PROBLEM SET \# 6
 MATH 114

Due March 2.

1. Let F be a field. Prove that every extension $F \subset E$ of degree 2 is isomorphic to $F(\sqrt{d})$ for some $d \in F$ which is not a perfect square in F.
2. Find the degree of the splitting field of the polynomial $x^{3}+x+1 \in \mathbb{Q}[x]$. Hint: check that the polynomial is irreducible and has only one real root.
3. Find the degree of the splitting field of the polynomial $x^{3}+x+1 \in \mathbb{Z}_{2}[x]$. Hint: check that if α is a root, then α^{2} is also a root.
4. Describe the groups of automorphisms for the splitting fields in problems 2 and 3.

A character of a group G in a field F is a map $\sigma: G \rightarrow F$ such that $\sigma(g h)=$ $\sigma(g) \sigma(h)$ for any $g, h \in G$ (see page 34 in Artin).
5. Find all characters of S_{n} in \mathbb{C}.
6. Let G be a cyclic group of order n. Find all characters of G in \mathbb{R} and in \mathbb{C}.
7. Let G be a finite abelian group. Prove that the number of characters of G in \mathbb{C} equals the order of G.

[^0]
[^0]: Date: February 22, 2006.

