# POLYNOMIALS OF DEGREE 3 AND 4

#### Cardano formulas.

Let  $f(x) = x^3 + ax + b \in \mathbb{Q}[x]$  be irreducible. The Galois group G is isomorphic to  $S_3$  or  $A_3$ , therefore f(x) = 0 is solvable in radicals. Let  $\alpha_1, \alpha_2, \alpha_3$  be the roots of f(x), then

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
,  $\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1 = a$ ,  $\alpha_1 \alpha_2 \alpha_3 = -b$ .

Introduce

$$\omega = -\frac{1}{2} + \frac{\sqrt{3}i}{2},$$

$$D = -4a^3 - 27b^2 = (\alpha_1 - \alpha_2)^2 (\alpha_2 - \alpha_3)^2 (\alpha_3 - \alpha_1)^2,$$

$$F = \mathbb{Q}(\omega), K = \mathbb{Q}(\sqrt{D}, \omega), E = K(\alpha_1, \alpha_2, \alpha_3).$$

Then  $\operatorname{Aut}_K(E) = A_3 = \mathbb{Z}_3$ ,  $K \subset E$  is a Kummer extension. If s is an element in  $\operatorname{Aut}_K E$  such that  $s(\alpha_1) = \alpha_2$ ,  $s(\alpha_2) = \alpha_3$ ,  $s(\alpha_3) = \alpha_1$ , then

$$\gamma_1 = \alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3$$
 and  $\gamma_2 = \alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3$ 

satisfy the relation

$$s(\gamma_1) = \omega \gamma_1, \ s(\gamma_2) = \omega^2 \gamma_2.$$

Then  $\gamma_1^3, \, \gamma_2^3 \in K$ . One can write the expressions for  $\gamma_1$  and  $\gamma_2$ 

$$\gamma_1^3 = \alpha_1^3 + \alpha_2^3 + \alpha_3^3 + 6\alpha_1\alpha_2\alpha_3 + 3\omega \left(\alpha_1^2\alpha_2 + \alpha_2^2\alpha_3 + \alpha_3^2\alpha_1\right) + 3\omega^2 \left(\alpha_1\alpha_2^2 + \alpha_2\alpha_3^2 + \alpha_3\alpha_1^2\right),$$

$$\gamma_1^3 = \alpha_1^3 + \alpha_2^3 + \alpha_3^3 + 6\alpha_1\alpha_2\alpha_3 + 3\omega^2 \left(\alpha_1^2\alpha_2 + \alpha_2^2\alpha_3 + \alpha_3^2\alpha_1\right) + 3\omega \left(\alpha_1\alpha_2^2 + \alpha_2\alpha_3^2 + \alpha_3\alpha_1^2\right).$$

Note that  $\alpha_1 + \alpha_2 + \alpha_3 = 0$ , therefore

$$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{3}=\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}+6\alpha_{1}\alpha_{2}\alpha_{3}+3\left(\alpha_{1}^{2}\alpha_{2}+\alpha_{2}^{2}\alpha_{3}+\alpha_{3}^{2}\alpha_{1}\right)+3\left(\alpha_{1}\alpha_{2}^{2}+\alpha_{2}\alpha_{3}^{2}+\alpha_{3}\alpha_{1}^{2}\right)=0.$$

Introduce notations

$$A = \alpha_1^2 \alpha_2 + \alpha_2^2 \alpha_3 + \alpha_3^2 \alpha_1, B = \alpha_1 \alpha_2^2 + \alpha_2 \alpha_3^2 + \alpha_3 \alpha_1^2.$$

Subtract the last equation from the expressions for  $\gamma_1$  and  $\gamma_2$  and get

$$\gamma_1^3 = 3(\omega - 1)A + 3(\omega^2 - 1)B = \frac{-9}{2}(A + B) + \frac{3\sqrt{3}i}{2}(A - B).$$

Now use the relations

$$A + B = \alpha_1^2 \alpha_2 + \alpha_2^2 \alpha_3 + \alpha_3^2 \alpha_1 + \alpha_1 \alpha_2^2 + \alpha_2 \alpha_3^2 + \alpha_3 \alpha_1^2 = (\alpha_1 + \alpha_2 + \alpha_3) (\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1) - 3\alpha_1 \alpha_2 \alpha_3 = 3b,$$
  

$$B - A = (\alpha_1 - \alpha_2) (\alpha_2 - \alpha_3) (\alpha_3 - \alpha_1) = \sqrt{D}.$$

Date: April 8, 2006.

