PROBLEM SET \# 7
 MATH 114

Due March 16.

1. Find the Galois groups of the following polynomials over \mathbb{Q} :

$$
\begin{gathered}
(a) x^{4}+x^{2}+1 ; \\
(b)\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right) ; \\
(c) x^{6}-3 \\
(d) x^{5}-2
\end{gathered}
$$

2. Which of the following are normal extensions?

$$
\begin{aligned}
(a) \mathbb{Q} & \subset \mathbb{Q}[x] /\left(x^{3}+x+1\right) \\
(b) \mathbb{Z}_{2} & \subset \mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right) ; \\
(c) \mathbb{Q} & \subset \mathbb{Q}[x] /\left(x^{4}+25\right)
\end{aligned}
$$

3. Let $F \subset E$ be a normal extension and (E / F) be prime. What is $A u t_{F} E$?
4. Let $f(x)$ be an irreducible polynomial over \mathbb{Q} of prime degree and $f(x)$ have exactly two complex roots. Prove that the Galois group of $f(x)$ is isomorphic to S_{p}. Hint: check that the Galois group contains a p-cycle and a transposition.
[^0]
[^0]: Date: March 9, 2006.

