PROBLEM SET \# 8
 MATH 114

Due March 23.

1. Let F be the splitting field of the polynomial $x^{4}+25$ over \mathbb{Q}. List all subfields in F and the corresponding subgroups in the Galois group.
2. Prove that the Galois group of $x^{4}-5$ is isomorphic to D_{4}. Hint: prove that the degree of the splitting field is 8 , then recall that the Galois group is a subgroup of S_{4}.
3. Prove that the Galois group of $x^{4}+5 x^{2}+5$ over \mathbb{Q} is cyclic of order 4. Hint: use the formula for the roots.
4. Let $f(x)=x^{4}+a x^{2}+b \in \mathbb{Q}[x], b \neq 0$.
(a) Prove that if α is a root of $f(x)$, then $-\alpha$ and $\frac{\sqrt{b}}{\alpha}$ are also roots.
(b) Prove that the degree of the splitting field is $1,2,4$ or 8 .
(c) Prove that the Galois group is isomorphic to $\{1\}, \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4}$ or D_{4}.
5. For a cubic polynomial $f(x)=x^{3}+a x+b$ the discriminant is given by the formula

$$
D=-4 a^{3}-27 b^{2}
$$

Assume that a and b are real numbers. Prove that D is negative if and only if $f(x)$ has exactly one real root.
6. Assume that $f(x)=g(x) h(x)$ for some separable polynomials $f(x), g(x), h(x) \in$ $F[x]$. Denote by E_{f}, E_{g} and E_{h} the splitting fields of the polynomials $f(x), g(x)$ and $h(x)$ respectively. Let

$$
\left(E_{f} / F\right)=\left(E_{g} / F\right)\left(E_{h} / F\right) .
$$

Prove that the Galois group of $f(x)$ is isomorphic to the direct product of the Galois groups of $g(x)$ and $h(x)$.

[^0]
[^0]: Date: March 16, 2006.

