), and $(\mathbb{Q}(\alpha) / \mathbb{Q})=5$ since the minimal polynomial of α over \mathbb{Q} is $x^{5}-7$. Thus, 4 and 5 divide $(\mathbb{Q}(\alpha, \omega) / \mathbb{Q})$. On the other hand,

$$
(\mathbb{Q}(\alpha, \omega) / \mathbb{Q})=(\mathbb{Q}(\alpha) / \mathbb{Q})(\mathbb{Q}(\alpha, \omega) / \mathbb{Q}(\alpha)) \leq 20 .
$$

Therefore $(\mathbb{Q}(\alpha, \omega) / \mathbb{Q})=20$.
6. Note that the roots of $x^{13}+1$ are $-1,-\varepsilon,-\varepsilon^{2}, \cdots-\varepsilon^{12}$, where ε is the 13 -th root of 1 . Therefore $\mathbb{Q}(\varepsilon)$ is the splitting field of $x^{13}+1$. The degree $(\mathbb{Q}(\varepsilon) / \mathbb{Q})=12$, because the minimal polynomial for ε is

$$
x^{12}+x^{11}+\cdots+1
$$

7. Assume that the number of irreducible polynomials is finite. Let $p_{1}(x), \ldots, p_{n}(x)$ be all irreducible polynomial. Then

$$
q(x)=p_{1}(x) \ldots p_{n}(x)+1
$$

must have an irreducible divisor but $p_{i}(x)$ do not divide $q(x)$. Contradiction.
8. Note that $\cos 60^{\circ}=\frac{1}{2}$. Use the formula $\cos 3 \varphi=\cos ^{3} \varphi-3 \cos \varphi \sin ^{2} \varphi=\cos ^{3} \varphi-3 \cos \varphi\left(1-\cos ^{2} \varphi\right)=4 \cos ^{3} \varphi-3 \cos \varphi$.
Therefore

$$
4 \alpha^{3}-3 \alpha-\frac{1}{2}=0
$$

We claim that the minimal polynomial for α is $8 x^{3}-6 x-1$. We need to check that it is irreducible. Make the substitution $x=\frac{y}{2}$. It suffices to show that $y^{3}-3 y-1$ is irreducible. Possible rational roots of $y^{3}-3 y-1$ are 1 and -1 but they are not roots by direct checking.

[^0]: Date: March 1, 2006.

