PROBLEM SET \# 9
 MATH 114

Due April 6.

1. Let $n=p$, or $2 p$ where p is a prime number. Prove that the Galois group of the polynomial $x^{n}-1$ over any field F is cyclic.
2. Show that the Galois group of $x^{15}-1$ over \mathbb{Q} is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

By \mathbb{F}_{q} we denote the finite field of q elements.
3. Find the Galois groups of $x^{6}-1$ over $\mathbb{F}_{5}, \mathbb{F}_{25}$ and \mathbb{F}_{125}.
4. Let $F \subset E$ be an extension of finite fields. Prove that

$$
|E|=|F|^{(E / F)}
$$

5. Let $f(x) \in \mathbb{Z}_{p}[x]$ be an irreducible polynomial of degree 3. Prove that $f(x)$ is irreducible over $\mathbb{F}_{p^{5}}$.
6. Let $q=p^{k}$ for some prime p, n be a number relatively prime to p, m be the minimal positive integer such that

$$
q^{m} \equiv 1 \quad \bmod n
$$

Show that the Galois group of $x^{n}-1$ over \mathbb{F}_{q} is isomorphic to \mathbb{Z}_{m}.

[^0]
[^0]: Date: March 22, 2006.

