REVIEW EXERCISES MATH 114

1. Let G be a transitive subgroup of S_{n}.
(a) Prove that if n is prime, then G contains an n-cycle.
(b) Show that (a) is not true if n is not prime.
2. Let F be a field such that the multiplicative group F^{*} is cyclic. Prove that F is finite.
3. Let G be a transitive subgroup of S_{6} which contains a 5 -cycle. Prove that G is not solvable.
4. Let F be a field and char $F \neq 2, \alpha, \beta \in F$. Prove that $F(\sqrt{\alpha})=F(\sqrt{\beta})$ if and only of $\alpha \beta$ is a square in F.
5. Find the minimal polynomial for

$$
1+\sqrt[3]{2}+{ }^{3} \sqrt{4}
$$

over \mathbb{Q}.
6. Prove that any algebraically closed field is infinite.
7. Is $x^{3}+x+1$ irreducible over \mathbb{F}_{256} ?
8. Which of the following extensions are normal

$$
\begin{aligned}
& \mathbb{Q} \subset \mathbb{Q}(\sqrt{1-\sqrt{2}}), \\
& \mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \sqrt{3}), \\
& \mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3}) ?
\end{aligned}
$$

9. Determine if

$$
\mathbb{Q}(\sqrt{1-\sqrt{2}})=\mathbb{Q}(\sqrt{-1}, \sqrt{2)}
$$

10. Let $\mathbb{Q} \subset F$ be a finite normal extension such that for any two subfields E and K of F either $K \subset E$ or $E \subset K$. Then the Galois group of F over \mathbb{Q} is cyclic of order p^{n} for some prime number p.
11. Let $F \subset B \subset E$ be a chain of extensions such that $F \subset B$ is normal and $B \subset E$ is normal. Is it always true that $F \subset E$ is normal?
12. Find the Galois group of $\left(x^{2}-3\right)\left(x^{2}+1\right)\left(x^{3}-6\right)$ over \mathbb{Q}.
13. Find the Galois group of $x^{4}+3 x+5$ over \mathbb{Q}.
14. Let p be a prime number. Prove that ${ }^{n} \sqrt{p}$ is constructible if and only if $n=2^{k}$ for some k.

[^0]15. Prove that any subfield of $\mathbb{Q}\left({ }^{n} \sqrt{2}\right)$ coincides with $\mathbb{Q}\left({ }^{d} \sqrt{2}\right)$ for some divisor d of n.
16. Prove that there exists a polynomial of degree 7 whose Galois group over \mathbb{Q} is \mathbb{Z}_{7}.
17. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of odd prime degree p solvable in radicals. Prove that the number of real roots of $f(x)$ equals p or 1 .
18. Let $f(x) \in \mathbb{F}_{2}[x]$ be an irreducible polynomial. Prove that $f(x)$ divides $x^{256}-x$ if and only if the degree of $f(x)$ is $1,2,4$ or 8 .
19. Suppose that the Galois group over \mathbb{Q} of a polynomial $f(x) \in \mathbb{Q}[x]$ has odd order. Prove that all roots of $f(x)$ are real.
20. Find the Galois group of $x^{6}-8$ over \mathbb{Q}.

[^0]: Date: May 6, 2006.

