PROBLEM SET # 11 MATH 114

Due April 20.

1. Let *E* and *B* be normal extensions of *F* and $E \cap B = F$. Prove that

$$\operatorname{Aut}_F EB \cong \operatorname{Aut}_F E \times \operatorname{Aut}_F B.$$

2. Find the Galois group of the polynomial $(x^3 - 3)(x^3 - 2)$ over \mathbb{Q} .

3. Let f(x) be an irreducible polynomial of degree 7 solvable in radicals. List all possible Galois groups for f(x).

4. Find the Galois group of $x^6 - 4x^3 + 1$ over \mathbb{Q} .

5. Let f(x) = g(x) h(x) be a product of two irreducible polynomials over a finite field \mathbb{F}_q . Let *m* be the degree of g(x) and *n* be the degree of h(x). Show that the degree of the splitting field of f(x) over \mathbb{F}_q is equal to the least common multiple of *m* and *n*.

6. Let $F \subset E$ be a normal extension with Galois group isomorphic to $\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$. Assuming that char $F \neq 2$, prove that

$$E = F\left(\sqrt{b_1}, \dots, \sqrt{b_s}\right)$$

for some $b_1, \ldots, b_s \in F$.

7. Prove that the splitting field of the polynomial $x^4 + 3x^2 + 1$ over \mathbb{Q} is isomorphic to $\mathbb{Q}(i,\sqrt{5})$.