Therefore

$$\gamma_1^3 = \frac{-9}{2}3b - \frac{3\sqrt{3}i}{2}\sqrt{D} = \frac{-27b}{2} - \frac{3}{2}\sqrt{-3D},$$
$$\gamma_2^3 = \frac{-27b}{2} + \frac{3}{2}\sqrt{-3D}.$$

To find  $\gamma_1$  and  $\gamma_2$  we have to take the cube root of  $\frac{-27b}{2} \pm \frac{3}{2}\sqrt{-3D}$ . We have 3 choices for a cube root. We have to choose them in such a way that

$$\gamma_1 \gamma_2 = \left(\alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3\right) \left(\alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3\right) = \alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \left(\omega + \omega^2\right) \left(\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1\right) = \alpha_1^2 + \alpha_2^2 + \alpha_3^2 - \left(\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1\right) = (\alpha_1 + \alpha_2 + \alpha_3)^2 - 3\left(\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1\right) = -3a.$$
To find the roots  $\alpha_1, \alpha_2, \alpha_3$  solve the linear system

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
,  $\alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3 = \gamma_1$ ,  $\alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3 = \gamma_2$ ;

get the answer

$$\alpha_1 = \frac{\gamma_1 + \gamma_2}{3}, \ \alpha_2 = \frac{\omega^2 \gamma_1 + \omega \gamma_2}{3}, \ \alpha_3 = \frac{\omega \gamma_1 + \omega^2 \gamma_2}{3}.$$

Example. Consider the equation

$$x^3 - 3x + 1 = 0.$$

Then D = 81,

$$\gamma_{1,2} = (\frac{-27}{2} \pm \frac{3}{2} \sqrt{-243})^{1/3}.$$

# Quartic polynomial.

Let  $f(x) = x^4 + ax^2 + bx + c \in F[x]$  be an irreducible polynomial. The possible Galois groups for f(x) are  $\mathbb{Z}_4$ ,  $K_4$  (Klein group),  $D_4$ ,  $A_4$  or  $S_4$ . We start by solving this polynomial equation in radicals. For this note that  $K_4$  is a normal subgroup of  $S_4$  and the quotient  $S_4/K_4$  is isomorphic to  $S_3$ . Let  $\alpha_1, \alpha_2, \alpha_3$  and  $\alpha_4$  be the roots of f(x). Then

$$\theta_1 = (\alpha_1 + \alpha_2) (\alpha_3 + \alpha_4)$$
,  $\theta_2 = (\alpha_1 + \alpha_3) (\alpha_2 + \alpha_3)$ ,  $\theta_3 = (\alpha_1 + \alpha_4) (\alpha_2 + \alpha_3)$  are fixed by  $K_4$ . Therefore  $F(\theta_1, \theta_2, \theta_3) \subset E^{K_4}$ , where  $E$  is the splitting field of  $f(x)$ . Note that

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$$

implies

$$\theta_1 = -(\alpha_1 + \alpha_2)^2$$
,  $\theta_2 = -(\alpha_1 + \alpha_3)^2$ ,  $\theta_3 = -(\alpha_1 + \alpha_4)^2$ ,

and we can easily obtain

$$\alpha_1 = \left(\sqrt{-\theta_1} + \sqrt{-\theta_2} + \sqrt{-\theta_3}\right)/2,$$

$$\alpha_2 = \left(\sqrt{-\theta_1} - \sqrt{-\theta_2} - \sqrt{-\theta_3}\right)/2,$$

$$\alpha_3 = \left(-\sqrt{-\theta_1} + \sqrt{-\theta_2} - \sqrt{-\theta_3}\right)/2,$$

$$\alpha_3 = \left(-\sqrt{-\theta_1} - \sqrt{-\theta_2} + \sqrt{-\theta_3}\right)/2.$$

We suspect that  $\theta_1, \theta_2, \theta_3$  are the roots of a certain cubic polynomial with coefficients in F.

