PROBLEM SET # 5 **MATH 114**

Due February 23.

1. Determine which of the following polynomials are irreducible over \mathbb{Q} :

$$x^4 + x^2 + 1, x^{12} + 99, x^3 + 2x + 1.$$

2. List all irreducible polynomials of degree 4 in $\mathbb{Z}_2[x]$.

3. Let F be a field, $f(x), g(x) \in F[x]$ and $f(\alpha) = g(\alpha)$ for any $\alpha \in F$. Prove that if F is infinite then f(x) = g(x). Show that if F is finite, then the statement is wrong.

4. Let p be a prime number. Prove that $f(x) = x^{p-1} + x^{p-2} + \cdots + 1$ is irreducible over \mathbb{Q} . Hint: first check that f(x) is irreducible if and only if f(x+1) is irreducible. Use $f(x) = \frac{x^p - 1}{x - 1}$. Prove that f(x + 1) is irreducible by Eisenstein criterion. 5. Find $\left(\mathbb{Q}\left(\sqrt[3]{7}, \sqrt[17]{22}\right)/\mathbb{Q}\right)$.

6. Check that $\mathbb{Z}_{11}(\sqrt{2})$ and $\mathbb{Z}_{11}(\sqrt{7})$ are isomorphic.

7. Find the minimal polynomial for $\sqrt{7} + \sqrt{3}$ over \mathbb{Q} .

Date: February 20, 2006.