PROBLEM SET # 9 MATH 114

Due April 6.

1. Let n = p, or 2p where p is a prime number. Prove that the Galois group of the polynomial $x^n - 1$ over any field F is cyclic.

2. Show that the Galois group of $x^{15} - 1$ over \mathbb{Q} is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$.

By \mathbb{F}_q we denote the finite field of q elements.

3. Find the Galois groups of $x^6 - 1$ over \mathbb{F}_5 , \mathbb{F}_{25} and \mathbb{F}_{125} .

4. Let $F \subset E$ be an extension of finite fields. Prove that

 $|E| = |F|^{(E/F)}.$

5. Let $f(x) \in \mathbb{Z}_p[x]$ be an irreducible polynomial of degree 3. Prove that f(x) is irreducible over \mathbb{F}_{p^5} .

6. Let $q = p^k$ for some prime p, n be a number relatively prime to p, m be the minimal positive integer such that

 $q^m \equiv 1 \mod n.$

Show that the Galois group of $x^n - 1$ over \mathbb{F}_q is isomorphic to \mathbb{Z}_m .

Date: March 22, 2006.