#### Lemma 0.1.

$$\theta_1 + \theta_2 + \theta_3 = 2a, \ \theta_1\theta_2 + \theta_2\theta_3 + \theta_3\theta_1 = a^2 - 4c, \ \theta_1\theta_2\theta_3 = -b^2.$$

*Proof.* First identity

$$\theta_1 + \theta_2 + \theta_3 = 2\sum_{i < j} \alpha_i \alpha_j = 2a.$$

For the second identity let

$$X = \theta_1 \theta_2 + \theta_2 \theta_3 + \theta_3 \theta_1 = 6\alpha_1 \alpha_2 \alpha_3 \alpha_4 + \sum_{i < j} \alpha_i^2 \alpha_j^2 + 3 \sum_{i \neq j \neq k, j < k} \alpha_i^2 \alpha_j \alpha_k,$$

$$Y = a^2 - 4c = \left(\sum_{i < j} \alpha_i \alpha_j\right)^2 - 4\alpha_1 \alpha_2 \alpha_3 \alpha_4 = 2\alpha_1 \alpha_2 \alpha_3 \alpha_4 + \sum_{i < j} \alpha_i^2 \alpha_j^2 + 2\sum_{i \neq j \neq k, j < k} \alpha_i^2 \alpha_j \alpha_k,$$

$$X - Y = 4\alpha_1 \alpha_2 \alpha_3 \alpha_4 + \sum_{i \neq i \neq k, j < k} \alpha_i^2 \alpha_j \alpha_k = \left(\sum_{i < j < k} \alpha_i \right) \left(\sum_{i < j < k} \alpha_i \alpha_j \alpha_k\right) = 0.$$

For the last identity use

$$\theta_1 \theta_2 \theta_3 = -(\alpha_1 + \alpha_2)^2 (\alpha_1 + \alpha_3)^2 (\alpha_1 + \alpha_4)^2$$

$$(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_1 + \alpha_4) = \alpha_2\alpha_3\alpha_4 + \alpha_1\alpha_2\alpha_3 + \alpha_1\alpha_3\alpha_4 + \alpha_1\alpha_2\alpha_4 + \alpha_1^2(\alpha_2 + \alpha_3 + \alpha_4) + \alpha_1^3 = \alpha_1\alpha_3\alpha_4 + \alpha_1\alpha_2\alpha_4 + \alpha_1\alpha_4\alpha_4 + \alpha_1\alpha_4\alpha$$

$$\alpha_2\alpha_3\alpha_4 + \alpha_1\alpha_2\alpha_3 + \alpha_1\alpha_3\alpha_4 + \alpha_1\alpha_2\alpha_4 + \alpha_1^2(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) =$$

$$\alpha_2 \alpha_3 \alpha_4 + \alpha_1 \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \alpha_4 + \alpha_1 \alpha_2 \alpha_4 = -b.$$

Corollary 0.2.  $\theta_1, \theta_2$  and  $\theta_3$  are the roots of polynomial

$$h(x) = x^3 - 2ax^2 + (a^2 - 4c)x + b^2.$$

The polynomial h(x) is called the resolvent cubic of f(x).

To find the roots of f(x) first find the roots  $\theta_1, \theta_2$  and  $\theta_3$  of h(x) and then use the formulas for  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  in terms of  $\theta_1, \theta_2, \theta_3$ .

**Lemma 0.3.** The discriminant D of f(x) is given by the formula

$$D = 16a^4c - 4a^3b^2 - 128a^2c^2 + 144ab^2c - 27b^4 + 256c^3.$$

The proof is similar to one for a cubic polynomial but involves tedious calculations and we skip it.

### How to determine the Galois group of a quartic polynomial.

First, check D. If D is a perfect square in F, the Galois group G is a subgroup of  $A_4$ .

Now, look at the cubic resolvent h(x). If h(x) is irreducible over F, then the splitting field of f(x) contains a subfield of degree 3. Hence 3 divides |G|, and G is  $S_4$  or  $A_4$  depending on the discriminant test.

If h(x) is reducible, then G is a subgroup of  $D_4$ . Consider two cases. If all three roots of h(x) lie in F, then obviously the group is  $K_4$ . Assume that h(x) splits into product of a quadratic and a linear polynomial in F[x], say  $\theta_1 \in F$ ,  $\theta_2, \theta_3 \notin F$ . Then the group is either  $D_4$  or  $\mathbb{Z}_4$ . If f(x) is irreducible over  $F(\sqrt{D})$ , then the group is  $D_4$ , otherwise it is  $\mathbb{Z}_4$ .

**Example.** For the polynomial  $x^4 + 4x - 1$  the resolvent cubic is

$$x^3 + 4x + 16 = (x+2)(x^2 - 2x + 8)$$
.

Hence the Galois group over  $\mathbb{Q}$  is a subgroup of  $D_4$ . We can avoid calculating the discriminant by checking that f(x) has two complex and two real roots. Therefore the Galois group contains a transposition, hence it is  $D_4$ .