PROBLEM SET # 1 MATH 114

Due January 26.

1. Prove that a subgroup of a cyclic group is cyclic. (You have to consider both infinite and finite cyclic group).

2. Let G be a group and the order of G be even. Show that there is $a \in G$ of order 2. Hint if $a^2 \neq 1$, then $a \neq a^{-1}$.

3. Let \mathbb{Q} be the set of all rational numbers. Consider \mathbb{Q} as an abelian group with operation of addition. Show that \mathbb{Q} is not cyclic.

4. Let D_4 denote the group of symmetries of a square. Find the order of D_4 and list all normal subgroups in D_4 .

5. Let G be a group. By Z(G) we denote the center of G, which is by definition, the set of all elements $g \in G$ such that gx = xg for all $x \in G$. Assume that G/Z(G) is a cyclic group. Prove that Z(G) = G, i.e. G is abelian.

6. Show that the *n*-cycle (1...n) and the transposition (12) generate the permutation group S_n , i.e. every element of S_n can be written as a product of these elements.

7. Find a cyclic subgroup of maximal order in S_8 .

Date: January 19, 2006.