PROBLEM SET # 4 MATH 114

Due February 16.

Read chapter 1 in Artin's book. We assume that **all fields are commutative** in homework problems.

1. Let *F* be a field, and *F* [*i*] denote the set of all expressions a + bi, with $a, b \in F$. Define addition and multiplication in *F* [*i*] by

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$

 $(a + bi) (c + di) = ac - bd + (ad + bc)i.$

Determine if F[i] is a field for $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}_3, \mathbb{Z}_5$.

2. Assume that char F = p. Prove that $(a + b)^p = a^p + b^p$. Hint: use binomial formula.

3. Prove the little Fermat's theorem

 $a^p \equiv a \mod p$

for any prime p and integer a. Hint: use the previous problem.

4. Let V be a vector space of dimension n and $A: V \to V$ be a linear map such that $A^N = 0$ for some integer N > 0. Prove that $A^n = 0$. Hint: check that $\text{Im } A^k$ is a proper subspace in $\text{Im } A^{k-1}$.

5. Find a formula for a general term of the Fibonacci sequence

 $1, 1, 2, 3, 5, 8, 13, \ldots$

Hint: write the Fibonacci sequence as a linear combination of

$$1, \alpha, \alpha^2, \alpha^3, \dots$$
 and $1, \beta, \beta^2, \beta^3, \dots,$

where

$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}.$$

6. Let $F = \mathbb{Z}_p$.

(a) Prove that the number of one dimensional subspaces in F^n equals $\frac{p^n-1}{p-1}$;

(b) (Extra credit) Find the number of 2-dimensional subspaces in F^n .

Date: February 9, 2006.