PROBLEM SET \# 1
 MATH 114

Due January 26.

1. Prove that a subgroup of a cyclic group is cyclic. (You have to consider both infinite and finite cyclic group).
2. Let G be a group and the order of G be even. Show that there is $a \in G$ of order 2. Hint if $a^{2} \neq 1$, then $a \neq a^{-1}$.
3. Let \mathbb{Q} be the set of all rational numbers. Consider \mathbb{Q} as an abelian group with operation of addition. Show that \mathbb{Q} is not cyclic.
4. Let D_{4} denote the group of symmetries of a square. Find the order of D_{4} and list all normal subgroups in D_{4}.
5. Let G be a group. By $Z(G)$ we denote the center of G, which is by definition, the set of all elements $g \in G$ such that $g x=x g$ for all $x \in G$. Assume that $G / Z(G)$ is a cyclic group. Prove that $Z(G)=G$, i.e. G is abelian.
6. Show that the n-cycle ($1 \ldots \mathrm{n}$) and the transposition (12) generate the permutation group S_{n}, i.e. every element of S_{n} can be written as a product of these elements.
7. Find a cyclic subgroup of maximal order in S_{8}.
[^0]
[^0]: Date: January 19, 2006.

