PROBLEM SET # 7 MATH 114

Due March 16.

1. Find the Galois groups of the following polynomials over \mathbb{Q} :

$$(a)x^{4} + x^{2} + 1;$$

(b)(x² - 2)(x² - 3)(x² - 5);
(c)x⁶ - 3;

 $(d)x^5 - 2.$

2. Which of the following are normal extensions?

$$(a)\mathbb{Q} \subset \mathbb{Q}[x]/(x^3 + x + 1);$$
$$(b)\mathbb{Z}_2 \subset \mathbb{Z}_2[x]/(x^3 + x + 1);$$
$$(c)\mathbb{Q} \subset \mathbb{Q}[x]/(x^4 + 25).$$

3. Let $F \subset E$ be a normal extension and (E/F) be prime. What is $Aut_F E$?

4. Let f(x) be an irreducible polynomial over \mathbb{Q} of prime degree and f(x) have exactly two complex roots. Prove that the Galois group of f(x) is isomorphic to S_p . Hint: check that the Galois group contains a *p*-cycle and a transposition.

Date: March 9, 2006.