PROBLEM SET \# 3
 MATH 114

Due February 9.

1. Read notes on Sylow theorems. Prove the last corollary in these notes.
2. If p is prime and p divides $|G|$, then G has an element of order p.
3. Let p and q be prime and $q \not \equiv 1 \bmod p$. If $|G|=p^{n} q$, then G is solvable.
4. Suppose that $|G|<60$ and $|G|=2^{m} 3^{n}$. Check that G is solvable. Hint: prove by induction on $|G|$. First, show that the number of Sylow 2-subgroups is 3 or the number of Sylow 3 -subgroups is 4 . Then construct a homomorphism $f: G \rightarrow S_{3}$ or S_{4}. By induction the kernel and the image of f are solvable. Hence G is solvable.
5. Show that any group of order less than 60 is solvable. Hint: use the previous problems to eliminate most of numbers below 60 .
6. Let H be a p-subgroup of G, in other words $|H|$ is a power of a prime p. Prove that there is a Sylow p-subgroup P containing H. Hint: consider the action of H on the set of all Sylow p-subgroups. Check that there is a 1-element H-orbit $\{P\}$. Prove that H is a subgroup of P.
7. List all non-isomorphic abelian groups of order 60 .
[^0]
[^0]: Date: February 1, 2006.

