## PROBLEM SET \# 11

MATH 114

Due April 20.

1. Let $E$ and $B$ be normal extensions of $F$ and $E \cap B=F$. Prove that

$$
\operatorname{Aut}_{F} E B \cong \operatorname{Aut}_{F} E \times \operatorname{Aut}_{F} B
$$

2. Find the Galois group of the polynomial $\left(x^{3}-3\right)\left(x^{3}-2\right)$ over $\mathbb{Q}$.
3. Let $f(x)$ be an irreducible polynomial of degree 7 solvable in radicals. List all possible Galois groups for $f(x)$.
4. Find the Galois group of $x^{6}-4 x^{3}+1$ over $\mathbb{Q}$.
5. Let $f(x)=g(x) h(x)$ be a product of two irreducible polynomials over a finite field $\mathbb{F}_{q}$. Let $m$ be the degree of $g(x)$ and $n$ be the degree of $h(x)$. Show that the degree of the splitting field of $f(x)$ over $\mathbb{F}_{q}$ is equal to the least common multiple of $m$ and $n$.
6. Let $F \subset E$ be a normal extension with Galois group isomorphic to $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$. Assuming that char $F \neq 2$, prove that

$$
E=F\left(\sqrt{b_{1}}, \ldots, \sqrt{b_{s}}\right)
$$

for some $b_{1}, \ldots, b_{s} \in F$.
7. Prove that the splitting field of the polynomial $x^{4}+3 x^{2}+1$ over $\mathbb{Q}$ is isomorphic to $\mathbb{Q}(i, \sqrt{5})$.

[^0]
[^0]:    Date: April 12, 2006.

