PROBLEM SET \# 4
 MATH 114

Due February 16.
Read chapter 1 in Artin's book. We assume that all fields are commutative in homework problems.

1. Let F be a field, and $F[i]$ denote the set of all expressions $a+b i$, with $a, b \in F$. Define addition and multiplication in $F[i]$ by

$$
\begin{aligned}
& (a+b i)+(c+\mathrm{di})=(a+c)+(b+d) i \\
& (a+b i)(c+d i)=a c-b d+(a d+b c) i
\end{aligned}
$$

Determine if $F[i]$ is a field for $F=\mathbb{Q}, \mathbb{R}, \mathbb{Z}_{3}, \mathbb{Z}_{5}$.
2. Assume that char $F=p$. Prove that $(a+b)^{p}=a^{p}+b^{p}$. Hint: use binomial formula.
3. Prove the little Fermat's theorem

$$
a^{p} \equiv a \quad \bmod p
$$

for any prime p and integer a. Hint: use the previous problem.
4. Let V be a vector space of dimension n and $A: V \rightarrow V$ be a linear map such that $A^{N}=0$ for some integer $N>0$. Prove that $A^{n}=0$. Hint: check that $\operatorname{Im} A^{k}$ is a proper subspace in $\operatorname{Im} A^{k-1}$.
5. Find a formula for a general term of the Fibonacci sequence
$1,1,2,3,5,8,13, \ldots$
Hint: write the Fibonacci sequence as a linear combination of

$$
1, \alpha, \alpha^{2}, \alpha^{3}, \ldots \text { and } 1, \beta, \beta^{2}, \beta^{3}, \ldots
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} .
$$

6. Let $F=\mathbb{Z}_{p}$.
(a) Prove that the number of one dimensional subspaces in F^{n} equals $\frac{p^{n}-1}{p-1}$;
(b) (Extra credit) Find the number of 2-dimensional subspaces in F^{n}.
[^0]
[^0]: Date: February 9, 2006.

