REVIEW EXERCISES MATH 114

1. Let G be a transitive subgroup of S_n .

(a) Prove that if n is prime, then G contains an n-cycle.

(b) Show that (a) is not true if n is not prime.

2. Let F be a field such that the multiplicative group F^* is cyclic. Prove that F is finite.

3. Let G be a transitive subgroup of S_6 which contains a 5-cycle. Prove that G is not solvable.

4. Let F be a field and char $F \neq 2$, $\alpha, \beta \in F$. Prove that $F(\sqrt{\alpha}) = F(\sqrt{\beta})$ if and only of $\alpha\beta$ is a square in F.

5. Find the minimal polynomial for

$$1 + {}^{3}\sqrt{2} + {}^{3}\sqrt{4}$$

over \mathbb{Q} .

6. Prove that any algebraically closed field is infinite.

7. Is $x^3 + x + 1$ irreducible over \mathbb{F}_{256} ?

8. Which of the following extensions are normal

$$\mathbb{Q} \subset \mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right),$$
$$\mathbb{Q} \subset \mathbb{Q}\left({}^{3}\sqrt{2},\sqrt{3}\right),$$
$$\mathbb{Q} \subset \mathbb{Q}\left({}^{3}\sqrt{2},\sqrt{-3}\right)?$$

9. Determine if

$$\mathbb{Q}\left(\sqrt{1-\sqrt{2}}\right) = \mathbb{Q}\left(\sqrt{-1},\sqrt{2}\right).$$

10. Let $\mathbb{Q} \subset F$ be a finite normal extension such that for any two subfields E and K of F either $K \subset E$ or $E \subset K$. Then the Galois group of F over \mathbb{Q} is cyclic of order p^n for some prime number p.

11. Let $F \subset B \subset E$ be a chain of extensions such that $F \subset B$ is normal and $B \subset E$ is normal. Is it always true that $F \subset E$ is normal?

12. Find the Galois group of $(x^2 - 3)(x^2 + 1)(x^3 - 6)$ over \mathbb{Q} .

13. Find the Galois group of $x^4 + 3x + 5$ over \mathbb{Q} .

14. Let p be a prime number. Prove that \sqrt{p} is constructible if and only if $n = 2^k$ for some k.

Date: May 6, 2006.

15. Prove that any subfield of $\mathbb{Q}(n\sqrt{2})$ coincides with $\mathbb{Q}(d\sqrt{2})$ for some divisor d of n.

16. Prove that there exists a polynomial of degree 7 whose Galois group over \mathbb{Q} is \mathbb{Z}_7 .

17. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of odd prime degree p solvable in radicals. Prove that the number of real roots of f(x) equals p or 1.

18. Let $f(x) \in \mathbb{F}_2[x]$ be an irreducible polynomial. Prove that f(x) divides $x^{256} - x$ if and only if the degree of f(x) is 1,2,4 or 8.

19. Suppose that the Galois group over \mathbb{Q} of a polynomial $f(x) \in \mathbb{Q}[x]$ has odd order. Prove that all roots of f(x) are real.

20. Find the Galois group of $x^6 - 8$ over \mathbb{Q} .